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ASYMPTOTICS FOR SLICED AVERAGE VARIANCE ESTIMATION1

BY YINGXING LI AND LI-XING ZHU

Cornell University and Hong Kong Baptist University

In this paper, we systematically study the consistency of sliced average
variance estimation (SAVE). The findings reveal that when the response is
continuous, the asymptotic behavior of SAVE is rather different from that of
sliced inverse regression (SIR). SIR can achieve

√
n consistency even when

each slice contains only two data points. However, SAVE cannot be
√

n con-
sistent and it even turns out to be not consistent when each slice contains a
fixed number of data points that do not depend on n, where n is the sam-
ple size. These results theoretically confirm the notion that SAVE is more
sensitive to the number of slices than SIR. Taking this into account, a bias
correction is recommended in order to allow SAVE to be

√
n consistent. In

contrast, when the response is discrete and takes finite values,
√

n consistency
can be achieved. Therefore, an approximation through discretization, which
is commonly used in practice, is studied. A simulation study is carried out for
the purposes of illustration.

1. Introduction. Dimension reduction has become one of the most impor-
tant issues in regression analysis because of its importance in dealing with prob-
lems with high-dimensional data. Let Y and x = (x1, . . . , xp)T be the response
and p-dimensional covariate, respectively. In the literature, when Y depends on
x = (x1, . . . , xp)T through a few linear combinations BT x of x , where B =
(β1, . . . , βk), there are several proposed methods for estimating the projection di-
rections B/space that is spanned by B , such as projection pursuit regression (PPR)
[11], the alternating conditional expectation (ACE) method [1], principal Hessian
directions (pHd) [17], minimum average variance estimation (MAVE) [23], iter-
ated pHd [7] and profile least-squares estimation [10]. All of these methods esti-
mate the projection directions B or the subspace that is spanned by B when B is
contained within the mean regression function.

For more general models in which some βi are in the variance component of the
model, two estimation methods—sliced inverse regression (SIR) [16] and sliced
average variance estimation (SAVE) [5, 9]—have received much attention. SIR is
based on the estimation of the conditional mean and SAVE on the estimation of
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the conditional variance function of the covariates given the response, the inverse
regression. The aim of these two methods is to estimate the central dimension re-
duction (CDR) space that is defined as follows. Suppose that Y is independent
of x , given BT x , which is written as Y ⊥⊥ x|BT x , where ⊥⊥ stands for indepen-
dence and B = (β1, . . . , βk) is an unknown p×k matrix, the columns of which are
of unit length under the Euclidean norm and mutually orthogonal. A dimension re-
duction subspace is defined as the space that is spanned by the column vectors of B

and a CDR subspace is the intersection of all of the dimension reduction subspaces
that satisfy conditional independence (see [3, 4]). The CDR subspace is still a di-
mension reduction subspace with the notation Sy|x under certain regularity con-

ditions. SIR and SAVE are used to estimate Sy|x . If we let z = �
−1/2
x (x − E(x))

be the standardized covariate, then Sy|z = �
1/2
x Sy|x (see [4] for details). Hence,

the estimation can be carried out equivalently for the pair of variables (y, z). For
convenience, we first use the standardized variable z to study the asymptotic be-
havior. In practice, the sample covariance matrix and the sample mean must be
estimated and thus the results involving the estimated covariate ẑ = �̂

−1/2
x (x − x̄)

will be reported as corollaries, where �̂x and x̄ are the sample covariance matrix
and sample mean of the xi ’s, respectively.

Denote the inverse regression function by E(z|Y = y) and the conditional co-
variance of z given y by �z|y := E((z − E(z|Y ))(z − E(z|Y))T |Y = y). SIR esti-
mates the CDR subspace via the eigenvectors that are associated with the nonzero
eigenvalues of the covariance matrix Cov(E(z|Y)); SAVE estimates it via the
eigenvectors that are associated with the nonzero eigenvalues of the covariance
matrix E((Ip − �z|Y )(Ip − �z|Y )T ). For SIR estimation, we need the linearity
condition

E(z|PSy|zz) = PSy|zz.(1.1)

For SAVE estimation we also assume that

Cov(z|PSy|zz) = Ip − PSy|z ,(1.2)

where P(·) stands for the projection operator with respect to the standard inner
product.

It is worth pointing out that the study of SAVE should receive more attention,
as several papers have revealed that SAVE is more comprehensive than SIR: under
regularity conditions, the CDR space of SAVE actually contains that of SIR (see
[6, 24]). In particular, SIR will fail to work in symmetric regressions with y =
f (BT x) + ε, where f is a symmetric function of the argument BT x . Therefore,
theoretically, SAVE should be a more powerful method than SIR under regularity
conditions to estimate the CDR space.

Clearly, the primary aim is to estimate either Cov(E(z|Y)) or E[(Ip − �z|Y ) ×
(Ip − �z|Y )T ]. Li [16] proposed a slicing estimation that involves a very simple
and easily implemented algorithm to estimate the inverse regression function, in
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which the slicing estimator is the weighted sum of the sample covariances of zi’s
in each slice of yi ’s. He also demonstrated, by means of a simulation, that the
performance of the slicing estimator is not sensitive to the choice of the number
of slices. Zhu and Ng [27] provided a theoretical background for Li’s empirical
study and proved that

√
n consistency and asymptotic normality hold provided the

number of slices is within the range
√

n to n/2. In other words,
√

n consistency can
be ensured when each slice contains a number of points between 2 and

√
n. The

only thing that is affected by different numbers of slices is the asymptotic variance
of the estimator. A relevant reference is Zhu, Miao and Peng [26]. These results are
somewhat surprising from the viewpoint of nonparametric estimation. Note that,
accordingly, the number of slices is similar to a tuning parameter such as, say, the
bin width in a histogram estimator or, more generally, the bandwidth in a kernel
estimator. We can regard a kernel estimator as a smoothed version of the slicing
estimator with moving windows. However, as we know, to ensure

√
n consistency

of the kernel estimator, the bandwidth selection must be undertaken with care.
Zhu and Fang [25] proved the asymptotic normality of the kernel estimator of SIR
when the bandwidth is selected in the range n−1/2 to n−1/4, which means that in
probability, each window must have nδ points for some δ > 0. Therefore, for SIR,
Li’s slicing estimation has the advantage that a less smoothed estimator is even
less sensitive to the tuning parameter.

The problem of whether SAVE has similar properties to SIR is then of great
interest. Empirical studies have examined this and there is a general feeling that
SAVE may be more sensitive to the choice of the number of slices than SIR. Cook
[5] mentioned that the number of slices plays the role of tuning parameter and thus
SAVE may be affected by this choice. The empirical study of Zhu, Ohtaki and Li
[28] was consistent with the sensitivity of SAVE to the selection of the number
of slices, but no theoretical results have been produced to show why and how the
number of slices affects the performance of SAVE.

In this paper, we present a systematic study of this problem and obtain the fol-
lowing results.

1. When Y is discrete and takes a finite value, SAVE is able to achieve
√

n con-
sistency.

2. For continuous Y , the convergence of SAVE is almost completely different from
that of SIR. Let c denote the number of data points in each slice. When c is a
fixed constant, SAVE is not consistent. When c ∼ nb with b > 0, although the
estimator for SAVE is consistent, it cannot be

√
n consistent.

3. A bias correction is proposed to allow the SAVE estimator to be
√

n consis-
tent. Since in practice, the discretized approximation is commonly used in the
literature, we present asymptotic normality in a general setting.

Note that Cook and Ni ([8], Section 7) investigated the asymptotic behavior of
the slicing estimator of the SAVE matrix and reported a result that is relevant to
Theorem 2.3 in this paper. Another relevant paper is [12].



