CRAMÉR-TYPE LARGE DEVIATIONS FOR SAMPLES FROM A FINITE POPULATION ${ }^{1}$

By Zhishui Hu, John Robinson and Qiying Wang
USTC, University of Sydney and University of Sydney

Cramér-type large deviations for means of samples from a finite population are established under weak conditions. The results are comparable to results for the so-called self-normalized large deviation for independent random variables. Cramér-type large deviations for the finite population Student t-statistic are also investigated.

1. Introduction and results. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a simple random sample drawn without replacement from a finite population $\{a\}_{N}=\left\{a_{1}, \ldots, a_{N}\right\}$, where $n<N$. Denote $\mu=E X_{1}, \sigma^{2}=\operatorname{var}\left(X_{1}\right)$,

$$
S_{n}=\sum_{k=1}^{n} X_{k}, \quad p=n / N, \quad q=1-p, \quad \omega_{N}^{2}=N p q
$$

Under appropriate conditions, the finite central limit theorem (see [14]) states that $P\left(S_{n}-n \mu \geq x \sigma \omega_{N}\right)$ may be approximated by $1-\Phi(x)$, where $\Phi(x)$ is the distribution function of a standard normal variate. The absolute error of this normal approximation, via Berry-Esseen bounds and Edgeworth expansions, has been widely investigated in the literature. We only refer to [4] and [17] for the rates in the Erdös and Rényi central limit theorem and to [1, 3, 26], as well as [6, 7], for the Edgeworth expansions. Extensions to U-statistics and, more generally, symmetric statistics can be found in [20, 21, 27, 28], as well as [9, 10].

In this paper, we shall be concerned with the relative error of $P\left(S_{n}-n \mu \geq\right.$ $x \sigma \omega_{N}$) to $1-\Phi(x)$. In this direction, Robinson [25] derived a large deviation result that is similar to the type for sums of independent random variables in [22], Chapter VIII. However, to make the main results in [25] applicable, it essentially requires the assumption that $0<p_{1} \leq p \leq p_{2}<1$. This kind of condition not only takes away a major difficulty in proving large deviation results but also limits its potential applications. The aim of this paper is to establish a Cramér-type large deviation for samples from a finite population under weak conditions. In a reasonably wide range for x, we show that the relative error of $P\left(S_{n}-n \mu \geq x \sigma \omega_{N}\right)$ to $1-\Phi(x)$ is only related to $E\left|X_{1}-\mu\right|^{3} / \sigma^{3}$ by means of an absolute constant.

[^0]We also obtain a similar result for the so-called finite population Student t-statistic defined by

$$
t_{n}=\sqrt{n}(\bar{X}-\mu) /(\hat{\sigma} \sqrt{q}),
$$

where $\bar{X}=S_{n} / n$ and $\hat{\sigma}^{2}=\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2} /(n-1)$. It is interesting to note that the results for both the finite population standardized mean and the Student t-statistic are comparable to the so-called self-normalized large deviation for independent random variables which has recently been developed by Jing, Shao and Wang [19]. Indeed, Theorems 1.1 and 1.3 below can be considered as analogous to Theorem 2.1 of Jing, Shao and Wang [19] in the independent case. The BerryEsseen bounds and Edgeworth expansions for the Student t-statistic have been investigated in [2], [23] and [5, 8].

We now state our main findings.

THEOREM 1.1. There exists an absolute constant $A>0$ such that

$$
\begin{align*}
\exp \left\{-A(1+x)^{3} \beta_{3 N} / \omega_{N}\right\} & \leq \frac{P\left(S_{n}-n \mu \geq x \sigma \omega_{N}\right)}{1-\Phi(x)} \tag{1.1}\\
& \leq \exp \left\{A(1+x)^{3} \beta_{3 N} / \omega_{N}\right\}
\end{align*}
$$

for $0 \leq x \leq(1 / A) \omega_{N} \sigma / \max _{k}\left|a_{k}-\mu\right|$, where $\beta_{3 N}=\sigma^{-3} E\left|X_{1}-\mu\right|^{3}$.

The following result is a direct consequence of Theorem 1.1 and provides a Cramér-type large deviation result for samples from a finite population.

THEOREM 1.2. There exists an absolute constant $A>0$ such that

$$
\begin{equation*}
\frac{P\left(S_{n}-n \mu \geq x \sigma \omega_{N}\right)}{1-\Phi(x)}=1+O(1)(1+x)^{3} \beta_{3 N} / \omega_{N} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P\left(S_{n}-n \mu \leq-x \sigma \omega_{N}\right)}{\Phi(-x)}=1+O(1)(1+x)^{3} \beta_{3 N} / \omega_{N} \tag{1.3}
\end{equation*}
$$

for $0 \leq x \leq(1 / A) \min \left\{\omega_{N} \sigma / \max _{k}\left|a_{k}-\mu\right|,\left(\omega_{N} / \beta_{3 N}\right)^{1 / 3}\right\}$, where $O(1)$ is bounded by an absolute constant. In particular, if $\omega_{N} / \beta_{3 N} \rightarrow \infty$, then, for any $0<\eta_{N} \rightarrow 0$,

$$
\begin{equation*}
\frac{P\left(S_{n}-n \mu \geq x \sigma \omega_{N}\right)}{1-\Phi(x)} \rightarrow 1, \quad \frac{P\left(S_{n}-n \mu \leq-x \sigma \omega_{N}\right)}{\Phi(-x)} \rightarrow 1 \tag{1.4}
\end{equation*}
$$

uniformly in $0 \leq x \leq \eta_{N} \min \left\{\omega_{N} \sigma / \max _{k}\left|a_{k}-\mu\right|,\left(\omega_{N} / \beta_{3 N}\right)^{1 / 3}\right\}$.

Results (1.2) and (1.3) are useful because they provide not only the relative error, but also a Berry-Esseen rate of convergence. Indeed, by the fact that $1-$ $\Phi(x) \leq 2 e^{-x^{2} / 2} /(1+x)$ for $x \geq 0$, we may obtain

$$
\left|P\left(S_{n}-n \mu \leq x \sigma \omega_{N}\right)-\Phi(x)\right| \leq A(1+|x|)^{2} e^{-x^{2} / 2} \beta_{3 N} / \omega_{N}
$$

for $|x| \leq(1 / A) \min \left\{\omega_{N} \sigma / \max _{k}\left|a_{k}-\mu\right|,\left(\omega_{N} / \beta_{3 N}\right)^{1 / 3}\right\}$. This provides an exponential nonuniform Berry-Esseen bound for samples from a finite population.

REMARK 1.1. We do not have any restriction on the $\{a\}_{N}$ in Theorems 1.1 and 1.2. Indeed, for any $\{a\}_{N}$,

$$
\mu=\frac{1}{N} \sum_{k=1}^{N} a_{k}, \quad \sigma^{2}=\frac{1}{N} \sum_{k=1}^{N}\left(a_{k}-\mu\right)^{2}, \quad E\left|X_{1}-\mu\right|^{3}=\frac{1}{N} \sum_{k=1}^{N}\left|a_{k}-\mu\right|^{3}
$$

Removing the trivial case that all a_{k} are the same, we always have $\max _{k} \mid a_{k}-$ $\mu \mid>0, \sigma^{2}>0$ and $E\left|X_{1}-\mu\right|^{3}<\infty$.

REmARK 1.2. Hájek [15] proved that if $0<p_{1} \leq p \leq p_{2}<1$, then $\left(S_{n}-\right.$ $n \mu) / \sigma \omega_{N} \rightarrow_{\mathscr{D}} N(0,1)$ if and only if $\omega_{N} \sigma / \max _{k}\left|a_{k}-\mu\right| \rightarrow \infty$. Theorems 1.1 and 1.2 therefore provide reasonably wide ranges for x to make the results hold. To be more precise, as an example consider $a_{k}=k^{\alpha}$, where $\alpha>-1 / 3$. In this special case, simple calculations show that

$$
\min \left\{\omega_{N} \sigma / \max _{k}\left|a_{k}-\mu\right|,\left(\omega_{N} / \beta_{3 N}\right)^{1 / 3}\right\} \asymp(N p q)^{1 / 6}
$$

Thus, Theorem 1.2 holds for x belonging to the best range $\left(0, o\left[(N p q)^{1 / 6}\right]\right)$.
The following theorem provides a relative error of $P\left(t_{n} \geq x\right)$ to $1-\Phi(x)$, which is only related to $E\left|X_{1}-\mu\right|^{3} / \sigma^{3}$ by means of an absolute constant, as in Theorem 1.1. Cramér-type large deviation results for the Student t-statistic may be obtained accordingly, as in Theorem 1.2. We omit the details.

THEOREM 1.3. There exists an absolute constant $A>0$ such that

$$
\begin{align*}
\exp \left\{-A(1+x)^{3} \beta_{3 N} / \omega_{N}\right\} & \leq \frac{P\left(t_{n} \geq x\right)}{1-\Phi(x)} \\
& \leq \exp \left\{A(1+x)^{3} \beta_{3 N} / \omega_{N}\right\} \tag{1.5}
\end{align*}
$$

for all $0 \leq x \leq(1 / A) \omega_{N} \sigma / \max _{k}\left|a_{k}-\mu\right|$, where $\beta_{3 N}$ is defined as in Theorem 1.1.
REMARK 1.3. The finite population $\{a\}_{N}$ in Theorems $1.1-1.3$ may be replaced by a triangular array $\{a\}_{N}=\left\{a_{N i}, i=1,2, \ldots, N\right\}, N \geq 2$, without essential difficulty. Theorems 1.1-1.2 give information on normal approximations for

TABLE 1
Relative errors of tail probability to normal

Population	\boldsymbol{N}	$\boldsymbol{N} \boldsymbol{p}$	$\boldsymbol{\beta}_{\mathbf{3} \boldsymbol{N}}$	$\boldsymbol{x}=\mathbf{2}$	$\boldsymbol{x}=\mathbf{2 . 5}$	$\boldsymbol{x}=\mathbf{3}$
$a_{k}=k$	1000	250	1.299	1.006	1.041	1.119
	100	25	1.299	1.223	1.562	2.356
$a_{k}=k^{2}$	1000	250	1.376	0.897	0.807	0.707
	100	25	1.375	0.802	0.783	0.814

permutation and rank tests, while Theorem 1.3 is applicable in survey sampling. It is worthwhile to note that we did not introduce any restrictions on unknown parameters or the sampled population and, by means of methods similar to those used in the proof of Theorem 1.3, it is possible to obtain similar bounds for the Studentized mean under stratified random sampling.

REMARK 1.4. The importance of Theorems 1.1-1.3 is based on the fact that all bounds are based only on $E\left|X_{1}-\mu\right|^{3} / \sigma^{3}$ with an absolute constant. The relevance of the results lies in the fact that they give general bounds on the relative errors of the normal approximation, in the same way as the Berry-Esseen bounds are of use in giving uniform bounds on the absolute error. However, our theorems are still asymptotic results, as the absolute constant A is not specified. The following simulations in Table 1, which provide the relative error of $P\left(t_{n} \geq x\right)$ to $1-\Phi(x)$ based on Theorem 1.3 for $a_{k}=k$ and $a_{k}=k^{2}$ based on $1,000,000$ repetitions, indicate the accuracy of the normal approximation in the large deviation region. The simulations in Table 2 confirm that more precise results, like saddlepoint approximations, are required. Dai and Robinson [11] investigated saddlepoint approximation under very strong conditions, that is, where errors are based on $E e^{t\left(X_{1}-\mu\right)^{2}}$, for $t>0$, with a constant. The saddle-point approximations under the weak conditions as in Theorem 1.3 are open problems.

