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CONVERGENCE RATES OF POSTERIOR DISTRIBUTIONS FOR
NONIID OBSERVATIONS

BY SUBHASHIS GHOSAL1 AND AAD VAN DER VAART

North Carolina State University and Vrije Universiteit Amsterdam

We consider the asymptotic behavior of posterior distributions and Bayes
estimators based on observations which are required to be neither indepen-
dent nor identically distributed. We give general results on the rate of con-
vergence of the posterior measure relative to distances derived from a test-
ing criterion. We then specialize our results to independent, nonidentically
distributed observations, Markov processes, stationary Gaussian time series
and the white noise model. We apply our general results to several examples
of infinite-dimensional statistical models including nonparametric regression
with normal errors, binary regression, Poisson regression, an interval censor-
ing model, Whittle estimation of the spectral density of a time series and a
nonlinear autoregressive model.

1. Introduction. Let (X(n),A(n),P
(n)
θ : θ ∈ �) be a sequence of statistical

experiments with observations X(n), where the parameter set � is arbitrary and n

is an indexing parameter, usually the sample size. We put a prior distribution �n

on θ ∈ � and study the rate of convergence of the posterior distribution �n(·|X(n))

under P
(n)
θ0

, where θ0 is the “true value” of the parameter. The rate of this conver-
gence can be measured by the size of the smallest shrinking balls around θ0 that
contain most of the posterior probability. For parametric models with independent
and identically distributed (i.i.d.) observations, it is well known that the posterior
distribution converges at the rate n−1/2. When � is infinite-dimensional, but the
observations are i.i.d., Ghosal, Ghosh and van der Vaart [14] obtained rates of con-
vergence in terms of the size of the model (measured by the metric entropy or
existence of certain tests) and the concentration rate of the prior around θ0 and
computed the rate of convergence for a variety of examples. A similar result was
obtained by Shen and Wasserman [27] under stronger conditions.

Little is known about the asymptotic behavior of the posterior distribution in
infinite-dimensional models when the observations are not i.i.d. For independent,
nonidentically distributed (i.n.i.d.) observations, consistency has recently been ad-
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dressed by Amewou-Atisso, Ghosal, Ghosh and Ramamoorthi [1] and Choudhuri,
Ghosal and Roy [7]. The main purpose of the present paper is to obtain a theo-
rem on rates of convergence of posterior distributions in a general framework not
restricted to the setup of i.i.d. observations. We specialize this theorem to several
classes of non-i.i.d. models including i.n.i.d. observations, Gaussian time series,
Markov processes and the white noise model. The theorem applies in every situa-
tion where it is possible to test the true parameter versus balls of alternatives with
exponential error probabilities and it is not restricted to any particular structure on
the joint distribution. The existence of such tests has been proven in many special
cases by Le Cam [20–22] and Birgé [3–5], who used them to construct estimators
with optimal rates of convergence, determined by the (local) metric entropy or “Le
Cam dimension” of the model. Our main theorem uses the same metric entropy
measure of the complexity of the model and combines this with a measure of prior
concentration around the true parameter to obtain a bound on the posterior rate
of convergence, generalizing the corresponding result of Ghosal, Ghosh and van
der Vaart [14]. We apply these results to obtain posterior convergence rates for
linear regression, nonparametric regression, binary regression, Poisson regression,
interval censoring, spectral density estimation and nonlinear autoregression. van
der Meulen, van der Vaart and van Zanten [30] have extended the approach of this
paper to several types of diffusion models.

The organization of the paper is as follows. In the next section, we describe
our main theorem in an abstract framework. In Sections 3, 4, 5 and 6, we special-
ize to i.n.i.d. observations, Markov chains, the white noise model and Gaussian
time series, respectively. In Section 7, we discuss a large number of more concrete
applications, combining models of various types with many types of different pri-
ors, including priors based on the Dirichlet process, mixture representations or
sequence expansions on spline bases, priors supported on finite sieves and conju-
gate Gaussian priors. Technical proofs, including the proofs of the main results,
are collected in Section 8.

The notation � will be used to denote inequality up to a constant that is
fixed throughout. The notation Pf will abbreviate

∫
f dP . The symbol �x� will

stand for the greatest integer less than or equal to x. Let h(f, g) = (
∫
(f 1/2 −

g1/2)2 dµ)1/2 and K(f,g) = ∫
f log(f/g)dµ stand for the Hellinger distance and

Kullback–Leibler divergence, respectively, between two nonnegative densities f

and g relative to a measure µ. Furthermore, we define additional discrepancy
measures by Vk(f, g) = ∫

f | log(f/g)|k dµ and Vk,0(f, g) = ∫
f | log(f/g) −

K(f,g)|k dµ, k > 1. The index k = 2 of V2 and V2,0 may be omitted and these
simply written as V and V0, respectively. The symbols N and R will denote the
sets of natural and real numbers, respectively. The ε-covering number of a set �

for a semimetric d , denoted by N(ε,�,d), is the minimal number of d-balls of
radius ε needed to cover the set �; see, for example, [31].
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2. General theorem. For each n ∈ N and θ ∈ �, let P
(n)
θ admit densities p

(n)
θ

relative to a σ -finite measure µ(n). Assume that (x, θ) �→ p
(n)
θ (x) is jointly mea-

surable relative to A ⊗ B, where B is a σ -field on �. By Bayes’ theorem, the
posterior distribution is given by

�n(B|X(n)) =
∫
B p

(n)
θ (X(n)) d�n(θ)∫

� p
(n)
θ (X(n)) d�n(θ)

, B ∈ B.(2.1)

Here, X(n) is an “observation,” which, in our setup, will be understood to be gen-
erated according to P

(n)
θ0

for some given θ0 ∈ �.
For each n, let dn and en be semimetrics on � with the property that there exist

universal constants ξ > 0 and K > 0 such that for every ε > 0 and for each θ1 ∈ �

with dn(θ1, θ0) > ε, there exists a test φn such that

P
(n)
θ0

φn ≤ e−Knε2
, sup

θ∈�:en(θ,θ1)<εξ

P
(n)
θ (1 − φn) ≤ e−Knε2

.(2.2)

Typically, we have dn ≤ en and in many cases we choose dn = en, but using
two semimetrics provides some added flexibility. Le Cam [20–22] and Birgé
[3–5] showed that the rate of convergence, in a minimax sense, of the best
estimators of θ relative to the distance dn can be understood in terms of the
Le Cam dimension or local entropy function of the set � relative to dn. For our
purposes, this dimension is a function whose value at ε > 0 is defined to be
logN(εξ, {θ : dn(θ, θ0) ≤ ε}, en), that is, the logarithm of the minimum number
of dn-balls of radius εξ needed to cover an en-ball of radius ε around the true pa-
rameter θ0. Birgé [3, 4] and Le Cam [20–22] showed that there exist estimators
θ̂n = θ̂n(X

(n)) such that dn(θ̂n, θ0) = OP (εn) under P
(n)
θ0

, where

sup
ε>εn

logN
(
εξ, {θ : dn(θ, θ0) ≤ ε}, en

) ≤ nε2
n.(2.3)

Further, under certain conditions εn is the best rate obtainable, given the model,
and hence gives a minimax rate.

As in the i.i.d. case, the behavior of posterior distributions depends on the size
of the model measured by (2.3) and the concentration rate of the prior �n at θ0.
For a given k > 1, let

Bn(θ0, ε;k) = {θ ∈ � : K(p
(n)
θ0

,p
(n)
θ ) ≤ nε2,Vk,0(p

(n)
θ0

,p
(n)
θ ) ≤ nk/2εk}.

An appropriate condition will appear as a lower bound on �n(Bn(θ0; ε, k)) with
k = 2 being good enough to establish convergence in mean. For almost sure con-
vergence, or convergence of the posterior mean, better control may be needed
(through a larger value of k), depending on the rate of convergence.

The following result, generalizing Theorem 2.4 of Ghosal, Ghosh and van der
Vaart [14] for the i.i.d. case, bounds the rate of posterior convergence.
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THEOREM 1. Let dn and en be semimetrics on � for which tests satisfying
(2.2) exist. Let εn > 0, εn → 0, (nε2

n)
−1 = O(1), k > 1, and �n ⊂ � be such that

for every sufficiently large j ∈ N,

sup
ε>εn

logN

(
1

2
εξ, {θ ∈ �n : dn(θ, θ0) < ε}, en

)
≤ nε2

n,(2.4)

�n(θ ∈ �n : jεn < dn(θ, θ0) ≤ 2jεn)

�n(Bn(θ0, εn;k))
≤ eKnε2

nj2/2.(2.5)

Then for every Mn → ∞, we have that

P
(n)
θ0

�n

(
θ ∈ �n : dn(θ, θ0) ≥ Mnεn|X(n)) → 0.(2.6)

The theorem uses the fact that �n ⊂ � to alleviate the entropy condition (2.4),
but returns an assertion about the posterior distribution on �n only. The comple-
mentary assertion P

(n)
θ0

�n(� \ �n|X(n)) → 0 may be handled either by a direct
argument or by the following analog of Lemma 5 of [2].

LEMMA 1. If �n(�\�n)
�n(Bn(θ0,εn;k))

= o(e−2nε2
n) for some k > 1, then P

(n)
θ0

�n(� \
�n|X(n)) → 0.

The choice �n = �, which makes the condition of Lemma 1 trivial, imposes
a much stronger restriction on (2.4) and is generally unattainable when � is not
compact.

The following theorem extends the convergence in Theorem 1 to almost sure
convergence and yields a rate for the convergence under slightly stronger condi-
tions.

THEOREM 2. In the situation of Theorem 1,

(i) if all X(n) are defined on a fixed sample space and εn � n−α for some
α ∈ (0,1/2) such that k(1 − 2α) > 2, then the convergence (2.6) also holds in the
almost sure sense;

(ii) if εn � n−α for some α ∈ (0,1/2) such that k(1 − 2α) > 4α, then the left
side of (2.6) is O(ε2

n).

If � is a convex set and d2
n is a convex function in one argument keeping the

other fixed and is bounded above by B , then for θ̂n = ∫
θ d�n(θ |X(n)), we have,

by Jensen’s inequality, that

d2
n(θ̂n, θ0) ≤

∫
d2
n(θ, θ0) d�n(θ |X(n)) ≤ ε2

n + B2�n

(
dn(θ, θ0) ≥ εn|X(n)).

This yields the rate εn for the point estimator θ̂n under the conditions of Theorem 1.
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The complicated-looking condition (2.5) can often be simplified in infinite-
dimensional cases, where, typically, nε2

n → ∞. Because the numerator in (2.5) is
trivially bounded by one, a sufficient condition for (2.5) is that �n(Bn(θ0, εn, k)) �
e−cnε2

n . The local entropy in condition (2.4) can also often be replaced by the global
entropy logN(εξ/2,�n, en) without affecting rates. Also, if the prior is such that
the minimax rate given by (2.3) satisfies (2.5) and the condition of Lemma 1, then
the posterior convergence rate attains the minimax rate.

Entropy conditions, however, may not always be appropriate to ensure the ex-
istence of tests. Ad hoc tests may sometimes be more conveniently constructed.
A more general theorem on convergence rates, which is formulated directly in
terms of tests and stated below, may be proven in a similar manner.

THEOREM 3. Let dn be a semimetric on �, εn → 0, (nε2
n)

−1 = O(1), k > 1,
K > 0, �n ⊂ � and φn be a sequence of test functions such that

P
(n)
θ0

φn → 0, sup
θ∈�n:jεn<dn(θ,θ0)≤2jεn

P
(n)
θ (1 − φn) � e−Kj2nε2

n(2.7)

and (2.5) holds. Then for every Mn → ∞, we have that P
(n)
θ0

�n(θ ∈ �n :
dn(θ, θ0) ≥ Mnεn|X(n)) → 0.