44 Y. LI AND L.-X. ZHU

The rest of this paper is organized as follows. Section 2 contains an investigation
into when the estimator is

√
n consistent. Section 3 contains the bias correction

and an approximation via discretization. Section 4 reports a simulation study and
the performances of SIR, SAVE and the bias-corrected SAVE are considered. The
proofs of the theorems are given in the Appendix.

2. Asymptotic behavior of the slicing estimator. As matrix operations are
involved, we will write, unless stated otherwise, AAT = A2, where A is a square
matrix. We first describe the slicing estimator for the SAVE matrix E(Ip −�z|y)2.

Suppose that {(z1, y1), . . . , (zn, yn)} is a sample. Sort all of the data (zi , yi), i =
1,2, . . . , n, according to the ascending order of yi . Define the order statistics
y(1) ≤ y(2) ≤ · · · ≤ y(n) and for every 1 ≤ i ≤ n, let z(i) be the concomitant of
y(i). For any integer c, we group every c data points and introduce a double sub-
script (h, j), where h refers to the slice number and j refers to the order number
of an observation in the given slice. Then

y(h,j) = y(c(h−1)+j), z(h,j) = z(c(h−1)+j), z̄(h) = 1

c

c∑
j=1

z(h,j).

The number of data points in the last slice may be less than c, but the calculation is
similar and the asymptotic results are still valid. Without loss of generality, suppose
that we have H slices and that n = c × H . The sample version of the conditional
variance of z given y in each slice is

�̂(h) = 1

(c − 1)

c∑
j=1

(z(h,j) − z̄(h))
2.(2.1)

The estimate of E((Ip − �z|y)2) is defined as

1

H

H∑
h=1

(Ip − �̂(h))2 = Ip − 2
1

H

H∑
h=1

�̂(h) + 1

H

H∑
h=1

(�̂(h))2.(2.2)

Note that the term Ip − 1
H

∑H
h=1 �̂(h) is the same as the SIR estimator. Zhu

and Ng [27] proved the
√

n consistency of Ip − 1
H

∑H
h=1 �̂(h) under certain reg-

ularity conditions. Hence, throughout the rest of the paper, we only investigate
the asymptotic properties of �n = 1

H

∑H
h=1(�̂(h))2, the results of the estimator of

SAVE being presented as corollaries. Moreover, �n can be rewritten as

�n = 1

H

H∑
h=1

(�̂(h))2

= 1

H

H∑
h=1

{
1

(c − 1)

c∑
j=1

(z(h,j) − z̄(h))
2

}2
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=
[

H∑
h=1

c∑
l=2

l−1∑
j=1

c∑
v=2

v−1∑
u=1

(z(h,l) − z(h,j))(z(h,l) − z(h,j))
T

× (z(h,v) − z(h,u))(z(h,v) − z(h,u))
T

]
[nc(c − 1)2]−1.

For the sake of convenience, we here introduce some notation. For a symmetric
p×p matrix D = (dij ), vech{D} = (d(11), . . . , d(p1), d(22), . . . , d(p2), . . . , d(pp))T

is the p(p+1)
2 × 1 vector constructed from the elements of D.

We now define the total variation of order r for a function. Let �n(K) be the
collection of n-point partitions −K ≤ y(1) ≤ · · · ≤ y(n) ≤ K of the closed interval
[−K,K], where K > 0 and n ≥ 1. Any vector-valued or real-valued function f(y)

is said to have a total variation of order r if for any fixed K > 0,

lim
n→∞

1

nr
sup

�n(K)

n∑
i=1

‖f(yi+1) − f(yi)‖ = 0.

For any vector-valued or real-valued function f(y), if there are a nondecreasing
real-valued function M and a real number K0 such that for any two points, say y1
and y2, both in (−∞,−K0] or both in [K0,+∞),

‖f(y1) − f(y2)‖ ≤ |M(y1) − M(y2)|,
then we can say that the function f(y) is nonexpansive in the metric of M on both
sides of K0.

2.1. When is SAVE not
√

n consistent?. Let m(y) = E(z|Y = y). We can write
z = ε + m(y), where E(ε|Y) = 0, and then � = E[(�z|Y )2] = E[(E(εεT |Y))2].
The conditional expectation of ε given y equals zero and more importantly, when
yi are given, εi are independent, although they are not identically distributed (see
[14] or [27]). Analogously to �n, we denote

An =
[

H∑
h=1

c∑
l=2

l−1∑
j=1

c∑
v=2

v−1∑
u=1

(ε(h,l) − ε(h,j))(ε(h,l) − ε(h,j))
T (ε(h,v) − ε(h,u))

× (ε(h,v) − ε(h,u))
T

]
[nc(c − 1)2]−1.

Let Jn = �n − An. To prove the convergence of �n, we need to investigate An

and Jn.

THEOREM 2.1. Assume the following four conditions:

(1) There is a nonnegative number α such that E(‖z‖8+α) < ∞.
(2) The inverse regression function m(y) has a total variation of order r > 0.
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(3) m(y) is nonexpansive in the metric of M(y) on both sides of a positive
number B0 such that

M8+α(t)P (Y > t) → 0 as t → ∞.

(4) c ∼ nb for b ≥ 0.

Then nβJn = op(1) for any β such that β + b + max{ 3
8+α

+ r, 4
8+α

} ≤ 1.

REMARK 2.1. We note that the conditions are similar to those that ensure
the consistency of the estimator for SIR, except for the higher moments of z (see
[27]). The

√
n consistency of Jn implies β = 0.5 and hence we must have b =

1/2 − max{ 3
8+α

+ r, 4
8+α

} ≥ 0. When r is close to zero and all moments exist, c

can be selected to be arbitrarily close to
√

n.

THEOREM 2.2. Assume the following conditions:

(1) There is a nonnegative number α such that E(‖z‖max{8+α,12}) < ∞.
(2) Let m1(y) = E(εεT |Y = y). m1(y) has a total variation of order r1 > 0.
(3) For a nondecreasing continuous function M1(·), m1(y) is nonexpansive in

the metric of M1(y) on both sides of a positive number B ′
0 such that

M
4+α/2
1 (t)P (Y > t) → 0 as t → ∞.

(4) Let m2(y) = E((εεT )2|y). For a nondecreasing continuous function
M2(·), m2(y) is nonexpansive in the metric of M2(y) on both sides of a positive
number B

′′
0 such that

M
2+α/4
2 (t)P (Y > t) → 0 as t → ∞.

(5) There exists a positive ρ1 such that

lim
d→∞ lim sup

n→∞
E

(|M2
1 (y(n))|I (|M1(y(n))| > d)

) = o(n−ρ1).

(6) There exists a positive ρ2 such that

lim
d→∞ lim sup

n→∞
E

(|M2(y(n))M
2
1 (y(n))|I (|M2(y(n))| > d)

) = o(n−ρ2).

Then

E(An) =
(

1 − (c − 2)

c(c − 1)

)
� + 1

c
E[(εεT )2] + o

(
cn

−1+max{r1,
2

4+α/2 ,ρ1}).(2.3)

On the further assumption that c ∼ nb for b > 0, we have

nβ(An − �) = op(1)(2.4)

for any β such that β + b + max{r1,
2

4+α/2 , ρ1} ≤ 1, β < b, and 2β + b +
max{2r1,

2
4+α/2 + 1

2+α/4 , ρ2} ≤ 2.
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REMARK 2.2. The first three conditions in Theorem 2.2 are similar to those
in Theorem 2.1. Condition (2) is similar to the condition for the inverse regression
function because we deal with the conditional second moment of ε when SAVE
is applied. Condition (3) is slightly weaker than the existence of the (4 + α/2)th
moment of M1(·) or, equivalently, the (8 + α)th moment of z, as is Condition (4).
Note that Condition (5) is slightly stronger than M2

1 (y(n)) = op(nρ1) because we
have to handle the moment convergence. It is well known that when the yi fol-
low an exponential distribution, the maximum y(n) can be bounded by (logn)c

in probability for some c ≥ 1 (see, e.g., [2], Chapter 1, page 10), and when the
support of yi is bounded, y(n) is simply bounded by a constant. Note that for any
transformation h(·) on y, h(y) is independent of z when BT z is given. Therefore,
we could construct a transformation to allow the support of bounded h(y) and
consider the (zi , h(yi))’s. However, in this paper we do not consider any transfor-
mations of y.