This paper is organized as follows. Major steps of the proofs of Theorems $1.1-1.3$ are given in Section 2. Proofs of three propositions used in the main

TABLE 2
Saddle-point approximations

Population	\boldsymbol{N}	$\boldsymbol{N} \boldsymbol{p}$	$\boldsymbol{\beta}_{\mathbf{3} \boldsymbol{N}}$	$\boldsymbol{x}=\mathbf{2}$	$\boldsymbol{x}=\mathbf{2 . 5}$	$\boldsymbol{x}=\mathbf{3}$
$a_{k}=k$	1000	250	1.299	0.984	0.989	1.011
	100	25	1.299	0.996	0.989	0.992
$a_{k}=k^{2}$	1000	250	1.376	1.010	0.987	0.966
	100	25	1.375	0.991	1.007	1.009

proofs are offered in Sections 3-5. In Section 3, as a preliminary, we establish a Berry-Esseen bound for the associated distribution of $P\left(S_{n}-n \mu \leq x\right)$ related to the conjugate method in a general setting. Throughout the paper, we shall use A, A_{1}, A_{2}, \ldots to denote absolute constants whose values may differ at each occurrence. We also write $b=x / \omega_{N}, V_{n}^{2}=\sum_{k=1}^{n} X_{k}^{2}$,

$$
V_{1 n}=V_{n}^{2}-n \quad \text { and } \quad V_{2 n}=\sum_{k=1}^{n}\left[\left(X_{k}^{2}-1\right)^{2}-E\left(X_{k}^{2}-1\right)^{2}\right]
$$

and, when no confusion arises, \sum denotes $\sum_{k=1}^{N}$ and \prod denotes $\prod_{k=1}^{N}$. The symbol i will be used exclusively for $\sqrt{-1}$.
2. Proofs of theorems. Without loss of generality, we assume that $\mu=0$ and $\sigma^{2}=1$. Otherwise, it suffices to consider that $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a simple random sample drawn without replacement from a finite population $\left\{a^{\prime}\right\}_{N}=$ $\left\{\left(a_{1}-\mu\right) / \sigma, \ldots,\left(a_{N}-\mu\right) / \sigma\right\}$, where $n<N$.

Proof of Theorem 1.1. When $0 \leq x \leq 2$, property (1.1) follows from the Berry-Esseen bound for samples from a finite population (see, e.g., [17]),

$$
\left|P\left(S_{n} \geq x \omega_{N}\right)-(1-\Phi(x))\right| \leq A \beta_{3 N} / \omega_{N}
$$

When $2 \leq x \leq(1 / A) \omega_{N} / \max _{k}\left|a_{k}\right|$, property (1.1) follows from the following proposition with $\xi=0, \xi_{1}=0$ and $h=0$. Proposition 2.1 will be proven in Section 3.

Proposition 2.1. There exists an absolute constant $A>0$ such that, for all $0 \leq \xi \leq 1 / 2,\left|\xi_{1}\right| \leq 36$ and $2 \leq x \leq(1 / A) \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{equation*}
\frac{P\left(b S_{n}-\xi b^{2} q V_{1 n}+\xi_{1} b^{4} q^{2} V_{2 n} \geq x^{2}\right)}{1-\Phi(x)} \geq \exp \left\{-A x^{3} \beta_{3 N} / \omega_{N}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{P\left(b S_{n}-\xi b^{2} q V_{1 n}+\xi_{1} b^{4} q^{2} V_{2 n} \geq x^{2}+h\right)}{1-\Phi(x)} \tag{2.2}\\
& \quad \leq\left[1+9|h| x^{-2}\right] \exp \left\{-h+A x^{3} \beta_{3 N} / \omega_{N}\right\}
\end{align*}
$$

where h is an arbitrary constant (which may depend on x) with $|h| \leq x^{2} / 5$.
Proof of Theorem 1.2. This follows immediately from Theorem 1.1.
Proof of Theorem 1.3. When $0 \leq x \leq 4$, property (1.5) follows from the Berry-Esseen bound for the finite population Student t-statistic; see, for example, [5]. Next, assume $4 \leq x \leq(1 / A) \omega_{N} / \max _{k}\left|a_{k}\right|$. Without loss of generality,
assume that $A \geq 8$ and $n \geq 4$. Note that $\max _{k}\left|a_{k}\right| \geq 1$, since $\sum a_{k}^{2}=N$. It is readily seen that

$$
\begin{equation*}
\left|\frac{x_{0}}{x}-1\right|=\left|\left[1+\left(x^{2} q-1\right) / n\right]^{-1 / 2}-1\right| \leq 2 x^{2} / n \tag{2.3}
\end{equation*}
$$

where $x_{0}=x n^{1 / 2} /\left(n+x^{2} q-1\right)^{1 / 2}$. It follows from (2.3) that $2 \leq x / 2 \leq x_{0} \leq$ $3 x / 2$ and $\left|x_{0}-x\right| \leq 2 x^{3} \beta_{3 N} / \omega_{N}^{2}$. Hence, by noting $1-\Phi(x) \geq x \Phi^{\prime}(x) /\left(1+x^{2}\right)$ for $x \geq 0$ (see, e.g., [24], page 30), we have

$$
\begin{aligned}
\left|\log \frac{1-\Phi\left(x_{0}\right)}{1-\Phi(x)}\right| & =\left|\int_{x}^{x_{0}} \frac{\Phi^{\prime}(t)}{1-\Phi(t)} d t\right| \leq\left|\int_{x}^{x_{0}} \frac{1+t^{2}}{t} d t\right| \\
& \leq 2 x\left|x-x_{0}\right| \leq x^{3} \beta_{3 N} / \omega_{N}
\end{aligned}
$$

which yields that

$$
\begin{equation*}
\exp \left\{-x^{3} \beta_{3 N} / \omega_{N}\right\} \leq \frac{1-\Phi\left(x_{0}\right)}{1-\Phi(x)} \leq \exp \left\{x^{3} \beta_{3 N} / \omega_{N}\right\} \tag{2.4}
\end{equation*}
$$

We are now ready to prove Theorem 1.3. As is well known (see, e.g., [13]), for $x \geq 0$,

$$
P\left(t_{n} \geq x\right)=P\left(S_{n} / V_{n} \geq x_{0} \sqrt{q}\right)
$$

Note that $b_{0} x_{0} \sqrt{q} V_{n} \leq\left(x_{0}^{2}+b_{0}^{2} q V_{n}^{2}\right) / 2 \leq x_{0}^{2}+b_{0}^{2} q\left(V_{n}^{2}-n\right) / 2$, where $b_{0}=$ x_{0} / ω_{N}. It follows from (2.1), (2.3) and (2.4) that, for $4 \leq x \leq(1 / A) \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{aligned}
P\left(S_{n} \geq x_{0} \sqrt{q} V_{n}\right) & \geq P\left(b_{0} S_{n}-b_{0}^{2} q\left(V_{n}^{2}-n\right) / 2 \geq x_{0}^{2}\right) \\
& \geq\left(1-\Phi\left(x_{0}\right)\right) \exp \left\{-A x_{0}^{3} \beta_{3 N} / \omega_{N}\right\} \\
& \geq(1-\Phi(x)) \exp \left\{-A_{1} x^{3} \beta_{3 N} / \omega_{N}\right\}
\end{aligned}
$$

which implies the first inequality of (1.5).
In view of the following two propositions, the second inequality of (1.5) may be obtained by an argument similar to that used in the proof of (5.13) in [19], so the details are omitted. The proofs of Propositions 2.2 and 2.3 will be given in Section 4 and Section 5, respectively.

Proposition 2.2. There exists an absolute constant $A>0$ such that

$$
P\left(S_{n} \geq x \sqrt{q} V_{n}\right) \leq(1-\Phi(x)) \exp \left\{A x^{3} \beta_{3 N} / \omega_{N}\right\}+A e^{-4 x^{2}}
$$

for $2 \leq x \leq(1 / A) \omega_{N} / \max _{k}\left|a_{k}\right|$.
PROPOSITION 2.3. There exists an absolute constant $A>0$ such that

$$
P\left(S_{n} \geq x \sqrt{q} V_{n}\right) \leq(1-\Phi(x)) \exp \left\{A x^{3} \beta_{3 N} / \omega_{N}\right\}+A\left(x \beta_{3 N} / \omega_{N}\right)^{4 / 3}
$$

for $2 \leq x \leq(1 / A) \omega_{N} / \max _{k}\left|a_{k}\right|$.
3. Proof of Proposition 2.1. In Section 3.1, we derive a Berry-Esseen bound for the associated distribution of $P\left(S_{n} \leq x\right)$ related to the conjugate method. The result is established in a general setting and will be used in the proof of Proposition 2.1, which is given in Section 3.2.
3.1. Preliminary. Consider a sequence of constants $\{b\}_{N}=\left\{b_{1}, \ldots, b_{N}\right\}$ with $\sum b_{k}=0$. Write $K(z)=\log \left(p e^{q z}+q e^{-p z}\right)$ and let K_{k}, K_{k}^{\prime} and $K_{k}^{\prime \prime}$ be the values of $K(x), K^{\prime}(x)$ and $K^{\prime \prime}(x)$ evaluated at $x=u b_{k}+\alpha_{N}$, where α_{N} is the solution of the equation

$$
\begin{equation*}
\sum K^{\prime}\left(u b_{k}+\alpha\right)=0 \tag{3.1}
\end{equation*}
$$

We continue to assume that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample without replacement from $\{b\}_{N}$, where $n<N$, and continue to use the notation $S_{n}=\sum_{k=1}^{n} X_{k}$, p, q and $\omega_{N}^{2}=N p q$, as in Section 1. Define

$$
H_{n}(x ; u)=E e^{u S_{n}} I\left(S_{n} \leq x\right) / E e^{u S_{n}}
$$

The main result in this section is as follows.

THEOREM 3.1. For any given $C_{0}>0$, if $|u| \leq C_{0} / \max _{k}\left|b_{k}\right|$, then

$$
\begin{equation*}
\sup _{x}\left|H_{n}(x ; u)-\Phi\left(\frac{x-m_{N}}{\sigma_{N}}\right)\right| \leq C(p q)^{-1 / 2} \sum\left|b_{k}\right|^{3} /\left(\sum b_{k}^{2}\right)^{3 / 2} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
E e^{u S_{n}}=\left(G_{n}(p)\right)^{-1}\left(\sum K_{k}^{\prime \prime}\right)^{-1 / 2} \exp \left\{\sum K_{k}\right\}\left(1+O_{1} / \omega_{N}\right) \tag{3.3}
\end{equation*}
$$

where $G_{n}(p)=\sqrt{2 \pi}\binom{N}{n} p^{n} q^{N-n}, m_{N}=\sum b_{k} K_{k}^{\prime}$,

$$
\sigma_{N}^{2}=\sum b_{k}^{2} K_{k}^{\prime \prime}-\left(\sum b_{k} K_{k}^{\prime \prime}\right)^{2} / \sum K_{k}^{\prime \prime}
$$

$\left|O_{1}\right|$ is bounded by C_{1} and both C and C_{1} are constants depending only on C_{0}.

The results (3.2) and (3.3) essentially improve Lemma 2 and Lemma 1 (with $v=0$) of [25], respectively. In [25], the constants C and C_{1} are imposed to depend on p and q. The proof of Theorem 3.1 follows the approach of Robinson [25], but with quite different calculations. The details can be found in [18], on which the present paper is based.
3.2. Proof. Roughly speaking, the proof of Proposition 2.1 is based on the conjugate method and an application of Theorem 3.1 to the b_{k} specified in (3.4) below.

