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STABLE MARKED POINT PROCESSES

BY TUCKER MCELROY AND DIMITRIS N. POLITIS

U.S. Bureau of the Census and University of California, San Diego

In many contexts such as queuing theory, spatial statistics, geostatistics
and meteorology, data are observed at irregular spatial positions. One model
of this situation involves considering the observation points as generated by
a Poisson process. Under this assumption, we study the limit behavior of
the partial sums of the marked point process {(ti ,X(ti ))}, where X(t) is a
stationary random field and the points ti are generated from an independent
Poisson random measure N on R

d . We define the sample mean and sample
variance statistics and determine their joint asymptotic behavior in a heavy-
tailed setting, thus extending some finite variance results of Karr [Adv. in
Appl. Probab. 18 (1986) 406–422]. New results on subsampling in the context
of a marked point process are also presented, with the application of forming
a confidence interval for the unknown mean under an unknown degree of
heavy tails.

1. Introduction. Random field data arise in diverse areas such as spatial sta-
tistics, geostatistics and meteorology, to name but a few. It often happens that the
observation locations of the data are irregularly spaced, this being a serious devia-
tion from the typical formulation of random field theory, where data are located at
lattice points. One effective way of modeling the observation points is by means
of a Poisson process. In [3, 4], the statistical problem of mean estimation is ad-
dressed given a marked point process structure of the data where the observation
locations are governed by a Poisson random measure N assumed to be independent
of the distribution of the stationary random field itself. Karr [4] obtained central
limit theorem results for the sample mean in this context, under a finite second mo-
ment assumption, and showed that the limiting variance depends on the integrated
autocovariance function. The paper at hand is a first analysis of infinite-variance
marked point processes.

Within the literature on dependent, heavy-tailed stationary time series, the
discrete-time stochastic process

X(t) =
∫

R

ψ(t + x)M(dx)(1)

has been studied in [9]. In this work, t is the integer index of the discrete-time
process, M is an α-stable random measure with Lebesgue control measure and ψ is
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a sufficiently regular real-valued function. This is an excellent model for the types
of data discussed above because X(t) can be defined for any t in R

d when ψ and
M are also extended to R

d . A marked point process can be defined using model (1);
data from a marked point process are of the form {ti ,X(ti)} for i = 1,2, . . . , where
the points t1, t2, . . . are generated by a Poisson random measure. We focus on the
non-Gaussian case where α < 2 so that the variance of X is infinite. Nevertheless,
we study the sample variance statistic since it forms a suitable studentization of the
mean; see [5]. The sample variance (as well as its square root, the sample standard
deviation) is always well defined, even though the true variance may be infinite.

The second section of this paper develops some theory on continuous-time sta-
ble processes and the convergence of integrated partial sums of the data is es-
tablished. This is relevant to our main discussion since a continuously observed
process must be defined before we can conceive of a marked point process, the
random field having to be well defined at every observation point t . Since the limit
results for continuous-time stable processes are new and helpful for our marked
point process problem, they are also included.

In the third section, we describe the marked point process situation and derive
the joint asymptotics for the sample mean and sample variance. As expected, the
limit is stochastic, but its randomness only comes from the stable random mea-
sure M, not from the Poisson random measure N. It will be seen that our results
generalize the limit theory of Karr [4] to the case of infinite variance.

Finally, it is well known that subsampling is applicable in the context of a
marked point process under some conditions; see Chapter 6 of [8], hereafter de-
noted PRW [8]. Our limit theorems permit us to verify the subsampling require-
ments, so a valid confidence interval for the mean is constructed in Section 4. Two
methods are presented, one based on the asymptotics of the sample mean when α

is known and one based on the asymptotics of the self-normalized sample mean
when α is not known. These methods are tested and compared by means of a sim-
ulation study in Section 5. All technical proofs are in Appendix A.

2. Continuous parameter processes. In this section, we develop a limit the-
ory for the sample mean and sample variance of an α-stable continuous-time ran-
dom field {X(t), t ∈ R

d}. Consider an α-stable random measure M with skew-
ness intensity β(·) and Lebesgue control measure (denoted by λ) defined on the
space R

d . The random measure is independently scattered and for Lebesgue-
measurable sets A, the distribution of M(A) is α-stable with scale λ(A)1/α , skew-
ness

∫
A β(x)λ(dx)/λ(A) and location 0; see [11], page 118 for details. This choice

of control measure reflects our desire that the process be strictly stationary; transla-
tion invariance is a necessary condition for stationarity in such models. In addition,
it is necessary for β to have period “zero” for stationarity, that is, the skewness in-
tensity β(x) is constant as a function of x. We will denote this constant by β . Let
ψ be a filter function in Lδ := {f :‖f ‖δ

δ := ∫
Rd |f (x)|δλ(dx) < ∞} that is contin-

uous and bounded for almost every x with respect to Lebesgue measure. Then we
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may construct the following stochastic integral with respect to an α-stable random
measure M (see [11]):

X(t) =
∫

Rd
ψ(x + t)M(dx),(2)

where t ∈ R
d . We stipulate that the number δ is in (0, α] ∩ [0,1] (later, we require

ψ to be integrable); α will be fixed throughout the discussion. Note that α = 2
corresponds to a Gaussian stochastic process and has been extensively studied. It
is a known fact that the random variable X(t) is α-stable with scale parameter

σψ =
(∫

Rd
|ψ(x + t)|αλ(dx)

) 1
α =

(∫
Rd

|ψ(x)|αλ(dx)

) 1
α

and skewness parameter

βψ =
∫
Rd ψ(x + t)〈α〉β(x)λ(dx)

σα
ψ

= β

∫
Rd ψ(x)〈α〉λ(dx)

σα
ψ

,

where b〈α〉 = sign(b)|b|α . The location parameter is zero unless α = 1, in which
case it is

µψ = − 2

π

∫
Rd

ψ(x + t)β(x) log |ψ(x + t)|λ(dx)

= −2β

π

∫
Rd

ψ(x) log |ψ(x)|λ(dx).

Intuitively, we may think of X as the convolution of ψ and M, in analogy
with the infinite order moving average of classical time series analysis. Essen-
tially, one runs the independent-increments α-stable measure M through the linear
filter ψ and the resulting time series is strictly stationary with nontrivial depen-
dence; two random variables X(t) and X(t + k) are independent if and only if the
lag k exceeds the diameter of ψ’s support. Of course, ψ need not be compactly
supported, in which case all of the variables are dependent. Hence, this construc-
tion makes for an interesting and relevant linear heavy-tailed model. As shown
in Proposition 1 of [6], the model defined by (1) is well defined and stationary.
That is, for each t , the random variable X(t) is α-stable with location zero (un-
less α = 1, in which case the location is µψ ), constant skewness and constant
scale.

We will be interested in the asymptotic distribution of the partial sums. In or-
der to consider fairly general, nonrectangular regions, we let K be a “prototype
region,” that is, a Lebesgue-measurable set in R

d with measurable boundary ∂K

such that λ(∂K) = 0; see [7] for background on this concept. Then let Kn = n ·K ,
which essentially scales the prototype region by the integer n. Our statistics are
computed over Kn and our asymptotic results are achieved as n → ∞. This device
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allows us to consider nonrectangular regions and, at the same time, is a realistic
construction. The appropriate rate of convergence for the partial sums will then

be n
d
α , as shown in Theorem 1 below. We wish to average X(t) over all points

in Kn, so to that end we must calculate∫
Kn

X(t)λ(dt).(3)

Now a discrete sum of the random field is certainly well defined by the linearity of
the α-stable random integral, but it is not a priori clear that (3) makes sense. Thus,
we introduce the following definition.

DEFINITION 1. By expression (3), we mean the limit in probability as
m → ∞ of ∑

ti∈Km
n

X(ti)	ti,(4)

where Km
n is a mesh of m points ti in Kn, 	ti is the dλ volume of the elements of

the mesh and the mesh gets progressively finer as m is increased (this is the usual
‘Riemann sums’ construction).

