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ASYMPTOTIC DATA ANALYSIS ON MANIFOLDS

BY HARRIE HENDRIKS AND ZINOVIY LANDSMAN

Radboud University Nijmegen and University of Haifa

Given an m-dimensional compact submanifold M of Euclidean space Rs ,
the concept of mean location of a distribution, related to mean or expected
vector, is generalized to more general Rs -valued functionals including me-
dian location, which is derived from the spatial median. The asymptotic statis-
tical inference for general functionals of distributions on such submanifolds
is elaborated. Convergence properties are studied in relation to the behavior
of the underlying distributions with respect to the cutlocus. An application is
given in the context of independent, but not identically distributed, samples,
in particular, to a multisample setup.

1. Introduction. Data belonging to some m-dimensional compact submani-
fold M of Euclidean space Rs appear in many areas of natural science. Directional
statistics, image analysis, vector cardiography in medicine, orientational statistics,
plate tectonics, astronomy and shape analysis comprise a (by no means exhaus-
tive) list of examples. Research in the statistical analysis of such data is well docu-
mented in the pioneering book by Mardia [12] and more recently in [13]. Note that
in these books, as well as in many research papers, the primary emphasis is placed
on the analysis of data on a circle or a sphere. These are the simplest examples of
compact manifolds and do not manifest the generic features of statistical inference
intrinsic to compact submanifolds of Euclidean spaces.

Let P be a family of probability measures on a manifold M ⊂ Rs and let

T : P → Rs

be some s-dimensional functional. The expectation vector

P � P �→ T1(P ) = EX =
∫

Rs
x dP (x)

is one of the most popular examples of such a functional. Another example, more
important in the context of robustness, is the spatial median (see [4])

T2(P ) = arg inf
a∈Rs

∫
Rs

‖x − a‖dP (x).
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Both of these functionals are special cases of the Fréchet functional

TFr(P ) = arg inf
a∈Rs

∫
Rs

ρ(x, a)β dP (x),

where ρ is some metric in Rs and β is some positive number (see details in [2]).
Of course, Huber’s M-functionals, as well as many others, can be considered.

One would like to make statistical inference for data on the manifold, but in gen-
eral, T (P ) does not lie on the manifold. This is why we consider the “orthogonal”
projection, or nearest-point mapping,

π : Rs → M, π(x) = arg inf
m∈M

‖m − x‖2,

as the instrument for getting characteristics of the distribution P to appear in the
manifold. Unfortunately, the projection π is well defined and differentiable every-
where on Rs , except on the set

C = {x ∈ Rs | π(x) is not uniquely defined or the square distance function

Lx(µ) = ‖µ − x‖2 on M has a degenerate second derivative at µ = π(x)},
which is called the cutlocus. For the sphere Ss−1, C consists only of the center, but
for other manifolds, it may be more complicated (see, e.g., Section 6.3).

Let X1, . . . ,Xn be a sample of size n from the distribution P on the manifold
M and let P̃n denote the empirical distribution. Then t̃n = T (P̃n) is the empiri-
cal analogue of T (P ) in Rs and π(T (P̃n)) is the empirical analogue of π(T (P ))

located on the manifold. In case T (P ) = T1(P ) = EX, one has T1(P̃n) = X̄n =
1/n

∑n
i=1 Xi , with π(T1(P )) and π(T1(P̃n)) being the mean location and sample

mean location on the manifold, respectively. The asymptotic statistical inference
for this functional is considered in [6, 7]. The concept of mean direction coin-
cides with our concept of mean location when the manifold in question is the unit
sphere. In [8] and [1], this situation is studied without any symmetry condition
on the probability distributions. The present article deals with arbitrary compact
submanifolds of Rs . This may seem restrictive, but any compact manifold can be
embedded in Rs for some s. For example, submanifolds of projective space RP k

can be embedded in Euclidean space using Veronese embedding (see [2]). Beran
and Fisher [1] also consider the concept of mean axis, which would be within the
realm of our approach, given such an embedding of the projective space of dimen-
sion 2 into Euclidean space. In [2], the consistency of sample mean location as an
estimator of mean location is investigated in the more general context of intrinsic
and extrinsic means.

For the case of T (P ) = T2(P ), that is, the spatial median, π(T2(P )) and
π(T2(P̃n)) can be considered as median location and sample median location on
the manifold M in the sense of Ducharme and Milasevic [4], who considered these
concepts and developed some asymptotics for the case of a sphere.
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In this paper, we propose a general approach which allows one to study the
asymptotic statistical inference for both mean location and median location func-
tionals, together with many others. The underlying distribution P is allowed to
depend on sample size n. Moreover, we do not require observations to be iden-
tically distributed. This essentially widens the framework of the applications, for
instance to the multisample setup considered in Section 7.2. We do not even re-
quire that a sample consist of independent observations. Generally speaking, we
do not require an underlying sample at all, only a sequence of statistics t̃n satisfy-
ing a suitable limit theorem. We found that the limit distribution does not need to
be multivariate normal, but in our analysis, it needs to be spherically symmetric.
Finally, one of the main issues of the paper is the investigation of the question as to
how fast in n the spatial functional is allowed to approach the cutlocus if the con-
vergence properties are still to hold. We supply an example clarifying the possible
speed of approach. This will be stated in Section 2 and proved in Sections 4 and 5.
In our results, we will make use of the idea of stabilization introduced in [7]. Sec-
tion 3 is devoted to geometric properties of the projection mapping π . In Section 6,
the general results are illustrated for the sphere. In fact, they generalize the results
of Hendriks, Landsman and Ruymgaart [8] and Ducharme and Milasevic [4]. In
this section, the effect of the stabilization term is demonstrated. Section 6.3 pro-
vides a brief review of the ingredients of the main theorems for Stiefel manifolds.
Section 7 is devoted to application of the main results.

We will use the following notation: For t ∈ Rs and a closed subset C ⊂ Rs ,
d(t,C) denotes the minimal Euclidean distance between t and points of C. In par-
ticular, for C = {x}, we have d(t,C) = d(t, x) = ‖t − x‖. The norm ‖B‖ of a
matrix B will be the standard operator norm of linear transformation associated
with matrix B; see, for example, [11], Chapter 7, Section 4, Equation (2). Given a
symmetric positive definite matrix B , its square root B1/2 is the unique symmet-
ric positive definite matrix with the property that B1/2B1/2 = B . For a sequence
of matrices Bn, Bn → B denotes convergence in operator norm or, equivalently,

coefficientwise convergence. The notation Zn
D→ Z denotes convergence in distri-

bution of random variables Zn to Z and X
D= Y denotes equality in distribution of

random variables. The notation Zn
P→ Z denotes convergence in probability. This

is used with Z = 0, in which case we may also write Zn = oP(1).

2. Main results.

2.1. General setup. We consider the situation where a compact m-dimensional
submanifold M (without boundary) of Rs is given. Let π : Rs\C → M be the
nearest-point mapping, where C is the cutlocus, as defined in Section 1. Note that
the cutlocus is a closed subset of Rs .