3. Independent observations. In this section, we consider the case where
the observation X(n) is a vector X(n) = (X1,X2, . . . ,Xn) of independent observa-
tions Xi . Thus, we take the measures P

(n)
θ of Section 2 equal to product measures⊗n

i=1 Pθ,i on a product measurable space
⊗n

i=1(Xi ,Ai). We assume that the dis-
tribution Pθ,i of the ith component Xi possesses a density pθ,i relative to a σ -finite
measure µi on (Xi ,Ai), i = 1, . . . , n. In this case, tests can be constructed relative
to the semimetric dn, whose square is given by

d2
n(θ, θ ′) = 1

n

n∑
i=1

∫
(
√

pθ,i − √
pθ ′,i )

2 dµi.(3.1)

Thus, d2
n is the average of the squares of the Hellinger distances for the distribu-

tions of the individual observations.
The following lemma, due to Birgé (cf. [22], page 491, or [4], Corollary 2 on

page 149), guarantees the existence of tests satisfying the conditions of (2.2).

LEMMA 2. If P
(n)
θ are product measures and dn is defined by (3.1), then there

exist tests φn such that P
(n)
θ0

φn ≤ e− 1
2 nd2

n(θ0,θ1) and P
(n)
θ (1−φn) ≤ e− 1

2 nd2
n(θ0,θ1) for

all θ ∈ � such that dn(θ, θ1) ≤ 1
18dn(θ0, θ1).

The Kullback–Leibler divergence between product measures is equal to the
sum of the Kullback–Leibler divergences between the individual components.
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Furthermore, as a consequence of the Marcinkiewiz–Zygmund inequality (e.g.,
[9], page 356), the mean Ȳn of n independent random variables satisfies E|Ȳn −
EȲn|k ≤ Ckn

−k/2 1
n

∑n
i=1 E|Yi |k for k ≥ 2, where Ck is a constant depending only

on k. Therefore, the set Bn(θ0, ε;k) contains the set

B∗
n(θ0, ε;k) =

{
θ ∈ � : 1

n

n∑
i=1

Ki(θ0, θ) ≤ ε2,
1

n

n∑
i=1

Vk,0;i(θ0, θ) ≤ Ckε
k

}
,

where Ki(θ0, θ) = K(Pθ0,i , Pθ,i) and Vk,0;i(θ0, θ) = Vk,0(Pθ0,i , Pθ,i). Thus, we
can work with a “ball” around θ0 relative to the average Kullback–Leibler diver-
gence and the average kth order moments, as in the preceding display, and simplify
Theorem 1 to the following result:

THEOREM 4. Let P
(n)
θ be product measures and dn be defined by (3.1). Sup-

pose that for a sequence εn → 0 such that nε2
n is bounded away from zero, some

k > 1, all sufficiently large j and sets �n ⊂ �, the following conditions hold:

sup
ε>εn

logN
(
ε/36, {θ ∈ �n : dn(θ, θ0) < ε}, dn

) ≤ nε2
n;(3.2)

�n(� \ �n)

�n(B∗
n(θ0, εn;k))

= o(e−2nε2
n);(3.3)

�n(θ ∈ �n : jεn < dn(θ, θ0) ≤ 2jεn)

�n(B∗
n(θ0, εn;k))

≤ enε2
nj2/4.(3.4)

Then P
(n)
θ0

�n(θ : dn(θ, θ0) ≥ Mnεn|X(n)) → 0 for every Mn → ∞.

The average Hellinger distance is not always the most natural choice. It can
be replaced by any other distance dn that satisfies (3.2)–(3.3) and for which the
conclusion of Lemma 2 holds. Often, we set k = 2 and work with the smaller
neighborhood

B̄n(θ0, ε) =
{
θ : 1

n

n∑
i=1

Ki(θ0, θ) ≤ ε2,
1

n

n∑
i=1

V2;i (θ0, θ) ≤ ε2

}
.(3.5)

4. Markov chains. For θ ranging over a set �, let (x, y) �→ pθ(y|x) be a col-
lection of transition densities from a measurable space (X,A) into itself, relative
to some reference measure ν. Thus, for each θ ∈ �, the map (x, y) �→ pθ(y|x) is
measurable and for each x, the map y �→ pθ(y|x) is a probability density relative
to µ. Let X0,X1, . . . be a stationary Markov chain generated according to the tran-
sition density pθ , where it is assumed that there exists a stationary distribution Qθ

with µ-density qθ . Let P
(n)
θ be the law of (X0,X1, . . . ,Xn).
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Tests satisfying the conditions of (2.2) can be obtained from results of Birgé [4],
which are more refined versions of his own results in [3]. A special case is pre-
sented as Lemma 3 below. Actually, Birgé’s result ([4], Theorem 3, page 155) is
much more general in that it also applies to nonstationary chains and allows dif-
ferent upper and lower bounds, as seen in the following display.

Assume that there exists a finite measure ν on (X,A) such that, for some
k, l ∈ N, every θ ∈ � and every x ∈ X and A ∈ A,

Pθ (Xl ∈ A|X0 = x) � ν(A) � 1

k

k∑
j=1

Pθ (Xj ∈ A|X0 = x),(4.1)

where Pθ is the generic notation for any probability law governed by θ . For in-
stance, if there exists a µ-integrable function r such that r(y) � pθ(y|x) � r(y)

for every (x, y), then (4.1) holds with the measure ν given by dν(y) = r(y) dµ(y).
Define the square of a semidistance d by

d2(θ, θ ′) =
∫∫ [√

pθ(y|x) −
√

pθ ′(y|x)
]2

dµ(y) dν(x).(4.2)

LEMMA 3. If there exist k, l and a measure ν such that (4.1) holds, then there
exist a constant K depending only on (k, l) and tests φn such that

P
(n)
θ0

φn ≤ e−Knd2(θ0,θ1), sup
θ∈�:d(θ,θ1)≤d(θ0,θ1)/8

P
(n)
θ (1 − φn) ≤ e−Knd2(θ0,θ1).

The preceding lemma is also true if the chain is not started at stationarity. If,
as we assume, X0 is generated from a stationary distribution under θ0, then the
Kullback–Leibler divergence of P

(n)
θ0

and P
(n)
θ satisfies

K(P
(n)
θ0

,P
(n)
θ ) = n

∫
K(pθ0(·|x),pθ (·|x)) dQθ0(x) + K(qθ0, qθ ).(4.3)

To handle the neighborhoods Bn(θ0, ε;2), we need a bound on V (P
(n)
θ0

,P
(n)
θ ),

which will also be of the order of n times an expression depending only on individ-
ual observations, under a variety of conditions. In the following lemma, we use an
α-mixing assumption. For a sequence {Xn}, let the α-mixing coefficient be given
by αh = sup{|Pr(X0 ∈ A,Xh ∈ B) − Pr(X0 ∈ A)Pr(Xh ∈ B)| : A,B ∈ B(R)}.

LEMMA 4. Suppose that the Markov chain X0,X1, . . . is α-mixing under θ0,
with mixing coefficients αh. Then for every s > 2, V (p

(n)
θ0

,p
(n)
θ ) is bounded by

8sn

s − 2

∞∑
h=0

α
1−2/s
h

(∫∫ ∣∣∣∣log
pθ0(y|x)

pθ (y|x)

∣∣∣∣
s

pθ0(y|x)dµ(y)dQθ0(x)

)2/s

+ 2V (qθ0, qθ ).
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PROOF. We can write

log
p

(n)
θ0

p
(n)
θ

=
n∑

i=1

log
pθ0(Xi |Xi−1)

pθ (Xi |Xi−1)
+ log

qθ0(X0)

qθ (X0)
=: nȲn + Z0,(4.4)

where Yi = log(pθ0(Xi |Xi−1)/pθ (Xi |Xi−1)) and Z0 = log(qθ0(X0)/qθ (X0)).
Then Y1, Y2, . . . are α-mixing with mixing coefficients αh−1. Therefore, the vari-
ance of the left-hand side of (4.4) is bounded above by n(E|Yi |s)2/s × 4s(s −
2)−1 ∑∞

h=1 α
1−2/s
h−1 , by the bound of Ibragimov [18]. �

Let �1 ⊂ � be the set of parameter values such that K(qθ0, qθ ) and V (qθ0, qθ )

are bounded by 1. Then from (4.3) and Lemma 4, it follows that for large n and
ε2 ≥ 2/n, the set Bn(θ0, ε;2) contains the set B∗(θ0, ε; s) defined by{

θ ∈ �1 : Pθ0 log
(

pθ0

pθ

(X1|X0)

)
≤ 1

2
ε2,Pθ0

∣∣∣∣log
pθ0

pθ

(X1|X0)

∣∣∣∣
s

≤ Csε
s

}
,

where the power s must be chosen sufficiently large to ensure that the mixing coef-
ficients satisfy

∑∞
h=0 α

1−2/s
h < ∞ and where C

−2/s
s = 16s(2 − s)−1 ∑∞

h=0 α
1−2/s
h .

The contributions of Qθ0(log(qθ0/qθ )) and Qθ0(log(qθ0/qθ ))
2 may also be incor-

porated into the bound.
The above facts may be combined to obtain the following result.

THEOREM 5. Let P
(n)
θ be the distribution of (X0,X1, . . . ,Xn) for a stationary

Markov chain X0,X1, . . . with transition densities pθ(y|x) and stationary density
qθ satisfying (4.1) and let d be defined by (4.2). Assume, further, that the chain is α-
mixing with coefficients αh satisfying

∑∞
h=0 α

1−1/s
h < ∞ for some s > 2. Suppose

that for a sequence εn → 0 such that nε2
n ≥ 2, some s > 2, every sufficiently large

j and sets �n ⊂ �, the following conditions are satisfied:

sup
ε>εn

logN
(
ε/16, {θ ∈ �n : d(θ, θ0) < ε}, d) ≤ nε2

n;(4.5)

�n(� \ �n)

�n(B∗(θ0, εn; s)) = o(e−2nε2
n);(4.6)

�n(θ ∈ �n : (j − 1)εn < d(θ, θ0) ≤ jεn)

�n(B∗(θ0, εn; s)) ≤ eKnε2
nj2/8,(4.7)

for the constant K of Lemma 3. Then P
(n)
θ0

�n(θ : d∗(θ, θ0) ≥ Mnεn|X(n)) → 0 for
every Mn → ∞.

A Markov chain with n-step transition probability P n(x, ·) = Pr(Xn ∈ A|X0 =
x) and stationary measure Q is called uniformly ergodic if ‖P n(x, ·) − Q‖ → 0
as n → ∞, uniformly in x, where ‖ · ‖ is the total variation norm. It can be
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shown that the convergence is then automatically exponentially fast (cf. [23], The-
orem 16.0.2). Thus, the α-mixing coefficients are exponentially decreasing and
hence satisfy

∑∞
h=0 α

1−2/s
h < ∞ for every s > 2. Hence, it suffices to verify (4.7)

with some arbitrary fixed s > 2. If sup{∫ |pθ0(y|x1) − pθ0(y|x2)|dµ(y) : x1, x2 ∈
R} < 2, then integrating out x2 relative to the stationary measure qθ0 , we see that
Condition (16.8) of Theorem 16.0.2 of [23] holds and hence the chain is uniformly
ergodic.