REMARK 2.3. From Theorems 2.1 and 2.2, we know that when c is a fixed
constant, Jn = op(1), but the mean of An is not asymptotically equal to �. From
the proof of Theorem 2.2, we can easily see that An does not converge in proba-
bility to � and therefore �n = Jn + An cannot converge to �. When c tends to
infinity at a rate slower than n1/2 in Theorems 2.1 and 2.2, the convergence rate
of �n to � is slower than 1/c and therefore

√
n consistency does not hold. This

property is completely different from that of SIR because within this range of c,
the slicing estimator of SIR is

√
n consistent (see [27]). The second and third terms

in E(An) provide two bounds, when r1 = 0, α = ∞ with the multiplication of
√

n

by E(An),
√

n/c and c/
√

n, that are reciprocal one to another. Although the third
term is an upper bound, it is tight, to a certain extent. An example is provided by
the case where y is uniformly distributed on [0,1], y(i) = i/n. With large probabil-
ity so the third term can achieve the rate cn−1, which means that in general cases,
if no extra conditions are imposed, it is impossible for the expectation of An to
converge to �. This can be seen from the proof of the theorem. This is worthy of
a detailed investigation and relates to the question of whether the slicing estimator
of SAVE is

√
n consistent. In the following subsection, we undertake a detailed

study of this issue.

When the mean and covariance of x are unknown, the ẑi = �
−1/2
x (xi − x̄) are

used to estimate the matrix E(Ip −�z|Y )2. Let �̂ẑ(h) be the sample covariance of
the ẑi’s in each slice for h = 1, . . . ,H . Note that this matrix is location-invariant.
We can assume, with no loss of generality, that the sample mean x̄ = 0. Clearly,
�̂ẑ(h) = �̂

−1/2
x �x

1/2�̂(h)�x
1/2�̂

−1/2
x . To study the asymptotic behavior of the

estimator when �x is replaced by �̂x , we first consider the following property.
Let R = (�̂x − �x )�−1

x . By some elementary calculation and the well-known
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fact that �̂x − �x = Op(1/
√

n), we have

�̂
−1/2
x �x

1/2 = Ip − (�̂x − �x)�−1
x

[
(Ip + R)−1(

(Ip + R)−1/2 + Ip

)−1]
(2.5)

= Ip − 1

2
(�̂x − �x)�−1

x + op(1/
√

n )

and similarly

�
1/2
x �̂

−1/2
x = Ip − 1

2
�−1

x (�̂x − �x) + op(1/
√

n ).(2.6)

Consequently, for each h = 1, . . . ,H ,

�̂
−1/2
x �x

1/2�̂(h)�x
1/2�̂

−1/2
x

(2.7)
= �̂(h) − 1

2
(�̂x − �x)�−1

x �̂(h) − 1

2
�̂(h)�−1

x (�̂x − �x) + op(1/
√

n )

and then

1

H

H∑
h=1

(
Ip − �̂

−1/2
x �x

1/2�̂(h)�x
1/2�̂

−1/2
x

)2

= 1

H

H∑
h=1

(
Ip − �̂(h)

)2

+ 1

2H

H∑
h=1

[(�̂x − �x)�−1
x �̂(h) + �̂(h)�−1

x (�̂x − �x)](Ip − �̂(h))

(2.8)

+ 1

2H

H∑
h=1

(Ip − �̂(h))[(�̂x − �x)�−1
x �̂(h) + �̂(h)�−1

x (�̂x − �x)]

+ op(1/
√

n )

=: 1

H

H∑
h=1

(
Ip − �̂(h)

)2 + In + op(1/
√

n).

We now deal with In. Write (�̂x − �x )�−1
x = An = (an,ij ), �̂(h) = Bn(h) =

(bn,ij (h)) and (Ip − �̂(h)) = Cn(h) = (cn,ij (h)).
√

nIn can be written as

√
nIn =

√
n

2H

H∑
h=1

[(
AnBn(h) + Bn(h)AT

n

)
Cn(h) + Cn(h)

(
AnBn(h) + Bn(h)AT

n

)]

and its elements have the formula
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√
nInil =

p∑
k=1

p∑
j=1

√
nanlk

1

2H

H∑
h=1

[bnjk(h)cnkl(h) + cnij (h)bnjk(h)]

+
p∑

k=1

p∑
j=1

√
nankj

1

2H

H∑
h=1

[bnji(h)cnlk(h) + bnkl(h)cnji(h)](2.9)

=:
p∑

k=1

p∑
j=1

√
nanlkDnijkl.

From the proofs of Theorems 2.1 and 2.2 in the Appendix, Dnijkl converges in
probability to a constant D̃ijkl . The well-known result of sample covariance yields
the asymptotic normality of all

√
nanil . Thus,

√
nInil converges in distribution to

N(0,Vil), where Vil = limn→∞ var(
∑p

k=1
∑p

j=1
√

nanlkD̃ijkl). This means that
Inil = Op(1/

√
n) and we have the following result.

COROLLARY 2.1. Under the conditions of Theorems 2.1 and 2.2, the results
of these two theorems continue to hold when the mean and covariance of x are un-
known and the ẑi = �

−1/2
x (xi − x̄) are used to estimate the matrix E(Ip − �z|Y )2.

This corollary holds because the convergence rate of In is faster than the con-
vergence rate of �n and thus the results of Theorems 2.1 and 2.2 do not change.

2.2. When is SAVE
√

n consistent?. The following theorem asserts the asymp-
totic normality of the estimator in a special case in which the response is discrete
and takes a finite value. For any value l, define E1(l) = E(z|Y = l) and

V (Y,z) =
d∑

l=1

[−2
((

z2
j − 2zjE1(l)

)
I (yj = l) − E

((
z2 − 2zE1(l)

)
I (Y = l)

))

× (
Ip − Cov(z|Y = l)

) + (
I (yj = l) − pl

) × (
Ip − Cov(z|Y = l)

)2]
.

THEOREM 2.3. Assume that the response Y takes d values and, without loss
of generality, assume that Y = 1,2, . . . , d and P(Y = l) = pl > 0 for l = 1, . . . , d .
Additionally, assume that E‖z‖8 < ∞. Then when H = d ,

√
nvech

(
1

H

H∑
h=1

(
Ip − �̂(h)

)2 − E(Ip − �z|Y )2

)
⇒ N(0,Cov(vech{V (Y, z)}).

When the ẑj are used to estimate the SAVE matrix, the term
√

nIn affects the
limiting variance. Note that
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(�̂x − �x)�−1
x = 1

n

n∑
j=1

[(
xj − E(x)

)2 − �x
]
�−1

x + op(1/
√

n )

(2.10)

=: 1

n

n∑
m=1

(emlk)1≤k, l≤p + op(1/
√

n ).

The leading term is a sum of i.i.d. random variables, which implies that anlk is
asymptotically a sum of i.i.d. random variables. Then from (2.9),

√
n(Inil)1≤i, l≤p = 1√

n

n∑
m=1

( p∑
k=1

p∑
j=1

emlkDnijkl

)
1≤i, l≤p

+ op(1)

(2.11)

=: 1√
n

n∑
m=1

Em + op(1).