Let $0<\lambda \leq 2,0 \leq \theta \leq 1$ and $\left|\theta_{1}\right| \leq 72$. Define, for $k=1, \ldots, N$,

$$
\begin{equation*}
b_{k}=\lambda b a_{k}-\theta b^{2} q\left(a_{k}^{2}-1\right)+\theta_{1} b^{4} q^{2}\left[\left(a_{k}^{2}-1\right)^{2}-\frac{1}{N} \sum\left(a_{j}^{2}-1\right)^{2}\right] \tag{3.4}
\end{equation*}
$$

Since $\sum a_{k}=0$ and $\sum a_{k}^{2}=N$, it is readily seen that $\max _{k}\left|a_{k}\right| \geq 1$ and $\sum b_{k}=0$. Also, when $b \max _{k}\left|a_{k}\right| \leq 1 / 128$, we have that $b \beta_{3 N} \leq 1 / 128$,

$$
\begin{align*}
\max _{k}\left|b_{k}\right| & \leq 1 / 32, \tag{3.5}\\
\left|\sum b_{k}^{2}-\lambda^{2} b^{2} N\right| & \leq 5 N b^{3} q \beta_{3 N}, \tag{3.6}\\
\sum\left|b_{k}\right|^{3} & \leq 9 N b^{3} \beta_{3 N} . \tag{3.7}
\end{align*}
$$

Recalling $b=x / \omega_{N}$, (3.5)-(3.7) hold if $0 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$.
We establish five lemmas before proceeding to the proof of Proposition 2.1. The first lemma summarizes some basic properties of $K(z)$. We still use the notation K_{k}, K_{k}^{\prime} and $K_{k}^{\prime \prime}$ to denote the values of $K(z), K^{\prime}(z)$ and $K^{\prime \prime}(z)$ evaluated at $z=b_{k}+\alpha_{N}$, where the b_{k} are limited to (3.4) and α_{N} is the solution of the equation $\sum K^{\prime}\left(b_{k}+\alpha\right)=0$. Lemmas 3.2 and 3.3 give the properties of α_{N}, K_{k}, K_{k}^{\prime} and $K_{k}^{\prime \prime}$. Lemmas 3.4 and 3.5 provide the results that will be used in the proof of Proposition 2.1.

Lemma 3.1. We have $K^{\prime}(0)=0$,

$$
\begin{align*}
& \text { (3.8) } \quad-p q e^{2 t} \leq K^{\prime}(-x)<0<K^{\prime}(x) \leq p q e^{2 t}, \quad \text { for } 0<x \leq t \text {, } \tag{3.8}\\
& \text { (3.9) } \quad \text { pqe } e^{-3 t}<K^{\prime \prime}(x)<p q e^{3 t}, \quad \text { for }|x| \leq t, \tag{3.9}\\
& \text { (3.10) } \quad\left|K^{\prime \prime \prime}(x+i y)\right| \leq 2^{3 / 2} e^{5 t} p q, \quad \text { for }|x| \leq t \text { and }|y| \leq \pi / 2 .
\end{align*}
$$

Furthermore, if $|x| \leq 1 / 16$, then

$$
\begin{align*}
\left|K(x) / p q-x^{2} / 2\right| & \leq(1 / 2)|x|^{3}, \tag{3.11}\\
\left|K^{\prime}(x) / p q-x\right| & \leq x^{2}, \tag{3.12}\\
\left|K^{\prime \prime}(x) / p q-1-(q-p) x\right| & \leq 8 x^{2} . \tag{3.13}
\end{align*}
$$

Proof. The proof of Lemma 3.1 is straightforward and the details are omitted.

Lemma 3.2. If $0 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$, then α_{N} is unique,

$$
\begin{equation*}
\left|\alpha_{N}\right| \leq \min \left\{1 / 32,(2 / N) \sum b_{k}^{2}\right\} \quad \text { and } \quad \alpha_{N}^{2} \leq(9 / 8) b^{3} \beta_{3 N} \tag{3.14}
\end{equation*}
$$

Proof. By virtue of (3.5), (3.8) and (3.9), $\sum K^{\prime}\left(b_{k}+\alpha\right)$ is negative when $\alpha<-1 / 32$ and positive when $\alpha>1 / 32$, and it is strictly monotone in the range $|\alpha| \leq 1 / 32$. This implies that $\sum K^{\prime}\left(b_{k}+\alpha\right)=0$ has a unique solution α_{N} and that $\left|\alpha_{N}\right| \leq 1 / 32$. By noting $\left|b_{k}\right|+\left|\alpha_{N}\right| \leq 1 / 16$, it follows from (3.12), $\sum K^{\prime}\left(b_{k}+\right.$ $\left.\alpha_{N}\right)=0$ and $\sum b_{k}=0$ that

$$
\begin{aligned}
N\left|\alpha_{N}\right| & =\left|\sum\left[K^{\prime}\left(b_{k}+\alpha_{N}\right) / p q-\left(b_{k}+\alpha_{N}\right)\right]\right| \\
& \leq \sum\left(b_{k}+\alpha_{N}\right)^{2}=\sum b_{k}^{2}+N \alpha_{N}^{2} \\
& \leq \sum b_{k}^{2}+N\left|\alpha_{N}\right| / 2 .
\end{aligned}
$$

This yields $\left|\alpha_{N}\right| \leq(2 / N) \sum b_{k}^{2}$ and hence the first result of (3.14) follows. Furthermore, by using Hölder's inequality, $\left|b_{k}\right| \leq 1 / 32$ and (3.7), we obtain

$$
\alpha_{N}^{2} \leq(4 / N) \sum b_{k}^{4} \leq(9 / 8) b^{3} \beta_{3 N}
$$

which implies the second result of (3.14). The proof of Lemma 3.2 is complete.

LEMmA 3.3. If $0 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$, then

$$
\begin{align*}
& \left|\sum K_{k}-\lambda^{2} x^{2} / 2\right| \leq 24 x^{3} \beta_{3 N} / \omega_{N} \tag{3.15}\\
& \left|\sum b_{k} K_{k}^{\prime}-\lambda^{2} x^{2}\right| \leq 24 x^{3} \beta_{3 N} / \omega_{N} \tag{3.16}
\end{align*}
$$

$$
\begin{align*}
\left|\sum K_{k}^{\prime \prime}-\omega_{N}^{2}\right| & \leq 41 x^{2} \tag{3.17}\\
\left|\sum b_{k} K_{k}^{\prime \prime}\right| & \leq 6 x^{2} \tag{3.18}\\
\left|\sum b_{k}^{2} K_{k}^{\prime \prime}-\lambda^{2} x^{2}\right| & \leq 21 x^{3} \beta_{3 N} / \omega_{N} \tag{3.19}
\end{align*}
$$

Proof. We prove (3.15). The other proofs are similar and hence are omitted. Applying (3.11) with $x=b_{k}+\alpha_{N}$ and using Hölder's inequality, we obtain

$$
\begin{equation*}
\left|\sum\left[K_{k}-2^{-1} p q\left(b_{k}+\alpha_{N}\right)^{2}\right]\right| \leq 2 p q\left(\sum\left|b_{k}\right|^{3}+N\left|\alpha_{N}\right|^{3}\right) \tag{3.20}
\end{equation*}
$$

This, together with $\sum b_{k}=0$, (3.6)-(3.7) and (3.14), implies that

$$
\begin{aligned}
\left|\sum K_{k}-\lambda^{2} x^{2} / 2\right| \leq & \left|\sum\left[K_{k}-2^{-1} p q\left(b_{k}+\alpha_{N}\right)^{2}\right]\right| \\
& +2^{-1} p q\left|\sum b_{k}^{2}-\lambda^{2} b^{2} N\right|+2^{-1} \omega_{N}^{2} \alpha_{N}^{2} \\
\leq & 24 b^{3} \omega_{N}^{2} \beta_{3 N}=24 x^{3} \beta_{3 N} / \omega_{N}
\end{aligned}
$$

as required.

Let $Y_{j}, 1 \leq j \leq n$, be a random sample of size n without replacement from $\left\{b_{1}, b_{2}, \ldots, b_{N}\right\}$ defined by (3.4),

$$
\begin{aligned}
T_{n}^{*} & \equiv T_{n}\left(\lambda, \theta, \theta_{1}\right)=\sum_{k=1}^{n} Y_{k}, \quad m_{N}^{*} \equiv m_{N}\left(\lambda, \theta, \theta_{1}\right)=\sum b_{k} K_{k}^{\prime} \\
\sigma_{N}^{* 2} & \equiv \sigma_{N}^{2}\left(\lambda, \theta, \theta_{1}\right)=\sum b_{k}^{2} K_{k}^{\prime \prime}-\left(\sum b_{k} K_{k}^{\prime \prime}\right)^{2} / \sum K_{k}^{\prime \prime}
\end{aligned}
$$

and $H_{n}^{*}(x)=E \exp \left(T_{n}^{*}\right) I\left(T_{n}^{*} \leq x\right) / E \exp \left(T_{n}^{*}\right)$.
LEMMA 3.4. There exists an absolute constant $\lambda_{0}>0$ such that, for $2 \leq x \leq$ $\lambda_{0} \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{align*}
\exp \left\{\lambda^{2} x^{2} / 2-A x^{3} \beta_{3 N} / \omega_{N}\right\} & \leq E \exp \left(T_{n}^{*}\right) \\
& \leq \exp \left\{\lambda^{2} x^{2} / 2+A x^{3} \beta_{3 N} / \omega_{N}\right\} \tag{3.21}
\end{align*}
$$

Proof. Without loss of generality, assume that $\lambda_{0} \leq \min \left\{1 / 128,1 /\left(8 C_{1}+\right.\right.$ 4) \}, where C_{1} is defined as in Theorem 3.1. Recall that $\max _{k}\left|b_{k}\right| \leq 1 / 32$, by (3.5). It follows from (3.3) (Theorem 3.1 with $u=1$ and $C_{0}=1 / 32$) that

$$
\begin{equation*}
E \exp \left(T_{n}^{*}\right)=\left(G_{n}(p)\right)^{-1}\left(\sum K_{k}^{\prime \prime}\right)^{-1 / 2} \exp \left\{\sum_{j=1}^{N} K_{k}\right\}\left(1+R^{*}\right) \tag{3.22}
\end{equation*}
$$

where $G_{n}(p)=\sqrt{2 \pi}\binom{N}{n} p^{n} q^{N-n}$ and $\left|R^{*}\right| \leq C_{1} / \omega_{N}$. By Stirling's formula,

$$
\binom{N}{n} p^{n} q^{N-n}=\left(2 \pi \omega_{N}^{2}\right)^{-1 / 2}\left(1+O_{2} \omega_{N}^{-2}\right),
$$

where $\left|O_{2}\right| \leq 1 / 6$. This, together with the fact that $\omega_{N} \geq x \max _{k}\left|a_{k}\right| / \lambda_{0} \geq 128$ (recall that $\max _{k}\left|a_{k}\right| \geq 1$), implies that

$$
\begin{equation*}
\omega_{N}^{-1} G_{n}(p)^{-1}\left(1+R^{*}\right)=1+O_{3} \omega_{N}^{-1}, \tag{3.23}
\end{equation*}
$$

where $\left|O_{3}\right| \leq 2 C_{1}+1$. On the other hand, it follows from (3.17) that

$$
\begin{equation*}
\left(\sum K_{k}^{\prime \prime}\right)^{-1 / 2} \omega_{N}=1+O_{4} b^{2} \tag{3.24}
\end{equation*}
$$

where $\left|O_{4}\right| \leq 82$. From (3.23)-(3.24), for $2 \leq x \leq \lambda_{0} \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{align*}
\exp \left\{-2 A_{1} x^{3} \beta_{3 N} / \omega_{N}\right\} & \leq\left(\sum K_{k}^{\prime \prime}\right)^{-1 / 2} G_{n}(p)^{-1}\left(1+R^{*}\right) \tag{3.25}\\
& \leq \exp \left\{A_{1} x^{3} \beta_{3 N} / \omega_{N}\right\},
\end{align*}
$$

where $A_{1}=2 C_{1}+83$ and where we have used the fact that $1 / \omega_{N}+b^{2} \leq$ $x^{3} \beta_{3 N} / \omega_{N}$, since $b=x / \omega_{N}$ and $\beta_{3 N} \geq 1$. (3.21) now follows easily from (3.15), (3.22) and (3.25). The proof of Lemma 3.4 is thus complete.