Let tn ∈ Rs be a sequence of spatial characteristics and t̃n ∈ Rs be random vec-
tors which we consider as estimators of tn, in the sense that

Zn = B−1
n (t̃n − tn)

D→ Z as n → ∞,(2.1)
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where Z is some random vector in Rs and the Bn are nonsingular s × s ma-
trices such that Bn → 0 for n → ∞. In particular, it follows from (2.1) that

‖t̃n − tn‖ P→ 0. Denote µn = π(tn), µ̃n = π(t̃n).

REMARK 2.1. A simple situation is that an i.i.d. sample X1, . . . ,Xn, is given
where X1 is distributed with probability measure Pn on Rs (not necessarily related
to the manifold M). Associated with the distribution Pn is some characteristic
tn = T (Pn) ∈ Rs , and we are interested in the “manifold part” µn = π(tn) of it.
Furthermore one may define t̃n = T (P̃n), where P̃n denotes the empirical distribu-
tion. If Pn = P, then tn = t,µn = µ, that is, they do not depend on n. This simpler,
but important, specialization will be considered in the next subsection.

THEOREM 2.1. Suppose tn /∈ C and d(tn,M) ≤ D for some D > 0. If

Bn/d(tn,C) → 0,(2.2)

then ‖µ̃n − µn‖ P→ 0.

DEFINITION 2.1. Recall that a distribution Z is called spherical (see [5])

if for any orthogonal matrix H ∈ O(s), HZ
D= Z.

The most common example of a spherical distribution is the multivariate stan-
dard normal distribution.

REMARK 2.2. Note that for spherical Z and any r × s matrices A and B such

that AAT = BBT , we have the equality AZ
D= BZ. This follows from property

that the characteristic function fZ(t) of Z is a function of ‖t‖.

Let TµM and NµM = (TµM)⊥ be the tangent and normal spaces of M, respec-
tively, at the point µ ∈ M , considered as linear subspaces of Rs . Let tanµ(·) and
norµ(·) = (Is − tanµ)(·) denote the orthogonal projections onto TµM and NµM,
respectively. Here, Is denotes the identity mapping of Rs . The s × s matrix-valued
mapping M � µ �→ tanµ ∈ Mat(s, s) is smooth since it can be expressed locally in
terms of m smooth, independent tangent vector fields along M. Thus, µ �→ norµ is
also smooth (cf. [9], pages 1–15).

REMARK 2.3. For spherically distributed Z = (Z1, . . . ,Zs) ∈ Rs , the distrib-

ution of ZT tanµZ
D= ∑m

i=1 Z2
i and consequently does not depend on µ. This can

be seen as follows. Given µ ∈ M, there exists an orthogonal matrix H such that
tanµ = HT Is,mH , where Is,m is a diagonal matrix, the first m diagonal elements
of which are ones and the others zeros. Because of spherical symmetry, we have

ZT tanµZ = ZT HT Is,mHZ
D= ZT Is,mZ =

m∑
i=1

Z2
i .
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We will call its distribution ζ 2
m, where m = dim(M). Recall that for the stan-

dard multivariate normal distribution Z, this distribution coincides with the χ2
m-

distribution.

Recall that any normal vector vµ ∈ NµM determines a linear map, the Wein-
garten mapping ([9], pages 13–15), given by

Avµ : TµM → TµM : Avµ(wµ) = −tanµ(Dwµ(v)),(2.3)

where v : M → IRk is any smooth mapping such that v(α) ∈ NαM for all α ∈
M and such that v(µ) = vµ (e.g., v(α) = norα(vµ)). Dwµ(·) denotes coordinate-
wise differentiation with respect to the direction wµ ∈ TµM ⊂ Rs . Both tanµ and
the Weingarten mapping Avµ are self-adjoint with respect to the Euclidean inner
product and are therefore represented by symmetric s × s matrices.

Let Idµ stand for the identity mapping of TµM. In [6] it was shown that the
derivative of the projection π has the form

π ′(t) = (Idµ − At−µ)−1tanµ,(2.4)

where At−µ is the Weingarten mapping corresponding to the normal vector t − µ

and where µ = π(t). Define

Gn = (Idµn − Atn−µn)tanµn + norµn = Is − Atn−µn tanµn(2.5)

so that in particular, Gnπ
′(tn) = tanµn . Note that Gn is a symmetric matrix.

THEOREM 2.2. In addition to the assumptions in Theorem 2.1, let �n be a
sequence of s × s matrices such that

‖�n‖‖Bn‖2/d(tn,C)2 → 0.(2.6)

Then

1. �nGn(µ̃n − µn) − (�ntanµnBn)Zn
P→ 0.

Furthermore, suppose that the limit distribution Z in (2.1) is spherical and let the
matrix �n be chosen such that

�ntanµnBnB
T
n tanµn�

T
n = tanµn.(2.7)

2. Suppose that µn → µ for some µ ∈ M. Then

�nGn(µ̃n − µn) = (�ntanµnBn)Zn + oP(1)
D→ tanµZ.

3. Without any restriction on µn we have

(µ̃n − µn)
T Gn�

T
n �nGn(µ̃n − µn)

D→ ζ 2
m.(2.8)
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REMARK 2.4. Note that �n is not uniquely defined by condition (2.7). Some-
times it is convenient to choose �n such that it commutes with the projection tanµn

as this implies that �n maps tangent vectors to tangent vectors and normal vec-
tors to normal vectors. For example, �n = (a−2

n norµn + tanµnBnB
T
n tanµn)

−1/2 for
some suitable sequence an. In this vein, �n is an invertible mapping, implying
that in Theorem 2.2, item 3, Gn�n�

T
n Gn represents a symmetric positive definite

matrix.

With respect to Gn and the choice of �n in Remark 2.4, note that adding the
normal part makes the linear transformations invertible and leads to confidence
regions which are intersections of an ellipsoid with the manifold. Leaving Gn and
�n degenerate (Gn and �n are nondegenerate on TµnM) does not allow one to
control normal directions and leads to a confidence region which is the intersection
of a cylinder with the manifold, typically consisting of several disjoint pieces of the
manifold. This adding of the normal part we call stabilization. Another important
role of stabilization, in the two-sample problem, is noted in [7], Remarks 1 and 5.

REMARK 2.5. In an application where Gn and �n are not known, we suggest
replacing them with their values corresponding to the empirical values t̃n, µ̃n of
tn,µn (cf. [7]). In the same vein, instead of the transformations Bn, some consistent

estimator B̃n of Bn, in the sense that B−1
n B̃n

P→ Is , could be used.

COROLLARY 2.1. In case Bn = a−1
n V 1/2, where an is some sequence such

that an → ∞ and V is a positive definite matrix, condition (2.2) of Theorem 2.1
simplifies to

and(tn,C) → ∞.(2.9)

Taking �n = an(norµn + tanµnV tanµn)
−1/2, condition (2.6) of Theorem 2.2 sim-

plifies to and(tn,C)2 → ∞.
The conclusions remain true under the weaker assumption that Bn = a−1

n V
1/2
n ,

where V ∗ ≤ Vn ≤ V ∗∗, n = 1,2, . . . , and matrices Vn,V
∗,V ∗∗ are positive defi-

nite.