COROLLARY 2.2. Under the conditions of Theorem 2.3,

√
nvech

(
1

H

H∑
h=1

(
Ip − �̂ẑ(h)

)2 − E(Ip − �z|Y )2

)

⇒ N(0,Cov(vech{V (Y,z) + E1}).

3. The approximation and bias correction.

3.1. The approximation. Note that when Y is a discrete random variable,
SAVE needs only very mild conditions to achieve asymptotic normality. In this
case, H is a fixed number that does not depend on n. In applications, H is often a
fixed number, which means that approximation via discretization is used in prac-
tice. It would be worthwhile to conduct a theoretical investigation to ascertain the
rationale of the approximation.

Let Sh = (qh−1, qh] for h = 1, . . . ,H , q0 = −∞, qH = ∞ and ph = P(Y ∈
Sh). Recall that the construction of the slicing estimator is based on a weighted
sum of the sample covariance matrices of the associated zi ’s with yi’s in all slices
Sh, h = 1, . . . ,H . These sample covariance matrices are the estimators of the
E(Cov(z|Y ∈ Sh))’s. Note that these matrices can be written as

�(h) := E((z − E(zI (Y∈Sh))
ph

)2I (Y ∈ Sh))

ph

,

where I (·) is the indicator function. The estimator of ph is equal to 1/H when qh

is replaced by the empirical quantile q̂h. The slicing estimator can be rewritten as
Ip − 2

H

∑H
h=1 �̂(h) + 1

H

∑H
h=1 �̂2(h)
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with

�̂(h) = 1

c

c∑
j=1

(z(h,j) − z̄(h))
2

(3.1)

= 1

np̂h

n∑
j=1

(
zj − 1

np̂h

n∑
j=1

zj I (yj ∈ Ŝh)

)2

I (yj ∈ Ŝh).

That is, the slicing estimator estimates �(H) = ∑H
h=1(Ip −�(h))2ph. In the case

in which Y is continuous and H is large, we have

�(H) ∼=
H∑

h=1

E
[(

Ip − Cov(z|Y)
)2

I (Y ∈ Sh)
]

= E
(
Ip − Cov(z|Y)

)2
,

where ∼= stands for approximate equality. Clearly, under some regularity condi-
tions, �(H) can converge to E((Ip − Cov(z|Y))2) as H → ∞.

As with Theorem 2.3, we have the following result. Define, for every h, E1(h) =
E(z|Y ∈ Sh) and take f (qj ) as being the value of the density of Y at qj .

THEOREM 3.1. Let q̂h = y(ch), h = 1, . . . ,H − 1, be the empirical (h/H)th
quantiles, with q̂0 = 0 and q̂H = ∞. Assume the following:

(1) E‖z‖8 < ∞.
(2) If we write E(F (Y, z, a, b)) := E(z2(I (Y ∈ (a, b]) − I (Y ∈ Sh)), then

E(F (Y, z, a, b)) is differentiable with respect to a and b and its first derivative
is bounded by a constant C1.

(3) If we write E(G(Y, z, a, b)) := E(z(I (Y ∈ (a, b]) − I (Y ∈ Sh))), then
E(G(Y, z, a, b)) is differentiable with respect to a and b.

(4) The density function f (y) of Y is bounded away from zero at all quantiles
qh, h = 1, . . . ,H − 1.

When �n is constructed with the slices Ŝh = (q̂h−1, q̂h], h = 1, . . . ,H , as n → ∞,

√
nvech

(
1

H

H∑
h=1

(
Ip − �̂(h)

)2 − E(Ip − �z|Y )2

)

is asymptotically normal with zero mean and variance Cov(vech{L(Y, z)}).
When the ẑi are used to construct the estimator, the limiting variance
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is Cov(vech{L(Y, z) + E1}), where

L(Y,z) =
{
−2

H∑
h=1

((
z2 − 2zE1(h)

)
I (Y ∈ Sh) − E

((
z2 − 2zE1(h)

)
I (Y ∈ Sh)

))

− 2
H∑

h=1

(−I (Y ≤ qh−1) + h−1
H

f (qh−1)
,−I (Y ≤ qh) + h

H

f (qh)

)

× (
F̃ ′(qh−1, qh) − 2G̃′(qh−1, qh)E1(h)

)} × (
Ip − �(h)

)

and E1 is defined as in (2.11).

REMARK 3.1. Conditions (2)–(4) are assumed in order to ensure some degree
of smoothness of the relevant functions, and thus the conditions are fairly mild.

3.2. Bias correction. In terms of examining the expectation of An, we can see
that the major bias is the term 1

c−1E(εεT )2. If we can eliminate the impact of this
term, then asymptotic normality may be possible. In this subsection, we suggest a
bias correction, the idea of which is simple. We first obtain an estimator of this term
and then subtract it from the estimator of �n, which motivates the bias correction
as follows.

As before, we divide the range of Y into H slices. According to the result of
Theorem 2.2, the estimator of V =: E(εεT )2 is defined as

Vn = 1

Hc

H∑
h=1

c∑
j=1

(
(z(h,j) − z̄(h))(z(h,j) − z̄(h))

T )2
.

The corrected estimator of � is

�̃n = c(c − 1)

(c − 1)2 + 1
�n − c − 1

(c − 1)2 + 1
Vn.

THEOREM 3.2. Assume that conditions (2)–(3) of Theorem 2.1 and conditions
(1)–(6) of Theorem 2.2 are satisfied. Let c ∼ nb, where b is a positive number that
satisfies the following three inequalities:

(a) b > 1
4 ;

(b) b ≤ 0.5 − max{ρ1, r1,
2

4+α/2 , 3
8+α

+ r, 4
8+α

};
(c) b ≤ 1 − max{2r1,

2
4+α/2 + 1

2+α/4 , ρ2}.

Then vech
√

n
c

(Vn − V ) = op(1) and therefore
√

nvech(�̃n − �) = Op(1). The
results continue to hold when the ẑi’s are used to construct the estimators.
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Similarly to (2.9), the term that relates to �̂x − �x = Op(1/
√

n) and the Vn

that is based on the ẑi ’s differs by a term that is Op(1/
√

n) from the Vn that is
based on the zi’s. Thus, the estimators that are based on the ẑi ’s have the same
asymptotic behavior as that of the Vn that are based on the zi ’s.

To show the
√

n consistency of the estimated CDR subspace, we define a bias-
corrected estimator for the matrix E(Ip − �z|y)2 by

CSAVEn := Ip − 2

H

H∑
h=1

�̂(h) + �̃n.

The eigenvectors that are associated with the largest k eigenvalues of CSAVEn

are used to form a basis of the estimated CDR space. following result asserts the
asymptotic normality of the corrected estimator.

COROLLARY 3.1. Under the conditions of Theorem 3.2,√
nvech

(
CSAVEn − E

(
(Ip − �z|Y )2))

is asymptotically multinormal with zero mean and finite variance (	1 +	2), where
	1 and 	2 are defined in (A.17) and (A.19), respectively. When the ẑi are used
to construct CSAVEn, the limiting variance is (	1 + 	2 + E1), where E1 is the
random matrix that is defined in (2.11).

3.3. The consistency of estimated eigenvalues and eigenvectors. As the CDR
space is estimated by the space that is spanned by the eigenvectors that are asso-
ciated with the nonzero eigenvalues of the estimated SAVE matrix, we present the
convergence of the estimated eigenvalues and eigenvectors. Because the conver-
gence is the direct extension of the results of Zhu and Ng [27] or Zhu and Fang
[25], we do not give the details of the proof in this paper.