LEMMA 3.5. There exists an absolute constant $\lambda_{1}>0$ such that, for $2 \leq x \leq$ $\lambda_{1} \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{align*}
\left|m_{N}^{*}-\lambda^{2} x^{2}\right| & \leq 24 x^{3} \beta_{3 N} / \omega_{N} \tag{3.26}\\
\left|\sigma_{N}^{* 2}-\lambda^{2} x^{2}\right| & \leq 22 x^{3} \beta_{3 N} / \omega_{N} \tag{3.27}
\end{align*}
$$

If, in addition, $1 \leq \lambda \leq 2$, then

$$
\begin{equation*}
\Delta_{N}:=\sup _{y}\left|H_{n}^{*}(u(y))-\Phi(y)\right| \leq 12 C \beta_{3 N} / \omega_{N} \leq 1 / 4 \tag{3.28}
\end{equation*}
$$

where $u(y)=y \sigma_{N}^{*}+m_{N}^{*}$ and where C is defined as in (3.2). Also, for all y satisfying $m_{N}^{*} \geq y+2 \sigma_{N}^{*}$, we have

$$
\begin{equation*}
P\left(T_{n}^{*} \geq y\right) \geq(1 / 2) \exp \left\{-m_{N}^{*}-2 \sigma_{N}^{*}\right\} E \exp \left(T_{n}^{*}\right) \tag{3.29}
\end{equation*}
$$

Proof. Without loss of generality, assume that $\lambda_{1} \leq \min \{1 / 128$, $1 /(25 C)\}$, where C is defined as in (3.2). (3.26) and (3.27) then follow from (3.16)-(3.19) by a simple calculation.

If $1 \leq \lambda \leq 2$, then by noting that $\beta_{3 N} / \omega_{N} \leq x \beta_{3 N} /\left(2 \omega_{N}\right) \leq \min \{1 / 128$, $1 /(50 C)\}$, since $\beta_{3 N} \leq \max _{k}\left|a_{k}\right|$, it follows easily from (3.5)-(3.7) that $p q \sum b_{k}^{2} \geq$ $4 x^{2} / 5$ and

$$
\begin{equation*}
(p q)^{-1 / 2} \sum\left|b_{k}\right|^{3} /\left(\sum b_{k}^{2}\right)^{3 / 2} \leq 12 \beta_{3 N} / \omega_{N} \leq 1 /(4 C) \tag{3.30}
\end{equation*}
$$

By (3.30) and Theorem 3.1 with $C_{0}=1 / 32$ and $u=1$ (recall that $\max _{k}\left|b_{k}\right| \leq$ $1 / 32$),

$$
\Delta_{N} \leq C(p q)^{-1 / 2} \sum\left|b_{k}\right|^{3} /\left(\sum b_{k}^{2}\right)^{3 / 2} \leq 12 C \beta_{3 N} / \omega_{N} \leq 1 / 4
$$

which implies (3.28).
By (3.28) and the conjugate method, for all y satisfying $m_{N}^{*} \geq y+2 \sigma_{N}^{*}$,

$$
\begin{aligned}
P\left(T_{n}^{*} \geq y\right) / E \exp \left(T_{n}^{*}\right) & =\int_{y}^{\infty} e^{-u} d H_{n}^{*}(u) \\
& =e^{-m_{N}^{*}} \int_{\left(y-m_{N}^{*}\right) / \sigma_{N}^{*}}^{\infty} e^{-x \sigma_{N}^{*}} d H_{n}^{*}(u(y)) \\
& \geq e^{-m_{N}^{*}-2 \sigma_{N}^{*}} \int_{-2}^{2} d H_{n}^{*}(u(y)) \\
& \geq e^{-m_{N}^{*}-2 \sigma_{N}^{*}}\left(P(|N(0,1)| \leq 2)-\Delta_{N}\right) \\
& \geq(1 / 2) \exp \left\{-m_{N}^{*}-2 \sigma_{N}^{*}\right\}
\end{aligned}
$$

where $N(0,1)$ is a standard normal random variable and where we have used the fact that

$$
P(|N(0,1)| \leq 2)>3 / 4
$$

This proves (3.29) and also completes the proof of Lemma 3.5.

After these preliminaries, we are now ready to prove Proposition 2.1.
In addition to the previous notation, we further let $T_{1 n}=T_{n}\left(1, \xi, \xi_{1}\right)$,

$$
m_{1 N}=m_{N}\left(1, \xi, \xi_{1}\right), \quad \sigma_{1 N}^{2}=\sigma_{N}^{2}\left(1, \xi, \xi_{1}\right), \quad \varepsilon_{N}=\left(x^{2}+h-m_{1 N}\right) / \sigma_{1 N}
$$

and $H_{1 n}(t)=E \exp \left\{T_{1 n}\right\} I\left(T_{1 n} \leq t\right) / E \exp \left\{T_{1 n}\right\}$. Note that

$$
b S_{n}-\xi b^{2} q V_{1 n}+\xi_{1} b^{4} q^{2} V_{2 n}=T_{1 n}
$$

It follows from the conjugate method that

$$
\begin{align*}
& P\left(b S_{n}-\xi b^{2} q V_{1 n}+\xi_{1} b^{4} q^{2} V_{2 n} \geq x^{2}+h\right) \\
& \quad=P\left(T_{1 n} \geq x^{2}+h\right) \\
& \quad=E \exp \left\{T_{1 n}\right\} \int_{x^{2}+h}^{\infty} e^{-t} d H_{1 n}(t) \\
& \quad=E \exp \left\{T_{1 n}\right\} e^{-x^{2}-h} \int_{0}^{\infty} e^{-t \sigma_{1 N}} d H_{1 n}\left[\sigma_{1 N}\left(t+\varepsilon_{N}\right)+m_{1 N}\right] \tag{3.31}\\
& \quad=E \exp \left\{T_{1 n}\right\} e^{-x^{2}-h}\left(\mathcal{L}_{N}+R_{N}\right),
\end{align*}
$$

where

$$
\begin{aligned}
\mathscr{L}_{N} & =\int_{0}^{\infty} e^{-t \sigma_{1 N}} d \Phi\left(t+\varepsilon_{N}\right), \\
R_{N} & =\int_{0}^{\infty} e^{-t \sigma_{1 N}} d\left\{H_{1 n}\left[\sigma_{1 N}\left(t+\varepsilon_{N}\right)+m_{1 N}\right]-\Phi\left(t+\varepsilon_{N}\right)\right\} .
\end{aligned}
$$

We next estimate $E \exp \left\{T_{1 n}\right\}, \mathscr{L}_{N}$ and R_{N} for $0 \leq \xi \leq 1 / 2,\left|\xi_{1}\right| \leq 36,|h| \leq$ $x^{2} / 5$ and $2 \leq x \leq \eta \omega_{N} / \max _{k}\left|a_{k}\right|$, where we assume η to be sufficiently small so that $\eta \leq \min \left\{1 / 128, \lambda_{0}, \lambda_{1}\right\}$, with λ_{0} and λ_{1} defined as in Lemmas 3.4 and 3.5. This choice of η guarantees that Lemmas 3.2-3.5 hold and, since $\beta_{3 N} \leq \max _{k}\left|a_{k}\right|$, we have

$$
\begin{equation*}
\beta_{3 N} / \omega_{N} \leq x \beta_{3 N} /\left(2 \omega_{N}\right) \leq \eta / 2 \leq 1 / 256 . \tag{3.32}
\end{equation*}
$$

Clearly, by Lemma 3.4,

$$
\begin{align*}
\exp \left\{x^{2} / 2-A x^{3} \beta_{3 N} / \omega_{N}\right\} & \leq E \exp \left\{T_{1 n}\right\} \\
& \leq \exp \left\{x^{2} / 2+A x^{3} \beta_{3 N} / \omega_{N}\right\} \tag{3.33}
\end{align*}
$$

In order to estimate \mathcal{L}_{N}, we note that

$$
\begin{align*}
\mathcal{L}_{N} & =\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\sigma_{N} t-(1 / 2)\left(t+\varepsilon_{N}\right)^{2}} d t \\
& =\frac{e^{-\varepsilon_{N}^{2} / 2}}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\left(\varepsilon_{N}+\sigma_{N}\right) t-(1 / 2) t^{2}} d t \tag{3.34}\\
& :=\frac{e^{-\varepsilon_{N}^{2} / 2}}{\sqrt{2 \pi}} \mathcal{L}_{1 N} .
\end{align*}
$$

Write $\psi(t)=\{1-\Phi(t)\} / \Phi^{\prime}(t)=e^{t^{2} / 2} \int_{t}^{\infty} e^{-y^{2} / 2} d y$. It is readily seen that

$$
\begin{align*}
3 / 4 & \leq t \psi(t) \leq 1 \quad(t \geq 2) \\
\left|\psi^{\prime}(t)\right| & =|t \psi(t)-1| \leq t^{-2} \quad(t>0) \tag{3.35}
\end{align*}
$$

On the other hand, $\psi\left\{\varepsilon_{N}+\sigma_{N}\right\}=\mathscr{L}_{1 N}$ and, by virtue of (3.26), (3.27) and (3.32), it follows that

$$
\begin{equation*}
\left|\varepsilon_{N}-h / \sigma_{N}\right| \leq 28 x^{2} \beta_{3 N} / \omega_{N} \tag{3.36}
\end{equation*}
$$

If, in addition, we have $|h| \leq x^{2} / 5$, then

$$
\begin{equation*}
\left|\varepsilon_{N}+\sigma_{N}-x\right| \leq 3|h| /(2 x)+41 x^{2} \beta_{3 N} / \omega_{N} \leq 2 x / 3 \tag{3.37}
\end{equation*}
$$

Using (3.35)-(3.37), it follows from Taylor's expansion that, for $|h| \leq x^{2} / 5$ and $2 \leq x \leq \eta \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{aligned}
\mathcal{L}_{1 N} & =\psi\left\{\varepsilon_{N}+\sigma_{N}\right\} \\
& =\psi(x)+\psi^{\prime}(\theta)\left\{\varepsilon_{N}+\sigma_{N}-x\right\} \quad[\text { where } \theta \in(x / 3,5 x / 3)] \\
& =\psi(x)\left(1+\tau+O_{5} x \beta_{3 N} / \omega_{N}\right),
\end{aligned}
$$

where $|\tau| \leq 9|h| / x^{2}$ and $\left|O_{5}\right| \leq 120$. Therefore, taking account of (3.34), we obtain for $|h| \leq x^{2} / 5$ and $2 \leq x \leq \eta \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{equation*}
\mathcal{L}_{N}=e^{x^{2} / 2}\{1-\Phi(x)\} e^{-\varepsilon_{N}^{2} / 2}\left(1+\tau+O_{5} x \beta_{3 N} / \omega_{N}\right) \tag{3.38}
\end{equation*}
$$