Let us establish that this definition makes sense. By using the linearity of the
stable integral, (4) becomes∫

Rd

∑
ti∈Km

ψ(ti + x)	tiM(dx) =
∫

Rd
Fm(x)M(dx),(5)

where Fm(x) = ∑
ti∈Km ψ(ti + x)	ti . Now, it follows that the limit in probability

as m → ∞ of (5) is
∫
Rd F (x)M(dx) for F(x) := ∫

Kn
ψ(t + x)λ(dt), provided∫

Rd
|Fm(x) − F(x)|αλ(dx) → 0

as m → ∞. Since the integrands are bounded in L
1, we may apply the Lebesgue

dominated convergence theorem and obtain our result since Fm(x) → F(x) point-
wise.

Thus, we have established that expression (3) makes sense and also that it is
equal to ∫

Rd
F (x)M(dx) =

∫
Rd

∫
Kn

ψ(t + x)λ(dt)M(dx).(6)

In a similar fashion, one can define the integral of the second moment,∫
Kn

X2(t)λ(dt),(7)
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as a limit in probability of a Riemann sum of X2(t); unfortunately, due to squaring,
a nice representation such as (6) is not possible. However, the Laplace transform
of (7) is closely related to the Fourier transform of∫

Rd

∫
Kn

ψ(t + x)B(dt)M(dx),(8)

where B is an independent Gaussian random measure. This is shown in the proof
of Theorem 1. Note that, conditional on B, (8) is an α-stable random variable with
scale (∫

Rd

∣∣∣∣
∫
Kn

ψ(x + t)B(dt)

∣∣∣∣
α

λ(dx)

)1/α

.

Now, we are interested in the continuous versions of the sample mean and sam-
ple variance; it is sufficient to examine the asymptotics of(

n− d
α

∫
Kn

X(t)λ(dt), n− 2d
α

∫
Kn

X2(t)λ(dt)

)
,

which we explore through the joint Fourier–Laplace transform. For two random
variables A and B ≥ 0, this is defined by

φA,B(θ, γ ) = E exp{iθA − γB}, θ ∈ R, γ ≥ 0.

Like the joint characteristic function, the pointwise convergence of φAn,Bn to a
function which is continuous at (0,0) establishes joint weak convergence of An

and Bn; see [2]. The next theorem gives a complete answer to our inquiry.

THEOREM 1. Consider a random field defined by the model given by (1),
where 0 < α ≤ 2. Then the sample first and second moments jointly have limit(

n− d
α

∫
Kn

X(t)λ(dt), n− 2d
α

∫
Kn

X2(t)λ(dt)

)
L
⇒ (S∞(α),U∞(α))(9)

as n → ∞. Here, U∞(α) is nondegenerate only if α < 2. S∞(α) is an α-stable
random variable with scale parameter ||, where  = ∫

Rd ψ(x)λ(dx), and skew-
ness parameter β · sign(). If α �= 1, the location parameter is zero; other-
wise, it is −2β

π
 log ||. When either α �= 1 or α = 1 and β = 0, we may write

S∞(α)
L= λ(K)1/α · M(B) for the marginal distribution. For α < 2, U∞(α) is an

α/2-stable random variable with scale parameter

2[λ(K)E|G|α]2/α
∫

Rd
ψ2(x)λ(dx)

(
cos(πα/4)

)2/α
,

skewness 1 and location 0, where G is a standard normal random variable.
If α = 2, then U∞(α) is a point mass at the second moment of X, which is
2

∫
Rd ψ2(s)λ(ds). We may write the marginal distribution as

U∞(α)
L= 2[λ(K)E|G|α]2/α

∫
Rd

ψ2(x)λ(dx)
(
cos(πα/4)

)2/α · ε(α),
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where ε(α) is an α/2-stable subordinator. The limiting joint Fourier–
Laplace transform E exp{iθS∞(α) − γU∞(α)} for α < 2 is [letting 2 =√∫

Rd ψ2(x)λ(dx)]

exp
{
−λ(K)E|θ +

√
2γ2G|α

(
1 − iβ

E(θ + √
2γ2G)〈α〉

E|θ + √
2γ2G|α

)

− iλ(K)
2β

π
1α=1E

[(
θ +

√
2γ2G

)
log

∣∣∣θ +
√

2γ2G
∣∣∣]}

(10)

for θ real and γ ≥ 0.

REMARK 1. One can develop confidence intervals via this result. However,
due to considerations of space, we will give the details only in the marked point
case, the continuous case being much simpler.

3. Marked point processes. We will now consider the more intricate situa-
tion wherein the observation locations of the random field are themselves random.
It often happens in statistical problems that random field data is not observed at
lattice points, but instead at points scattered around the observation region with no
discernible pattern. Frequently, we can model this situation through the employ-
ment of a random measure for the point locations. Generally, this probabilistic
structure is referred to as a marked point process Ñ :

Ñ = ∑
i

ε(Ti ,X(Ti))

for εx(A) = 1 if x ∈ A and equals 0 otherwise. See [4] for a treatment of marked
point processes for L2 random fields. If we wish to impose the condition that the
distribution of points does not depend on the location of the observation region,
only on its size and shape, then we say that the random measure is spatially ho-
mogeneous—this is similar to a stationarity assumption. Also, it is often sensible
to assume that the distribution of points in one observation region is independent
of the distribution of points in another disjoint observation region—the “indepen-
dent scattering” property. It turns out that a homogeneous Poisson random measure
(PRM) satisfies these properties, and is therefore a reasonable model in many sce-
narios. So, let N denote a PRM with mean measure �. N is sometimes denoted
PRM(�), as explained in the following:

DEFINITION 2. We say that N is PRM(�) on the measure space {Rd,B,�}
(where B consists of the Borel sets in R

d ) if and only if it is an independently
scattered, countably additive random measure that satisfies

P[N(A) = k] = exp{−�(A)}�(A)k

k! , k = 0,1, . . .(11)

for every A ∈ B0 := {B ⊂ B :�(A) < ∞}—in other words, N(A) ∼ P ois(�(A)).
We call � the mean measure of N.
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REMARK 2. More generally, we could just define the mean measure to be
�(·) := EN(·). Now, if we impose the condition that � be a translation-invariant
measure on R

d , then spatial homogeneity follows immediately from (11). Of
course, � must then be Lebesgue measure (denoted by λ, as in the previous sec-
tion) modulo some constant positive multiplicative factor, that is, � = rλ for some
r ∈ R

+.

We are interested in investigating the limit behavior of the sample mean and
sample variance over the observation region Kn (we preserve the notation from
the previous section), where the data locations are now determined by the random
measure N, which is independent of the stochastic process (1). Thus, we wish to
study the joint convergence of(

N(Kn)
− 1

α

∫
Kn

X(t)N(dt),N(Kn)
− 2

α

∫
Kn

X2(t)N(dt)

)
(12)

as n → ∞. Note that N(Kn) is the actual observed sample size.

THEOREM 2. Consider a continuous-parameter random field generated from
the model given by (1), where 0 < α ≤ 2 and the skewness intensity β is constant.
Suppose that a PRM N with mean measure � = rλ, independent of the stochastic
process, governs the distribution of observation locations. If the observation region
is the set Kn and α < 2, then the normalized sample mean and sample variance
computed over the observation region jointly converge in distribution to an α-
stable random variable S̃∞(α) and a positive α/2-stable random variable Ũ∞(α)

as n → ∞: (
N(Kn)

− 1
α

∫
Kn

X(t)N(dt),N(Kn)
− 2

α

∫
Kn

X2(t)N(dt)

)
L
⇒ (r−1/αS̃∞(α), r−2/αŨ∞(α)).