2.2. Underlying probability P does not depend on n. In this section, we re-
turn to the situation described in Remark 2.1. Suppose that neither the probability
measure Pn on the manifold nor the functional Tn depends on n, that is, Pn = P

and Tn = T , so tn = Tn(Pn) = T (P ) = t does not depend on n. Then the state-
ments of Theorems 2.1 and 2.2 can be simplified. In fact, condition (2.2) is a
consequence of the condition t /∈ C. In case Bn = a−1

n V 1/2, where an is some
sequence such that an → ∞ and V is a positive definite matrix, �n can be cho-
sen as �n = an(norµn + tanµnV tanµn)

−1/2 and condition (2.6) of Theorem 2.2
automatically holds.
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THEOREM 2.3. Suppose that t /∈ C and

Zn = anV
−1/2(t̃n − t)

D→ Z as an → ∞,(2.10)

where Z is some random vector in Rs . Then:

1. ‖µ̃n − µ‖ P→ 0.

Furthermore, suppose that the limit distribution Z in (2.10) is spherical. Then

2. an(norµ + tanµV tanµ)−1/2Gn(µ̃n − µ) =
((norµ + tanµV tanµ)−1/2tanµV −1/2)Zn + oP(1)

D→ tanµZ and

3. a2
n(µ̃n −µ)T Gn(norµ + tanµV tanµ)−1Gn(µ̃n −µ)

D→ ζ 2
m, where the limit

distribution ζ 2
m does not depend on µ, that is, is standard (see Remark 2.3).

If the covariance of the distribution P exists, and t = T1(P ) is the expected
vector of P and t̃n = T1(P̃n) is the sample mean vector, then one can choose an =√

n and ζ 2
m will be the χ2

m distribution. In Section 7, we exhibit a case with a
different choice of an and ζ 2

m.

3. Geometry. In this section, we collect the necessary results concerning the
projection mapping π .

LEMMA 3.1. Let t /∈ C. Then

‖π ′(t)‖ ≤ d(t,M)

d(t,C)
+ 1.

Note that the inequality is sharp in the case where M is the sphere Sm and t lies
in its convex hull, the unit ball Dm+1.

PROOF. Consider t /∈ C and let λ = 0 be the largest eigenvalue (in absolute
value) of the symmetric linear transformation π ′(t). Let π(t) = µ. From (2.4) it
follows that (λ − 1)λ−1 is an eigenvalue of At−µ. But the Weingarten mapping
At−µ depends linearly on t − µ, as long as t − µ ⊥ TµM. By looking at the
path tα = α(t − µ) + µ, with α running from 1 to λ(λ − 1)−1, we see that the
largest eigenvalue of (Idµ − Atα−µ)−1tanµ runs from λ to ∞. Therefore, if it is
not the case that tα ∈ C for some α strictly between 1 and λ(λ − 1)−1, then it is
so for α = α1 = λ/(λ − 1). Therefore, d(t,C) ≤ ‖tα1 − t‖ = ‖(α1 − 1)(t − µ)‖ =
|λ − 1|−1d(t,M). From this, it follows that |λ| ≤ 1 + d(t,M)/d(t,C). �

We state one more lemma, giving the differentiability of the tangential projec-
tions and the Weingarten mapping.
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LEMMA 3.2. The mapping M � µ → tanµ is C∞-differentiable in µ. Its val-
ues are symmetric s × s matrices. The Weingarten mapping

Rs × M � (ξ,µ) → Aξ−tanµξ tanµ

is C∞-differentiable on (ξ,µ). Its dependence on ξ for any fixed µ is linear. Its
values are symmetric s × s matrices.

Note that the Weingarten mapping Aν in some tangent space TµM is only de-
fined for ν ⊥ TµM. This is the reason why ξ appears in the form ξ − tanµξ =
norµ(ξ) in the above formula. The proof can be based on the ideas given in Sec-
tion 2.1.

The next lemma concerns the preimages of the mapping π . It is required for the
treatment of multisample data.

LEMMA 3.3. Suppose that t0, t1 /∈ C and π(t0) = π(t1) = µ ∈ M. Let α ∈
[0,1]. Then tα = (1 − α)t0 + αt1 /∈ C and π(tα) = µ. In other words, π−1{µ}\C
is convex.

PROOF. First we show that there exists a unique point on M closest to tα and
that it is the point µ. Let x ∈ M. A plane geometric calculation involving two
applications of the cosine rule reveals that

‖tα − x‖2 = α‖t1 − x‖2 + (1 − α)‖t0 − x‖2 − ‖tα − t1‖ · ‖tα − t0‖.(3.1)

This would be minimal if both ‖t0 − x‖ and ‖t1 − x‖ were minimal, but this is
the case precisely for x = µ. Thus, ‖tα − x‖ reaches its minimum at the unique
point x = µ. We still need to show that the function M � x → Ltα(x) = ‖tα − x‖2

has a nondegenerate second derivative at µ. Equation (3.1) states that Ltα =
(1 − α)Lt0 + αLt1 up to a constant term. For a real-valued function f on M, let
df (x) denote the differential of f at the point x. This means that df (x) ∈ T ∗

x M
is the dual vector, mapping any tangent vector v ∈ TxM to the derivative of f

in the direction v. For a stationary point µ ∈ M, that is, a point µ satisfying
df (µ) = 0, the Hessian Hf is defined as a symmetric bilinear form on TµM (see
[15], pages 4–5). Since dLtα = (1−α)dLt0 +αdLt1 at any point x ∈ M, it follows
that HLtα = (1 −α)HLt0 +αHLt1 at the stationary point µ. Since HLtα is positive
definite for α = 0 and α = 1, it follows that it is positive definite for any 0 ≤ α ≤ 1.
Together with the uniqueness of the nearest point, this means that tα /∈ C. �

4. Convergence in probability: Proof of Theorem 2.1.

PROOF OF THEOREM 2.1. First, note that for any differentiable function f

(real-, vector- or matrix-valued), the following formula holds:

f (y) − f (x) =
∫ 1

0
f ′(x + θ(y − x)

)
(y − x)dθ.(4.1)
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Applying this formula to the vector-valued function π(·), we obtain

µ̃n − µn =
∫ 1

0
π ′(tn + θ(t̃n − tn)

)
(t̃n − tn) dθ

=
∫ 1

0
π ′(tnθ )(t̃n − tn) dθ

(4.2)

with tnθ = tn + θ(t̃n − tn).
There now follows an ingenious argument, which simplifies a tedious calcula-

tion to an application of the continuous mapping theorem. Consider the event

Fn = {d(t̃n, tn) ≤ d(tn,C)/2}.(4.3)

Note that from assumption (2.1), t̃n − tn = d(tn,C)d(tn,C)−1BnZn, where

Zn
D→ Z, and that because of assumption (2.2), d(tn,C)−1Bn → 0, so

d(tn,C)−1BnZn
P→ 0 and consequently,

P(Fn) ≥ P
(‖d(tn,C)−1BnZn‖ ≤ 1/2

) → 1.(4.4)

In the event Fn, we have

d(tnθ ,C) ≥ d(tn,C) − d(tn, tnθ )

≥ d(tn,C) − d(tn, t̃n)

≥ d(tn,C) − d(tn,C)/2 ≥ d(tn,C)/2.