As for R_{N}, by (3.28) and integration by parts,

$$
\left|R_{N}\right| \leq 2 \sup _{t}\left|H_{1 n}\left[\sigma_{1 N} t+m_{1 N}\right]-\Phi(t)\right| \leq 24 C \beta_{3 N} / \omega_{N}
$$

This, together with (3.35), implies that for $x \geq 2$,

$$
\begin{equation*}
R_{N}=O_{6} x \beta_{3 N} / \omega_{N} e^{x^{2} / 2}\{1-\Phi(x)\} \tag{3.39}
\end{equation*}
$$

where $\left|O_{6}\right| \leq 32 \sqrt{2 \pi} C$.
Combining (3.31), (3.33) and (3.38)-(3.39), it is readily seen that for any $|h| \leq$ $x^{2} / 5$ and $2 \leq x \leq \eta \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{aligned}
& \frac{P\left(b S_{n}-\xi b^{2} q V_{1 n}+\xi_{1} b^{4} q^{2} V_{2 n} \geq x^{2}+h\right)}{1-\Phi(x)} \\
& \quad \leq\left[1+9|h| x^{-2}\right] \exp \left\{-h+A x^{3} \beta_{3 N} / \omega_{N}\right\}
\end{aligned}
$$

This proves (2.2).

Similarly, by letting $h=0$, it follows from (3.31), (3.33), (3.36), (3.38) and (3.39) that if, in addition, $x^{2} \leq \omega_{N} / \beta_{3 N}$, then

$$
\begin{align*}
& \frac{P\left(b S_{n}-\xi b^{2} q V_{1 n}+\xi_{1} b^{4} q^{2} V_{2 n} \geq x^{2}\right)}{1-\Phi(x)} \\
& \quad \geq \exp \left\{-A x^{3} \beta_{3 N} / \omega_{N}-\varepsilon_{N}^{2} / 2\right\}\left[1-\left\{\left|O_{5}\right|+\left|O_{6}\right| e^{\varepsilon_{N}^{2} / 2}\right\} x \beta_{3 N} / \omega_{N}\right] \\
& \quad \geq \exp \left\{-A_{1} x^{3} \beta_{3 N} / \omega_{N}\right\}\left[1-A_{2} x \beta_{3 N} / \omega_{N}\right] \tag{3.40}\\
& \quad \geq \exp \left\{-A_{3} x^{3} \beta_{3 N} / \omega_{N}\right\}
\end{align*}
$$

by choosing η sufficiently small. From (3.40), property (2.1) will follow if we prove that, for $x^{2} \geq \omega_{N} / \beta_{3 N}$ and $2 \leq x \leq \eta \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{equation*}
\frac{P\left(b S_{n}-\xi b^{2} q V_{1 n}+\xi_{1} b^{4} q^{2} V_{2 n} \geq x^{2}\right)}{1-\Phi(x)} \geq \exp \left\{-A x^{3} \beta_{3 N} / \omega_{N}\right\} \tag{3.41}
\end{equation*}
$$

We will prove (3.41) by using (3.29). Let $\lambda=1+28 x \beta_{3 N} / \omega_{N}, \theta=\lambda \xi$ and $\theta_{1}=\lambda \xi_{1}$. Note that $1 \leq \lambda \leq 3 / 2$ by (3.32), $0 \leq \theta \leq 3 / 4$ since $0 \leq \xi \leq 1 / 2$ and $\left|\theta_{1}\right| \leq 72$ since $\left|\xi_{1}\right| \leq 36$. By virtue of (3.26), (3.27), (3.32) and $x^{2} \geq \omega_{N} / \beta_{3 N}$, we have $m_{N}^{*} \leq \lambda^{2} x^{2}+24 x^{3} \beta_{3 N} / \omega_{N}, \sigma_{N}^{*} \leq 2 x \leq 2 x^{3} \beta_{3 N} / \omega_{N}$ and

$$
m_{N}^{*}-\lambda x^{2}-2 \sigma_{N}^{*} \geq \lambda(\lambda-1) x^{2}-28 x^{3} \beta_{3 N} / \omega_{N} \geq 0
$$

Now, by (3.29) with $y=\lambda x^{2}$ and Lemma 3.4, for $x^{2} \geq \omega_{N} / \beta_{3 N}$ and $2 \leq x \leq$ $\eta \omega_{N} / \max _{k}\left|a_{k}\right|$, it follows that

$$
\begin{aligned}
P\left(b S_{n}-\xi b^{2} q V_{1 n}+\xi_{1} b^{4} q^{2} V_{2 n} \geq x^{2}\right) & =P\left(T_{n}^{*} \geq \lambda x^{2}\right) \\
& \geq \frac{1}{2} \exp \left\{-m_{N}^{*}-2 \sigma_{N}^{*}\right\} E \exp \left\{T_{n}^{*}\right\} \\
& \geq \frac{1}{2} \exp \left\{-x^{2} / 2-2 x-A x^{3} \beta_{3 N} / \omega_{N}\right\} \\
& \geq(1-\Phi(x)) \exp \left\{-A_{1} x^{3} \beta_{3 N} / \omega_{N}\right\}
\end{aligned}
$$

which implies (3.41). The proof of Proposition 2.1 is now complete.
4. Proof of Proposition 2.2. By the inequality $(1+y)^{1 / 2} \geq 1+y / 2-y^{2}$ for any $y \geq-1$,
$P\left(S_{n} \geq x \sqrt{q} V_{n}\right)$
$=P\left(S_{n} \geq x \sqrt{n q}\left(1+\frac{V_{n}^{2}-n}{n}\right)^{1 / 2}\right)$

$$
\leq P\left(S_{n} \geq x \sqrt{n q}\left[1+\frac{V_{1 n}}{2 n}-\frac{V_{1 n}^{2}}{n^{2}}\right]\right)
$$

$$
\begin{equation*}
\leq P\left(V_{1 n}^{2} \geq 36 x^{2}\left(\sum_{k=1}^{n}\left(X_{k}^{2}-1\right)^{2}+5 p \sum a_{k}^{4}\right)\right) \tag{4.1}
\end{equation*}
$$

$$
\begin{aligned}
& +P\left(S_{n} \geq x \sqrt{n q}\left(1+\frac{V_{1 n}}{2 n}-\frac{36 x^{2}}{n^{2}}\left(\sum_{k=1}^{n}\left(X_{k}^{2}-1\right)^{2}+5 p \sum a_{k}^{4}\right)\right)\right) \\
:= & R_{1 n}+R_{2 n}, \quad \text { say. }
\end{aligned}
$$

Note that $R_{2 n}=P\left(b S_{n}-\frac{1}{2} b^{2} q V_{1 n}+36 b^{4} q^{2} V_{2 n} \geq x^{2}-h_{0}\right)$, where, whenever $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$, we have

$$
h_{0}=\frac{180 p x^{4} \sum a_{k}^{4}}{n^{2}}+\frac{36 x^{4} \sum_{k=1}^{n} E\left(X_{k}^{2}-1\right)^{2}}{n^{2}} \leq \frac{3 x^{3} \beta_{3 N}}{\omega_{N}}
$$

and also $0 \leq h_{0} \leq x^{2} / 5$. It follows from Proposition 2.1 with $\xi=1 / 2, \xi_{1}=36$ and $h=h_{0}$ that there exists an absolute constant $A>128$ such that, for all $2 \leq x \leq$ $(1 / A) \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{equation*}
R_{2 n} \leq(1-\Phi(x)) \exp \left\{A x^{3} \beta_{3 N / \omega_{N}}\right\} \tag{4.2}
\end{equation*}
$$

This, together with (4.1), implies that Proposition 2.2 will follow if we prove for all $x>0$ that

$$
\begin{equation*}
R_{1 n} \leq 2 \sqrt{2} e^{-4 x^{2}} \tag{4.3}
\end{equation*}
$$

Theorem 2.1 of [12] will be used to prove (4.3). To use the theorem, let $Y_{i}=X_{i}^{2}-1, \mathcal{A}=\sum_{k=1}^{n} Y_{k}$ and $\mathscr{B}=\left(2 \sum_{k=1}^{n} Y_{k}^{2}+4 p \sum a_{k}^{4}\right)^{1 / 2}$. It follows from Theorem 4 of [16] that, for any $\lambda \in R$,

$$
\begin{aligned}
E \exp & \left\{\lambda \mathcal{A}-\frac{\lambda^{2}}{2} \mathscr{B}^{2}\right\} \\
& =\exp \left\{-2 \lambda^{2} p \sum a_{k}^{4}\right\} E \exp \left\{\sum_{k=1}^{n}\left(\lambda Y_{k}-\lambda^{2} Y_{k}^{2}\right)\right\} \\
& \leq \exp \left\{-2 \lambda^{2} p \sum a_{k}^{4}\right\}\left[E \exp \left\{\lambda Y_{1}-\lambda^{2} Y_{1}^{2}\right\}\right]^{n} \\
& \leq \exp \left\{-2 \lambda^{2} p \sum a_{k}^{4}\right\}\left[1+E\left(\lambda Y_{1} I\left(\lambda Y_{1} \geq-1 / 2\right)\right)\right]^{n} \\
& =\exp \left\{-2 \lambda^{2} p \sum a_{k}^{4}\right\}\left[1-E\left(\lambda Y_{1} I\left(\lambda Y_{1} \leq-1 / 2\right)\right)\right]^{n} \\
& \leq \exp \left\{-2 \lambda^{2} p \sum a_{k}^{4}\right\}\left[1+2 \lambda^{2} E Y_{1}^{2}\right]^{n} \\
& \leq \exp \left\{-2 \lambda^{2} p \sum a_{k}^{4}+2 \lambda^{2} n E Y_{1}^{2}\right\} \\
& =\exp \left\{-2 \lambda^{2} p \sum a_{k}^{4}+2 \lambda^{2} p \sum\left(a_{k}^{2}-1\right)^{2}\right\} \leq 1,
\end{aligned}
$$

where we have used the inequality $e^{x-x^{2}} \leq 1+x I(x \geq-1 / 2)$. This yields that two random variables \mathscr{A} and $\mathscr{B}>0$ satisfy condition (1.4) in [12]. Now, by noting
that $(E \mathscr{B})^{2} \leq E \mathscr{B}^{2} \leq 6 p \sum a_{k}^{4}$ and applying Theorem 2.1 of [12], we have

$$
\begin{align*}
& P\left(V_{1 n} \geq 6 x\left(\sum_{k=1}^{n}\left(X_{k}^{2}-1\right)^{2}+5 p \sum a_{k}^{4}\right)^{1 / 2}\right) \\
& \quad \leq P\left(\mathscr{A} \geq \frac{6 x}{\sqrt{2}} \sqrt{\mathscr{B}^{2}+(E \mathscr{B})^{2}}\right) \tag{4.4}\\
& \quad \leq e^{-6 x t / \sqrt{2}} E \exp \left(t \mathscr{A} / \sqrt{\mathcal{B}^{2}+(E \mathscr{B})^{2}}\right) \\
& \quad \leq \sqrt{2} e^{-6 x t / \sqrt{2}+t^{2}} \leq \sqrt{2} e^{-4 x^{2}}
\end{align*}
$$

by letting $t=\sqrt{2} x$. Similarly,

$$
\begin{equation*}
P\left(-V_{1 n} \geq 6 x\left(\sum_{k=1}^{n}\left(X_{k}^{2}-1\right)^{2}+5 p \sum a_{k}^{4}\right)^{1 / 2}\right) \leq \sqrt{2} e^{-4 x^{2}} \tag{4.5}
\end{equation*}
$$