(13)

The joint Fourier–Laplace transform of the limit (θ real and γ > 0) is given by

E exp{iθ S̃∞(α) − γ Ũ∞(α)}

= exp
{
−σ̃ α∞(θ, γ )

(
1 − iβ

β̃∞(θ, γ )

σ̃ α∞(θ, γ )

)
+ i1{α=1}µ̃∞(θ, γ )

}
,

with the parameters given by

σ̃∞(θ, γ ) = (E|g(θ, γ )|α)1/α,

β̃∞(θ, γ ) = E(g(θ, γ ))〈α〉,

µ̃∞(θ, γ ) = −2β

π
E[g(θ, γ ) logg(θ, γ )],

g(θ, γ ) = θ

∫
Rd

ψ(s)N(ds) +
√

2γ

√∫
Rd

ψ2(s)N(ds)G,
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for G a standard normal random variable independent of N. Hence, S̃∞(α) is

α-stable with scale σ̃∞(1,0), skewness β
β̃∞(1,0)
σ̃ α∞(1,0)

and location 1{α=1}µ̃∞(1,0),

whereas Ũ∞(α) is α/2-stable with scale

2
(

cos(πα/4)E

[∫
Rd

ψ2(s)N(ds)

]α/2
E|Z|α

)2/α

,

skewness one and location zero. If α = 2, the limit of the sample variance Ũ∞(α)

is a point mass at 2r
∫
Rd ψ2(s)λ(ds). The stated limit for the sample mean still

holds when α = 2; in this case, S̃∞(2) is a Gaussian random variable.

As a special case, let us fix α = 2 in Theorem 2. The limiting squared scale
σ̃ 2∞(θ,0) (half of the variance) of the partial sums is then

E

∣∣∣∣
∫

Rd
ψ(s)N(ds)

∣∣∣∣
2

=
(∫

Rd
ψ(s)rλ(ds)

)2

+
∫

Rd
ψ2(s)rλ(ds)

= r2
∫

Rd

∫
Rd

ψ(x)ψ(x + t)λ(dx)λ(dt) + r

∫
Rd

ψ2(s)λ(ds)

= 1

2
r

∫
Rd

τ (t)λ(dt) + 1

2
rτ (0),

where τ(t) = Cov(X(t),X(0)) = 2r
∫
Rd ψ(x)ψ(x + t)λ(dx) is the covariance

(or codifference) function. Therefore, the variance of the limit r−1/2 ˜S∞(2) is∫
Rd τ (t)λ(dt) + τ(0), which agrees with equation (3.10) of [4] in the finite-

variance case.

REMARK 3. Since the codifference function τ(t) = 2‖ψ‖α
α −‖ψ(·+ t)−ψ‖α

α

is a natural generalization of the covariance function to α < 2, one may be tempted
to conjecture that E| ∫

Rd ψ(s)N(ds)|α = 1
2(

∫
Rd τ (s)λ(ds) + τ(0)). This is, in fact,

false, as evaluation on a simple ψ will confirm.

Corollary 1 follows from Theorem 2 by the continuous mapping theorem.

COROLLARY 1. Under the same assumptions as Theorem 2, the self-normal-
ized mean converges as n → ∞:∫

Kn
X(t)N(dt)√∫

Kn
X2(t)N(dt)

L
⇒ S̃∞(α)√
Ũ∞(α)

.

REMARK 4. Note that no knowledge of α is required to compute the self-
normalized mean. It is also interesting that the limit does not depend on r . The
ratio is nonconstant, since a squared α-stable variable never has an α/2-stable
distribution.
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4. Subsampling applications. This section of the paper describes how sub-
sampling methods may be used for practical application of the results in the pre-
vious section. The idea is to use the subsampling distribution estimator as an ap-
proximation of the limit distribution of our mean-centered statistic from a marked
point process that depends on unknown parameters (including α); this procedure
will yield approximate quantiles for its sampling distribution and thus confidence
intervals for the mean can be formed. For more details and background on these
methods, see PRW [8].

In order to use subsampling, it is desirable that the model satisfy certain mixing
conditions. Strong mixing is one common condition on the dependence structure
which is sufficient to ensure the validity of the subsampling theorems; see [10] for
its introduction. Many time series models satisfy the assumption of strong mixing;
for Gaussian processes, the summability of the autocovariance function implies
the strong mixing property. In the case where d = 1, if our process (1) is symmet-
ric, then the strong mixing condition is always satisfied, as Proposition 3 of [6]
demonstrates. The mixing condition that is needed in general is somewhat more
complicated and is defined in the next subsection.

4.1. Subsampling with known index α. In this subsection, assume that α is
known and greater than 1. Consider the location-shifted model

Z(t) := X(t) + µ =
∫

Rd
ψ(x + t)M(dx) + µ.(14)

This is the appropriate model for stable stationary random fields with nonzero
location. Note that since α > 1, the location parameter of X(t) is zero. For ap-
plications, we will suppose that our data are the observations {Z(ti) : ti ∈ Kn} for
some specified observation region Kn and a random collection of N(Kn) points ti
generated by the Poisson random measure N. Our goal is to estimate the location
parameter (i.e., the mean) µ with the sample mean

µ̂Kn = 1

N(Kn)

∫
Kn

Z(t)N(dt).

Let ᾱZ(k; l1) be the mixing coefficients defined in PRW ([8], page 141). Since
by (13) the sample mean converges, we can apply Theorem 6.3.1 of PRW [8]
to this situation. Let Kn(1 − c) := {y ∈ Kn :B + y ⊂ Kn} for B := cKn, where
c = cn ∈ (0,1) is a sequence that tends to zero as the diameter of Kn, denoted
by δ(Kn), tends to infinity. We also require that cnδ(Kn) → ∞ as n → ∞. Since
δ(Kn) = δ(nK) = nδ(K), this means that 1/cn = o(n). In practice, since Kn is
not clearly defined by the data, one may take it to be the convex hull or rectangular
hull of the observation points. Then it is simple to produce the scaled-down copy B

of Kn, once c is chosen. Let µ̂Kn,B,y be the statistic µ̂ evaluated on the set B + y

for any y ∈ Kn(1 − c) and let LKn,B(x) be the subsampling distribution estima-
tor (6.8) of PRW [8]. We will assume (6.9) of PRW [8] as a condition on the mixing
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coefficients; this condition is easily satisfied in the special case d = 1 if the random
field is strong mixing (which is always true for symmetric one-dimensional stable
integrals, by Proposition 3 of [6]). Then by Theorem 6.3.1 of PRW [8]

LKn,B(x)
P−→ J (x)

as n → ∞, where J (x) is the cumulative distribution function of r−1/αS̃∞(α).

REMARK 5. It follows that an asymptotically correct (1−p)100% confidence
interval for µ is given by

[µ̂ − L1−p/2N(Kn)
1/α−1, µ̂ − Lp/2N(Kn)

1/α−1],
where Lp is the pth quantile of LKn,B , defined as inf{x :LKn,B(x) ≥ p}. Note that
explicit knowledge of α is necessary for this construction.

4.2. Subsampling with unknown index α. The method outlined above is often
not immediately applicable because the rate of convergence τ�(Kn) depends on α,
which is typically unknown; thus, in practice, it may be necessary to estimate α.
This can be done via a subsampling estimator of the rate, as discussed in [1] or
PRW ([8], Chapter 8). These methods can be extended to the marked point process
scenario in a straightforward fashion; details are omitted here, but may be obtained
by contacting the authors. The single important difference from [1] is that the
data-driven rate τN(B+y) appearing in the subsampling distribution estimator must
be replaced by a deterministic rate τ�(B+y); one can even use Lebesgue measure
instead of the mean measure � since the use of logarithms in the estimator ensures
that the differences in scale are irrelevant.

Alternatively, one may be able to avoid the estimation of α by using a self-
normalized estimate of the mean, for example, one may consider dividing by the
sample standard deviation as in our Corollary 1. Suppose that σ̂Kn is an estimate
of scale for X(t). Then we may form the ratio

τN(Kn)

(µ̂Kn − µ)

σ̂Kn

,

where τu is the appropriate rate of convergence such that the ratio has a nontrivial
weak limit. The goal is to self-normalize so that τu will be a known rate, that is,
a rate that does not depend on unknown model parameters. A leading example
is to self-normalize so that an asymptotic result with τu = √

u holds. This is an
improvement over the convergence rate of the (unnormalized) sample mean, where
τu depends on α, which is unknown.