5. White noise model. Let � ⊂ L2[0,1] and for θ ∈ �, let P
(n)
θ be the dis-

tribution on C[0,1] of the stochastic process X(n) = (X
(n)
t : 0 ≤ t ≤ 1) defined

structurally as X
(n)
t = ∫ t

0 θ(s) ds + 1√
n
Wt for a standard Brownian motion W . This

is the standard white noise model, which is known to arise as an approximation
of many particular sequences of experiments. An equivalent experiment is ob-
tained by the one-to-one correspondence of X(n) with the sequence defined by
Xn,i = 〈X(n), ei〉, where 〈·, ·〉 is the inner product of L2[0,1] and {e1, e2, . . .} is a
given orthonormal basis of L2[0,1]. The variables Xn,1,Xn,2, . . . are independent
and normally distributed, with means 〈θ, ei〉 and variance n−1. In the following,
we use this concrete representation and abuse notation by identifying X(n) with
the sequence (Xn,1,Xn,2, . . .) and θ ∈ � with the sequence (θ1, θ2, . . .) defined by
θi = 〈θ, ei〉. In the latter representation, we have that � ⊂ 
2, the space of square
summable sequences. Let ‖θ‖2 = ∫ 1

0 θ2(s) ds = ∑∞
i=1 θ2

i denote the squared L2-
norm.

Tests satisfying the conditions of (2.2) can easily be found explicitly, namely, as
the likelihood ratio test for θ0 versus θ1, where we can use the L2-norm for both dn

and en. Furthermore, the Kullback–Leibler divergence and discrepancy V2,0 also
turn out to be multiples of the L2-norm.

LEMMA 5. The test φn = 1{2〈θ1 − θ0,X
(n)〉 > ‖θ1‖2 − ‖θ0‖2} satisfies

P
(n)
θ0

φn ≤ 1 − �(
√

n‖θ1 − θ0‖/2) and P
(n)
θ (1 − φn) ≤ 1 − �(

√
n‖θ1 − θ0‖/4)

for any θ ∈ � such that ‖θ − θ1‖ ≤ ‖θ1 − θ0‖/4.

LEMMA 6. For every θ, θ0 ∈ � ⊂ L2[0,1], we have K(P
(n)
θ0

,P
(n)
θ ) = 1

2n‖θ −
θ0‖2 and V2,0(P

(n)
θ0

,P
(n)
θ ) = n‖θ − θ0‖2. Consequently, we have Bn(θ0, ε;2) =

{θ ∈ � : ‖θ − θ0‖ ≤ ε}.
PROOF OF LEMMA 5. The test rejects the null hypothesis for positive val-

ues of the statistic Tn = 〈θ1 − θ0,X
(n)〉 − 1

2‖θ1‖2 + 1
2‖θ0‖2, which, under θ , is

distributed as 〈θ1 − θ0, θ − θ1〉 + 1
2‖θ1 − θ0‖2 + 1√

n
〈θ1 − θ0,W 〉. The variable

〈θ1 − θ0,W 〉 is normally distributed with mean zero and variance ‖θ1 − θ0‖2. Un-
der θ = θ0, the mean of the test statistic is equal to −1

2‖θ0 − θ1‖2, whereas for
‖θ − θ1‖ ≤ ξ‖θ1 − θ0‖ and ξ ∈ (0, 1

2), the mean of the statistic under θ is bounded
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below by (1
2 −ξ)‖θ0 −θ1‖2, in view of the Cauchy–Schwarz inequality. The lemma

follows upon choosing ξ = 1/4. �

PROOF OF LEMMA 6. We write log(p
(n)
θ0

/p
(n)
θ ) = n〈θ0 − θ,X(n)〉− n

2‖θ0‖2 +
n
2‖θ‖2, whence the mean and variance under θ0 are easily obtained. �

In the preceding lemmas, no restriction on the parameter set � ⊂ L2[0,1] was
imposed. The lemmas lead to the following theorem, which gives bounds on the
rate of convergence in terms of quantities involving the L2-norm only.

THEOREM 6. Let P
(n)
θ be the distribution on C[0,1] of the solution of the dif-

fusion equation dXt = θ(t) dt +n−1/2 dWt with X0 = 0. Suppose that for εn → 0,
(nε2

n)
−1 = O(1) and � ⊂ L2[0,1], the following conditions are satisfied:

sup
ε>εn

logN(ε/8, {θ ∈ � : ‖θ − θ0‖ < ε},‖ · ‖) ≤ nε2
n;(5.1)

for every j ∈ N

�n(θ ∈ � : ‖θ − θ0‖ ≤ jεn)

�n(θ ∈ � : ‖θ − θ0‖ ≤ εn)
≤ enε2

nj2/64.(5.2)

Then P
(n)
θ0

�n(θ ∈ � : ‖θ − θ0‖ ≥ Mnεn|X(n)) → 0 for every Mn → ∞.

In Section 7.6, we shall calculate the rate of convergence for a conjugate prior.

6. Gaussian time series. Suppose that X1,X2, . . . is a stationary Gaussian
process with mean zero and spectral density f , which is known to belong to
a model F . Let γh(f ) = ∫ π

−π eihλf (λ) dλ be the corresponding autocovariance

function. Let P
(n)
f be the distribution of (X1, . . . ,Xn).

For this situation, we can derive the following lemma from [3]. Let ‖f ‖2 and
‖f ‖∞ be the L2-norm relative to Lebesgue measure and the uniform norm of a
function f : (−π,π ] → R, respectively.

LEMMA 7. Suppose that there exist constants � and M such that ‖ logf ‖∞ ≤
� and

∑∞
h=−∞ |h|γ 2

h (f ) ≤ M for every f ∈ F . Then there exist constants ξ and
K depending only on � and M such that for every ε � 1/

√
n and every f0, f1 ∈ F

with ‖f1 − f0‖2 ≥ ξε, we have

P
(n)
f0

φn ∨ sup
f ∈F :‖f −f1‖∞≤ξε

P
(n)
f (1 − φn) ≤ e−Knε2

.(6.1)

PROOF. It follows from the assumptions that
∑

|h|>n/2 γ 2
h (f ) ≤ 2M/n. This

is bounded by ε2 for ε ≥ √
2M/n. The assertion follows from Proposition 5.5,

page 222 of [3], with φn = 1{log(p
(n)
f1

/p
(n)
f0

) ≥ 0}. �
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The preceding lemma shows that tests satisfying the conditions of (2.2) exist
when dn is the L2-distance and when en is the uniform distance, leading to condi-
tions in terms of N(εξ, {f ∈ F : ‖f − f0‖2 < ε},‖ · ‖∞). We do not know if the
L∞-distance can be replaced by the L2-distance. The uniform bound on ‖ logf ‖∞
is not unreasonable as it is known that the structure of the time series changes dra-
matically if the spectral density approaches zero. The following lemma allows the
neighborhoods Bn(f0, ε;2) to be dealt with entirely in terms of balls for the L2-
norm.

LEMMA 8. Suppose that there exists constant � such that ‖ logf ‖∞ ≤ �

for every f ∈ F . Then there exists a constant C depending only on � such
that for every f,g ∈ F , we have P

(n)
f (log(p

(n)
f /p

(n)
g )) � Cn‖f − g‖2

2 and

var
P

(n)
f

(log(p
(n)
f /p

(n)
g )) � Cn‖f − g‖2

2.

PROOF. The (k, l)th element of the covariance matrix Tn(f ) of X(n) =
(X1, . . . ,Xn), given the spectral density f , is given by

∫ π
−π eiλ(k−l)f (λ) dλ for 1 ≤

k, l ≤ n. Using the matrix identities det(AB−1) = det(I + B−1/2(A − B)B−1/2)

and A−1 − B−1 = A−1(A − B)B−1, we can write

log
p

(n)
f

p
(n)
g

= −1

2
log det

(
I + Tn(g)−1/2Tn(f − g)Tn(g)−1/2)

− 1

2
(X(n))T Tn(f )−1Tn(g − f )Tn(g)−1X(n).

For a random vector X with mean zero and covariance matrix �, we have
E(XT AX) = tr(�A) and var(XT AX) = tr(�A�A) + tr(�A�AT ). Hence,

P
(n)
f

(
log

p
(n)
f

p
(n)
g

)
= −1

2
log det

(
I + Tn(g)−1/2Tn(f − g)Tn(g)−1/2)

− 1

2
tr

(
Tn(g − f )Tn(g)−1)

,

4 var
P

(n)
f

(
log

p
(n)
f

p
(n)
g

)
= tr

(
Tn(g − f )Tn(g)−1Tn(g − f )Tn(g)−1)

+ tr
(
Tn(g − f )Tn(g)−1Tn(f )Tn(g)−1Tn(g − f )Tn(f )−1)

.

Define matrix norms by ‖A‖2 = ∑
k

∑
l a

2
k,l = tr(AAT ) and |A| = sup{‖Ax‖ :

‖x‖ = 1}, where ‖x‖ is the Euclidean norm. Then tr(A2) ≤ ‖A‖2 and ‖AB‖ ≤
|A|‖B‖. Furthermore, as a result of the inequalities −1

2µ2 ≤ log(1 + µ) −
µ ≤ 0, for all µ ≥ 0, we have for any nonnegative definite matrix A that
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−1
2 tr(A2) ≤ log det(I + A) − tr(A) ≤ 0. In view of the identities xT Tn(f )x =∫ ∣∣∑

k xke
ikλ

∣∣2f (λ)dλ and xT Tn(1)x = 2π‖x‖2, we also have that |Tn(f )| ≤
2π‖f ‖∞ and |Tn(f )−1| ≤ (2π)−1‖1/f ‖∞. To see the validity of the second in-
equality, we use the fact that ‖A−1‖ ≤ c−1 if ‖Ax‖ ≥ c‖x‖ for all x. For f ∈ F ,
‖f ‖∞ < ∞ and ‖1/f ‖∞ < ∞. Furthermore,

‖Tn(f )‖2 = ∑
|h|<n

(n − |h|)γ 2
h (f ) ≤ 2πn

∫ π

−π
f 2(λ) dλ.(6.2)

Using the preceding inequalities and the identity tr(AB) = tr(BA), it is straight-
forward to obtain the desired bounds on the mean and variance of log(p

(n)
f /p

(n)
g ).

�

The preceding lemmas can be combined to obtain the following theorem, where
the constants ξ and K are those introduced in Lemma 7.

THEOREM 7. Let P
(n)
f be the distribution of (X1, . . . ,Xn) for a stationary

Gaussian time series {Xt : t = 0,±1, . . .} with spectral density f ∈ F . Assume
that there exist constants � and M such that ‖ logf ‖∞ ≤ � and

∑
h |h|γ 2

h (f ) ≤ M

for every f ∈ F . Let εn ≥ 1/
√

n satisfy, for every j ∈ N,

sup
ε>εn

logN(ξε/2, {f ∈ F : ‖f − f0‖2 ≤ ε},‖ · ‖∞) ≤ nε2
n,

�(f : ‖f − f0‖2 ≤ jε)

�(f : ‖f − f0‖2 ≤ ε)
� eKnε2

nj2/8.

Then P
(n)
f0

�(f : ‖f − f0‖2 ≥ Mnεn|X1, . . . ,Xn) → 0 for every Mn → ∞.

7. Applications. In this section, we present a number of examples of applica-
tion of the general results obtained in the preceding sections. The examples con-
cern combinations of a variety of models with various prior distributions.

7.1. Finite sieves. Consider the setting of independent, nonidentically distrib-
uted observations of Section 3. We construct sequences of priors, each supported
on finitely many points such that the posterior distribution converges at a rate
equal to the solution of an equation involving bracketing entropy numbers. Be-
cause bracketing entropy numbers are often close to metric entropy numbers, this
construction exhibits priors for which the prior mass condition (2.5) is automati-
cally satisfied. The construction is similar to that for the i.i.d. case given by Ghosal,
Ghosh and van der Vaart [14], Section 3. However, in this case, some extra care
is needed to appropriately define the bracketing numbers in the product space of
densities. In the following, we consider a componentwise bracketing.