In particular, tnθ /∈ C and from Lemma 3.1,

‖π ′(tnθ )‖1Fn ≤ d(tnθ ,M)

d(tnθ ,C)
+ 1

≤ d(tn,M) + d(tn,C)/2

d(tn,C)/2
+ 1(4.5)

≤ 2
d(tn,M)

d(tn,C)
+ 2.

LEMMA 4.1. Suppose P(Fn) → 1. Then the following holds. If 1FnXn
D→ U ,

then Xn
D→ U (special case: if 1FnXn

P→0, then Xn
P→ 0).

PROOF. |P{Xn ≤ u} − P{1FnXn ≤ u)}| ≤ P(F c
n ) = 1 − P(Fn) → 0. �

Since from (4.5) we have

sup
t̃n

∥∥∥∥1Fn

∫ 1

0
π ′(tnθ )Bn dθ

∥∥∥∥ ≤
(

2
d(tn,M)

d(tn,C)
+ 2

)
‖Bn‖ → 0,
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Equation (4.4), together with Lemma 4.1, yields∫ 1

0
π ′(tnθ )Bn dθ

P→ 0.

Moreover, from condition (2.1) we have Zn
D→ Z and (4.2) can be rewritten as

µ̃n − µn =
∫ 1

0
π ′(tnθ )Bn dθ Zn.

Hence, by the continuous mapping theorem,

µ̃n − µn
P→ 0 or, equivalently, ‖µ̃n − µn‖ P→ 0.

Thus, Theorem 2.1 is proved. �

5. Limit law: Proof of Theorem 2.2. Let NM = {(µ, ξ) ∈ Rs × Rs | µ ∈
M, ξ ⊥ TµM} be the normal bundle of M in Rs and let G : NM → Mat(s, s)
be the s × s matrix-valued mapping defined by G(µ, ξ) = (Is − Aξ tanµ), where
Aξ denotes the Weingarten mapping (see (2.3)). Thus, G(π(t), t − π(t)) π ′(t) =
tanπ(t). Most importantly, G is a smooth mapping and ξ �→ G(µ, ξ) is an affine
mapping for every µ ∈ M (see Lemma 3.2).

In particular, since M is compact, there exists a constant K such that for all
(µ, ξ), (µ′, ξ ′) ∈ NM, we have the inequality

‖G(µ, ξ) − G(µ′, ξ ′)‖ ≤ K
(‖µ − µ′‖ + ‖(µ + ξ) − (µ′ + ξ ′)‖)

.(5.1)

Note that Gn = G(π(tn), tn − π(tn)). Also, the mapping M � µ → tanµ is smooth
(Lemma 3.2) and because of the compactness of M, there exists a constant K1
such that for all µ,µ′ ∈ M, we have the inequality

‖tanµ − tanµ′‖ ≤ K1‖µ − µ′‖.(5.2)

As in the proof of Theorem 2.1, let Fn be the event defined in (4.3). From (4.2)
and (4.5), we obtain, for some K2,

d(µ̃n,µn)1Fn =
∥∥∥∥
∫ 1

0
π ′(tnθ )1Fn dθ (t̃n − tn)

∥∥∥∥
=

∥∥∥∥
∫ 1

0
π ′(tnθ )1FnBn dθ Zn

∥∥∥∥(5.3)

≤ K2‖Bn‖
d(tn,C)

‖Zn‖.

We are going to show that �nGn(µ̃n − µn) − �ntanµnBnZn
P→ 0. Let us start

from the identity

µ̃n − µn − π ′(tn)(t̃n − tn) =
∫ 1

0

(
π ′(tnθ ) − π ′(tn)

)
(t̃n − tn) dθ

=
∫ 1

0

(
π ′(tnθ ) − π ′(tn)

)
dθ BnZn.

(5.4)
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Then
�nGn(µ̃n − µn) − �ntanµnBnZn = �nGn

(
µ̃n − µn − π ′(tn)(t̃n − tn)

)
= �n

∫ 1

0
Gn

(
π ′(tnθ )−π ′(tn)

)
dθ BnZn.

(5.5)

Let µnθ = π(tnθ ) and Gnθ = G(π(tnθ ), tnθ − π(tnθ )) = G(µnθ , tnθ − µnθ). Then

�nGn

(
π ′(tnθ ) − π ′(tn)

)
Bn = �n(Gn − Gnθ)π

′(tnθ )Bn

+ �n(tanµnθ − tanµn)Bn.
(5.6)

Using (4.5), (5.1), (5.2) and an obvious extension of the upper bound (5.3) to
d(µnθ ,µn) (which is applicable since in the event Fn, the inequality d(tnθ , tn) ≤
d(tn,C)/2 also holds), and taking into account the fact that

‖tnθ − tn‖ = ‖θ(t̃n − tn)‖ ≤ ‖Bn‖‖B−1
n (t̃n − tn)‖ = ‖Bn‖‖Zn‖

in Fn, we obtain the bound

‖(Gn − Gnθ)π
′(tnθ )‖ ≤ 2K(‖µnθ − µn‖ + ‖tnθ − tn‖)d(tn,M) + d(tn,C)

d(tn,C)

≤ 2K

(
‖Bn‖‖Zn‖ + K2‖Bn‖

d(tn,C)
‖Zn‖

)
d(tn,M) + d(tn,C)

d(tn,C)
(5.7)

≤ 2K

(
1 + K2

d(tn,C)

)
‖Bn‖d(tn,M) + d(tn,C)

d(tn,C)
‖Zn‖.

We see that ‖�n(Gn − Gnθ)π
′(tnθ )Bn‖ P→ 0 if ‖�n‖‖Bn‖2/d(tn,C)2 → 0. More-

over, we have

‖�n(tanµnθ − tanµn)Bn‖ ≤ ‖�n‖‖Bn‖K1
K2‖Bn‖
d(tn,C)

‖Zn‖,(5.8)

so that ‖�n(tanµnθ − tanµn)Bn‖ P→ 0 if ‖�n‖‖Bn‖2/d(tn,C) → 0. Since the tn’s
are confined to a finite distance from the compact submanifold M, we also have
that d(tn,C) is uniformly bounded and the condition ‖�n‖‖Bn‖2/d(tn,C) → 0 is
a consequence of condition (2.6). Under this last condition, the right-hand side of
(5.6) converges to 0 in event Fn and thus the left-hand side of (5.5) converges to 0
in probability. This proves item 1 of Theorem 2.2.

For the proof of the second item, we use the fact that (�ntanµnBn) ×
(�ntanµnBn)

T = tanµn and therefore (�ntanµnBn) is uniformly (in n) bounded.

Moreover, since Z is a spherical distribution, we have �ntanµnBnZ
D= tanµnZ.