From the theorems and corollary in this section, we can derive the asymptotic
normality of the eigenvalues and the corresponding eigenvectors by using pertur-
bation theory. The following result is parallel to the result for SIR obtained by Zhu
and Fang [25] and Zhu and Ng [27]. The proof is also almost identical to that for
the SIR matrix estimator. We omit the details of the proof in this article.

Let λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A) ≥ 0 and bi(A) = (b1i (A), . . . , bpi(A))T , i =
1, . . . , p, denote the eigenvalues and their corresponding eigenvectors for a p × p

matrix A. Let �̃ = E(Ip − �z|y)2 and �̄n be the estimator that is defined in the
theorems and corollary of Section 3.

THEOREM 3.3. In addition to the conditions of the respective theorems in
this section, assume that the nonzero λl(�̄)’s are distinct. Then for each nonzero
eigenvalue λi(�̄) and the corresponding eigenvector bi(�), we have√

n
(
λi(�̄n) − λi(�̄)

)
= √

nbi(�̄)T (�̄n − �̄)bi(�̄) + op(
√

n‖�̄n − �̄‖)(3.2)

= bi(�̄)T Wbi(�̄),
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where W is the limit matrix of
√

n(CSAVEn − E((Ip − �z|Y )2)) that is studied in
Corollary 3.1, and as n → ∞,

√
n(bi(�̄n) − bi(�̄))

= √
n

p∑
l=1,l �=i

bi(�̄)bi(�̄)T (�̄n − �̄)bi(�̄)

λj (�̄) − λl(�̄)
+ op(

√
n‖�̄n − �̄‖)(3.3)

=
p∑

l=1,l �=i

bi(�̄)bi(�̄)T Wbi(�̄)

λj (�̄) − λl(�̄)
,

where ‖�̄n − �̄‖ = ∑
1≤i,j≤p |aij |.

4. Simulation study and applications. In this section, a simulation study
is carried out to provide evidence for the efficiency of SIR, SAVE and the bias-
corrected SAVE in practice. Following Li [16], the correlation coefficient between
two spaces is taken to be the measure of the distance between the estimated CDR
space and the true CDR space Sy|z. For any eigenvector β̂1 that is associated
with one of the largest k eigenvalues obtained by the estimate, the squared multi-
ple correlation coefficient R2(β̂1) between β̂T

1 z and the ideally reduced variables
βT

1 z, . . . , βT
k z of Sy|z is employed to measure the distance between β̂1 and the

space Sy|z. That is,

R2(β̂1) = max
β∈Sy|z

(β̂T
1 �zβ)2

β̂T
1 �zβ̂1 · βT �zβ

.

As z is a standardized variable, R2(β̂1) actually has the simpler formula

R2(β̂1) = max
β∈Sy|z

(β̂T
1 β)2.

When the estimated CDR space has dimension k, for a collection of the k eigen-
vectors β̂i , i = 1, . . . , k, that are associated with the k largest eigenvalues, we use
the squared trace correlation [the average of the squared canonical correlation co-
efficients between β̂T

1 z, . . . , β̂T
k z and βT

1 z, . . . , βT
k z as denoted by R2(B̂)] as our

criterion (see also [13]), where B̃ is the space that is spanned by {β̂1, . . . , β̂k}.
We consider the cases where k = 1 and n = 200 and 480 and choose the follow-

ing five models:

Model 1: y = (βT z)3 + ε.
Model 2: y = (βT z)2 + ε.
Model 3: y = βT z × ε.
Model 4: y = (βT z)3 + (βT z) × ε.
Model 5: y = cos(βT z) + ε.
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In these models, the covariate z and the error ε are independent and respectively
follow the normal distributions N(0, I10) and N(0,1), where I10 is the 10 × 10
identity matrix. In performing the simulation, we set β = (1,0, . . . ,0).

We select models 1 to 5 based on the following considerations. Model 1 fa-
vors SIR rather than SAVE because the regression functions are strictly increas-
ing. A similar investigation was undertaken in [28]. Model 2 favors SAVE rather
than SIR because the inverse regression function is a zero function and then
dim(SE(z|y)) = 0 where dim(S) stands for the dimension of the space S. Model 3
deals with the variance function. Model 4 is constructed to be a combination of
Model 1 and Model 3, as we are curious about the performance of SIR and SAVE in
relation to the mean function and the variance function. We also include Model 5,
which involves a periodic function.

The results are reported in Figure 1 and Table 1. When n = 200, a simulation
was conducted with H = 2, 5, 10, 20 and 50, but we only report the results with
H = 10 for illustration because for practical use, H = 10 is a good choice for this
sample size (see relevant references such as [5, 16, 28]). The sensitivity to the slice
selection will be discussed in terms of the results that are reported in Table 1 with

FIG. 1. Boxplots of the distribution of 200 replicates of the R2 values for models 1–5 when H = 10
and n = 200. The boxplots are, from left to right, for SAVE, SIR and CSAVE.
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TABLE 1
The empirical median of the R2 with n = 480

R2(β̂)

H = 2 H = 6 H = 24 H = 96

Model 1
SAVE 0.7521 0.9599 0.0099 0.0009
SIR 0.9442 0.9681 0.9714 0.9586
CSAVE 0.8023 0.9687 0.9539 0.0122

Model 2
SAVE 0.9539 0.9523 0.9187 0.7225
SIR 0.0460 0.0386 0.0443 0.0435
CSAVE 0.9575 0.9584 0.9317 0.8487

Model 3
SAVE 0.0724 0.9201 0.8517 0.3547
SIR 0.0586 0.0545 0.0564 0.0448
CSAVE 0.0654 0.9336 0.8854 0.6393

Model 4
SAVE 0.0741 0.9055 0.8665 0.3059
SIR 0.8656 0.8952 0.8825 0.7263
CSAVE 0.1066 0.9277 0.9024 0.7097

Model 5
SAVE 0.8750 0.8657 0.6741 0.1249
SIR 0.0581 0.0484 0.0558 0.0625
CSAVE 0.8851 0.8966 0.7639 0.2517

n = 480. The boxplots in Figure 1 show the distribution of R2 for a total of 200
Monte Carlo samples and show how the bias correction works with a fairly small
sample size. From Figure 1, it is clear that CSAVE works well and is robust against
the models that we employ.

Table 1 displays the numerical results for n = 480. The median of R2 from a to-
tal of 200 Monte Carlo samples is presented so that we can compare the efficiency
of the methods. To check the impact of the number of slices H , the values 2, 6, 24
and 96 are considered.

As expected, SIR is insensitive to c, but sensitive to the model and does not
work well when the regression function is even or the CDR space is related to the
error term.

The performance of SAVE is strongly affected by the choice of c, but when H

is properly chosen, SAVE works very well. However, the range of c that results in
a good performance from SAVE is fairly narrow. From the simulation results, we
can see that when H = 96, that is, when c = 5, SAVE does not perform well. This
is consistent with the theoretical conclusions in Section 2. The simulations show
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that choosing a relatively small H favors SAVE, but that CSAVE still outperforms
SAVE. Specifically, for H = 2, 6, 24 and 96, the R2 of CSAVE is larger than that
of SAVE, especially when H is large. Although the performance of CSAVE is
also influenced by the choice of c, the range of c that makes CSAVE work well
is larger than that which makes SAVE work well. As, to some extent, CSAVE
removes uncertainties about which c should be used in practice, we recommend
this method. Based on the limited simulations, H = n/20 is recommended for
practical use.

APPENDIX

As the proofs are rather tedious, in this section we only present outlines; readers
can refer to Li and Zhu [18] for the details.

A.1. Proofs of the theorems in Section 2.

PROOF OF THEOREM 2.1. We first write out the formula for Jn. From defin-
ition (2.1), we have

�̂(h) = 1

c(c − 1)

c∑
l=2

l−1∑
j=1

(z(h,l) − z(h,j))
2.