204 S. GHOSAL AND A. W. VAN DER VAART

Consider a sequence of models P (n) = {P (n)
θ : θ ∈ �} of n-fold product mea-

sures P
(n)
θ , where each measure is given by a density (x1, . . . , xn) �→ ∏n

i=1 pθ,i(xi)

relative to a product-dominating measure
⊗n

i=1 µi . For a given n and ε > 0, we de-
fine the componentwise Hellinger upper bracketing number for � to be the small-
est number N such that there are integrable nonnegative functions uj,i for j =
1,2, . . . ,N and i = 1,2, . . . , n, with the property that for any θ ∈ �, there exists
some j such that pθ,i ≤ uj,i for all i = 1,2, . . . , n and

∑n
i=1 h2(pθ,i, uj,i)

2 ≤ nε2.
We shall denote this by Nn⊗

] (ε,�,dn).
Given a sequence of sets �n ↑ � and εn → 0 such that logNn⊗

] (εn,�n, dn) ≤
nε2

n, let (uj,i : j = 1,2, . . . ,N, i = 1,2, . . . , n) be a componentwise Hellinger
upper bracketing for �n [where N = Nn⊗

] (εn,�n, dn)]. From this bracketing,
we construct a prior distribution �n on the collection of densities of product
measures, by defining �n to be the measure that assigns mass N−1 to each of
the joint densities p

(n)
j = ⊗n

i=1(uj,i/
∫

uj,i dµi), j = 1,2, . . . ,N . The collection

Pn = {p(n)
j : j = 1,2, . . . ,N} forms a sieve for the models P (n) and can be con-

sidered as the parameter space for a given n. Although it is possible for the spaces
Pn to not be embedded in a fixed space, Theorem 4 still applies and implies the
following result.

THEOREM 8. Let �n ↑ � and θ0 ∈ �. Assume that logNn⊗
] (εn,�n, dn) ≤

nε2
n for some sequence εn → 0 with nε2

n → ∞. Let �n be the uniform measure
on the renormalized collection of upper product brackets, as indicated previously.
Then for all sufficiently large M ,

P
(n)
θ0

�n

(
p(n) : d2

n(p
(n)
θ0

,p(n)) ≥ Mε2
n|X1,X2, . . . ,Xn

) → 0.(7.1)

PROOF. As Pn consists of finitely many points, its covering number with re-
spect to any metric is bounded by its cardinality. Thus, (3.2) holds and (3.3) holds
trivially.

Let θ0 ∈ �n for all n > n0. For a given n > n0, let j0 be the index for which
pθ0,i ≤ uj0,i and

∑n
i=1 h2(pθ0,i , uj0,i) ≤ nε2

n. If p is a probability density, u is an
integrable function such that u ≥ p and v = u/

∫
u, then because 2ab ≤ (a2 + b2),

it easily follows that h2(p, v) ≤ (
∫

udµ)−1/2h2(p,u).
For any two probability densities p and q , we have (see, e.g., Lemma 8 of [17])

K(p,q) � h2(p, q)

(
1 + log

∥∥∥∥p

q

∥∥∥∥∞

)
, V (p, q) � h2(p, q)

(
1 + log

∥∥∥∥p

q

∥∥∥∥∞

)2

.

Together with the elementary inequalities 1 + logx ≤ 2
√

x and (1 + logx)2 ≤
(4x1/4)2 = 16x1/2 for all x ≥ 1, the bounds imply that

K(p,q) � h2(p, q)

∥∥∥∥p

q

∥∥∥∥
1/2

∞
, V (p, q) � h2(p, q)

∥∥∥∥p

q

∥∥∥∥
1/2

∞
.
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Because (pθ0,i/vj0,i) ≤ ∫
uj0,i dµ, it follows that n−1 ∑n

i=1 K(pθ0,i , vj0,i ) � ε2
n

and n−1 ∑n
i=1 V (pθ0,i , vj0,i) � ε2

n. Thus,
∏n

i=1 vj0,i gets prior probability equal to

N−1 ≥ e−nε2
n and hence relation (3.4) also holds for a multiple of the present εn.

Thus, the posterior converges at the rate εn with respect to the metric dn. �

7.1.1. Nonparametric Poisson regression. Let X1,X2, . . . be independent
Poisson-distributed random variables with parameters ψ(z1),ψ(z2), . . . , where
ψ : R → (0,∞) is an unknown increasing link function and z1, z2, . . . are one-
dimensional covariates. We assume that L ≤ ψ ≤ U for some constants 0 < L <

U < ∞.
If l ≤ ψ ≤ u, then for any z and x, we have e−ψ(z)(ψ(z))x/x! ≤ e−l(z)(u(z))x/

x!. For a pair of link functions l ≤ u, let ql,u(x, z) = e−l(z)(u(z))x/x! and put
f

(n)
l,u (x1, x2, . . . , xn) = ∏n

i=1 ql,u(xi, zi). For any constants L < λ1, λ2,µ1,µ2 <

U , we have
∞∑

x=0

((
e−λ1

µx
1

x!
)1/2

−
(
e−λ2

µx
2

x!
)1/2)2

= (e−(λ1+µ1)/2 − e−(λ2+µ2)/2)2 + 2e−(λ1+λ2)/2(e(µ1+µ2)/2 − e
√

µ1µ2)

≤
(

1

2
+ 1

4
L−1

)
eU−L(|λ1 − λ2|2 + |µ1 − µ2|2).

Let l1 ≤ u1 and l2 ≤ u2 be two pairs of link functions taking their values in the in-
terval [L,U ]. Therefore, with P

z
n = n−1 ∑n

i=1 δzi
being the empirical distributions

of z1, z2, . . . , zn, we have that d2
n(f

(n)
l1,u1

, f
(n)
l2,u2

) �
∫
(|l1 − l2|2 + |u1 − u2|2) dP

z
n.

Hence, an ε-bracketing of the link functions with respect to the L2(P
z
n)-metric

yields a componentwise Hellinger upper bracketing whose size is a multiple of ε.
Now the ε-bracketing entropy numbers of the above class are bounded by a mul-
tiple of ε−1, relative to any L2-metric (cf. Theorem 2.7.5 of [31]). Equating this
with nε2, we obtain the rate n−1/3 for posterior convergence, which is also the
minimax rate, relative to dn.

In this example, the normalized upper brackets for the densities are also Pois-
son mass functions corresponding to the link functions equal to the upper brackets.
Hence, the prior can be viewed as charging the space of link functions and the dis-
tance dn can also be induced on this space. This makes interpretations of the prior
and the posterior, as well as the posterior convergence rate, more transparent. Fur-
ther, as the space of link functions is a fixed space, proceeding as in Theorem 3.1
of [14], a fixed prior not depending on n may be constructed such that the posterior
converges at the same n−1/3 rate.

7.2. Linear regression with unknown error distribution. Let X1, . . . ,Xn be
independent regression response variables satisfying Xi = α + βzi + εi , i =
1,2, . . . , n, where the zi’s are nonrandom one-dimensional covariates lying in
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[−L,L] for some L and the errors εi are i.i.d. with density f following some
prior �. Amewou-Atisso et al. [1] studied posterior consistency under this setup.
Here, we refine the result to a posterior convergence rate. Assume that |f ′(x)| ≤ C

for all x and all f in the support of �. The priors for α and β are assumed to be
compactly supported with positive densities in the interiors of their supports and
all the parameters are assumed to be a priori independent. Let the true value of
(f,α,β) be (f0, α0, β0), an interior point in the support of the prior.

Let H(ε) be a bound for the Hellinger ε-entropy of the support of � and
suppose that f0(x)/f (x) ≤ M(x) for all x, where

∫
Mδf0 < ∞, δ > 0. Then

by Theorem 5 of [33], it follows that max{K(f0, f ),V (f0, f )} � h2(f0, f ) ×
log2(1/h(f0, f )). Let a(ε) = − log�(h(f0, f ) ≤ ε). The posterior convergence
rate for density estimation is then εn, given by

max
{
H(εn), a

(
εn/(log ε−1

n )
)} ≤ nε2

n.(7.2)

The following theorem shows that Euclidean parameters do not affect the rate.

THEOREM 9. Under the above setup, if f0(x − α0 − β0z)/f (x − α − βz) ≤
M(x) for all x, z,α,β , then the joint posterior of (α,β,f ) concentrates around
(α0, β0, f0) at the rate εn defined by (7.2), with respect to dn.

PROOF. We have, by (a + b)2 ≤ 2(a2 + b2), that h2(f1(· − α1 − β1z), f2(· −
α2 − β2z)) ≤ 2h2(f1, f2) + 4C2|α1 − α2|2 + 4C2L2|β1 − β2|2, which leads to

d2
n(P

(n)
f1,α1,β1

,P
(n)
f2,α2,β2

) � h2(f1, f2) + |α1 − α2|2 + |β1 − β2|2

and hence the dn-entropy of the parameter space is bounded by a multiple of
H(ε) + log 1

ε
� H(ε).

To lower bound the prior probability of B̄n((f0, α0, β0), ε;2) defined by (3.5),
by Theorem 5 of [33] with h = h(f0(· − α0 − β0z), f (· − α − βz)), we have
that K(f0(·−α0 −β0z), f (·−α −βz)) � h2 log 1

h
and V (f0(·−α0 −β0z), f (·−

α −βz)) � h2 log2 1
h

. Thus, a multiple of ε−2e−ca(ε/ log ε−1) lower bounds the prior
probability of (3.5) and the first factor can be absorbed into the second, where c is a
suitable positive constant. Thus, Theorem 4 implies that the posterior convergence
rate with respect to dn is εn. �

More concretely, if the prior is a Dirichlet mixture of normals (or its sym-
metrization) with the scale parameter lying between two positive numbers and
the base measure having compact support, and if the true error density is also a
normal mixture of this type, then by Ghosal and van der Vaart [16], it follows that
the convergence rate is (logn)/

√
n. The assumption of compact support of the

base measure can be relaxed by using sieves. Compactness of the support of the
prior for α and β may be relaxed by using sieves |α| ≤ c logn if these priors have
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sub-Gaussian tails. Also, it is straightforward to extend the result to a multidimen-
sional regressor. For more general error densities, one has to allow arbitrarily small
scale parameters and apply the results of Ghosal and van der Vaart [17] to obtain a
slower rate.

Often, only the Euclidean part is of interest and an n−1/2 rate of convergence is
generally obtained in the classical context. The posterior of the Euclidean part is
also expected to converge at an n−1/2 rate and the Bernstein–von Mises theorem
may hold; see [26] for some results. However, as we consider (f,α,β) together
and obtain global convergence rates, it seems unlikely that our methods will yield
these improved convergence rates for the Euclidean portion of the parameter.