Under the condition that µn → µ, we have tanµnZ
D→ tanµZ. Then item 2 of

Theorem 2.2 is a simple consequence of the following lemma:

LEMMA 5.1. Let An (n = 1,2, . . .) be linear transformations that are uni-
formly (in n) bounded in norm and let Xn and X be random vectors. Suppose

Xn
D→ X and AnX

D→ W . Then AnXn
D→ W .
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PROOF. Let t ∈ Rs and let K = supn ‖AT
n t‖. We denote the characteristic

function of a random vector Y by fY . Then for large n, |fAnXn(t)−fAnX(t)| =
|fXn(A

T
n t) − fX(AT

n t)| ≤ sup‖s‖≤K |fXn(s) − fX(s)| ≤ ε, and for large n,
|fAnX(t) − fW(t)| ≤ ε. So, for large n, we have |fAnXn(t) − fW(t)| ≤ 2ε. This
proves the lemma. �

For the proof of item 3, we need the following:

LEMMA 5.2. Suppose that Xn (n = 1,2, . . .) and X are random vectors in Rs

such that Xn
D→ X. Let g be a continuous mapping. Suppose that An (n = 1,2, . . .)

are linear transformations, uniformly (in n) bounded and such that g(AnX)
D→ W

for all n. Then we also have g(AnXn)
D→ W .

PROOF. First, we consider the case where the sequence An converges to
some A. Then the lemma is an easy consequence of the continuous mapping the-
orem. If An is not convergent, reasoning by contradiction, suppose that for some
t , the characteristic function of g(AnXn) in t does not converge to fW(t). Then
for some ε > 0, one can construct a subsequence ni for which |fg(Ani

Xni
)(t) −

fW(t)| ≥ ε and from uniform boundedness of An, there exists a subsequence nij

for which Anij
converges. This leads to a contradiction of the first case. The lemma

is thus proved. �

From condition (2.7), it is clear that �ntanµnBn is uniformly bounded and

according to Remark 2.3, we have �ntanµnBnZ
D= ζ 2

m. The lemma then yields

‖(�ntanµnBn)Zn‖2 D→ ζ 2
m. Thus ‖�nGn(µ̃n − µn)‖2 = ‖(�ntanµnBn)Zn +

oP(1)‖2 D→ ζ 2
m. Theorem 2.2 is now proved. �

6. Spheres and stabilization; Stiefel manifolds. Note that condition (2.6) is
necessary for Theorem 2.2, even for the simplest case of the sphere. The following
example shows this in the case of a circle and deterministic Zn. Recall that in
the case of a sphere, M = Ss−1 = {x ∈ Rs | ‖x‖ = 1}, C ={0} (the origin), π(t) =
‖t‖−1t (t /∈ C), π ′(t) = ‖t‖−1tanπ(t) and Gn = ‖tn‖tanµn +(Is − tanµn); see [8, 7].

6.1. Example of necessity of condition (2.6). Suppose that M = S1 ⊂ R2.
Let an,un ≥ 0 be such that an → ∞ and anun → ∞ and let tn = (un,0) and
t̃n = (un, a

−1
n ), Bn = a−1

n be such that condition (2.2) holds. Note that Zn =
an(t̃n − tn) = (0,1) = Z. Also, µn = µ = (1,0), µ̃n = (u2

n + a−2
n )−1/2

(un, a
−1
n ) and Gn = untanµ + (Is − tanµ). Taking �n as in Corollary 2.1, we
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have �n = an. We find that

�nGn(µ̃n − µ) = an

(
un

(u2
n + a−2

n )1/2
− 1,

una
−1
n

(u2
n + a−2

n )1/2

)

=
(
an

(
un

(u2
n + a−2

n )1/2
− 1

)
,

un

(u2
n + a−2

n )1/2

)
.

This should converge to tanµZ = (0,1). The second, tangential coordinate does
have the correct limit, namely

un

(u2
n + a−2

n )1/2
− 1 = 1

(1 + (anun)−2)1/2 − 1 ≈ −1

2
(anun)

−2 → 0,

but the first, normal coordinate

an

(
un

(u2
n + a−2

n )1/2
− 1

)
≈ −1

2
an(anun)

−2 = −1

2
(anu

2
n)

−1

converges to 0 only if anu
2
n → ∞, which corresponds exactly to condition (2.6).

6.2. Relaxation of condition (2.6): Tuning the stabilization. In the above ex-
ample, we have seen that the tangential part of �nGn(µ̃n − µ) has the desired
limit behavior. The reason why the normal part does not behave appropriately,
nevertheless, is the rough stabilization term (Is − tanµn) of Gn. We may modify
Gn to Gn = (Idµn −Atn−µn)tanµn +εn(Is − tanµn), where εn is chosen sufficiently
small, in order that condition (2.6) can be relaxed in the case of a sphere. It should
be noted that the sphere is the only case known to us where such an improvement
is possible. Even in the case of a noncircular ellipse, considered as a submanifold
of the plane, with the cutlocus corresponding to the line segment connecting the
focal points (see [6]), condition (2.6) cannot be relaxed by modifications of Gn or
�n in the normal directions.

THEOREM 6.1. Let M = Ss−1. The conclusions of Theorem 2.2 hold, even
when condition (2.6) is relaxed to

‖�n‖‖Bn‖2/d(tn,C) → 0,(6.1)

if Gn is replaced by the operator

Gn = (Idµn − Atn−µn)tanµn + εn(Is − tanµn) = ‖tn‖tanµn + εn(Is − tanµn),

where εn = O(‖tn‖). In particular, one can take εn = ‖tn‖. Then

Gn = ‖tn‖Is .(6.2)
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COROLLARY 6.1. In the case where Bn = a−1
n V 1/2 and �n is as in Corol-

lary 2.1, that is, �n = an(norµn + tanµnV tanµn)
−1/2, condition (6.1) coincides

with the first condition (2.9) of Corollary 2.1, namely and(tn,C) → ∞.
The conclusions remain true under the weaker assumption that Bn = a−1

n V
1/2
n ,

where V ∗ ≤ Vn ≤ V ∗∗, n = 1,2, . . . , and matrices Vn,V
∗,V ∗∗ are positive defi-

nite.

COROLLARY 6.2. In the case where the distribution of t̃n is rotationally sym-
metric about direction µn, t̃n can be represented in the form

t̃n = µnu + vξ,

where ξ is uniformly distributed on the equator of the sphere, perpendicular to
µn and independent of random variables u and v. Then if Bn = V(t̃n)

1/2, where
V(·) is the covariance matrix of (·), it can be represented as Bn = √

γnµnµ
T
n +√

βn(Is − µnµ
T
n ), where γn = V(µT

n t̃n) and βn = E(‖t̃n‖2 − (µT
n t̃n)

2)/(s − 1)

(cf. [20], page 92). Moreover, �n can be chosen as �n = β
−1/2
n Is provided

max(γnβ
−1/2
n ,β

1/2
n )/‖tn‖ → 0.

This happens if

t̃n = arg inf
t∈Rs

1

n

n∑
i=1

ρ(‖Xi − t‖),

where ρ is some loss function and X1, . . . ,Xn constitute a random sample from a
rotationally symmetric distribution about direction µn. Depending on the choice
of ρ, this is applicable, for example, to the expected vector and the spatial median.