For every z, we have z = m(y) + ε. Thus, for any pair l and j ,

(z(h,l) − z(h,j))
2

= (
m(y(h,l)) − m(y(h,j))

)2 + (
m(y(h,l)) − m(y(h,j))

)
(ε(h,l) − ε(h,j))

T

+ (ε(h,l) − ε(h,j))
(
m(y(h,l)) − m(y(h,j))

)T + (ε(h,l) − ε(h,j))
2

=: S1(h, l, j) + S2(h, l, j) + S3(h, l, j) + S4(h, l, j).

Further, �n can be written as

�n =
∑H

h=1[
∑c

l=2
∑l−1

j=1(S1(h, l, j)+S2(h, l, j)+S3(h, l, j)+S4(h, l, j))]2

nc(c − 1)2 .

For the sake of notational simplicity, we let

Cn(i, k) = 1

nc(c − 1)2

H∑
h=1

c∑
l=2

l−1∑
j=1

c∑
v=2

v−1∑
u=1

Si(h, l, j)Sk(h, v,u).(A.1)

Then �n = ∑4
i=1

∑4
k=1 Cn(i, k). Note that An = Cn(4,4) and thus Jn = �n −

Cn(4,4). To show that nβJn = op(1), we only need to show that under the con-
ditions of Theorem 2.1, for any pair (i, k), except when i = k = 4, nβCn(i, k)

converges to 0 in probability as n → ∞. Without loss of generality, we only con-
sider the upper-left most element of Cn(i, k), as the other elements can be handled
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similarly. Without confusion, we can still use the same notation for this element
as the associated matrix Cn(i, k). Therefore, in the following proof, Cn(i, k) is
real-valued.

For each q such that 0 < q < 1
2 , divide the outer summation over h into three

summations—from 1 to [Hq], [Hq] + 1 to [H(1 − q)] and [H(1 − q)] + 1 to
H—to obtain

Cn(i, k) = C1n(i, k) + C2n(i, k) + C3n(i, k).

For C2n(i, k), we have

|C2n(i, k)| ≤ 1

nc(c − 1)2

[H(1−q)]∑
h=[Hq]+1

c∑
l=1

l−1∑
j=1

c∑
v=2

v−1∑
u=1

‖Si (h, l, j)‖ · ‖Sk(h, v,u)‖,

where ‖S‖ denotes the maximum absolute value among elements in S. For
‖Si(h, l, j)‖·‖Sk(h, v,u)‖, we note that when h ∈ [[Hq]+1, [H(1−q)]], there is
a compact set [−B(q),B(q)] such that in probability, both y([nq]+1) and y([n(1−q)])
belong to that set. As m(y) is bounded on any compact set, there exists a Q > 0
such that in probability, ‖m(y(h,j))‖ ≤ Q. Let ε̄(n) and ε̄(1) denote the largest and
the smallest of all ε(i)’s, respectively. When i and k are fixed, we can determine s

such that
c∑

l=2

l−1∑
j=1

c∑
v=2

v−1∑
u=1

‖Si (h, l, j)‖ · ‖Sk(h, v,u)‖

≤ p2c(c − 1)‖ε̄(n) − ε̄(1)‖4−s

2

c∑
l=2

l−1∑
j=1

(2Q)s−1‖m(y(h,l)) − m(y(h,j))‖

+ op(1).

As i and k cannot equal 4 simultaneously, we have 1 ≤ s ≤ 4 and hence,

C2n(i, k)

≤ 2s−2‖ε̄(n) − ε̄(1)‖4−sQs−1p3c sup�n(B(q))

∑n−1
j=1 ‖m(y(j+1)) − m(y(j))‖

n

+ op(1)

=: C′
2n(s) + op(1).

Using Lemma 1 of [14], we have n− 1
8+α ‖ε̄(1) − ε̄(1)‖ = op(1). Condition (2) of

Theorem 2.1 implies that limn→∞ n−r sup�n(B(q))

∑n
i=1 ‖m(y(i+1)) − m(y(i))‖ =

0. As s ≥ 1, C′
2n(s) = op(nr+ 3

8+α
+b−1) and therefore when β + b + r + 3

8+α
≤ 1,

nβC′
2n(s) → 0. We now consider C1n(i, k) and C3n(i, k). If y is not bounded, we

choose a sufficiently small q so that P(y([n(1−q)]) > B0) → 1 as n → ∞, where
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B0 is given by condition (3) of Theorem 2.1. Using the nonexpansive property of
M(y), we can prove that

C3n(i, k) ≤ p3c‖ε̄(n) − ε̄(1)‖4−s

2n
‖M(y(n)) − M(y([n(1−q)]))‖sI (y([n(1−q)]) > B0)

+ op(1)

=: C′
3n(s) + op(1).

By condition (3) and Lemma 1 of [14], it can be shown that when β +b+ 4
8+α

≤ 1,
nβC′

3n(s) = op(1). The reasoning is similar for C1n(i, k), but we omit the details.
The proof is thus complete. �

PROOF OF THEOREM 2.2. The conditioning method is used to prove Theo-
rem 2.2 and the other theorems. Denote Fn = σ {y1, . . . , yn}. To compute E(An),
we first compute the conditional expectation of An given yi ’s as follows, where An

is defined in Section 2.1:

E(An|Fn)

=
H∑

h=1

c∑
l=1

E((ε(h,l)ε
T
(h,l))

2|Fn)

nc

+
H∑

h=1

c∑
l=1

c∑
v=1(v �=l)

1

nc

(
1 + 1

(c − 1)2

)
E(ε(h,l)ε

T
(h,l)|Fn)E(ε(h,v)ε

T
(h,v)|Fn)(A.2)

+
H∑

h=1

c∑
l=1

c∑
v=1(v �=l)

1

nc(c − 1)2 E((ε(h,l)ε
T
(h,v))

2|Fn)

=: E(A1n|Fn) + E(A2n|Fn) + E(A3n|Fn).

As the ε(i)’s are conditionally independent when the yi are given, E(A1n|Fn)

is equal to 1
nc

∑n
j=1 E((εjε

T
j )2|yj ). This is a sum of i.i.d. random variables and

therefore E(A1n) = 1
c
E[(εεT )2]. For E(A2n|Fn), the conditional independence

property and the definition m1(y) = E(εεT |y) together yield that

E(A2n|Fn)

= (c − 1)((c − 1)2 + 1)

nc(c − 1)2

H∑
h=1

c∑
l=1

m1(y(h,l))m1(y(h,l))
T

+ (c − 1)2 + 1

nc(c − 1)2

H∑
h=1

c∑
l=1

c∑
v=1(v �=l)

m1(y(h,l))
(
m1(y(h,v)) − m1(y(h,l))

)T
=: E(A21n|Fn) + E(A22n|Fn).
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As E(A21n|Fn) = 1
n
(1 − (c−2)

c(c−1)
)
∑n

j=1 m1(yj )
2, we have that E(A21n) = (1 −

(c−2)
c(c−1)

)�.

For E(A22n|Fn), the conclusion is

E(A22n|Fn) = op(cn
−1+max{r1,

2
4+α/2 }

).(A.3)

The lines of the proof essentially follow those of the proof of Theorem 2.1. For
each q1 such that 0 < q1 < 1

2 , we divide the outer summation over h into three
summations: from 1 to [Hq1], [Hq1] + 1 to [H(1 − q1)] and [H(1 − q1)] + 1
to H . Hence, E(A22n|Fn) = D1n + D2n + D3n. Note that when h ∈ [[Hq1] +
1, [H(1 − q1)]], there exists a constant Q1 such that ‖m1(y(h,l))‖ ≤ Q1 for all
1 ≤ l ≤ c. Thus, as m1(y) has total variation of order r1,

D2n ≤ Q1((c − 1)2 + 1)p3 sup�n(B(q1))

∑n
i=1 ‖m1(y(i+1)) − m1(y(i))‖

n(c − 1)
+ op(1)

= o(cn−1+r1).