We consider, generally, the scenario in which such a self-normalized conver-
gence holds, that is, such that τu is a known rate. Corollary 1 furnishes an example
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of such a scenario; see the discussion following Remark 6 below. Now we adjust
the definition of the subsampling distribution estimator accordingly:

LKn,B(x) := λ
(
Kn(1 − c)

)−1
∫
Kn(1−c)

1{τN(B+y)(
µ̂Kn,B,y−µ̂Kn

σ̂Kn,B,y
)�x} dy,(15)

with σ̂Kn,B,y defined similarly to µ̂Kn,B,y . On a practical note, it is possible that
N(B + y) = 0; in this case, we get a point mass in LKn,B(x) at zero, but this will
not affect the asymptotics.

THEOREM 3. Assume the convergences

τN(Kn)

(µ̂Kn − µ)

σ̂Kn

L
⇒ J,

aN(Kn)(µ̂Kn − µ)
L
⇒ V,(16)

dN(Kn)σ̂Kn

L
⇒ W

for positive an and dn such that τn = an/dn and where W does not have positive
mass at zero. Let µ be a parameter and assume that τu has the form (6.6) of
PRW [8]. Let c = cn ∈ (0,1) be such that cn → 0, but cnδ(Kn) → ∞. Finally,
assume the mixing condition (6.9) of PRW [8]. Then the following conclusions
hold:

(i) LKn,B(x)
P−→ J (x) for every continuity point x of J (x);

(ii) if J (·) is continuous, then supx |LKn,B(x) − J (x)| P−→ 0;
(iii) letting

cKn,B(1 − t) = inf{x :LKn,B(x) � 1 − t},
if J (x) is continuous at x = inf{x :J (x) � 1 − t}, then

P{τ�(Kn)(θ̂Kn − θ) � cKn,B(1 − t)} → 1 − t.

Thus, the asymptotic coverage probability of the interval [µ̂Kn − τN(Kn)
−1 ×

cKn,B(1 − p),∞) is the nominal level 1 − p.

REMARK 6. Since the subsampling distribution estimator involves Riemann
integration, some numerical approximation must be made in its calculation; see
Section 6.4 of PRW [8] for further details.

As a specific application of Theorem 3, consider the model given by (14) and
define the sample standard deviation by

σ̂Kn =
√

1

N(Kn)

∫
Kn

(
Z(t) − µ̂Kn

)2
N(dt).
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Hence, we have the convergence

N(Kn)
1/2 (µ̂Kn − µ)

σ̂Kn

L
⇒ S̃∞(α)√
Ũ∞(α)

(17)

as n → ∞, which follows immediately from Corollary 1. Note that when α = 2,
this convergence is valid, but Ũ∞(α) is degenerate [it is equal to the variance of X,
which is 2r

∫
Rd ψ2(s)λ(ds)]. The limiting ratio, however, is always absolutely con-

tinuous. Hence, we may apply Theorem 3 with τu = √
u and obtain an asymptotic

1 − p confidence interval for µ,[
µ̂Kn − L1−p/2

σ̂Kn√
N(Kn)

, µ̂Kn − Lp/2
σ̂Kn√
N(Kn)

]
,

where p = LKn,B(Lp). Note that no explicit knowledge of α is necessary for this
construction; neither is it necessary to know the Poisson intensity r .

5. Simulation studies. We now focus on the above mean estimation scenario,
with the asymptotic result (17). So, in this case τu = √

u is a known rate. In this
section we demonstrate the methods of Section 4 by means of several simulation
studies. First, we illustrate how a stable marked point process can be simulated
and then we discuss the practical implementation of the subsampling distribution
estimators. Finally, our simulation results present the empirical coverage of the
confidence intervals constructed via the subsampling methodology.

5.1. Implementation. Following Samorodnitsky and Taqqu ([11], page 149)
(also see Resnick, Samorodnitsky and Xue [9]), the series representation of (1) is

X(t) = C1/α
α

∑
i≥1

εi�
−1/α
i ψ(Ui + t)q(Ui)

−1/α,

provided that X(t) is symmetric α-stable. In this representation,

• {εi} are i.i.d. Rademacher random variables,
• {�i} are the arrival times of a unit Poisson process (so they are sums of i i.i.d.

unit exponentials),
• {Ui} are i.i.d. random variables with probability density function q ,
• Cα is a positive constant defined in (1.2.9) of [11],

and all three of these sequences are independent of each other. We have freedom
to select q , as long as it is a probability density function with support on the whole
real line. In our simulations, we take q to be the Cauchy density in R

d ; in practice,
a heavy-tailed q has proven more effective in producing realistic simulations. For
simulation, we adopt the following procedure. First, fix α and determine the obser-
vation region Kn = nK , which can have a variety of shapes in R

d . Also, let � be
Lebesgue measure for simplicity. If we want a sample of size n, we might choose
Kn such that �(Kn) = n, although this is no guarantee that we will obtain n data
points.
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1. Simulate N(Kn) which is Poisson with mean rate �(Kn).
2. Simulate T1, . . . , TN(Kn) i.i.d. from a uniform distribution on Kn.
3. Simulate {εi}, {�i} and {Ui} for i ≤ I , where I is a predetermined threshold.
4. Determine a vector v, which is the “center” of the region Kn. Compute

X(Tj ) = C1/α
α

I∑
i=1

εi�iψ(Ui + Tj − v)q(Ui)
−1/α

for j = 1, . . . ,N(Kn).

Use of the centering constant v is optional, but we found that it improves the
quality of the simulation; theoretically, it merely introduces a deterministic lag and
thus does not affect the distribution. One choice of v is to let each component be
defined by the various centroids. As mentioned in [11], simulation by this method
is unwieldy because convergence in I is slow. However, there is no alternative
method for correlated stable random fields. By trial and error, we found that I =
100 gave a decent trade-off between simulation quality and speed; increasing I

to 1000 gave little visible improvement to the simulation, while greatly retarding
the speed.

Next, we need to compute the subsampling distribution estimators given by (6.8)
of PRW [8] and (15). The easiest method is to approximate the integrals via
Monte Carlo. This is achieved by drawing a large number of random variables
(we used 10,000) uniformly distributed on Kn(1− c). One detail is that for a given
simulated y, the number N(B + y) could be zero; this will create division by zero,
problems for θ̂K,B,y , so by convention the latter is set equal to zero in this case.
In practice, this creates a point mass at zero in the subsampling distribution, but
the effect is lessened by taking larger c values. Another practical problem occurs
when N(B + y) = 1, which creates a division by zero issue for the self-normalized
subsampling distribution estimator. In this case, we should have

τN(B+y)

(
µ̂Kn,B,y − µ̂Kn

σ̂Kn,B,y

)
= 1 · (

X(t∗) − µ̂Kn

)
/0 = ±∞,

where the sign depends on whether or not the data value at the single point t∗ ex-
ceeds the mean. In our computer code, we replace σ̂Kn,B,y by a very small value
in this case, so the resulting ratio will be a large positive or negative value, corre-
sponding to whether X(t∗) is greater than or less than the mean.