PROOF OF THEOREM 6.1. For simplicity, we give the proof for εn = ‖tn‖.
Then Gn − Gnθ = (‖tn‖ − ‖tnθ‖)Is and therefore

‖Gn − Gnθ‖ ≤ ‖tn − tnθ‖.(6.3)

If in inequality (5.7), inequality (6.3) is used instead of (5.1), then ‖µnθ − µn‖
disappears and we obtain the improvement ‖�n(Gn − Gnθ)π

′(tnθ )Bn‖ P→ 0 if
‖�n‖‖Bn‖2/d(tn,C) → 0. This change in the proof of Theorem 2.2 immediately
leads to a proof of Theorem 6.1. �

6.3. Stiefel manifolds. We give a very brief review of the main ingredients
needed in the application of Theorems 2.1 and 2.2. More details can be found
in [7]. We consider the Stiefel manifold Vp,r (r ≤ p), understood as the sub-
manifold of the vector space of p × r matrices given by the equation µT µ = Ir .
The inner product structure for p × r matrices is given by (u, v) = Trace(uT v) =
Trace(uvT ). The cutlocus C is the set of all matrices having rank less than r . Then
for X /∈ C, that is, rank(X) = r ,

π(X) = X(XT X)−1/2
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and for the matrix µn = π(tn) ∈ Vpr , tn /∈ C,

tanµn(X) = X − 1

2
µn[µT

n X + XT µn]
and

Gn(X) = tanµn(X)µT
n tn + 1

2
µntanµn(X)T tn − 1

2
tntanµn(X)T µn

+ (
X − tanµn(X)

)
.

The following theorem makes explicit the distance between any p × r matrix and
the cutlocus:

THEOREM 6.2. Let C be the cutlocus of the Stiefel manifold Vp,r . Let t be
a p × r matrix. Then the Euclidean distance of t to C equals d(t,C) = √

λmin,
where λmin is the smallest eigenvalue of tT t .

PROOF. Note that for any p × r matrix u of rank less than r , there exists
a unit vector w ∈ Rr such that uw = 0. Given a p × r matrix t of rank r , v =
t − twwT is a rank r − 1 matrix and t − v = twwT is perpendicular to u − v.
Thus, d(t, v) ≤ d(t, u). Now, d(t, t − twwT )2 = ‖twwT ‖2 is minimal if w is the
eigenvector associated with the smallest eigenvalue λmin of tT t and then d(t, t −
twwT )2 = λmin. �

In the case of the sphere Ss−1 = Vs,1, λmin = tT t = ‖t‖2. In the general case,
a smooth lower bound for d(t,C), which is sharp in the case of the sphere, is given
by

d(t,C)2 ≥ Tr((tT t)−1)−1.

7. Applications. First, we will explain how the results of Hendriks and
Landsman [7] fit into the approach adopted in this paper. In the aforementioned
work, the starting point is a probability measure P on a compact submanifold
M of Rs and an i.i.d. sample X1, . . . ,Xn from distribution P . The investigated
functional T is expected value. Corollary 2.1 is applicable, where one may take
Pn = P , P̃n the empirical distribution of the sample, T the expected value func-
tional and, finally, an = √

n. tn = E(X) = t ∈ Rs (the Euclidean mean of P ) and
t̃n = X̄n = 1

n

∑n
i=1 Xi ∈ Rs , the sample mean. µn = π(t) and µ̃n = π(t̃n) are the

mean location and sample mean location, respectively. Of course, the spherical
distribution Z is standard multivariate normal and the ζ 2

m distribution is simply
χ2

m. Note that the approach in this paper allows for the making of inference on
µn, even for a sequence of underlying probability measures Pn depending on the
sample size n [cf. Remark 2.1], for which the Euclidean means tn may converge to
the cutlocus with a speed such that

√
nd(tn,C)2 → ∞ [for the case of a sphere,

with Gn as in Theorem 6.1, it is enough that
√

nd(tn,C) = √
n‖tn‖ → ∞].
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7.1. Median location functional. In this subsection, we explain how the results
in [4] with respect to median direction fit into our approach and can be generalized
to the situation without the rotational symmetry requirement on the distribution
of the sample, even to the situation of any compact submanifold of Rs . Even the
probability measure which generates the sample of size n may depend on n. Let P

be a probability measure on a compact submanifold M of Rs . Recall that the spatial
median in Rs is defined uniquely if the probability distribution is not supported by
a straight line (see [14]).

Let M = Ss−1 be the sphere in Rs . Then consider Corollary 2.1 with an = √
n,

Pn = P , P̃n the empirical distribution of the sample and T the spatial median
functional, that is,

T (P ) = arg inf
a∈Rs

∫
‖X − a‖dP.(7.1)

Let tn = η = T (P ), and let t̃n = T (P̃n) = η̃n be the sample spatial median. Let
µn = π(η) = η/‖η‖ = θ and µ̃n = π(η̃n) = θ̃n be the median direction and sample
median direction, respectively. Then our convergence condition (2.1) corresponds
to [4], condition (3.1), and we immediately obtain the equation (3.2) of that pa-
per from our Theorem 2.3, item 2, because an = √

n, V = C−1�C−1 and G can
be taken as G = ‖η‖Is (see (6.2)); in the case of rotationally symmetric P about
the mean direction θ , η̃n has a rotationally symmetric distribution and �n can be
taken as �n = (

√
n/

√
β)Is (see Corollary 6.2), where β is as in [4]. Then the

confidence region given in Theorem 2.2 conforms with the second confidence re-
gion of Ducharme and Milasevic [4]. Note that Theorem 2.2 gives the confidence
region without any rotational symmetry assumption. As for the first confidence
region given in [4], it has the disadvantage that if θ belongs to a confidence re-
gion, then −θ also belongs to the same confidence region, so, in fact, it consists
of two antipodal confidence regions. It suffers from the problem addressed after
Remark 2.4.

Theorem 2.2 immediately extends the results for spheres to Euclidean mani-
folds. Moreover, one can use different generalizations of spatial median function-
als, as given, for example, in [17] and [3]. The simple converging algorithm for the
derivation of spatial and related medians is given in [19].

EXAMPLE 7.1. As an illustration of the techniques, we take the sample of
size n = 14 on the circle from Ducharme and Milasevic [4] and produce the ingre-
dients and 95% confidence region without a rotational symmetry condition. Then
an = √

n, the empirical median vector η̃ = (−0.661,0.647) and the empirical me-
dian location θ̃ = (−0.715,0.699) (i.e., 135.6◦, as in loc. cit.). For V , we take its
empirical version,

Ṽ = C̃−1�̃C̃−1 =
(

0.148 0.201
0.201 0.379

)
;
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for G, we take its empirical version, G̃ = ‖η̃‖ Is = 0.925 Is . We take �n =
(
√

n/
√

β1)Is , where β1 is uniquely defined by the condition tanθV tanθ = β1tanθ

(θ denotes the median location of the distribution, for rotationally symmetric mea-
sures β1 = β with β as defined in loc. cit.), and use its empirical form �̃n =
(
√

n/

√
β̃1)Is, where β̃1 is defined by tanθ̃ Ṽ tanθ̃ = β̃1tanθ̃ , giving β̃1 = 0.467.