If y is not bounded, then we choose a sufficiently small q1 so that P(y([n(1−q1)]) >

B ′
0) → 1 as n → ∞, where B ′

0 is given by condition (3) of Theorem 2.2. Similarly,

D3n = op(cn
−1+ 2

4+α/2 ). The proof is similar to that for D1n and (A.3) then holds.
By condition (5) and Lemma 4.11 of [15], we have

E(A22n) = o
(
cn

−1+max{r1,
2

4+α/2 ,ρ1}).(A.4)

The proof of E(A3n|Fn) of (A.2) is very similar to the one just given

and we can thus obtain E(A3n) = o(c−1n
−1+max{r1,

2
4+2/α

,ρ1}). Hence, (2.3) is
proved.

We now turn to the proof of the second conclusion, (2.4), that nβ(An −
�) = op(1). Without loss of generality, consider the upper-rightmost element of
nβ(An −�). Without confusion, we can still use the notation nβ(An −�) to repre-
sent this element. Note that nβ{An − �} = nβ{An − E(An|Fn) + E(An|Fn) − �}.
From the proof of (2.3), we can obtain that when β < b and β ≤ 1 − b −
max{r1,

2
4+α/2},

nβ{E(An|Fn) − �} = op(1).(A.5)

Therefore, it remains to show that nβ{An − E(An|Fn)} = op(1) and it suffices to
demonstrate the convergence of its second moment. That is, as n → ∞,

n2βE
[({(

An − E(An|Fn)
)})2] → 0.(A.6)

Invoking (A.2), the definition of An given in Section 2.1, and rearranging the terms,
we see that
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(
An − E(An|Fn)

)

= 1

n

H∑
h=1

{[
1

c

c∑
l=1

c∑
v=1(v �=l)

ε2
(h,l)ε

2
(h,v)

− 1

c

c∑
l=1

c∑
v=1(v �=l)

(E(ε2
(h,l)|y(h,l)))(E(ε2

(h,v)|y(h,v)))

]

+
[

1

c

c∑
l=1

((ε(h,l)ε
T
(h,l))

2 − E((ε(h,l)ε
T
(h,l))

2|y(h,l)))

]

+
[

1

c(c − 1)2

c∑
l=1

c∑
j=1(j �=l)

c∑
v=1

c∑
u=1(u �=v)

ε(h,l)ε
T
(h,j)ε(h,v)ε

T
(h,u)

− 1

c(c − 1)2

c∑
l=1

c∑
v=1(v �=l)

(E(ε2
(h,l)|y(h,l)))(E(ε2

(h,v)|y(h,v)))

]

−
[

1

c(c − 1)

(
c∑

l=1

c∑
v=1

c∑
u=1(u �=v)

ε2
(h,l)ε(h,v)ε

T
(h,u)

+
c∑

l=1

c∑
j=1(j �=l)

c∑
v=1

ε(h,l)ε
T
(h,j)ε

2
(h,v)

)]}

=: 1

n

H∑
h=1

{V0(h) + V1(h) + V2(h) + V3(h)}.

We again use the conditioning method to show that n2β

n2

∑H
h=1 EV 2

i (h) = o(1)

for i = 0, 1, 2 and 3 and then use the inequality 2|Vi(h)Vj (h)| ≤ V 2
i (h) + V 2

j (h)

to obtain that the intersection terms converge to zero from the convergence of
E(V 2

i (h)). The proof of Theorem 2.2 can then be completed. We now proceed to
the first step as follows.

To simplify the notation, we write, for any integer l > 1, El(εs |y) =
El−1(εs |y)E(εs |y), where 1 ≤ s ≤ 6. By means of elementary calculation, we
obtain the result

n2β

n2

H∑
h=1

E(V 2
1 (h)) = O

(
n2β

nc2 Eε8 − n2β

nc2 E(E2(ε4|y))

)
= o(1).
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n2β

n2

∑H
h=1 E(V 2

2 (h)) can be bounded by

(
56n2β

nc3 E(E4(ε2|y)) + 64n2β

nc4 E(E3(ε3|y)) + 16n2β

nc4 E(E3(ε4|y))

+ 64n2β

nc4 E(E3(ε2|y)) + 8n2β

nc5 EE2(ε4|y)

)
.

Since E(ε12) < ∞, it is op(1). Similarly, we have n2β

n2

∑H
h=1 E(V 2

3 (h)) = op(1).

Using the conditioning method, we can also prove that the sum that relates to
E(V 2

0 (h)) converges to zero. First, we have

E(V 2
0 (h)|F ) =

[
2

c2

c∑
l=1

c∑
j=1(l �=j)

E(ε4
(h,l)|F )E(ε4

(h,j)|y(h,j))

]

−
[

2

c2

c∑
l=1

c∑
j=1(l �=j)

E2(ε2
(h,l)|y(h,l))E2(ε2

(h,j)|y(h,j))

]

+
[

4c2

c2

c∑
l=1

(
E(ε4

(h,l)|y(h,l))E2(ε2
(h,l)|y(h,l)) − E4(ε2

(h,l)|y(h,l))
)]

−
[

4

c2

∑∑∑
1≤l �=j �=v≤c

u1
h,l,j,v

]
−

[
4

c2

∑∑ ∑
1≤l �=j �=u≤c

u2
h,l,j,v

]

+
[

4

c2

∑∑ ∑
1≤l �=j �=u≤c

u3
h,l,j,v

]
+

[
4

c2

∑∑ ∑
1≤l �=j �=u≤c

u4
h,l,j,v

]

=: V00(h) − V01(h) + V02(h) − V03(h) − V04(h)

+ V05(h) + V06(h),

where

u1
h,l,j,v = m2(y(h,l))

(
m1(y(h,l)) − m1(y(h,v))

)
m1(y(h,l)),

u2
h,l,j,v = m2(y(h,l))m1(y(h,v))

(
m1(y(h,l)) − m1(y(h,j))

)
,

u3
h,l,j,v = m2

1(y(h,l))
(
m1(y(h,l)) − m1(y(h,v))

)
m1(y(h,l)),

u4
h,l,j,v = m2

1(y(h,l))m1(y(h,v))
(
m1(y(h,l)) − m1(y(h,j))

)
.

We now prove that when c ∼ nb and 2β + max{2r1,
1

2+α/4 + 2
4+α/2 , ρ2} + b ≤ 2,

all of the terms n2β

n2

∑H
h=1 E(V0i (h)) tend to 0. Using the conditioning method and

the inequality

E(ε4
(h,l)|y(h,l))E(ε4

(h,j)|y(h,j)) ≤ 1

2

(
E2(ε4

(h,l)|y(h,l)) + E2(ε4
(h,j)|y(h,j))

)
,
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we have

n2β

n2

H∑
h=1

EV00(h) = O

(
2n2β

nc
E(E2(ε|y))

)
= o(1).

Similar arguments can be used to obtain n2β

n2

∑H
h=1 E(V01(h)) = o(1).

As V02(h) is a sum of i.i.d. random variables, invoking the conditions of The-
orem 2.2, the fact that β < 0.5 and the law of large numbers, we can show that
n2β

n2

∑H
h=1 V02(h) = o(1).