7.3. Whittle estimation of the spectral density. Let {Xt : t ∈ Z} be a sec-
ond order stationary time series with mean zero and autocovariance function
γr = E(XtXt+r ). The spectral density of the process is defined (under the as-
sumption that

∑
r |γr | < ∞) by f (λ) = 1

2π

∑∞
r=−∞ γre

−irπλ, λ ∈ [0,1]; here, we
have changed the original domain [−π,π ] of spectral density to [0,1] by using
symmetry and then rescaling. Let In(λ) = (2πn)−1|∑n

t=1 Xte
−itπλ|2, λ ∈ [0,1],

denote the periodogram. Because the likelihood is complicated, Whittle [32] pro-
posed as an approximate likelihood that of a sample U1, . . . ,Uν of indepen-
dent exponential variables with means f (2j/n), j = 1, . . . , ν, evaluated with
Uj = In(2j/n), where ν = �n/2�. The Whittle likelihood is motivated by the
fact that if λn,i → λi , i = 1, . . . ,m, then under reasonable conditions such as
mixing conditions, (In(λn,1), . . . , In(λn,m)) converges weakly to a vector of in-
dependent exponential variables with mean vector (f (λ1), . . . , f (λm)); see, for
instance, Theorem 10.3.2 of Brockwell and Davis [6]. Dahlhaus [10] applied the
technique of Whittle likelihood to estimating the spectral density by the minimum
contrast method. A consistent Bayesian nonparametric method has been proposed
by Choudhuri, Ghosal and Roy [7]. Below, we indicate how to obtain a rate of
convergence using Theorem 4.

As in the proof of consistency, we use the contiguity result of Choudhuri, Ghosal
and Roy [8], which shows that for a Gaussian time series, the sequence of laws of
(In(2/n), . . . , In(2ν/n)) and the sequence of approximating exponential distribu-
tions of (U1, . . . ,Uν) are contiguous. Thus, a rate of convergence of the posterior
distribution under the actual distribution follows from a rate of convergence under
the assumption that U1, . . . ,Uν are exactly independent and exponentially distrib-
uted with means f (2/n), . . . , f (2ν/n), to which Theorem 4 can be applied.

Let d̄2
n(f1, f2) = ν−1 ∑ν

i=1(f1(2i/n) − f2(2i/n))2. If f1 and f2 are spectral
densities with m ≤ f1, f2 ≤ M pointwise, then it follows that

1

4M2 d̄2
n(f1, f2) ≤ d2

n(f1, f2) ≤ 1

4m2 d̄2
n(f1, f2) ≤ 1

4m2 ‖f1 − f2‖2∞,(7.3)

where dn is given by (3.1) and ‖ · ‖∞ is the uniform distance. If the spectral densi-
ties are Lipschitz continuous, then a rate for the discretized L2-distance dn will
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imply a rate for the ordinary L2-distance ‖ · ‖2 by the relation ‖f1 − f2‖2 �
d̄n(f1, f2) + (L + M)/n, where L and M are the Lipschitz constant and uni-
form bound, respectively. To see this, note that

√
n/νd̄n(f,0) = ‖fn‖2, where

fn = ∑ν
j=1 f (2j/n)1((2j−2)/n,2j/n] and hence

|‖f ‖2 − √
n/νd̄n(f,0)| � ‖f − fn‖2 � ‖f ‖Lip

n
+

(
1 − 2ν

n

)
‖f ‖∞.

It follows that for the verification of (3.2), we may always replace dn by d̄n and if
the spectral densities are restricted to Lipschitz functions with Lipschitz constant
Ln and where εn � Ln/n, then we may also replace dn by the L2-norm ‖ · ‖2.

Now, by easy calculations, for all spectral densities f,f0 taking values in
[m,M], we have that ν−1 ∑ν

i=1 K(Pf0,i , Pf,i) � d̄2
n(f0, f ) � ‖f − f0‖2∞ and

ν−1 ∑ν
i=1 V2,0(Pf0,i , Pf,i) � d̄2

n(f0, f ) � ‖f −f0‖2∞, hence it suffices to estimate
the prior probability of sets of the form {f : ‖f − f0‖∞ ≤ ε}. Alternatively, if the
spectral densities under consideration are Lipschitz, then we may estimate the prior
mass of an L2-ball around f0.

As a concrete prior, we consider the prior used by Choudhuri, Ghosal and
Roy [7], namely f = τq , where τ = var(Xt) has a nonsingular prior density
and q , a probability density on [0,1], is given the Dirichlet–Bernstein prior of
Petrone [24]. We then restrict the prior to the set K = {f : m < f < M}. The order
of the Bernstein polynomial, k, has prior mass function ρ, which is assumed to
satisfy e−β1k log k � ρ(k) � e−β2k . Let � denote the resulting prior.

Clearly, as f0 ∈ K, restricting the prior to K can only increase the prior proba-
bility of {f : ‖f −f0‖∞ < ε}. Therefore, following Ghosal [12], �(‖f −f0‖∞ <

ε) � e−cε−1 log ε−1
. Hence, εn of the order n−1/3(logn)1/3 satisfies (3.4).

Consider a sieve Fn for the parameter space K, which consists solely of Bern-
stein polynomials of order kn or less. All of these functions have Lipschitz constant
at most k2

n and are uniformly bounded away from zero and infinity by construc-
tion. The ε-entropy of Fn relative to d̄n can be bounded above by that of the
simplex, which is further bounded above by k logk + k log ε−1. Hence, by choos-
ing kn of the order n1/3(logn)2/3, the convergence rate at f0 on Fn with respect to
dn is given by max(n−1/2k

1/2
n (logn)1/2, n−1/3(logn)1/3, k2

n/n) = n−1/3(logn)4/3.

Now, �(F c
n ) = ρ(k > kn) � e−β2kn = e−βn1/3(logn)2/3 = e−βn(n−1/3(logn)1/3)2

.
Thus, the posterior probability of F c

n goes to zero by Lemma 1 and hence the
convergence rate on K is also n−1/3(logn)1/3. The minimax rate n−2/5 may be
obtained, for instance, by using splines, which have better approximation proper-
ties.

7.4. Nonlinear autoregression. Consider the nonlinear autoregressive model
in which we observe the elements X1, . . . ,Xn of a stationary time series {Xt : t ∈
Z} satisfying

Xi = f (Xi−1) + εi, i = 1,2, . . . , n,(7.4)
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where f is an unknown function and ε1, ε2, . . . , εn are i.i.d. N(0, σ 2). For sim-
plicity, we assume that σ = 1. Then Xn is a Markov chain with transition den-
sity pf (y|x) = φ(y − f (x)), where φ(x) = (2π)−1/2e−x2/2. Assume that f ∈ F ,
a class of functions such that |f (x)| ≤ M and |f (x) − f (y)| ≤ L|x − y| for all
x, y and f ∈ F .

Set r(y) = 1
2(φ(y − M) + φ(y + M)). Then r(y) � pf (y|x) � r(y) for all

x, y ∈ R and f ∈ F . Further, sup{∫ |p(y|x1) − p(y|x2)|dy : x1, x2 ∈ R} < 2.
Hence, the chain is α-mixing with exponentially decaying mixing coefficients and
has a unique stationary distribution Qf whose density qf satisfies r � qf � r . Let
‖f ‖s = (

∫ |f |s dr)1/s .
Because h2(N(µ1,1),N(µ2,1)) = 2[1 − exp(−|µ1 − µ2|2/8)], it easily fol-

lows for f1, f2 ∈ F , d defined in (4.2) and dν = r dλ that ‖f1 − f2‖2 �
d(f1, f2) � ‖f1 − f2‖2. Thus, we may verify (4.5) relative to the L2(r)-metric.
It can also be computed that

Pf0 log
pf0(X2|X1)

pf (X2|X1)
= 1

2

∫
(f0 − f )2 qf0 dλ � ‖f − f0‖2

2,

Pf0

∣∣∣∣log
pf0(X2|X1)

pf (X2|X1)

∣∣∣∣
s

�
∫

|f0 − f |sqf0 dλ � ‖f − f0‖s
s .

Thus, B∗(f0, ε; s) ⊃ {f : ‖f − f0‖s ≤ cε} for some constant c > 0, where
B∗(f0, ε; s) is as in Theorem 5. Thus, it suffices to verify (4.7) with s > 2.

7.4.1. Random histograms. As a prior on the regression functions f , consider
a random histogram as follows. For a given number K ∈ N, partition a given com-
pact interval in R into K intervals I1, . . . , IK and let I0 = R \ ⋃

k Ik . Let the prior
�n on f be induced by the map α �→ fα given by fα = ∑K

k=1 αk1Ik
, where the co-

ordinates α1, . . . , αK of α ∈ R
K are chosen to be i.i.d. random variables with the

uniform distribution on the interval [−M,M] and where K = Kn is to be chosen
later. Let r(Ik) = ∫

Ik
r dλ.

The support of �n consists of all functions with values in [−M,M] that are
piecewise constant on each interval Ik for k = 1, . . . ,K and which vanish on I0.
For any pair fα and fβ of such functions, we have, for any s ∈ [2,∞], ‖fα −
fβ‖s = ‖α − β‖s , where ‖α‖s is the r-weighted 
s -norm of α = (α1, . . . , αK) ∈
R

K given by ‖α‖s
s = ∑

k |αk|sr(Ik). The dual use of ‖ · ‖s should not lead to any
confusion as it will be clear from the context whether ‖ · ‖s is a norm on functions
or on vectors. The L2(r)-projection of f0 onto this support is the function fα0

for α0,k = ∫
Ik

f0r dλ/r(Ik), whence, by Pythagoras’ theorem, ‖fα − f0‖2
2 =

‖fα − fα0‖2
2 + ‖fα0 − f0‖2

2 for any α ∈ [−M,M]K . In particular, ‖fα − f0‖2 ≥
c‖α − α0‖2 for some constant c and hence, with Fn denoting the support of �n,

N(ε, {f ∈ Fn : ‖f − f0‖2 ≤ 16ε},‖ · ‖2)

≤ N(ε, {α ∈ R
K : ‖α − α0‖2 ≤ 16cε},‖ · ‖2) ≤ (80c)K,
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as in Lemma 4.1 of [25]. Thus, (4.5) holds if nε2
n � K .

To verify (4.7), note that for λ = (λ(I1), . . . , λ(IK)),

‖fα0 − f0‖s
s =

∫
I0

|f0|s dλ + ∑
k

∫
Ik

|α0,k − f0|sr dλ ≤ Msr(I0) + Ls‖λ‖s
s .

Hence, as f0 ∈ F , for every α ∈ [−M,M]K ,

‖fα − f0‖s � ‖α − α0‖s + r(I0)
1/s + ‖λ‖s ≤ ‖α − α0‖∞ + r(I0)

1/s + ‖λ‖s,

where ‖ · ‖∞ is the ordinary maximum norm on R
K . For r(I0)

1/s + ‖λ‖s ≤ ε/2,
we have that {f : ‖f − f0‖s ≤ ε} ⊃ {fα : ‖α − α0‖∞ ≤ ε/2}. Using ‖α − α0‖2 ≤
c‖fα − f0‖2, for any ε > 0 such that r(I0)

1/s + ‖λ‖s ≤ ε/2, we have

�n(f : ‖f − f0‖2 ≤ jε)

�n(f : ‖f − f0‖s ≤ ε)
≤ �n(α : ‖α − α0‖2 ≤ jε)

�n(α : ‖α − α0‖∞ ≤ εc/2)
.

We show that the right-hand side is bounded by eCnε2/8 for some C.
For

⋃
k Ik , a regular partition of an interval [−A,A], we have that ‖λ‖s = 2A/K

and since r(Ik) ≥ λ(Ik) infx∈Ik
r(x) for every k ≥ 1, the norm ‖ · ‖2 is bounded

below by
√

2Aφ(A)/K �
√

φ(A)/K times a multiple of the Euclidean norm. In
this case, the preceding display is bounded above by

(Cjε
√

K/φ(A)/(2M))K volK
(εc/(4M))K

∼
(

j
√

2πe√
φ(A)

)K 1√
πK

,

by Stirling’s approximation, where volK is the volume of the K-dimensional
Euclidean unit ball. The probability r(I0) is bounded above by 1−2�(A) � φ(A).
Hence, (4.7) will hold if K log(1/φ(A)) � nε2

n, φ(A) � εs
n and A/K � εn. All

requirements are met for εn equal to a multiple of n−1/3(logn)1/2 [with K ∼√
log(1/εn)ε

−1
n and A ∼ √

log(1/εn)]. This is only marginally weaker than the
minimax rate, which is n−1/3 for this problem, provided the autoregression func-
tions are assumed to be only Lipschitz continuous.