This leads to the confidence region (113.3◦,157.9◦), which is slightly wider than
(114.3◦,157.2◦) found in loc. cit. under rotational symmetry conditions.

7.2. Multisample setup. Suppose that we are provided with k (k fixed) inde-
pendent samples on the manifold M ⊂ Rs ,

Xi1, . . . ,Xini
, i = 1, . . . , k.(7.2)

The main feature of the multisample setup is the dependence of the underlying
distribution P on n. Denote by ai = EXi1 and �i = V(Xi1) the mean expectation
point and covariance matrix, respectively, of the ith sample, i = 1, . . . , k. Let n =∑k

i=1 ni be the total number of observations and let

tn = 1

n

k∑
i=1

niai and t̃n = X̄n = 1

n

k∑
i=1

ni∑
j=1

Xij ,

so that t̃n is the average of all the observations. Suppose that tn /∈ C and �i is
positive definite, i = 1, . . . , k. Denote

µn = π(tn) = π

(
1

n

k∑
i=1

niai

)
.

This will be considered as the mean location of the multisample data (7.2). Fur-
thermore,

µ̃n = π(X̄n)

is the sample mean location for the multisample data (7.2). Setting

Bn =
(

1

n2

k∑
i=1

ni�i

)1/2

,

we can verify that the multivariate version of the Lindeberg condition (see, for
example, [10]) holds for n → ∞ and consequently we have (2.1) with standard
multivariate Gaussian limit Z. In fact, to apply [10], we reorganize Zn in (2.1) as

Zn = Sn =
k∑

i=1

ni∑
j=1

B−1
n

(Xij − ai)

n
.

Then

V(Sn) = Is,
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where Is denotes the identity matrix. Let

λ = min
1≤i≤k

min
1≤l≤s

λil,

where λi1, . . . , λis are the eigenvalues of the positive definite matrices �i , i =
1, . . . , k, so λ > 0. Note that

B2
n ≥ n−1λIs

in the sense that B2
n − n−1λIs is nonnegative definite. Thus,

‖Bnx‖2 = xT B2
nx ≥ λn−1‖x‖2,

‖B−1
n x‖2 ≤ λ−1n‖x‖2

and

Ln(ε) =
k∑

i=1

niE‖B−1
n (Xi1 − ai)/n‖21{‖B−1

n (Xi1−ai)/n‖>ε}

≤ 1

λn

k∑
i=1

niE‖(Xi1 − ai)‖21{‖(Xi1−ai)‖>
√

nλε}

≤ 1

λ
max

1≤i≤k
E‖(Xi1 − ai)‖21{‖(Xi1−ai)‖>

√
nλε} → 0 as n → ∞.

This establishes the Lindeberg condition.

7.2.1. Confidence region. To apply Theorem 2.2 in order to clarify the asymp-
totic behavior of (µ̃n − µ), we should note that now, tn = ∑k

i=1
ni

n
ai depends on

n and may approach the cutlocus C of the manifold. If, however, condition (2.6)
(for the case of sphere condition (6.1)) holds, then from item 3 of Theorem 2.2, we
have

(µ̃n − µn)
T Gn�

T
n �nGn(µ̃n − µn)

D→ ζ 2
m,

which provides a confidence region for µn. Let us note that because Bn has the
form

Bn = 1√
n

(
k∑

i=1

αi�i

)1/2

,

where αi = ni/n, i = 1, . . . , k, and
∑k

i=1 αi = 1, we can use Corollary 2.1 and
reduce condition (2.6) to

√
nd

(
k∑

i=1

ni

n
ai,C

)2

→ ∞ as n, n1, . . . , nk → ∞.(7.3)
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As a matter of fact, (7.3) is a restriction on the behavior of ni , i = 1, . . . , k, depen-
dent on n in the situation where the cutlocus intersects the convex hull of vectors
a1, . . . , ak . For the sphere, one may use Corollary 6.1 and then the condition sim-
plifies to

√
n

√√√√√ k∑
i,j=1

ni

n

nj

n
aT
i aj → ∞.(7.4)

In the following example, we illustrate condition (7.4).

EXAMPLE 7.2. Let M = Ss−1 = {x ∈ Rs | ‖x‖ = 1}. Then C ={0} (the ori-
gin). Let k = 2 and suppose that a1 = 0 and γ1a1 + γ2a2 = 0 for some γ1 ≥ 0,
γ2 > 0. Then

tn =
(

1 + γ1

γ2

)(
n1

n
− γ1

γ1 + γ2

)
a1

and tn may approach the cutlocus if n1
n

→ γ1
γ1+γ2

. Condition (7.4), in fact, restricts
the speed of these convergences, that is, (7.4) reduces to

√
n

∣∣∣∣∣n1

n
− γ1

γ1 + γ2

∣∣∣∣∣ → ∞ as n1, n → ∞.

In particular, if a2 = 0 (a2 ∈ C), then γ1 = 0 and the condition is
n1√
n

→ ∞ as n1, n → ∞.

7.2.2. Hypothesis testing. Suppose ai /∈ C and let νi = π(ai), i = 1, . . . , k,
be the mean locations on the manifold for each sample, where we suppose that
ν1 = · · · = νk = µ1. Suppose the null hypothesis

H0 : µ1 = µ(7.5)

holds. Then from Lemma 3.3, we have

π

(
1

n

k∑
i=1

niai

)
= µ.

Moreover, this lemma says that the convex hull of a1, . . . , ak never intersects the
cutlocus. This means that in spite of the underlying distributions depending on n,
condition (7.3) holds automatically and from item 2 of Theorem 2.2, we have

�nGn(µ̃n − µ) = (�ntanµBn)Zn + oP(1)
D→ N (0, tanµ),(7.6)

while from item 3 of Theorem 2.2 we have

(µ̃n − µ)T Gn�n�nGn(µ̃n − µ)
D→ χ2

m,



128 H. HENDRIKS AND Z. LANDSMAN

which provides a test for H0.
We now address the two-sample problem. Let

Xi1, . . . ,Xini
, i = 1, . . . , k1, and Yj1, . . . , Yj�j

, j = 1, . . . , k2,

be two multisample sets of data on the manifold M having equal mean locations
within each set, that is,

ν1 = · · · = νk1 = µ1,

υ1 = · · · = υk2 = µ2.

Denote by ai = EXi1 and �i = V(Xi1) [resp. bj = EYj1 and �j = V(Yj1)] the
expectation vector and covariance matrix of the ith sample, i = 1, . . . , k1, of X-
data (resp. the j th sample, j = 1, . . . , k2, of Y -data). Let n = ∑k1

i=1 ni , � = ∑k2
i=1 �i

and

X̄n = 1

n

k1∑
i=1

ni∑
j=1

Xij , Ȳ� = 1

�

k2∑
i=1

�i∑
j=1

Yij

be numbers and averages of all X-observations and all Y -observations, respec-
tively. Then

νn = π

(
1

n

k1∑
i=1

niai

)
, υ� = π

(
1

n

k2∑
i=1

�ibi

)

and

ν̃n = π(X̄n), υ̃� = π(Ȳ�)

are mean and sample mean locations, respectively, for multisample data X and Y.