By virtue of (4.4) and (4.5), we obtain (4.3). The proof of Proposition 2.2 is now complete.
5. Proof of Proposition 2.3. Throughout this section, let $\varepsilon_{j}, 1 \leq j \leq N$, be i.i.d. random variables with $P\left(\varepsilon_{1}=1\right)=1-P\left(\varepsilon_{1}=0\right)=p$, which are also independent of all other random variables, and $B_{N}=\sum_{j=1}^{N}\left(\varepsilon_{j}-p\right)$. By the inequality $(1+y)^{1 / 2} \geq 1+y / 2-y^{2}$ for any $y \geq-1$, we again have

$$
\begin{aligned}
P\left(S_{n}\right. & \left.\geq x \sqrt{q} V_{n}\right) \\
& =P\left(S_{n} \geq x \sqrt{n q}\left(1+\frac{V_{n}^{2}-n}{n}\right)^{1 / 2}\right) \\
\leq & P\left(S_{n} \geq x \sqrt{n q}\left(1+\frac{V_{n}^{2}-n}{2 n}-\frac{\left(V_{n}^{2}-n\right)^{2}}{n^{2}}\right)\right) \\
= & P\left(\sum \varepsilon_{k} a_{k} \geq x \sqrt{n q}\left(1+\frac{\sum \varepsilon_{k}\left(a_{k}^{2}-1\right)}{2 n}\right.\right. \\
& \left.\left.\quad-\frac{\left(\sum \varepsilon_{k}\left(a_{k}^{2}-1\right)\right)^{2}}{n^{2}}\right) \mid B_{N}=0\right) \\
= & P\left(\left.\sum\left(\varepsilon_{k}-p\right) g_{k}+\frac{x}{n^{2}} \sum_{1 \leq k \neq j \leq N} v_{k} v_{j} \geq x-h \right\rvert\, B_{N}=0\right) \\
& =P\left(T_{N}+\Lambda_{N} \geq x-h \mid B_{N}=0\right),
\end{aligned}
$$

where $h=x p q \sum\left(a_{k}^{2}-1\right)^{2} / n^{2}$,

$$
T_{N}=\sum\left(\varepsilon_{k}-p\right) g_{k}, \quad \Lambda_{N}=\frac{x}{n^{2}} \sum_{1 \leq k \neq j \leq N} v_{k} v_{j}
$$

where, for all $j=1, \ldots, N, v_{j}=\left(\varepsilon_{j}-p\right)\left(a_{j}^{2}-1\right)$ and

$$
g_{j}=\frac{a_{j}}{\sqrt{n q}}-\frac{x\left(a_{j}^{2}-1\right)}{2 n}+\frac{x(1-2 p)}{n^{2}}\left(\left(a_{j}^{2}-1\right)^{2}-\frac{1}{N} \sum\left(a_{k}^{2}-1\right)^{2}\right)
$$

and where in the proof of (5.1) we have used the facts that $\sum a_{k}=0, \sum a_{k}^{2}=N$ and

$$
\left(\varepsilon_{k}-p\right)^{2}=\varepsilon_{k}(1-2 p)+p^{2}=\left(\varepsilon_{k}-p\right)(1-2 p)+p q .
$$

We need the following lemmas before proceeding to the proof of Proposition 2.3.

Lemma 5.1. For any random variable Z with $E|Z|<\infty$,

$$
\begin{equation*}
E\left(Z \mid B_{N}=0\right)=\frac{1}{B_{n}(p)} \int_{-\pi \omega_{N}}^{\pi \omega_{N}} E Z e^{i t B_{N} / \omega_{N}} d t \tag{5.2}
\end{equation*}
$$

where $B_{n}(p)=2 \pi \omega_{N} P\left(B_{N}=0\right)$ and

$$
\begin{equation*}
1 \leq \sqrt{2 \pi} / B_{n}(p) \leq 1+\omega_{N}^{-2} \tag{5.3}
\end{equation*}
$$

Proof. Note that $B_{N}=\sum_{j=1}^{N} \varepsilon_{j}-n$ is an integer and, for any integer k,

$$
\int_{-\pi}^{\pi} e^{i k t} d t= \begin{cases}2 \pi, & \text { if } k=0 \\ 0, & \text { if } k \neq 0\end{cases}
$$

The proof of (5.2) is now obvious. The estimate for $B_{n}(p)$ follows from $P\left(B_{N}=\right.$ $0)=\binom{N}{n} p^{n} q^{N-n}$ and Stirling's formula.

Lemma 5.2. (i) We have

$$
\begin{equation*}
E\left(\sum_{1 \leq k \neq j \leq N}\left|v_{k} v_{j}\right|^{3 / 2} \mid B_{N}=0\right) \leq A n^{2} \beta_{3 N}^{2} \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
E\left(\sum_{k=1}^{N}\left|v_{k} \sum_{j=1, \neq k}^{N} v_{j}\right|^{3 / 2} \mid B_{N}=0\right) \leq A n^{2} \beta_{3 N}^{2} \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
E\left(\left|\sum_{1 \leq k \neq j \leq N} v_{k} v_{j}\right|^{3 / 2} \mid B_{N}=0\right) \leq A n^{2} \beta_{3 N}^{2} \tag{5.6}
\end{equation*}
$$

(ii) If $\eta_{k}, 1 \leq k \leq N$, are i.i.d. random variables with

$$
P\left(\eta_{k}=1\right)=1-P\left(\eta_{k}=0\right)=m(t), \quad 0 \leq m(t) \leq 1,
$$

independent of all other random variables, then

$$
\begin{array}{r}
E\left(\left|\sum_{1 \leq k \neq j \leq N} \eta_{k} \eta_{j} v_{k} v_{j}\right|^{3 / 2} \mid B_{N}=0\right) \leq A m^{2}(t) n^{2} \beta_{3 N}^{2}, \\
E\left(\left|\sum_{1 \leq k \neq j \leq N} \eta_{k}\left(1-\eta_{j}\right) v_{k} v_{j}\right|^{3 / 2} \mid B_{N}=0\right) \leq A m(t) n^{2} \beta_{3 N}^{2} . \tag{5.8}
\end{array}
$$

Proof. The proof of Lemma 5.2 is based on an argument similar to that in Theorem 4 of [16], together with the moment inequalities for i.i.d. random variables and U-statistics. The details can be found in [18], on which the present paper is based.

To introduce the following lemmas, we define

$$
\begin{gathered}
f(t)=E\left(e^{i t\left(T_{n}+\Lambda_{n}\right)} \mid B_{N}=0\right), \quad f_{1}(t)=E\left(e^{i t T_{n}} \mid B_{N}=0\right), \\
f_{2}(t)=E\left(\Lambda_{n} e^{i t T_{n}} \mid B_{N}=0\right)
\end{gathered}
$$

and, for $k=1, \ldots, N$,

$$
g_{k}(t, \psi)=E \exp \left\{i\left(\varepsilon_{k}-p\right)\left(\operatorname{tg}_{k}+\psi / \omega_{N}\right)\right\}
$$

We also use the notation $\Delta=x \beta_{3 N} / \omega_{N}$.
LEMmA 5.3. If $|t| \leq(1 / 128) \Delta^{-1}$, then for any $0 \leq m(t) \leq 1$ and for $2 \leq x \leq$ $(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{align*}
|f(t)| \leq & A(1+|t x|)\left[m^{-1 / 2}(t) e^{-m(t) t^{2} / 4}+\omega_{N} e^{-(1 / 40) m(t) \omega_{N}^{2}}\right] \\
& +A|t|^{3 / 2} m(t) \Delta^{2}+A|t| m^{4 / 3}(t) \Delta^{4 / 3} \tag{5.9}
\end{align*}
$$

Proof. Define $\left\{\eta_{k}, k=1, \ldots, N\right\}$ as in Lemma 5.2(ii). Furthermore, let

$$
\begin{array}{cc}
T_{1 N}^{*}=\sum \eta_{k}\left(\varepsilon_{k}-p\right) g_{k}, & T_{2 N}^{*}=\sum\left(1-\eta_{k}\right)\left(\varepsilon_{k}-p\right) g_{k}, \\
\Lambda_{1 N}^{*}=\frac{x}{n^{2}} \sum_{1 \leq k \neq j \leq N} \eta_{k} \eta_{j} v_{k} v_{j}, & \Lambda_{2 N}^{*}=\frac{x}{n^{2}} \sum_{1 \leq k \neq j \leq N} \eta_{k}\left(1-\eta_{j}\right) v_{k} v_{j}, \\
\Lambda_{3 N}^{*}=\frac{x}{n^{2}} \sum_{1 \leq k \neq j \leq N}\left(1-\eta_{k}\right)\left(1-\eta_{j}\right) v_{k} v_{j} .
\end{array}
$$

Note that

$$
\begin{equation*}
T_{N}+\Lambda_{N}=T_{1 N}^{*}+T_{2 N}^{*}+\Lambda_{1 N}^{*}+2 \Lambda_{2 N}^{*}+\Lambda_{3 N}^{*} \tag{5.10}
\end{equation*}
$$

It follows from (5.10), $\left|e^{i t}-1\right| \leq|t|$ and $\left|e^{i t}-1-i t\right| \leq 2|t|^{3 / 2}$ that

$$
\begin{align*}
|f(t)|= & \left|E\left(e^{i t\left(T_{1 N}^{*}+T_{2 N}^{*}+\Lambda_{1 N}^{*}+2 \Lambda_{2 N}^{*}+\Lambda_{3 N}^{*}\right)} \mid B_{N}=0\right)\right| \\
\leq & \left|E\left(e^{i t\left(T_{1 N}^{*}+T_{2 N}^{*}+2 \Lambda_{2 N}^{*}+\Lambda_{3 N}^{*}\right)} \mid B_{N}=0\right)\right|+|t| E\left(\left|\Lambda_{1 N}^{*}\right| \mid B_{N}=0\right) \\
\leq & \left|E\left(e^{i t\left(T_{1 N}^{*}+T_{2 N}^{*}+\Lambda_{3 N}^{*}\right)} \mid B_{N}=0\right)\right| \\
& +2|t|\left|E\left(\Lambda_{2 N}^{*} e^{i t\left(T_{1 N}^{*}+T_{2 N}^{*}+\Lambda_{3 N}^{*}\right)} \mid B_{N}=0\right)\right| \tag{5.11}\\
& +8|t|^{3 / 2} E\left(\left|\Lambda_{2 N}^{*}\right|^{3 / 2} \mid B_{N}=0\right)+|t| E\left(\left|\Lambda_{1 N}^{*}\right| \mid B_{N}=0\right) \\
= & \Xi_{1}(t, x)+\Xi_{2}(t, x)+\Xi_{3}(t, x)+\Xi_{4}(t, x) .
\end{align*}
$$