5.2. Results. Our simulation study focuses on dimension d = 2, with K100
given by both a square region (10 by 10) and a rectangular region (5 by 20). Using
Lebesgue mean measure, this gives us samples of average size 100. The center-
ing vector v is simply given by the midpoints (5,5) and (2.5,10) for the square
and rectangular regions, respectively. We simulated stable processes for α values
1.1,1.2, . . . ,1.9 and a “Gaussian” filter function ψ(x1, x2) = exp{−(x2

1 + x2
2)/2}

and investigated the block ratios c = 0.1,0.2,0.3,0.4.
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TABLE 1
Coverage at nominal level 0.90, square region

Method 1 Method 2

c 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

α = 1.1 0.926 0.961 0.954 0.869 0.983 0.909 0.699 0.577
α = 1.2 0.904 0.954 0.918 0.857 0.981 0.933 0.719 0.591
α = 1.3 0.807 0.928 0.909 0.810 0.991 0.942 0.752 0.638
α = 1.4 0.726 0.911 0.880 0.821 0.987 0.961 0.770 0.637
α = 1.5 0.622 0.854 0.863 0.806 0.995 0.954 0.780 0.687
α = 1.6 0.547 0.777 0.834 0.777 0.998 0.965 0.783 0.721
α = 1.7 0.440 0.761 0.802 0.740 0.997 0.974 0.798 0.716
α = 1.8 0.414 0.712 0.746 0.723 0.997 0.984 0.810 0.706
α = 1.9 0.366 0.670 0.739 0.691 0.999 0.986 0.839 0.727

Method 1 assumes that α is known (see Section 4.1), whereas Method 2 uses a
self-normalized subsampling distribution, as in Section 4.2. Each simulation was
performed 1000 times. Tables 1–6 record the proportion of simulations for which
the constructed confidence interval contained the true mean of zero (the standard
errors are approximately 0.0095, 0.0069 and 0.0031 for α = 0.1, 0.05 and 0.01
respectively). Clearly, both methods are sensitive to the choice of c. For Method 2,
the coverage is a decreasing function of c and an increasing function of α, whereas
for Method 1, the coverage is not monotonic in c and is decreasing in α. For most
cases, an optimal value of c for Method 2 would seem to lie between 0.2 and 0.3,
based on the observed pattern that c = 0.2 resulted in overcoverage and c = 0.3 in
undercoverage. In contrast, it seems that for high values of α, no value of c could
be found to provide good coverage for Method 1. Neither method was particu-
larly sensitive to the shape of the sampling region since results for the square and
the rectangular region were similar. Although Method 1 had superior coverage for
low α, the overall performance of Method 2 was superior. In general, the choice
of c will depend on how important undercoverage and overcoverage are for a par-
ticular problem; c is also sensitive to the shape of Kn. Finally, the coverage did
improve with larger sample size, but for reasons of brevity, those results are not
displayed here.

Method 2’s superior performance in simulation is interesting, since it also uses
less information than Method 1 (it does not assume that α is known). This seems to
corroborate the assertion that a data-driven normalization (such as the standard de-
viation) is superior in finite-sample to one based purely on a rate of convergence.
If an extreme does not occur in the observed data, then normalization via a rate
will overcompensate; conversely, if an unusual number of extremes (or an unusu-
ally large extreme) occurs, then the rate undercompensates. Use of the standard
deviation instead will automatically adjust in an appropriate fashion, since it will
be smaller in the first scenario and larger in the second.
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TABLE 2
Coverage at nominal level 0.95, square region

Method 1 Method 2

c 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

α = 1.1 0.987 0.989 0.987 0.934 0.999 0.984 0.810 0.676
α = 1.2 0.987 0.992 0.959 0.881 0.996 0.984 0.829 0.663
α = 1.3 0.943 0.983 0.999 0.992 1.000 0.991 0.845 0.721
α = 1.4 0.925 0.964 0.938 0.886 0.998 0.990 0.857 0.701
α = 1.5 0.844 0.941 0.929 0.872 0.998 0.991 0.856 0.749
α = 1.6 0.763 0.871 0.894 0.850 1.000 0.993 0.873 0.785
α = 1.7 0.661 0.860 0.880 0.811 1.000 0.995 0.874 0.785
α = 1.8 0.616 0.808 0.820 0.794 1.000 0.998 0.890 0.762
α = 1.9 0.519 0.776 0.801 0.759 1.000 0.997 0.901 0.784

TABLE 3
Coverage at nominal level 0.99, square region

Method 1 Method 2

c 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

α = 1.1 0.999 0.999 0.999 0.981 1.000 1.000 0.926 0.784
α = 1.2 1.000 0.999 0.987 0.945 1.000 0.999 0.941 0.763
α = 1.3 0.995 0.995 0.999 0.997 1.000 1.000 0.946 0.806
α = 1.4 0.987 0.993 0.985 0.945 1.000 1.000 0.948 0.802
α = 1.5 0.964 0.978 0.966 0.925 1.000 1.000 0.952 0.831
α = 1.6 0.930 0.943 0.949 0.911 1.000 1.000 0.955 0.851
α = 1.7 0.862 0.927 0.922 0.876 1.000 1.000 0.949 0.863
α = 1.8 0.838 0.895 0.885 0.863 1.000 1.000 0.957 0.834
α = 1.9 0.734 0.873 0.873 0.827 1.000 1.000 0.976 0.845

TABLE 4
Coverage at nominal level 0.90, rectangular region

Method 1 Method 2

c 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

α = 1.1 0.948 0.965 0.926 0.874 0.983 0.861 0.582 0.492
α = 1.2 0.893 0.945 0.896 0.853 0.987 0.848 0.582 0.507
α = 1.3 0.835 0.925 0.883 0.838 0.992 0.894 0.637 0.548
α = 1.4 0.737 0.879 0.848 0.784 0.992 0.887 0.632 0.558
α = 1.5 0.631 0.840 0.804 0.764 0.997 0.921 0.675 0.560
α = 1.6 0.571 0.784 0.788 0.759 0.996 0.922 0.687 0.602
α = 1.7 0.472 0.727 0.731 0.693 0.998 0.940 0.707 0.601
α = 1.8 0.418 0.681 0.712 0.695 0.998 0.951 0.728 0.626
α = 1.9 0.396 0.645 0.709 0.672 0.997 0.954 0.737 0.651
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TABLE 5
Coverage at nominal level 0.95, rectangular region

Method 1 Method 2

c 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

α = 1.1 0.991 0.990 0.979 0.932 0.998 0.960 0.673 0.558
α = 1.2 0.979 0.978 0.966 0.911 0.998 0.948 0.681 0.578
α = 1.3 0.966 0.973 0.943 0.901 0.999 0.953 0.716 0.599
α = 1.4 0.920 0.946 0.911 0.864 0.998 0.967 0.724 0.625
α = 1.5 0.859 0.909 0.882 0.833 1.000 0.960 0.752 0.625
α = 1.6 0.797 0.884 0.857 0.827 0.999 0.976 0.771 0.658
α = 1.7 0.719 0.821 0.812 0.782 0.999 0.988 0.795 0.666
α = 1.8 0.618 0.799 0.787 0.764 1.000 0.988 0.806 0.699
α = 1.9 0.567 0.751 0.773 0.745 1.000 0.990 0.806 0.696

APPENDIX A

PROOF OF THEOREM 1. We will principally treat the α < 2 case, since when
α = 2 the results are already known; see [4]. We will consider the joint Fourier–
Laplace transform of(

n−d/α
∫
Kn

X(t)λ(dt), n−2d/α
∫
Kn

X2(t)λ(dt)

)
.

We first consider the case where the filter function has compact support in the set
L = {x ∈ R

d : |xi | ≤ l ∀i}. Then we can write

TABLE 6
Coverage at nominal level 0.99, rectangular region

Method 1 Method 2

c 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

α = 1.1 0.999 1.000 0.996 0.975 1.000 0.994 0.818 0.655
α = 1.2 0.998 1.000 0.994 0.958 1.000 0.998 0.820 0.656
α = 1.3 1.000 0.996 0.978 0.952 1.000 0.996 0.843 0.685
α = 1.4 0.992 0.982 0.968 0.931 1.000 0.999 0.852 0.694
α = 1.5 0.963 0.970 0.942 0.889 1.000 0.997 0.861 0.707
α = 1.6 0.942 0.948 0.924 0.886 1.000 0.996 0.885 0.747
α = 1.7 0.889 0.912 0.882 0.852 1.000 1.000 0.902 0.736
α = 1.8 0.832 0.878 0.870 0.826 1.000 1.000 0.894 0.777
α = 1.9 0.794 0.856 0.860 0.813 1.000 1.000 0.899 0.776
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E exp
{
iθn−d/α

∫
Kn

X(t) dt − γ n−2d/α
∫
Kn

X2(t) dt

}

= E exp
{
iθn−d/α

∫
Kn

X(t) dt + i
√

2γ n−d/α
∫
Kn

X(t)B(dt)

}

= E exp
{
in−d/α

∫
Rd

(∫
Kn

ψ(x + t)W(dt)

)
M(dx)

}
,

where Wt is a Brownian motion with drift θ and volatility
√

2γ and B is a Gaussian
random measure independent of M. Conditional on this Brownian motion, the
scale parameter is

σn =
(

1

nd

∫
Rd

∣∣∣∣
∫
Kn

ψ(x + t)W(dt)

∣∣∣∣
α

dx

)1/α

,

the skewness is ββn/σ
α
n , with

βn = 1

nd

∫
Rd

(∫
Kn

ψ(x + t)W(dt)

)〈α〉
dx,

and the location 1{α=1}µn, with

µn = −2β

π

1

nd

∫
Rd

(∫
Kn

ψ(x + t)W(dt)

)
log

∣∣∣∣
∫
Kn

ψ(x + t)W(dt)

∣∣∣∣dx.