The logarithmic factor in the convergence rate appears to be a consequence
of the fact that the regression functions are defined on the full real line. The
present prior is a special case of a spline-based prior (see, e.g., Section 7.7). If f

has smoothness beyond Lipschitz continuity, then the use of higher order splines
should yield a faster convergence rate.

7.5. Finite-dimensional i.n.i.d. models. Theorem 4 is also applicable to finite-
dimensional models and yields the usual convergence rate as shown below. The
result may be compared with Theorem I.10.2 of [19] and Proposition 1 of [13].

THEOREM 10. Let X1, . . . ,Xn be i.n.i.d. observations following densities
pθ,i , where � ⊂ R

d . Let θ0 be an interior point of �. Assume that there exist
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constants α > 0 and 0 ≤ ci ≤ Ci < ∞ with, for every θ, θ1, θ2 ∈ �,

c = lim inf
n→∞

1

n

n∑
i=1

ci > 0, C = lim sup
n→∞

1

n

n∑
i=1

Ci < ∞(7.5)

such that Pθ0,i(log
pθ0,i

pθ,i
) ≤ Ci‖θ − θ0‖2α , Pθ0,i(log

pθ0,i

pθ,i
)2 ≤ Ci‖θ − θ0‖2α and

ci‖θ1 − θ2‖2α ≤ h2(pθ1,i , pθ2,i) ≤ Ci‖θ1 − θ2‖2α.(7.6)

Assume that the prior measure � possesses a density π which is bounded away
from zero in a neighborhood of θ0 and bounded above on the entire parameter
space. Then the posterior converges at the rate n−1/(2α) with respect to the Euclid-
ean metric.

For regular families, the above displays are satisfied for α = 1 and the usual
n−1/2 rate is obtained; see [19], Chapter III. Nonregular cases, for instance, when
the densities have discontinuities depending on the parameter [such as the uniform
distribution on (0, θ)], have α < 1 and faster rates are obtained; see [19], Chap-
ters V and VI and [13].

PROOF OF THEOREM 10. By the assumptions (7.5) and (7.6), it suffices to
show that the posterior convergence rate with respect to dn defined by (3.1) is
n−1/2. Now, by Pollard ([25], Lemma 4.1),

N
(
ε/18, {θ ∈ � : dn(θ, θ0) < ε}, dn

)
≤ N

(
(ε2/(36C))1/(2α), {θ ∈ � : ‖θ − θ0‖ < (2ε2/c)1/(2α)},‖ · ‖)

≤ 6d

(
72C

c

)d/(2α)

,

(7.7)

which verifies (3.2). For (3.4), note that

�(θ : dn(pθ ,pθ0) ≤ jε)

�(θ : n−1 ∑n
i=1 Ki(θ0, θ) ≤ ε2, n−1 ∑n

i=1 V2;i (θ0, θ) ≤ ε2)

≤ �(θ : ‖θ − θ0‖ ≤ (2j2ε2/c)1/(2α))

�(θ : ‖θ − θ0‖ ≤ (ε2/(2C))1/(2α))
≤ Ajd/α

for sufficiently small ε > 0, where A is a constant depending on d , c, C and the
upper and lower bounds on the prior density. The conclusion follows for εn =
M/

√
n, where M is a large constant. �

The condition that the Hellinger distance is bounded below by a power of the
Euclidean distance excludes the possibility of unbounded parameter spaces. This
defect may be rectified by applying Theorem 3 to derive the rate. If there is a
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uniformly exponentially consistent test for θ = θ0 against the complement of a
bounded set, then the result holds even if � is not bounded. Often, such tests exist
by virtue of bounds on log affinity, as in the case of normal distributions, or by
large deviation type inequalities; see [20] and [14], Section 7. Further, if the prior
density is not bounded above, but has a polynomial or subexponential majorant,
then the rate calculation also remains valid.

7.6. White noise with conjugate priors. In this section, we consider the white
noise model of Section 5 with a conjugate Gaussian prior. This allows us to com-
plement and rederive results of Zhao [34] and Shen and Wasserman [27] in our
framework. Thus, we observe an infinite sequence X1,X2, . . . of independent ran-
dom variables, where Xi is normally distributed with mean θi and variance n−1.

We consider the prior �n on the parameter θ = (θ1, θ2, . . .) that can be struc-
turally described by saying that θ1, . . . , θk are independent with θi normally dis-
tributed with mean zero and variance σ 2

i,k and that θk+1, θk+2, . . . are set equal to
zero. Here, we choose the cutoff k dependent on n and equal to k = �n1/(2α+1)�
for some α > 0. Zhao [34] and Shen and Wasserman [27] consider the case
where σ 2

i,k = i−(2α+1) for i = 1, . . . , k and show that the convergence rate is εn =
n−α/(2α+1) if the true parameter θ0 is “α-regular” in the sense that

∑∞
i=1 θ2

0,i i
2α <

∞. We shall obtain the same result for any triangular array of variances such that

min{σ 2
i,ki

2α : 1 ≤ i ≤ k} ∼ k−1.(7.8)

For instance, for each k, the coefficients θ1, . . . , θk could be chosen i.i.d. normal
with mean zero and variance k−1 or could follow the model of the authors men-
tioned previously.

THEOREM 11. If k ∼ n1/(2α+1) and (7.8) holds, then the posterior converges
at the rate εn = n−α/(2α+1) for any θ0 such that

∑∞
i=1 θ2

0,i i
2α < ∞.

PROOF. The support �n of the prior is the set of all θ ∈ 
2 with θi = 0 for
i > k and can be identified with R

k . Moreover, the 
2-norm ‖ · ‖ on the support
can be identified with the Euclidean norm ‖ · ‖k on R

k . Let Bk(x, ε) denote the k-
dimensional Euclidean ball of radius ε and center x ∈ R

d . For any true parameter
θ0 ∈ 
2, we have ‖θ − θ0‖ ≥ ‖Pθ − Pθ0‖k , where P is the projection on �n, and
hence

N(ε/8, {θ ∈ �n : ‖θ − θ0‖ ≤ ε},‖ · ‖) ≤ N(ε/8,Bk(Pθ0, ε),‖ · ‖k) ≤ (40)k.

It follows that (5.1) is satisfied for nε2
n � k, that is, in view of our choice of k,

εn � n−α/(2α+1).
By Pythagoras’ theorem, we have that ‖θ − θ0‖2 = ‖Pθ − Pθ0‖2 + ∑

i>k θ2
0,i

for any θ in the support of �n. Hence, for
∑

i>k θ2
0,i ≤ ε2

n/2, we have that

�n(θ ∈ �n : ‖θ − θ0‖ ≤ εn) ≥ �n(θ ∈ R
k : ‖θ − Pθ0‖k ≤ εn/2).
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By the definition of the prior, the right-hand side involves a quadratic form in
Gaussian variables. For � the k × k diagonal matrix with elements σ 2

i,k , the quo-
tient on the left-hand side of (5.2) can be bounded as

�n(θ ∈ �n : ‖θ − θ0‖ ≤ jεn)

�n(θ ∈ �n : ‖θ − θ0‖ ≤ εn)
≤ Nk(−Pθ0,�)(B(0, jεn))

Nk(−Pθ0,�)(B(0, εn/2))
.

The probability in the numerator increases if we center the normal distribution at
0 rather than at −Pθ0, by Anderson’s lemma. Furthermore, for any µ ∈ R

k ,

dNk(µ,�)

dNk(0,�/2)
(θ) = e

−∑k
i=1(θi−µi)

2/(2σ 2
i,k)

√
2
k
e
−∑k

i=1 θ2
i /σ 2

i,k

≥ 2−k/2e
−∑k

i=1 µ2
i /σ

2
i,k .

Therefore, we may recenter the denominator at 0 at the cost of adding the factor
on the right (with µ = θ0) and dividing the covariance matrix by 2. We obtain that
the left-hand side of (5.2) is bounded above by

2k/2e
∑k

i=1 θ2
0,i/σ

2
i,k

Nk(0,�)(B(0, jεn))

Nk(0,�/2)(B(0, εn/2))

≤ 2k/2e
∑k

i=1 θ2
0,i/σ

2
i,k

(
σ̄k

σ k

)k Nk(0, σ̄ 2
k I )(B(0, jεn))

Nk(0, σ 2
kI/2)(B(0, εn/2))

,

where σ̄k and σ k denote the maximum and the minimum of σi,k for i = 1,2, . . . , k.
The probabilities on the right-hand side are left tail probabilities of chi-square
distributions with k degrees of freedom, and can be expressed as integrals. The
preceding display is bounded above by

2k/2e
∑k

i=1 θ2
0,i/σ

2
i,k

(
σ̄k

σ k

)k
∫ j2ε2

n/σ̄ 2
k

0 xk/2−1e−x/2 dx∫ ε2
n/(2σ 2

k)

0 xk/2−1e−x/2 dx

.

The exponential in the integral in the numerator is bounded above by 1 and
hence this integral is bounded above by jkεk

n/(kσ̄ k
k ). We now consider two sep-

arate cases. If ε2
n/σ

2
k remains bounded, then we can also bound the exponen-

tial in the integral in the denominator below by a constant and have that the
preceding display is bounded above by a multiple of 4kjk exp(

∑k
i=1 θ2

0,i/σ
2
i,k).

If ε2
n/σ

2
k → ∞, then we bound the integral in the denominator below by

(η/2)k/2−1 ∫ η
η/2 e−x/2 dx for η = ε2

n/(2σ 2
k). This leads to the upper bound be-

ing a multiple of 8kjk exp(
∑k

i=1 θ2
0,iσ

−2
i,k )ε2

nσ
−2
k exp(ε2

nσ
−2
k /8). By the assumption

(7.8), we have that σ 2
k � k−(2α+1) ∼ n−1. We also have that k ∼ nε2

n. It follows that
ε2
n/σ

2
k � nε2

n and that σ−2
k is bounded by a polynomial in k. We conclude that with

our choice of k ∼ n1/(2α+1), (5.2) is satisfied if εn satisfies
∑k

i=1 θ2
0,i/σ

2
i,k � nε2

n

and
∑

i>k θ2
0,i ≤ ε2

n/2.
It follows that the posterior concentrates at θ0 at the rate εn that satisfies these

requirements as well as the condition εn � n−α/(2α+1). If the true parameter θ0
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satisfies
∑∞

i=1 θ2
0,i i

2α < ∞, then all three inequalities are satisfied for εn a multiple

of n−α/(2α+1). The rate n−α/(2α+1) is the minimax rate for this problem. �

Our prior is dependent on n, but with some more effort, it can be seen that the
same conclusion can be obtained with a mixture prior of the form

∑
n λn�n for

suitable λn.

7.7. Nonparametric regression with Gaussian errors. Consider the non-
parametric regression model, where we observe independent random variables
X1, . . . ,Xn distributed as Xi = f (zi) + εi for an unknown regression function f ,
deterministic real-valued covariates z1, . . . , zn and normally distributed error vari-
ables ε1, . . . , εn with zero means and variances σ 2. For simplicity, we assume that
the error variance σ 2 is known. We also suppose that the covariates take values
in a fixed compact set, which we will take as the unit interval, without loss of
generality.