Let us show how Theorem 2.2 provides a test for the hypothesis H0 : µ1 = µ2.

Denote

tn = 1

n

k1∑
i=1

niai, u� = 1

�

k2∑
i=1

�ibi,

t̃n = X̄n, ũ� = Ȳ�

and

B1,n =
(

1

n2

k1∑
i=1

ni�i

)1/2

, B2,� =
(

1

�2

k2∑
i=1

�i�i

)1/2

.

Then the multivariate Lindeberg condition holds if n, � → ∞ and we have

Z1,n = B−1
1,n(t̃n − tn)

D→ Z1 and

Z2,� = B−1
2,� (ũ� − u�)

D→ Z2,
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where Z1 and Z2 are two independent standard s-dimensional normal distribu-
tions, N (0, Is). Let G1,n and G2,� (also �1,n and �2,�) be matrices corresponding
to X-data and Y -data and satisfying (2.5), (2.6) and (2.7). We suppose that �1,n

and �2,� are chosen to be nonsingular; G1,n and G2,� are nonsingular by definition.
Suppose the null hypothesis H0 : µ1 = µ2 holds. Then we have

ν1 = · · · = νk1 = υ1 = · · · = υk2 = µ.

From item 1 of Theorem 2.2, we have (cf. (7.6))

�1,nG1,n(ν̃n − µ) − (�1,ntanµB1,n)Z1,n
D→ 0,(7.7)

�2,�G2,�(υ̃� − µ) − (�2,�tanµB2,�)Z2,�
D→ 0.(7.8)

Denote

A1 = (�1,nG1,n)
−1, A2 = (�2,�G2,�)

−1, C = A1A
T
1 + A2A

T
2 .

The matrix C is positive definite and it follows immediately from the definition of
C that the linear transformations C−1/2Aj , j = 1,2, are uniformly bounded in n

and �, respectively. Therefore, from (7.7) and (7.8), we obtain, as n, � → ∞,

C−1/2(ν̃n − υ̃�) − C−1/2(A1�1,ntanµB1,nZ1,n − A2�2,�tanµB2,�Z2,�)
D→ 0.

As Z1 and Z2 are independent standard s-dimensional normal distributions,
N (0, Is), one can straightforwardly obtain that

C−1/2A1�1,ntanµB1,nZ1 − C−1/2A2�2,�tanµB2,�Z2
D= N(0,V),(7.9)

where, taking into account (2.7),

V = C−1/2[A1�1,ntanµB1,nB
T
1,ntanµ�T

1,nA
T
1

+ A2�2,�tanµB2,�B
T
2,�tanµ�T

2,�A
T
2 ]C−1/2

= C−1/2[A1tanµAT
1 + A2tanµAT

2 ]C−1/2.

Choosing �1,n, �2,� to commute with tanµ (see Remark 2.4), we have Ai tanµ =
tanµAi , i = 1,2, C−1/2tanµ = tanµC−1/2 and hence V = tanµ. As the coefficients
of Z1 and Z2 in (7.9) are uniformly bounded in norm [by the above and (2.7)], from

Lemma 5.2 it follows that C−1/2(ν̃n − υ̃�)
D→ N(0, tanµ) and consequently that

(ν̃n − υ̃�)
T [G−1

1,n(�
T
1,n�1,n)

−1G−1
1,n

(7.10)
+ G−1

2,�(�
T
2,��2,�)

−1G−1
2,�]−1(ν̃n − υ̃�)

D→ χ2
m.

To obtain a real test, one should substitute �1,n,�2,� and G1,n,G2,� in (7.10) with
their empirical analogues as follows (one can find more details in [7]):

B̃1,n =
(

1

n2

k1∑
i=1

ni�̃i

)1/2

, B̃2,� =
(

1

�2

k2∑
i=1

�i�̃i

)1/2

,
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�̃1,n =
(

1

n
norν̃n

+ tanν̃n
B̃1,nB̃

T
1,ntanν̃n

)−1/2

,

�̃2,� =
(

1

�
norυ̃�

+ tanυ̃�
B̃2,�B̃

T
2,�tanυ̃�

)−1/2

,

G̃1,n = Is − AX̄n−ν̃n
tanν̃n

, G̃2,� = Is − AȲ�−υ̃�
tanυ̃�

,

where �̃i , �̃r , i = 1, . . . , k1, r = 1, . . . , k2, are the sample covariance matrices
of the subsamples of X-data and Y -data, respectively. Note that the asymptotic
equation

(ν̃n − υ̃�)
T [G̃−1

1,n(�̃
T
1,n�̃1,n)

−1G̃−1
1,n + G̃−1

2,�(�̃
T
2,��̃2,�)

−1G̃−1
2,�]−1(ν̃n − υ̃�)

D→ χ2
m

provides an asymptotic test for H0 without any knowledge about the value of the
common mean location µ.

7.3. Spherically symmetric stable limit distribution. Suppose, as in Section
2.2, that the underlying probability measure Pn = P does not depend on n and
that the functional Tn = T does not depend on n. Suppose that P is a spherical
probability distribution on the whole space Rs (see Remark 2.1) and that the radial
distribution has a regularly decreasing tail. Consider, for example, for some δ > 0,
C > 0 and α ∈ (0,2), a sample X1, . . . ,Xn from the spherical distribution P ,

P {x ∈ Rs : ‖x − a‖ > r} = Cr−α, r ≥ δ,

P {x ∈ Rs : ‖x − a‖ > r} = 1, r < δ.

Then (see [18], Section 7.5) limit condition (2.10) holds with t = a, t̃n = X̄n,
an = n1−1/α and V = 1

4(
C�(s/2)�(1−α/2)

�((s+α)/2)
)2/αIs , and the limit distribution Z has

the characteristic function fZ(t) = exp(−‖t‖α) (t ∈ Rs), that is, Z has a spheri-
cally symmetric stable distribution (see also [5], Section 3.5). Theorem 2.3 holds
and asymptotic confidence regions are obtained, where ζ 2

m (which is not the classi-
cal χ2

m distribution) has a distribution that does not depend on µ (see Remark 2.3).
Moreover, the distribution of (Z1, . . . ,Zm) has characteristic function exp(−‖t‖α)

(t ∈ Rm) and ζ 2
m

D= ∑m
i=1 Z2

i . Nolan [16] gives several representations for the den-

sity of ζm =
√

ζ 2
m. One of them, based on [21], equation (6), yields an expression

for the density of ζ 2
m,

gζ 2
m
(s2) = 1

2m/2�(m
2 )s

∫ ∞
0

(su)m/2Jm/2−1(su) exp(−uα)du,

which can be tabulated (Jp is the Bessel function of order p). In case α = 1, Z is
just a multivariate Cauchy distribution; explicit analytic expressions can be found
in [16].
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