We only need to determine the convergence in probability of each parameter. We
focus on the scale, as the other two are proved in a similar fashion. Let us define
Hx = ∫

Kn
ψ(x + t)W(dt), which is Gaussian with mean θ

∫
Kn

ψ(x + t) dt and
covariance

E
[
(Hx − E[Hx])(Hy − E[Hy])] = 2γ

∫
Kn

ψ(x + t)ψ(y + t) dt.

Hence, all moments are bounded in Kn since the variance is uniformly bounded
by 2γ

∫
Rd ψ2(t) dt . Let B = (0,1]d and Jj = ∫

B |Hx+j |α dx, so that

σα
n = 1

nd

∫
Rd

|Hx |α dx = 1

nd

∑
j∈Zd

∫
B

|Hx+j |α dx = 1

nd

∑
j∈Zd

Jj ,

where Jj = 0 if x + j + t /∈ L for all x ∈ B and t ∈ Kn. Since the summands are
bounded in probability (since, for example, the 2α moment exists), we claim that
the above expression is oP (1) + 1

nd

∑
k∈Kn

J−k . If Jj �= 0, then there must exist
some x ∈ B and t ∈ Kn such that j + x + t ∈ L. For any set A, define A(l) =
{y :d∞(y,A) ≤ l}, where d∞ is the sup-norm metric on R

d . Then
∑

j∈Zd Jj =∑
j∈−Kn(l+1) Jj since

j + x + t ∈ L ⇒ max
i=1,...,d

|ji + xi + ti | ≤ l

⇒ max
i=1,...,d

|ji + ti | ≤ l + 1 for some t ∈ Kn

⇒ inf
t∈Kn

max
i=1,...,d

|ji + ti | ≤ l + 1



410 T. MCELROY AND D. N. POLITIS

and hence, for such a j ,

d∞(j,−Kn) = inf
k∈Kn

d∞(j,−k) = inf
k∈Kn

max
i=1,...,d

|ji + ki | ≤ l + 1,

which implies that j ∈ −Kn(l + 1). Now, we partition into a disjoint union
−Kn(l +1) = −Kn ∪ (−Kn(l +1)\−Kn). It is simple to show that −Kn(l +1) =
−nK(l +1/n), where K = K1, the prototype region. Hence, −Kn(l +1)\−Kn =
n(−K(l + 1/n) \ −K) and the count of integer lattice points in this set will be as-
ymptotic (as n → ∞) to ndλ(−K(l + 1/n) \ −K), by the definition of Lebesgue
measure. However, the sets in the sequence −K(l + 1/n) \ −K , for any fixed l,
are inscribed in one another. So by continuity from above,

λ(−K(l + 1/n) \ −K) → λ

( ⋂
n≥1

−K(l + 1/n) \ −K

)
≤ λ(∂(−K)) = 0

since the intersection is a subset of the boundary. This shows that asymptotically,
the only terms that count in

∑
j Jj are those in −Kn. Now, these J−k variables

are weakly dependent since the Gaussian variables Hx and Hy are independent if
mini |xi − yi | > l. Hence, the law of large numbers holds and

σα
n = oP (1) + 1

nd

∑
k∈Kn

E[J−k].

It is necessary to determine E[J−k]; here, we follow the argument given in
the proof of Theorem 2 below, which is actually more complicated. Defining
H̃x = ∫

Rd ψ(x + t)W(dt), one can show that the difference between E|Hx−k|α
and E|H̃x−k|α tends to zero. Now,

E|H̃x−k|α = E

∣∣∣∣∣θ
∫

Rd
ψ(t) dt +

√
2γ

√∫
Rd

ψ2(t) dt G

∣∣∣∣∣
α

,

which no longer depends on x or k (and G denotes a standard normal random
variable). With similar results for the other parameters, the joint Fourier–Laplace
transform satisfies

E exp
{
−σα

N

(
1 − iβ

βN

σα
N

)
+ iµN1{α=1}

}

→ E exp
{
−λ(K)σα∞(θ, γ )

(
1 − iβ

β∞(θ, γ )

σα∞(θ, γ )

)
+ iλ(K)µ∞(θ, γ )1{α=1}

}
,

where

σ∞(θ, γ ) =
(
E

∣∣∣θ +
√

2γ2G
∣∣∣α)1/α

,

β∞(θ, γ ) = E

(
θ +

√
2γ2G

)〈α〉
,

µ∞(θ, γ ) = −2β

π
E

[(
θ +

√
2γ2G

)
log

(
θ +

√
2γ2G

)]
,
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with  = ∫
Rd ψ(s)λ(ds) and 2 =

√∫
Rd ψ2(s)λ(ds). This convergence follows

from the convergence in probability of the parameters because the exponential
function in the transform is bounded. The existence of S∞(α) and U∞(α) follows
from the continuity of the limiting Fourier–Laplace transform at (0,0). Letting
γ = 0, one recognizes the Fourier transform of an α-stable random variable with
parameters as described in Theorem 1, which is S∞(α); if θ = 0, then one obtains
the Laplace transform of a positive α/2-stable random variable U∞(α), whose
scale parameter is calculated in the statement of the theorem.

We remark that it is sufficient to consider convergence of the joint Fourier–
Laplace transform as shown by Fitzsimmons and McElroy [2]. Finally, we must
remove the truncation of the model. This is similar to (and actually easier than) the
argument presented in the proof of Theorem 2 and is not repeated here. Thus, the
proof is complete. �

PROOF OF THEOREM 2. Note that since N is a PRM, it follows from the law
of large numbers, independent scattering, spatial homogeneity and shift invariance
of � that N(Kn)

�(Kn)

a.s.−→1 as n tends to infinity. Thus, it suffices to examine the limit
behavior of (

n− d
α

∫
Kn

X(t)N(dt), n− 2d
α

∫
Kn

X2(t)N(dt)

)
(18)

since �(Kn) = rndλ(K); in the end, we must multiply our results by r−1/α ×
λ(K)−1/α . Let us first consider a filter function ψ with compact support in the set
L = {x ∈ R

d : |xi | ≤ l ∀i}. Then we can write

E exp
{
iθn−d/α

∫
Kn

X(t)N(dt) − γ n−2d/α
∫
Kn

X2(t)N(dt)

}

= E exp
{
iθn−d/α

∫
Kn

X(t)N(dt) + i
√

2γ n−d/α
∫
Kn

X(t)G(t)N(dt)

}

= E exp
{
in−d/α

∫
Rd

(
θ

∫
Kn

ψ(x + t)N(dt)

+
√

2γ

∫
Kn

ψ(x + t)G(t)N(dt)

)
M(dx)

}

by introducing a process of i.i.d. standard normal random variables {G(t)} that are
independent of M. Conditional on N and the G(t)’s, this is an α-stable random
variable with scale

σN =
(

1

nd

∫
Rd

∣∣∣∣θ
∫
Kn

ψ(x + t)N(dt) +
√

2γ

∫
Kn

ψ(x + t)G(t)N(dt)

∣∣∣∣
α

dx

)1/α

,

skewness ββN/σα
N

, with

βN = 1

nd

∫
Rd

(
θ

∫
Kn

ψ(x + t)N(dt) +
√

2γ

∫
Kn

ψ(x + t)G(t)N(dt)

)〈α〉
dx,
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and location 1{α=1}µN, with

µN = −2β

π

1

nd

∫
Rd

(
θ

∫
Kn

ψ(x + t)N(dt) +
√

2γ

∫
Kn

ψ(x + t)G(t)N(dt)

)

× log
(
θ

∫
Kn

ψ(x + t)N(dt)

+
√

2γ

∫
Kn

ψ(x + t)G(t)N(dt)

)
dx.