Let f0 denote the true value of the regression function, let Pf,i be the distribu-

tion of Xi and let P
(n)
f be the distribution of (X1, . . . ,Xn). Thus, Pf,i is the normal

measure with mean f (zi) and variance σ 2. Let P
z
n = n−1 ∑n

i=1 δzi
be the empirical

measure of the covariates and let ‖ · ‖n denote the norm on L2(P
z
n).

By easy calculations, K(Pf0,i , Pf,i) = |f0(zi) − f (zi)|2/(2σ 2) and V2,0(Pf0,i ,

Pf,i) = |f0(zi)−f (zi)|2/σ 2 for all i = 1,2, . . . , n, whence the average Kullback–
Leibler divergence and variance are bounded by a multiple of ‖f0 − f ‖2

n/σ
2 and

hence it is enough to quantify prior concentration in ‖ · ‖n-balls. The average
Hellinger distance, as used in Theorem 4, is bounded above by ‖ · ‖n, but is equiv-
alent to this norm only if the class of regression functions is uniformly bounded,
which makes it less attractive. However, it can be verified (cf. [5]) that the like-
lihood ratio test for f0 versus f1 satisfies the conclusion of Lemma 2 relative to
‖ · ‖n (instead of dn and θi = fi ). Therefore, we may use the norm ‖ · ‖n instead of
the average Hellinger distance throughout.

We shall construct priors based on series representations that are appropriate if
f0 ∈ Cα[0,1], where α > 0 could be fractional. This means that f0 is α0 times
continuously differentiable with ‖f0‖α < ∞, α0 being the greatest integer less
than α and the seminorm being defined by

‖f ‖α = sup
x �=x′

|f (α0)(x) − f (α0)(x′)|
|x − x′|α−α0

.(7.9)

7.7.1. Splines. Fix an integer q with q ≥ α. For a given natural number
K , which will increase with n, partition the interval (0,1] into K subintervals
((k − 1)/K, k/K] for k = 1,2, . . . ,K . The space of splines of order q relative
to this partition is the collection of all functions f : (0,1] → R that are q − 2
times continuously differentiable throughout (0,1] and, if restricted to a subin-
terval ((k − 1)/K, k/K], are polynomials of degree strictly less than q . These



POSTERIOR CONVERGENCE RATES 215

splines form a J = (q + K − 1)-dimensional linear space, with a convenient basis
B1,B2, . . . ,BJ being the B-splines, as defined in, for example, [11]. The B-splines
satisfy (i) Bj ≥ 0, j = 1,2, . . . , J , (ii)

∑J
j=1 Bj = 1, (iii) Bj is supported inside

an interval of length q/K and (iv) at most q of B1(x), . . . ,BJ (x) are nonzero
at any given x. Let B(z) = (B1(z), . . . ,BJ (z))T and write βT B for the function
z �→ ∑

j βjBj (z).
The basic approximation property of splines proved in [11], page 170, shows

that for some β∞ ∈ R
J (dependent on J ),

‖βT∞B − f0‖∞ � J−α‖f0‖α.(7.10)

Thus, by increasing J appropriately with the sample size, we may view the space
of splines as a sieve for the construction of the maximum likelihood estimator, as
in Stone [28, 29], and for Bayes estimates as in [14, 15] for the problem of density
estimation.

To put a prior on f , we represent it as fβ(z) = βT B(z) and induce a prior on
f from a prior on β . Ghosal, Ghosh and van der Vaart [14], in the context of
density estimation, choose β1, . . . , βJ i.i.d. uniform on an interval [−M,M], the
restriction to a finite interval being necessary to avoid densities with arbitrarily
small values. In the present regression situation, a restriction to a compact interval
is unnecessary and we shall choose β1, . . . , βJ to be a sample from the standard
normal distribution.

We need the regressors z1, z2, . . . , zn to be sufficiently regularly distributed in
the interval [0,1]. In view of the spatial separation property of the B-spline func-
tions, the precise condition can be expressed in terms of the covariance matrix
�n = (

∫
BiBj dP

z
n), namely

J−1‖β‖2 � βT �nβ � J−1‖β‖2,(7.11)

where ‖ · ‖ is the Euclidean norm on R
J .

Under condition (7.11), we have that for all β1, β2 ∈ R
J ,

C‖β1 − β2‖ ≤ √
J‖fβ1 − fβ2‖n ≤ C′‖β1 − β2‖(7.12)

for some constants C and C′. This enables us to perform all calculations in terms
of the Euclidean norms on the spline coefficients.

THEOREM 12. Assume that the true density f0 satisfies (7.10) for some α ≥ 1
2 ,

let (7.11) hold and let �n be priors induced by a NJ (0, I ) distribution on the spline
coefficients. If J = Jn ∼ n1/(1+2α), then the posterior converges at the minimax
rate n−α/(1+2α) relative to ‖ · ‖n.

PROOF. We verify the conditions of Theorem 4. Let fβn be the L2(P
z
n)-

projection of f0 onto the J -dimensional space of splines fβ = βT B . Then
‖fβn −fβ‖n ≤ ‖f0 −fβ‖n for every β ∈ R

J and hence, by (7.12), for every ε > 0,
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we have {β : ‖fβ − f0‖n ≤ ε} ⊂ {β : ‖β − βn‖ ≤ C′√Jε}. It follows that the ε-
covering numbers of the set {fβ : ‖fβ − f0‖n ≤ ε} for ‖ · ‖n are bounded by the
C

√
Jε-covering numbers of a Euclidean ball of radius C′√Jε, which are of the

order DJ for some constant D. Thus, the entropy condition (3.2) is satisfied, pro-
vided that J � nε2

n.
By the projection property, with β∞ as in (7.10),

‖fβn − f0‖n ≤ ‖fβ∞ − f0‖n ≤ ‖fβ∞ − f0‖∞ � J−α.(7.13)

Combining this with (7.12) shows that there exists a constant C′′ such that for
every ε � 2J−α , {β : ‖fβ − f0‖n ≤ ε} ⊃ {β : ‖β − βn‖ ≤ C′′√Jε}. Together with
the inclusion in the preceding paragraph and the definition of the prior, this implies
that

�n(f : ‖f − f0‖n ≤ jε)

�n(f : ‖f − f0‖n ≤ ε)
≤ NJ (0, I )(β : ‖β − βn‖ ≤ C′j

√
Jε)

NJ (0, I )(β : ‖β − βn‖ ≤ C′′j
√

Jε)

≤ NJ (0, I )(β : ‖β‖ ≤ C′j
√

Jε)

2−J/2e−‖βn‖2
NJ (0, I )(β : ‖β‖ ≤ C′′j

√
Jε/

√
2)

.

In the last step, we use Anderson’s lemma to see that the numerator increases if we
replace the centering βn by the origin, whereas to bound the denominator below,
we use the fact that

dNJ (βn, I )

dNJ (0, I/2)
(β) = e−‖β−βn‖2/2

(
√

2)J e−‖β‖2 ≥ 2−J/2e−‖βn‖2
.

Here, by the triangle inequality, (7.12) and (7.13), we have that ‖βn‖ �√
J‖fβn‖n �

√
J (J−α + ‖f0‖∞) �

√
J . Furthermore, the two Gaussian proba-

bilities are left tail probabilities of the chi-square distribution with J degrees of
freedom. The quotient can be evaluated as

2J/2e‖βn‖2
∫ (C′)2j2Jε2

0 xJ/2−1e−x/2 dx∫ (C′′)2Jε2/2
0 xJ/2−1e−x/2 dx

.

This is bounded above by (Cj)J for some constant C if
√

Jε remains bounded.
Hence, to satisfy (3.4), it again suffices that nε2

n � J .
We conclude the proof by choosing J = Jn ∼ n1/(1+2α). �

7.7.2. Orthonormal series priors. The arguments in the preceding subsection
use the special nature of the B-spline basis only through the approximation in-
equality (7.10) and the comparison of norms (7.12). Theorem 12 thus extends to
many other possible bases. One possibility is to use a sequence of orthonormal
bases with good approximation properties for a given class of regression func-
tions f0. Then (7.11) should be replaced by

‖β1 − β2‖ � ‖fβ1 − fβ2‖n � ‖β1 − β2‖.(7.14)
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This is trivially true if the bases are orthonormal in L2(P
z
n), but this requires that

the basis functions change with the design points z1, . . . , zn. One possible example
is the discrete wavelet bases relative to the design points. All arguments remain
valid in this setting.

7.8. Binary regression. Let X1, . . . ,Xn be independent observations with
P(Xi = 1) = 1 − P(Xi = 0) = F(α + βzi), where zi is a one-dimensional co-
variate, α and β are parameters and F is a cumulative distribution. Within the
parametric framework, logit regression, where F(z) = (1 + e−z)−1, or probit re-
gression, where F is the cumulative distribution function of the standard normal
distribution, are usually considered. Recently, there has been interest in link func-
tions of unknown functional form. The parameters (F,α,β) are separately not
identifiable, unless some suitable restrictions on F (such as given values of two
quantiles of F ) are imposed. For Bayesian estimation of (F,α,β), one therefore
needs to put a prior on F that conforms with the given restriction. However, in
practice, one usually puts a Dirichlet process or a similar prior on F and, inde-
pendently of this, a prior on (α,β), and makes inference about, say, z0, where
F(α + βz0) = 1/2. Recently, Amewou-Atisso et al. [1] showed that the resulting
posterior is consistent. In this section, we obtain the rate of convergence by an
application of Theorem 4.

Because we directly measure distances between the distributions generating the
data, identifiability issues need not concern us. The model and the prior can thus be
described in a simpler form. We assume that X1,X2, . . . are independent Bernoulli
variables, Xi having success parameter H(zi) for an unknown, monotone link
function H . As a prior on H , we use the Dirichlet process prior with base measure
γ ((· − α)/β), for “hyperparameters” (α,β) distributed according to some given
prior. This results in a mixture of Dirichlet process priors for H . Let the true value
of H be H0, which is assumed to be continuous and nondecreasing.

In practice, γ is often chosen to have support equal to the whole of R and (α,β)

chosen to have support equal to R × (0,∞) so that the conditions on γ and (α,β)

described in the following theorem are satisfied.

THEOREM 13. Assume that z1, z2, . . . , zn lie in an interval [a, b] strictly
within the support of the true link function H0 so that H0(a−) > 0 and H0(b) < 1.
Let H be the given mixture of Dirichlet process priors described previously with γ

and (α,β) having densities that are positive and continuous inside their supports.
Assume that there exists a compact set K inside the support of the prior for (α,β)

such that whenever (α,β) ∈ K, the support of the base measure γ ((· − α)/β)

strictly contains the interval [a, b]. Then the posterior distribution of H converges
at the rate n−1/3(logn)1/3 with respect to the distance dn given by (3.1).

PROOF. Because the Hellinger distance between two Bernoulli distributions
with success parameters p and q is equal to (p1/2 − q1/2)2 + ((1 − p)1/2 − (1 −
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q)1/2)2, we have

d2
n(H1,H2) ≤

∫
|H 1/2

1 − H
1/2
2 |2 dPn +

∫
|(1 − H1)

1/2 − (1 − H2)
1/2|2 dPn,

where Pn is the empirical distribution of z1, z2, . . . , zn. Both the classes {H 1/2 :
H is a c.d.f.} and {(1−H)1/2 : H is a c.d.f.} have ε-entropy bounded by a multiple
of ε−1, by Theorem 2.7.5 of [31]. Thus, any εn � n−1/3 satisfies (3.2).