We first estimate $\Xi_{3}(t, x)$ and $\Xi_{4}(t, x)$. By Lemma 5.2(ii), we obtain that

$$
E\left(\left|\Lambda_{2 N}^{*}\right|^{3 / 2} \mid B_{N}=0\right) \leq A x^{3 / 2} m(t) n^{-1} \beta_{3 N}^{2} \leq A m(t) \Delta^{2}
$$

and, by Hölder's inequality,

$$
E\left(\left|\Lambda_{1 N}^{*}\right| \mid B_{N}=0\right) \leq\left[E\left(\left|\Lambda_{1 N}^{*}\right|^{3 / 2} \mid B_{N}=0\right)\right]^{2 / 3} \leq A m^{4 / 3}(t) \Delta^{4 / 3}
$$

These facts yield

$$
\begin{equation*}
\Xi_{3}(t, x)+\Xi_{4}(t, x) \leq A|t|^{3 / 2} m(t) \Delta^{2}+A|t| m^{4 / 3}(t) \Delta^{4 / 3} \tag{5.12}
\end{equation*}
$$

Next we estimate $\Xi_{1}(t, x)$. Write $B_{1 N}^{*}=\sum \eta_{k}\left(\varepsilon_{k}-p\right), B_{2 N}^{*}=\sum\left(1-\eta_{k}\right)\left(\varepsilon_{k}-\right.$ p) and

$$
\begin{equation*}
B=\left\{k: \eta_{k}=1\right\}, \quad B^{c}=\left\{k: \eta_{k}=0\right\} . \tag{5.13}
\end{equation*}
$$

Note that, given $\eta_{1}, \ldots, \eta_{N}$,

$$
T_{1 N}^{*}, B_{1 N}^{*} \in \sigma\left\{\varepsilon_{k}, k \in B\right\}, \quad T_{2 N}^{*}, \Lambda_{3 N}^{*} B_{2 N}^{*} \in \sigma\left\{\varepsilon_{k}, k \in B^{c}\right\}
$$

and $B_{N}=B_{1 N}^{*}+B_{2 N}^{*}$. It follows that $T_{1 N}^{*}$ and $B_{1 N}^{*}$ are independent of $T_{2 N}^{*}, \Lambda_{3 N}^{*}$ and $B_{2 N}^{*}$, given $\eta_{1}, \ldots, \eta_{N}$, and hence, by Lemma 5.1,

$$
\begin{align*}
& \Xi_{1}(t, x) \\
&=\frac{1}{B_{n}(p)} \int_{|\psi| \leq \pi \omega_{N}}\left|E \exp \left\{i t\left(T_{1 N}^{*}+T_{2 N}^{*}+\Lambda_{3 N}^{*}\right)+i \psi B_{N} / \omega_{N}\right\}\right| d \psi \tag{5.14}\\
& \leq 2 \int_{|\psi| \leq \pi \omega_{N}} E\left|E_{\eta} \exp \left\{i t T_{1 N}^{*}+i \psi B_{1 N}^{*} / \omega_{N}\right\}\right| d \psi \\
&=2 \int_{|\psi| \leq \pi \omega_{N}} \prod E\left|E_{\eta} \exp \left\{i \eta_{k}\left(\varepsilon_{k}-p\right)\left(t g_{k}+\psi / \omega_{N}\right)\right\}\right| d \psi
\end{align*}
$$

where E_{η} denotes the conditional expectation given $\eta_{k}, k=1, \ldots, N$.

Let ε_{k}^{*} be an independent copy of ε_{k}. By Taylor's expansion of $e^{i z}$,

$$
\begin{aligned}
E \mid E_{\eta} & \left.\exp \left\{i \eta_{k}\left(\varepsilon_{k}-p\right)\left(t g_{k}+\psi / \omega_{N}\right)\right\}\right|^{2} \\
= & E\left(E_{\eta} \exp \left\{i \eta_{k}\left(\varepsilon_{k}-\varepsilon_{k}^{*}\right)\left(t g_{k}+\psi / \omega_{N}\right)\right\}\right) \\
= & E \exp \left\{i \eta_{k}\left(\varepsilon_{k}-\varepsilon_{k}^{*}\right)\left(\operatorname{tg}_{k}+\psi / \omega_{N}\right)\right\} \\
\leq & 1-(1 / 2)\left(t g_{k}+\psi / \omega_{N}\right)^{2} E \eta_{k}^{2} E\left(\varepsilon_{k}-\varepsilon_{k}^{*}\right)^{2} \\
& +(1 / 6)\left|t g_{k}+\psi / \omega_{N}\right|^{3} E \eta_{k}^{3} E\left|\varepsilon_{k}-\varepsilon_{k}^{*}\right|^{3} \\
\leq & 1-\operatorname{pqm}(t)\left(t g_{k}+\psi / \omega_{N}\right)^{2}+(p q / 3) m(t)\left|t g_{k}+\psi / \omega_{N}\right|^{3} .
\end{aligned}
$$

This, together with $\sum g_{k}=0$ and the fact that for $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{equation*}
\left|p q \sum g_{k}^{2}-1\right| \leq 2 x \beta_{3 N} / \omega_{N} \quad \text { and } \quad \sum p q\left|g_{k}\right|^{3} \leq 5 \beta_{3 N} / \omega_{N} \tag{5.15}
\end{equation*}
$$

yields that for $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|,|t|<(1 / 128) \Delta^{-1}$ and $|\psi|<$ $(3 / 8) \omega_{N}$,

$$
\begin{aligned}
J(t, \psi): & =\prod E\left|E_{\eta} \exp \left\{i \eta_{k}\left(\varepsilon_{k}-p\right)\left(t g_{k}+\psi / \omega_{N}\right)\right\}\right| \\
\leq & \left(\prod E\left|E_{\eta} \exp \left\{i \eta_{k}\left(\varepsilon_{k}-p\right)\left(t g_{k}+\psi / \omega_{N}\right)\right\}\right|^{2}\right)^{1 / 2} \\
\leq & \exp \left\{-\frac{1}{2} p q m(t) \sum\left(t g_{k}+\psi / \omega_{N}\right)^{2}+\frac{1}{6} p q m(t) \sum\left|t g_{k}+\psi / \omega_{N}\right|^{3}\right\} \\
\leq & \exp \left\{-(p q / 2) m(t) \sum t^{2} g_{k}^{2}-m(t) \psi^{2} / 2\right. \\
& \left.\quad+(2 p q / 3) m(t) \sum\left|t g_{k}\right|^{3}+(2 / 3) m(t)|\psi|^{3} / \omega_{N}\right\} \\
& =\exp \left\{-(p q / 2) m(t) \sum t^{2} g_{k}^{2}+(2 p q / 3) m(t) \sum\left|t g_{k}\right|^{3}-m(t) \psi^{2} / 4\right\} \\
\leq & \exp \left\{-\frac{1}{2} m(t) t^{2}\left(1-x \beta_{3 N} / \omega_{N}-(5 / 3)|t| \beta_{3 N} / \omega_{N}\right)-m(t) \psi^{2} / 4\right\} \\
\leq & \exp \left\{-m(t) t^{2} / 4-m(t) \psi^{2} / 4\right\} .
\end{aligned}
$$

To estimate $J(t, \psi)$ for $(3 / 8) \omega_{N} \leq|\psi| \leq \pi \omega_{N}$, we first note that

$$
\begin{align*}
& E\left|E_{\eta} \exp \left\{i \eta_{k}\left(\varepsilon_{k}-p\right)\left(t g_{k}+\psi / \omega_{N}\right)\right\}\right|^{2} \\
& \quad=E \exp \left\{i \eta_{k}\left(\varepsilon_{k}-\varepsilon_{k}^{*}\right)\left(t g_{k}+\psi / \omega_{N}\right)\right\} \tag{5.17}\\
& \quad=1-2 p q+2 p q E \cos \left[\eta_{k}\left(t g_{k}+\psi / \omega_{N}\right)\right] \\
& \quad=1-2 p q m(t)+2 p q m(t) \cos \left(t g_{k}+\psi / \omega_{N}\right)
\end{align*}
$$

Define $D=\left\{k:\left|g_{k}\right| \leq 2 \Delta\right\}$ and $D^{c}=\left\{k:\left|g_{k}\right|>2 \Delta\right\}$. It is readily seen that for $k \in D,|t|<(1 / 128) \Delta^{-1}$ and $(3 / 8) \omega_{N} \leq|\psi| \leq \pi \omega_{N}$,

$$
\frac{23}{64} \leq t g_{k}+\psi / \omega_{N} \leq \pi+\frac{1}{64} \quad \text { or } \quad-\frac{1}{64}-\pi \leq t g_{k}+\psi / \omega_{N} \leq-\frac{23}{64}
$$

and hence $\cos \left(\operatorname{tg}_{k}+\psi / \omega_{N}\right) \leq \cos (23 / 64)<0.95$. On the other hand, it follows from (5.15) that for $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{aligned}
4(N p q)^{-1}\left|D^{c}\right| & \leq \frac{4 x^{2} \beta_{3 N}^{2}}{\omega_{N}^{2}}\left|D^{c}\right| \leq \sum_{k \in D^{c}} g_{k}^{2} \\
& \leq(p q)^{-1}\left(1+2 x \beta_{3 N} / \omega_{N}\right) \leq 2(p q)^{-1}
\end{aligned}
$$

where $\left|D^{c}\right|$ denotes the number of D^{c}. Thus, $\left|D^{c}\right| \leq N / 2$ and $|D|=N-\left|D^{c}\right| \geq$ $N / 2$. By virtue of (5.17) and all of the above facts, we obtain that for $|t|<$ $(1 / 128) \Delta^{-1},(3 / 8) \omega_{N} \leq|\psi| \leq \pi \omega_{N}$ and $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{align*}
J(t, \psi) & \leq\left(\prod_{k \in D} E\left|E_{\eta} \exp \left\{i \eta_{k}\left(\varepsilon_{k}-p\right)\left(t g_{k}+\psi / \omega_{N}\right)\right\}\right|^{2}\right)^{1 / 2} \\
& \leq \prod_{k \in D} \exp \left\{-\operatorname{pqm}(t)\left[1-\cos \left(\operatorname{tg}_{k}+\psi / \omega_{N}\right)\right]\right\} \tag{5.18}\\
& \leq \exp \left\{-(1 / 40) m(t) \omega_{N}^{2}\right\} .
\end{align*}
$$

Combining (5.14), (5.16) and (5.18), it follows that for $|t|<(1 / 128) \Delta^{-1}$ and $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$,

$$
\begin{equation*}
\Xi_{1}(t, x) \leq A m(t)^{-1 / 2} e^{-m(t) t^{2} / 4}+A \omega_{N} e^{-(1 / 40) m(t) \omega_{N}^{2}} \tag{5.19}
\end{equation*}
$$