Hence, to determine convergence, we will establish the limits in probability of
each of these parameters and thereby determine the joint Fourier–Laplace trans-
form of the sample mean and sample variance. We provide an explicit proof of
the convergence of σα

N
; the proofs for the other two parameters are similar. Let us

write

Hx = θ

∫
K

ψ(x + s)N(ds) +
√

2γ

∫
K

ψ(x + s)G(s)N(ds)

so that σα
N

= n−d
∫
Rd |Hx |α dx. Now, {Hx} is, conditional on N, a Gaussian process

with mean θ
∫
K ψ(x + s)N(ds) and covariance

CovN[Hx,Hy] = E[(Hx −EHx)(Hy −EHy)|N] = 2γ

∫
K

ψ(x+s)ψ(y+s)N(ds).

Taking a second expectation shows that

Cov[Hx,Hy] = E[(Hx − EHx)(Hy − EHy)] = 2γ

∫
K

ψ(x + s)ψ(y + s) ds,

which is zero if |xi − yi | ≥ l for at least one i between 1 and d . Hence, these
variables are l-dependent (taking the ∞-norm for R

d ), which will be useful in
establishing a weak law of large numbers. It is also true that all moments of Hx

exist (even as n increases):

|Hx | ≤ |θ |
∫
Kn

|ψ(x + s)|N(ds) +
√

2γ

∫
Kn

|ψ(x + s)||G(s)|N(ds)

L= |θ |
∫
Kn

|ψ(x + s)|N(ds) +
√

2γ

√∫
Kn

ψ(x + s)2
N(ds)|Gx |

≤
∫

Rd
|ψ(x + s)|N(ds)

(
|θ | +

√
2γ |Gx |

)
,

where Gx is a dependent sequence of standard normal random variables. The
equality in distribution follows from the stability property of Gaussian random
variables and the fact that integration with respect to N is, conditional on N, a dis-
crete sum. The final random variable is Poisson with mean

∫
Rd |ψ(s)|N(ds) mul-

tiplied by an independent Gaussian with mean |θ | and variance 2γ ; all moments
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therefore exist, even as n → ∞. Next, we write

σα
N

= 1

nd

∫
Rd

|Hx |α dx = 1

nd

∑
j∈Zd

∫
B

|Hx+j |α dx

using the same notation as in the proof of Theorem 1. By the same argu-
ments, up to terms going to zero in probability, this expression is the same as
1
nd

∑
k∈Kn

∫
B |Hx−k|α dx. Because the variables J−k = ∫

B |Hx−k|α dx are a ran-
dom field in k with finite dependence, the weak law of large numbers applies.
Hence, σα

N
= oP (1) + 1

nd

∑
k∈Kn

E[J−k] as n → ∞. It remains to compute the ex-
pectations. Let

H̃x = θ

∫
Rd

ψ(x + s)N(ds) +
√

2γ

∫
Rd

ψ(x + s)G(s)N(ds)

so that

E|H̃x−k|α = E

∣∣∣∣∣θ
∫

Rd
ψ(y)N(dy) +

√
2γ

√∫
Rd

ψ2(y)N(dy)G̃x−k

∣∣∣∣∣
α

,

where G̃x is a mean-zero Gaussian sequence with known correlation structure

E[G̃xG̃x+h] =
∫
Rd ψ(y)ψ(y + h)dy∫

Rd ψ2(y) dy
.

We claim that the average E[J ]n is asymptotically E|H̃0|α . The absolute difference
is ∣∣∣∣ 1

nd

∑
k∈Kn

E[J−k] − 1

nd

∑
k∈Kn

E

∫
B

|H̃x−k|α dx

∣∣∣∣
≤ 1

nd

∑
k∈Kn

∫
B

E
∣∣|Hx−k|α − |H̃x−k|α

∣∣dx.

(19)

We have the following inequality, stated as a separate lemma.

LEMMA 1. If 0 < α ≤ 1, then∣∣|a|α − |b|α∣∣ ≤ |a − b|α

and if 1 < α ≤ 2, then∣∣|a|α − |b|α∣∣ ≤ |a − b|α + 2 max{|a|, |b|}|a − b|α/2

for all real numbers a and b.



414 T. MCELROY AND D. N. POLITIS

PROOF. The case α ≤ 1 is well known. So, suppose that α > 1. If |a| > |b|,
then

|a − b|α = (|a − b|α/2)2

≥ (|a|α/2 − |b|α/2)2

= (|a|α/2 − |b|α/2)(|a|α/2 + |b|α/2 − 2|b|α/2)

= (|a|α − |b|α) − 2|b|α/2(|a|α/2 − |b|α/2),

where the second line follows from α ≤ 2. This, in turn, implies that

|a|α − |b|α ≤ |a − b|α + 2|b|α/2(|a|α/2 − |b|α/2)

≤ |a − b|α + 2 max{|a|α/2, |b|α/2}|a − b|α/2.

Now, the case |b| > |a| is similar, which proves the lemma. �

Using this lemma, it suffices to examine the average expected integral of

|Hx−k − H̃x−k|δ

≤ 2δ

(∣∣∣∣θ
∫
Kc

n

ψ(x − k + s)N(ds)

∣∣∣∣
δ

+
∣∣∣∣
√

2γ

∫
Kc

n

ψ(x − k + s)G(s)N(ds)

∣∣∣∣
δ)

,

where δ is either α or α/2. If δ = α/2, we have
1

nd

∑
k∈Kn

∫
B

E|Hx−k − H̃x−k|α/2

≤ 2α/2 1

nd

∑
k∈Kn

∫
B

∫
Kc

n

|ψ(x − k + s)|α/2 ds dx
(|θ |α/2 + (2γ )α/4)

,

using the fact that EN(ds) = ds. If δ = α, using the result that

E

∣∣∣∣θ
∫
Kc

n

ψ(x − k + s)N(ds)

∣∣∣∣
α

+ E

∣∣∣∣
√

2γ

∫
Kc

n

ψ(x − k + s)G(s)N(ds)

∣∣∣∣
α

≤ |θ |αE

(∫
Kc

n

|ψ(x − k + s)|α/2
N(ds)

)2

+ (2γ )α/2
E

(∫
Kc

n

|ψ(x − k + s)|α/2|G(s)|α/2
N(ds)

)2

= |θ |α
∫
Kc

n

|ψ(x − k + s)|α ds

+ (2γ )α/2
[∫

Kc
n

|ψ(x − k + s)|α ds

+
(∫

Kc
n

|ψ(x − k + s)|α/2 ds

)2]
E|G|α,
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we easily obtain

1

nd

∑
k∈Kn

∫
B

E|Hx−k − H̃x−k|α

≤ 2α 1

nd

∑
k∈Kn

∫
B

∫
Kc

n

|ψ(x − k + s)|α ds dx
(|θ |α + (2γ )α/2

E|G|α)

+ 2α 1

nd

∑
k∈Kn

∫
B

(∫
Kc

n

|ψ(x − k + s)|α/2 ds

)2

dx
(
(2γ )α/2

E|G|α)
.

So, in order to show that (19) tends to zero as n → ∞, it is enough to demonstrate
that

1

nd

∑
k∈Kn

∫
B

(∫
Kc

n

|ψ(x − k + s)|δ ds

)φ

dx

tends to zero, for δ equal to either α or α/2 and φ equal to 1 or 2. Note that through
a simple change of variable, this becomes

1

nd

∫
Kn

(∫
Kc

n

|ψ(s − x)|δ ds

)φ

dx.