By easy calculations, we have

Ki(H0,H) = H0(zi) log
H0(zi)

H(zi)
+ (

1 − H0(zi)
)

log
1 − H0(zi)

1 − H(zi)
,

V2;i (H0,H) ≤ 2H0(zi)

(
log

H0(zi)

H(zi)

)2

+ 2
(
1 − H0(zi)

)(
log

1 − H0(zi)

1 − H(zi)

)2

.

Under the conditions of the theorem, the numbers H0(zi) are bounded away from
0 and 1. By Taylor’s expansion, for any δ > 0, there exists a constant C (depending
on δ) such that

sup
δ<p<1−δ

sup
q:|q−p|<ε

(
p

(
log

p

q

)r

+ (1 − p)

(
log

1 − p

1 − q

)r)
≤ Cε2, r = 1,2.

Therefore, with ‖H − H0‖∞ = sup{|H(z) − H0(z)| : z ∈ [a, b]}, we have
max(n−1 ∑n

i=1 Ki(H0,H),n−1 ∑n
i=1 V2;i (H0,H)) � ‖H − H0‖2∞. Hence, in or-

der to satisfy (3.4), it suffices to lower bound the prior probability of the set
{H : ‖H − H0‖∞ ≤ ε}.

For given α and β , the base measure is γ ((·−α)/β). For a given ε > 0, partition
the line into N � ε−1 intervals E1,E2, . . . ,EN such that H0(Ej ) ≤ ε and such that
the γ ((· − α)/β)-probability of every set Ej (for j = 1,2, . . . ,N ) is between Aε

and 1 for a given positive constant A. Existence of such a partition follows from
the continuity of H0. It easily follows that for every H such that

∑N
j=1 |H(Ej ) −

H0(Ej )| ≤ ε, we have ‖H − H0‖∞ � ε. Furthermore, the conclusion is true even
if (α,β) varies over K. By Lemma 6.1 of [14], the prior probability of the set of
all H satisfying

∑N
j=1 |H(Ej ) − H0(Ej )| ≤ ε is at least exp(−cε−1 log ε−1) for

some constant c. Furthermore, a uniform estimate works for all (α,β) ∈ K. Hence,
(3.4) holds for εn, the solution of nε2 = ε−1 log ε−1, or for εn = n−1/3(logn)1/3,
which is only slightly weaker than the minimax rate n−1/3. �

7.9. Interval censoring. Let T1, T2, . . . , Tn constitute an i.i.d. sample from a
life distribution F on (0,∞), which is subject to interval censoring by intervals
(l1, u1), . . . , (ln, un). We assume that the intervals are either nonstochastic or else
we work conditionally on the realized values. Putting (δ1, η1), . . . , (δn, ηn), where
δi = 1{Ti ≤ li} and ηi = 1{li < Ti < ui}, i = 1,2, . . . , n, the likelihood is given
by

∏n
i=1(F (li))

δi (F (ui) − F(li))
ηi (1 − F(ui))

1−δi−ηi . We may put the Dirichlet
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process prior on F . Under mild assumptions on the true F0 and the base mea-
sure, the convergence rate under dn turns out to be n−1/3(logn)1/3, which is the
minimax rate, except for the logarithmic factor. Here, we use monotonicity of F

to bound the ε-entropy by a multiple of ε−1 and we estimate prior probability
concentration as exp(−cε−1 log ε−1) using methods similar to those used in the
previous subsection. The details are omitted.

8. Proofs. In this section, we collect a number of technical proofs. For the
proofs of the main results, we first present two lemmas.

LEMMA 9. Let dn and en be semimetrics on � for which tests satisfying the
conditions of (2.2) exist. Suppose that for some nonincreasing function ε �→ N(ε)

and some εn ≥ 0,

N

(
εξ

2
, {θ ∈ � : dn(θ, θ0) < ε}, en

)
≤ N(ε) for all ε > εn.(8.1)

Then for every ε > εn, there exist tests φn, n ≥ 1, (depending on ε) such that

P
(n)
θ0

φn ≤ N(ε) e−Knε2

1−e−Knε2 and P
(n)
θ (1 − φn) ≤ e−Knε2j2

for all θ ∈ � such that

dn(θ, θ0) > jε and for every j ∈ N.

PROOF. For a given j ∈ N, choose a maximal set of points in �j = {θ ∈ � :
jε < dn(θ, θ0) ≤ (j + 1)ε} with the property that en(θ, θ ′) > jεξ for every pair of
points in the set. Because this set of points is a jεξ -net over �j for en and because
(j + 1)ε ≤ 2jε, this yields a set �′

j of at most N(2jε) points, each at dn-distance
at least jε from θ0, and every θ ∈ �j is within en-distance jεξ of at least one of
these points. (If �j is empty, we take �′

j to be empty also.) By assumption, for
every point θ1 ∈ �′

j , there exists a test with the properties as in (2.2), but with ε

replaced by jε. Let φn be the maximum of all tests attached in this way to some
point θ1 ∈ �′

j for some j ∈ N. Then

P
(n)
θ0

φn ≤
∞∑

j=1

∑
θ1∈�′

j

e−Knj2ε2 ≤
∞∑

j=1

N(2jε)e−Knj2ε2 ≤ N(ε)
e−Knε2

1 − e−Knε2

and for every j ∈ N,

sup
θ∈⋃

i>j �i

P
(n)
θ (1 − φn) ≤ sup

i>j

e−Kni2ε2 ≤ e−Knj2ε2
,

where we have used the fact that for every θ ∈ �i , there exists a test φ with φn ≥ φ

and P
(n)
θ (1 − φ) ≤ e−Kni2ε2

. This concludes the proof. �



220 S. GHOSAL AND A. W. VAN DER VAART

LEMMA 10. For k ≥ 2, every ε > 0 and every probability measure �̄n sup-
ported on the set Bn(θ0, ε;k), we have, for every C > 0,

P
(n)
θ0

(∫
p

(n)
θ

p
(n)
θ0

d�̄n(θ) ≤ e−(1+C)nε2
)

≤ 1

Ck(nε2)k/2 .(8.2)

PROOF. By Jensen’s inequality applied to the logarithm, with ln,θ = log(p
(n)
θ /

p
(n)
θ0

), we have log
∫
(p

(n)
θ /p

(n)
θ0

) d�̄n(θ) ≥ ∫
ln,θ d�̄n(θ). Thus, the probability in

(8.2) is bounded above by

P
(n)
θ0

(∫
(ln,θ − P

(n)
θ0

ln,θ ) d�̄n(θ) ≤ −n(1 + C)ε2 −
∫

P
(n)
θ0

ln,θ d�̄n(θ)

)
.(8.3)

For every θ ∈ Bn(θ0, ε;k), we have P
(n)
θ0

ln,θ = −K(p
(n)
θ0

,p
(n)
θ ) ≥ −nε2. Conse-

quently, by Fubini’s theorem and the assumption that �̄n is supported on this set,
the expression on the right-hand side of (8.3) is bounded above by −Cnε2. An
application of Markov’s inequality yields the upper bound

P
(n)
θ0

| ∫ (ln,θ − P
(n)
θ0

ln,θ ) d�̄n(θ) ∧ 0|k
(Cnε2)k

≤ P
(n)
θ0

∫ |ln,θ − P
(n)
θ0

ln,θ |k d�̄n(θ)

(Cnε2)k
,

by another application of Jensen’s inequality. The right-hand side is bounded by
C−k(nε2)−k/2, by the assumption on �̄n. This concludes the proof. �

PROOF OF THEOREM 1. By Lemma 9, applied with N(ε) = exp(nε2
n) (con-

stant in ε) and ε = Mεn in its assertion, where M ≥ 2 is a large constant to be cho-
sen later, there exist tests φn that satisfy P

(n)
θ0

φn ≤ enε2
n(1−e−KnM2ε2

n)−1e−KnM2ε2
n

and P
(n)
θ (1−φn) ≤ e−KnM2ε2

nj2
for all θ ∈ �n such that dn(θ, θ0) > Mεnj and for

every j ∈ N. The first assertion implies that if M is sufficiently large to ensure that
KM2 − 1 > KM2/2, then as n → ∞, for any J ≥ 1, we have

P
(n)
θ0

[
�n

(
dn(θ, θ0) ≥ JMεn|X(n))φn

] ≤ P
(n)
θ0

φn � e−KM2nε2
n/2.(8.4)

Setting �n,j = {θ ∈ �n : Mεnj < dn(θ, θ0) ≤ Mεn(j + 1)} and using (2.2), we
obtain, by Fubini’s theorem,

P
(n)
θ0

[∫
�n,j

p
(n)
θ

p
(n)
θ0

d�n(θ) (1 − φn)

]
≤ e−KnM2ε2

nj2
�n(�n,j ).(8.5)

Fix some C > 0. By Lemma 10, we have, on an event An with probability at least
1 − C−k(nε2

n)
−k/2,

∫
p

(n)
θ

p
(n)
θ0

d�n(θ) ≥
∫
Bn(θ0,εn;k)

p
(n)
θ

p
(n)
θ0

d�n(θ) ≥ e−(1+C)nε2
n�n(Bn(θ0, εn;k)).
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Hence, decomposing {θ ∈ � : dn(θ, θ0) > JMεn} = ∪j≥J �n,j and using (8.5),
the last display and (2.5), we have, for every sufficiently large J ,

P
(n)
θ0

[
�n

(
θ ∈ �n : dn(θ, θ0) > JεnM|X(n))(1 − φn)1An

]
≤ ∑

j≥J

e−nε2
n(KM2j2−1−C− 1

2 KM2j2),

by assumption (2.5). This converges to zero as n → ∞ for fixed C and fixed,
sufficiently large M and J if nε2

n → ∞; it converges to zero for fixed M and C as
J = Jn → ∞ if nε2

n is bounded away from zero.
Combining the preceding results, we have, for sufficiently large M and J ,

P
(n)
θ0

�n(θ ∈ � : dn(θ, θ0) > MεnJ |X(n))

≤ 1

Ck(nε2
n)

k/2 + 2e−KM2nε2
n/2 + ∑

j≥J

e−nε2
n( 1

2 KM2j2−1−C).
(8.6)

The rest of the conclusion follows easily; see the proof of Theorem 2.4 of [14].
�

PROOF OF THEOREM 2. If εn � n−α and k(1−2α) > 2 for α ∈ (0,1/2), then
nε2

n → ∞ and
∑∞

n=1(nε2
n)

−k/2 < ∞. For C = 1/2, the first term on the right-hand
side of (8.6) dominates and the sum over n of the terms in (8.6) converges. The
result (i) follows by the Borel–Cantelli lemma.

For assertion (ii), we note that εn � n−α and k(1 − 2α) ≥ 4α together imply
that (nε2

n)
−k/2 � ε2

n. The other terms are exponentially small. �

PROOF OF LEMMA 1. Because P
(n)
θ0

(p
(n)
θ /p

(n)
θ0

) ≤ 1, Fubini’s theorem im-

plies that P
(n)
θ0

[∫�\�n
(p

(n)
θ /p

(n)
θ0

) d�n(θ)] ≤ �n(� \ �n). Let the events An be as
in the proof of Theorem 1, so that the denominator of the posterior is bounded
below by e−(1+C)nε2

n�n(Bn(θ0, εn;k)) on An. Combining this with the preceding
display gives

P
(n)
θ0

[�n(θ /∈ �n|X(n))1An] ≤ �n(� \ �n)e
(1+C)nε2

n

�n(Bn(θ0, εn;k))
≤ o(1)e−nε2

n(1−C),

by the assumption on �n(� \ �n). The rest of the proof can be completed along
the lines of that of Theorem 2.4 of [14]. �
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