Finally, we estimate $\Xi_{2}(t, x)$. Note that $\Lambda_{2 N}^{*}=\frac{x}{n^{2}} \sum_{j \in B^{c}} v_{j} \sum_{k \in B} v_{k}$, where B and B^{c} are defined in (5.13). Similarly to (5.14), we have

$$
\begin{aligned}
\Xi_{2}(t, x) & =\frac{2|t|}{B_{n}(p)} \int_{|\psi| \leq \pi \omega_{N}}\left|E\left(\Lambda_{2 N}^{*} e^{i t\left(T_{1 N}^{*}+T_{2 N}^{*}+\Lambda_{3 N}^{*}\right)+i \psi B_{N} / \omega_{N}}\right)\right| d \psi \\
& \leq \frac{4|t| x}{n^{2}} \int_{|\psi| \leq \pi \omega_{N}} E\left[\sum_{j \in B^{c}} \sum_{k \in B} E_{\eta}\left|\nu_{j}\right|\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\times\left|E_{\eta}\left(v_{k} \exp \left\{i t T_{1 N}^{*}+i \psi B_{1 N}^{*} / \omega_{N}\right\}\right)\right|\right] d \psi \tag{5.20}
\end{equation*}
$$

$$
\leq \frac{4|t| x}{n^{2}} \int_{|\psi| \leq \pi \omega_{N}} E\left[\sum_{1 \leq j \neq k \leq N}\left(1-\eta_{j}\right) \eta_{k} E\left|v_{j}\right| E\left|v_{k}\right| \Omega_{j k}(t, \psi)\right] d \psi
$$

$$
\leq \frac{4|t| x m(t)}{n^{2}} \sum_{1 \leq j \neq k \leq N} E\left|v_{j}\right| E\left|v_{k}\right| \int_{|\psi| \leq \pi \omega_{N}} E \Omega_{j k}(t, \psi) d \psi
$$

where

$$
\Omega_{j k}(t, \psi)=\prod_{l \neq j, k}\left|E_{\eta} \exp \left\{i \eta_{l}\left(\varepsilon_{l}-p\right)\left(t g_{l}+\psi / \omega_{N}\right)\right\}\right|
$$

As in the proof of (5.19), with minor modifications, we have that for $|t|<$ $(1 / 128) \Delta^{-1}, 2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$ and all $1 \leq j \neq k \leq N$,

$$
\int_{|\psi| \leq \pi \omega_{N}} E \Omega_{j k}(t, \psi) d \psi \leq A m(t)^{-1 / 2} e^{-m(t) t^{2} / 4}+A \omega_{N} e^{-(1 / 40) m(t) \omega_{N}^{2}}
$$

This, together with (5.20) and the fact that

$$
\sum_{1 \leq k \neq j \leq N} E\left|v_{j}\right| E\left|v_{k}\right| \leq\left(2 p q \sum\left(a_{k}^{2}+1\right)\right)^{2}=16 \omega_{N}^{4}
$$

yields that for $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$ and $|t|<(1 / 128) \Delta^{-1}$,

$$
\begin{equation*}
\Xi_{2}(t, x) \leq A|t x|\left(e^{-m(t) t^{2} / 4}+\omega_{N} e^{-(1 / 40) m(t) \omega_{N}^{2}}\right) \tag{5.21}
\end{equation*}
$$

Taking estimates (5.12), (5.19) and (5.21) into (5.11), we obtain (5.9). The proof of Lemma 5.3 is now complete.

Lemma 5.4. Suppose that $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$. Then, for $|t| \leq$ $(1 / 128) \Delta^{-1 / 3}$,

$$
\begin{equation*}
\left|f_{1}(t)-e^{-t^{2} / 2}\right| \leq A \min \{|t|, 1\}\left(\Delta\left(1+t^{6}\right) e^{-t^{2} / 4}+\omega_{N}^{-6}\right) \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f_{1}(t)-g(t, 0)\right| \leq A \min \{|t|, 1\}\left(\Delta^{4 / 3}\left(1+t^{6}\right) e^{-t^{2} / 4}+\omega_{N}^{-6}\right) \tag{5.23}
\end{equation*}
$$

where

$$
g(t, 0)=e^{-t^{2} / 2}\left\{1+\sum\left(g_{k}(t, 0)-1\right)+t^{2} / 2\right\}
$$

Lemma 5.5. Suppose that $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$. Then, for $|t| \leq$ $(1 / 128) \Delta^{-1 / 3}$,

$$
\begin{align*}
\left|f_{2}(t)\right| & \leq A\left(1+t^{2}\right) \Delta^{2}\left(e^{-t^{2} / 4}+\omega_{N}^{-6}\right), \tag{5.24}\\
\left|f(t)-f_{1}(t)\right| & \leq A \Delta^{2}|t|^{3 / 2}+A|t|\left(1+t^{2}\right) \Delta^{2}\left(e^{-t^{2} / 4}+\omega_{N}^{-6}\right) . \tag{5.25}
\end{align*}
$$

The proofs of Lemmas 5.4 and 5.5 are omitted. The details can be found in [18], on which the present paper is based.

Lemma 5.6. Suppose that $2 \leq x \leq(1 / 128) \omega_{N} / \max _{k}\left|a_{k}\right|$. Then there exists an absolute constant A such that, for all $|y| \leq 4 x$,

$$
P\left(T_{N}+\Lambda_{N} \geq y \mid B_{N}=0\right) \leq(1-\Phi(y))+A x \Delta e^{-y^{2} / 2}+A \Delta^{4 / 3}
$$

Proof. Note that Lemmas 5.3-5.5 are similar to Lemmas 10.1-10.3 in [19]. The proof of Lemma 5.6 is similar to Lemma 10.5 of [19] with some routine modifications. We omit the details.

We are now ready to prove Proposition 2.3. Note that max $\left|a_{k}\right| \leq \omega_{N}$,

$$
h=x p q \sum\left(a_{k}^{2}-1\right)^{2} / n^{2} \leq x \max \left|a_{k}\right| \beta_{3 N} / n \leq \Delta
$$

and $|x-h| \leq 2 x$. It follows from (5.1) and Lemma 5.6 that

$$
\begin{aligned}
P\left(S_{n} \geq x \sqrt{q} V_{n}\right) & \leq P\left(T_{N}+\Lambda_{N} \geq x-h \mid B_{N}=0\right) \\
& \leq(1-\Phi(x-h))+A x \Delta e^{-(x-h)^{2} / 2}+A \Delta^{4 / 3} \\
& \leq 1-\Phi(x)+A(1+x) \Delta e^{-x^{2} / 2+x \Delta}+A \Delta^{4 / 3} \\
& \leq(1-\Phi(x))\left(1+A x^{2} \Delta e^{x \Delta}\right)+A \Delta^{4 / 3} \\
& \leq(1-\Phi(x)) \exp \left\{A x^{3} \beta_{3 N} / \omega_{N}\right\}+A\left(x \beta_{3 N} / \omega_{N}\right)^{4 / 3}
\end{aligned}
$$

where we have used the result

$$
\Phi(x)-\Phi(x-h) \leq h \Phi^{\prime}(x-h) \leq h e^{-(x-h)^{2} / 2} \leq \Delta e^{-x^{2} / 2+x \Delta}
$$

This yields Proposition 2.3.
Acknowledgments. The authors would like to thank the referees and the Editor for their valuable comments which have led to this much improved version of the paper.

REFERENCES

[1] BABU, G. J. and BAI, Z. D. (1996). Mixtures of global and local Edgeworth expansions and their applications. J. Multivariate Anal. 59 282-307. MR1423736
[2] BABU, G. J. and Singh, K. (1985). Edgeworth expansions for sampling without replacement from finite populations. J. Multivariate Anal. 17 261-278. MR0813236
[3] Bickel, P. J. and van Zwet, W. R. (1978). Asymptotic expansions for the power of distribution-free tests in the two-sample problem. Ann. Statist. 6 937-1004. MR0499567
[4] Bikelis, A. (1969). On the estimation of the remainder term in the central limit theorem for samples from finite populations. Studia Sci. Math. Hungar. 4 345-354. (In Russian.) MR0254902
[5] Bloznelis, M. (1999). A Berry-Esseen bound for finite population Student's statistic. Ann. Probab. 27 2089-2108. MR1742903
[6] Bloznelis, M. (2000). One and two-term Edgeworth expansions for finite population sample mean. Exact results. I. Lithuanian Math. J. 40 213-227. MR1803645
[7] Bloznelis, M. (2000). One- and two-term Edgeworth expansions for finite population sample mean. Exact results. II. Lithuanian Math. J. 40 329-340. MR1819377
[8] Bloznelis, M. (2003). An Edgeworth expansion for Studentized finite population statistics. Acta Appl. Math. 78 51-60. MR2021768
[9] Bloznelis, M. and Götze, F. (2000). An Edgeworth expansion for finite-population U statistics. Bernoulli 6729-760. MR1777694
[10] Bloznelis, M. and Götze, F. (2001). Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Statist. 29 899-917. MR1865345
[11] Dai, W. and Robinson, J. (2001). Empirical saddlepoint approximations of the Studentized mean under simple random sampling. Statist. Probab. Lett. 53 331-337. MR1841636
[12] de La Pena, V. H., Klass, M. J. and Lai, T. L. (2004). Self-normalized processes: Exponential inequalities, moment bounds and iterated logarithm laws. Ann. Probab. 32 1902-1933. MR2073181
[13] Efron, B. (1969). Student's t-test under symmetry conditions. J. Amer. Statist. Assoc. 64 1278-1302. MR0251826
[14] Erdös, P. and Rényi, A. (1959). On the central limit theorem for samples from a finite population. Publ. Math. Inst. Hungarian Acad. Sci. 449-61. MR0107294
[15] HÁJEK, J. (1960). Limiting distributions in simple random sampling for a finite population. Publ. Math. Inst. Hungarian Acad. Sci. 5 361-374. MR0125612
[16] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. MR0144363
[17] Höglund, T. (1978). Sampling from a finite population: A remainder term estimate. Scand. J. Statist. 5 69-71. MR0471130
[18] Hu, Z., Robinson, J. and Wang, Q. (2006). Cramér-type large deviations for samples from a finite population. Research Report 2, Univ. Sydney. Available at www.maths.usyd.edu. au/u/pubs/publist/preprints/2006/hu-2.html.
[19] Jing, B.-Y., SHAO, Q.-M. and WANG, Q. (2003). Self-normalized Cramér-type large deviations for independent random variables. Ann. Probab. 31 2167-2215. MR2016616
[20] Kokic, P. N. and Weber, N. C. (1990). An Edgeworth expansion for U-statistics based on samples from finite populations. Ann. Probab. 18 390-404. MR1043954
[21] Nandi, H. K. and SEN, P. K. (1963). On the properties of U-statistics when the observations are not independent. II. Unbiased estimation of the parameters of a finite population. Calcutta Statist. Assoc. Bull. 12 124-148. MR0161418
[22] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin. MR0388499
[23] RaO, C. R. and ZhaO, L. C. (1994). Berry-Esseen bounds for finite-population t-statistics. Statist. Probab. Lett. 21 409-416. MR1325218
[24] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Springer, Berlin. MR1725357
[25] Robinson, J. (1977). Large deviation probabilities for samples from a finite population. Ann. Probab. 5 913-925. MR0448498
[26] Robinson, J. (1978). An asymptotic expansion for samples from a finite population. Ann. Statist. 6 1005-1011. MR0499568
[27] ZHAO, L. C. and CHEN, X. R. (1987). Berry-Esseen bounds for finite-population U-statistics. Sci. Sinica Ser. A 30 113-127. MR0892467
[28] Zhao, L. C. and Chen, X. R. (1990). Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica (English Ser.) 6 263-272. MR1078067

Z. Hu	J. Robinson
Department of Statistics and Finance	Q. Wang
University of Science	School of Mathematics and Statistics F07
and Technology of China	University of Sydney
Hefei 230026	New South Wales 2006
China	Australia
E-MAIL: huzs@ustc.edu.cn	E-MAIL: johnr@maths.usyd.edu.au qiying@maths.usyd.edu.au

[^0]: Received November 2004; revised May 2006.
 ${ }^{1}$ Supported in part by ARC DP0451722.
 AMS 2000 subject classifications. Primary 62E20; secondary 60F05.
 Key words and phrases. Cramér large deviation, moderate deviation, finite population.