It is a simple but tedious analysis exercise to show that this tends to zero as n → ∞,
for δ = α or α/2 and φ equal to 1 or 2. The result of this analysis is that

σα
N

P−→ λ(K)E

∣∣∣∣∣θ
∫

Rd
ψ(y)N(dy)+

√
2γ

√∫
Rd

ψ2(y)N(dy)Z

∣∣∣∣∣
α

= λ(K)σ̃ α∞(θ, γ ),

where Z is a standard normal random variable. Note that this limiting scale para-
meter is not random. Using similar techniques, one can show that βN converges in
probability to

λ(K)E

(
θ

∫
Rd

ψ(y)N(dy) +
√

2γ

√∫
Rd

ψ2(y)N(dy)Z

)〈α〉
= λ(K)β̃∞(θ, γ )

and that µN tends to

λ(K)
−2β

π
E

[(
θ

∫
Rd

ψ(y)N(dy) +
√

2γ

√∫
Rd

ψ2(y)N(dy)Z

)

× log

(
θ

∫
Rd

ψ(y)N(dy) +
√

2γ

√∫
Rd

ψ2(y)N(dy)Z

)]
,
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which is λ(K)µ̃∞(θ, γ ). Now, multiplying our results by r−1/αλ(K)−1/α , our
joint Fourier–Laplace transform is

E exp
{
−r−1λ(K)−1σα

N

(
1 − iβ

βN

σα
N

)
+ ir−1λ(K)−1µN1{α=1}

}

→ E exp
{
−r−1σ̃ α∞(θ, γ )

(
1 − i

β̃∞(θ, γ )

σ̃ α∞(θ, γ )

)
+ ir−1µ̃∞(θ, γ )1{α=1}

}
,

(20)

by the dominated convergence theorem. The existence of S̃∞(α) and Ũ∞(α) now
follows from the continuity of the limiting Fourier–Laplace transform at (0,0).
Letting γ = 0, one recognizes the Fourier transform of an α-stable random variable
with parameters as described in Theorem 2, which is S̃∞(α); if θ = 0, then one
obtains the Laplace transform of a positive α/2-stable random variable Ũ∞(α),
whose scale parameter is calculated in the statement of the theorem.

Finally, we must remove the truncation of the model. Define

Xl(t) =
∫

Rd
ψl(x + t)M(dx) =

∫
Rd

ψ(x + t)1lD(x + t)M(dx),

where D = (−1,1]d so that lD is a d-dimensional cube centered at the origin with
width 2l. Then

n−d/α
∫
Kn

X(t)N(dt) − n−d/α
∫
Kn

Xm(t)N(dt)

= n−d/α
∫

Rd

∫
Kn

ψ(x + t)1{lD}c (x + t)N(dt)M(dx)

must tend to zero in probability as l → ∞ for any fixed n. Taking the α power of
the scale of the above random variable, conditional on N, we obtain

1

nd

∫
Rd

∣∣∣∣
∫
Kn

ψ(x + t)1{lD}c (x + t)N(dt)

∣∣∣∣
α

λ(dx).

If α < 1, this is bounded by

1

nd

∫
Rd

∫
Kn

|ψ(x + t)|α1{lD}c (x + t)N(dt)λ(dx)

= 1

nd

∫
Kn

∫
{lD}c−t

|ψ(x + t)|αλ(dx)N(dt)

=
∫
{lD}c

|ψ(y)|αλ(dy)
N(Kn)

nd
.

Thus, the limit superior as n → ∞ of 1
nd

∫
Rd | ∫Kn

ψ(x + t)1{lD}c (x + t)N(dt)|α ×
λ(dx) tends to zero as l → ∞. When α > 1, we use the bound of



STABLE MARKED POINT PROCESSES 417

sup
x

∣∣∣∣
∫
Kn

ψ(x + t)1{lD}c (x + t)N(dt)

∣∣∣∣
× 1

nd

∫
Rd

∣∣∣∣
∫
Kn

ψ(x + t)1{lD}c (x + t)N(dt)

∣∣∣∣
α−1

λ(dx)

≤
∫

Rd
|ψ(t)|N(dt) · 1

nd

∫
Rd

∫
Kn

|ψ(x + t)|α−11{lD}c (x + t)N(dt)λ(dx)

= Q ·
∫
{lD}c

|ψ(y)|α−1 dy,

where Q = ∫
Rd |ψ(t)|N(dt) is a positive random variable that is bounded in n.

So the limit superior in this case also tends to zero as l → ∞. Similar arguments
can be applied to the sum of squares and since the limiting joint Fourier–Laplace
transform is continuous in l, we can take the limit as l → ∞ on both sides of our
joint weak convergence (20). This completes the proof. �

PROOF OF THEOREM 3. This proof has the same structure as that of The-
orem 6.3.1 from PRW [8]. First, we show that τN(B+y) is almost surely asymp-

totic to τ�(B+y) = τ�(B). As in the proof of Theorem 2, N(B+y)
�(B+y)

a.s.−→1 as n → ∞;
this uses the condition that cnδ(Kn) → ∞. It follows from the form of τ(u) that
τN(B+y)

τ�(B+y)

a.s.−→1. Let x be a continuity point of J (x), the cumulative distribution func-
tion of the limit random variable J . Then{

τN(B+y)

(
µ̂Kn,B,y − µ̂Kn

σ̂Kn,B,y

)
≤ x

}

=
{
τN(B+y)

(
µ̂Kn,B,y − µ

σ̂Kn,B,y

)
≤ x + τN(B+y)

(
µ̂Kn − µ

σ̂Kn,B,y

)}
.

For any t > 0, let

RKn,B(t) = λ(Kn(1 − c))−1
∫
Kn(1−c)

1{τN(B+y)(
µ̂Kn

−µ

σ̂Kn,B,y
)�t} dy

= λ(Kn(1 − c))−1
∫
Kn(1−c)

1{dN(B+y)σ̂Kn,B,y≥aN(B+y)(µ̂Kn−µ)/t} dy.

Now, for all δ > 0, aN(B+y)(µ̂Kn − µ) ≤ δ with probability tending to one, since

aN(B+y)/aN(Kn)
P−→ 0 follows from cnδ(Kn) → ∞. So, with probability tending

to one,

RKn,B(t) ≥ λ(Kn(1 − c))−1
∫
Kn(1−c)

1{dN(B+y)σ̂Kn,B,y≥δ/t} dy.

If δ/t is a continuity point of W , then the above expression tends to P[W ≥ δ/t],
by Theorem 6.3.1 of PRW [8]. Since W has no point mass at zero, we can make
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RKn,B(t) arbitrarily close to 1 by choosing δ sufficiently small. So, for all t ,

RKn,B(t)
P−→ 1. Next, using the inequality

1{τN(B+y)(
µ̂Kn,B,y−µ

σ̂Kn,B,y
)≤x+τN(B+y)(

µ̂Kn
−µ

σ̂Kn,B,y
)}

≤ 1{τN(B+y)(
µ̂Kn,B,y−µ

σ̂Kn,B,y
)≤x+t} + 1{τN(B+y)(

µ̂Kn
−µ

σ̂Kn,B,y
)>t},

we can establish that

LKn,B(x)

≤ λ
(
Kn(1 − c)

)−1
∫
Kn(1−c)

1{τN(B+y)(
µ̂Kn,B,y−µ

σ̂Kn,B,y
)≤x+t} dy + (

1 − RKn,B(t)
)
.

Now, by the first convergence in (16), we may apply Theorem 6.3.1 of PRW [8] to

τN(B+y)

(
µ̂Kn,B,y − µ

σ̂Kn,B,y

)

and obtain, for any ε > 0, LKn,B(x) ≤ J (x+ t)+ε with probability tending to one.
At this point, let t tend to zero. Similar arguments produce the opposite inequality

LKn,B(x) ≥ J (x + t) − ε. Now letting ε → 0, we obtain LKn,B(x)
P−→ J (x), as

desired. The proofs of (ii) and (iii) are similar to the proof of Theorem 2.2.1 in
PRW [8]. �
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