The proof of the sum of V03(h) is similar to that of E(A22n|Fn). We choose
0 < q2 < 1 and divide the summation of h into three parts: [1, [Hq2]], [[Hq2] +
1, [H(1 − q2)]] and [[H(1 − q2)] + 1,H ]. The sums of the conditional ex-
pectation of E(V03(h)|Fn) over h in these three intervals are analyzed and
n2β

n2

∑[H(1−q2)]
h=[Hq2]+1 E(V03(h)) can be proved to be asymptotically zero. The proof is

very similar to that of (A.3) and thus we omit the details in this paper. The proof
of (2.4) is thus complete.

This completes proof of Theorem 2.2. �

PROOF OF THEOREM 2.3. The proof is similar to that of Theorem 3.1 below,
and thus we omit the details. �

A.2. Proofs of the theorems in Section 3.

PROOF OF THEOREM 3.1. Our goal is to determine the asymptotic behavior
of 1

H

∑H
h=1(Ip −�̂(h))2, where �̂(h) is defined in (3.1) and Sh = (y(c(h−1)), y(ch)].

It suffices to show that for any p(p+1)/2 vector a, aT vech{ 1
H

∑H
h=1(Ip −�̂(h))2}

is asymptotically univariate normal. Again, for the sake of notational simplicity,
we consider the univariate case. Clearly, q̂h = y(ch), h = 1, . . . ,H , are the empir-
ical quantiles that converge to the population quantiles qh in probability, where
P(Y ≤ qh) = h/H . If we can verify the asymptotic normality of �̂(h) − �(h) for
h = 1, . . . ,H , then the asymptotic normality of �n can be obtained through the
decomposition

√
n

(
1

H

H∑
h=1

(
Ip − �̂(h)

)2 − 1

H

H∑
h=1

(
(Ip − �(h)

)2
)

= −√
n

H

H∑
h =1

(
�̂(h) − �(h)

)(
2Ip − �̂(h) − �(h)

)
(A.7)

= −2
√

n

H

H∑
h =1

(
�̂(h) − �(h)

)(
Ip − �(h)

) + op(1).
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We now study �̂(h). From (3.1),

�̂(h) = 1

np̂h

n∑
j=1

z2
j I (yj ∈ Ŝh) −

(
1

np̂h

n∑
j=1

zj I (yj ∈ Ŝh)

)2

(A.8)

= �̂1(h) − (Ê1(h))2.

Next, we calculate
√

n(�̂1(h) − �1(h)). Note that p̂h = ph = 1/H and thus

√
n
(
�̂1(h) − �1(h)

) = 1√
np̂h

n∑
j=1

(
z2
j I (yj ∈ Sh) − E(z2

j I (yj ∈ Sh))
)

+ 1√
np̂h

n∑
j=1

z2
j

(
I (yj ∈ Ŝh) − I (yj ∈ Sh)

)
(A.9)

=: �̂11(h) + �̂12(h).

Clearly, �̂11(h) is asymptotically normal because it is a sum of i.i.d. random vari-
ables.

For �̂12(h), we first introduce the notation F(Y, z, a, b) = z2(I (Y ∈ (a, b]) −
I (Y ∈ Sh)) for any pair (a, b). Note that q̂h − qh = Op(1/

√
n). Invoking Theo-

rem 1 of Zhu and Ng [27] or the argument used in Stute and Zhu [22] and Stute,
Thies and Zhu [21], we can show that∣∣∣∣∣ 1√

nph

n∑
j=1

(
F(yj ,zj , q̂h−1, q̂h) − E(F (Y,z, q̂h−1, q̂h))

)∣∣∣∣∣ = op(1).

Together with (A.10), the continuity of E(F (Y, z, qh−1, qh)) at qh−1 and qh, the√
n consistency of qh and Taylor expansion give

�̂12(h) = H
√

nE(F (Y,z, q̂h−1, q̂h)) + op(1)

= H
√

n(q̂h−1 − qh−1, q̂h − qh)F̃
′(qh−1, qh) + op(1)

(A.10)

= H√
n

n∑
j=1

(−I (yj ≤ qh−1) + h−1
H

f (qh−1)
,
−I (yj ≤ qh) + h

H

f (qh)

)
F̃ ′(qh−1, qh)

+ op(1),

where F̃ ′ is the derivative of E(F (Y, z, a, b)) with respect to (a, b). The asymp-
totic normality can be shown to hold by using well-known results on the empirical
quantiles q̂h (see [20]).
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For (Ê1(h))2 from (A.8), the foregoing argument can be applied to obtain√
n(Ê1(h))2, giving√

n
(
(Ê1(h))2 − (E1(h))2)
= 2

√
n
(
Ê1(h) − E1(h)

)
E1(h) + op(1)

= 2H√
n

n∑
j=1

(
zj I (yj ∈ Sh) − E(zI (Y ∈ Sh))

)
E1(h)(A.11)

+ 2H√
n

n∑
j=1

(−I (yj ≤ qh−1) + h−1
H

f (qh−1)
,
−I (yj ≤ qh) + h

H

f (qh)

)

× G̃′(qh−1, qh)E1(h) + op(1),

where G̃′(a, b) is the derivative of E(G(Y, z, a, b)) := E(z(I (Y ∈ (a, b]) − I (Y ∈
Sh))) with respect to (a, b). Together with (A.8)–(A.12), we have

√
n

(
1

H

H∑
h=1

(
Ip − �̂(h)

)2 − 1

H

H∑
h=1

(
Ip − �(h)

)2
)

= 1√
n

n∑
j=1

{
−2

H∑
h=1

((
z2
j − 2zjE1(h)

)
I (yj ∈ Sh)

− E
((

z2 − 2zE1(h)
)
I (Y ∈ Sh)

))

− 2
H∑

h=1

(−I (yj ≤ qh−1) + h−1
H

f (qh−1)
,−I (yj ≤ qh) + h

H

f (qh)

)

× (
F̃ ′(qh−1, qh) − 2G̃′(qh−1, qh)E1(h)

)} × (
Ip − �(h)

)

+ op(1)

:= 1√
n

n∑
j=1

L(yj , zj ) + op(1) ⇒ N(0,	′),

where 	′ = Cov(L(Y, z)). �

PROOF OF THEOREM 3.2. We only present the proof for the univariate case.
As c → ∞, it is equivalent to showing that when c satisfies the required conditions,

√
n

c

(
1

H

H∑
h=1

1

c

c∑
j=1

(z(h,j) − z̄(h))
4 − E(ε4)

)
= op(1).(A.12)
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Some elementary calculation yields

1

H

H∑
h=1

1

c

c∑
j=1

(z(h,j) − z̄(h))
4

= 1

H

H∑
h=1

1

c

c∑
j=1

ε4
(h,j)

+ 1

H

H∑
h=1

1

c

c∑
j=1

(−4ε3
(h,j)

c
(A(h) + B(h,j)) + 6ε2

(h,j)

c2 (A(h) + B(h,j))
2(A.13)

− 4ε(h,j)

c3 (A(h) + B(h,j))
3 + 1

c4 (A(h) + B(h,j))
4
)

=: Rn1 + Rn2,

where A(h) = ∑c
v=1 ε(h,v) and B(h,j) = ∑c

v=1(m(y(h,v)) − m(y(h,j))). Rear-
ranging the summands in Rn1, we can easily show that

√
n[Rn1 − E(ε4)] =

1√
n

∑n
j=1(ε

4
j − E(ε4)) follows the distribution N(0,var(ε4)) and thus

√
n

c
[Rn1 −

E(ε4)] = op(1). Hence, to prove (A.12), we only need to show that√
n

c
Rn2 = op(1).(A.14)

We find that the terms in
√

n
c

Rn2 have the following two common formats. For
1 ≤ s1 ≤ 4,

K(s1) :=
√

n

c

1

H

H∑
h=1

1

c

c∑
j=1

ε
4−s1
(h,j)

1

cs1
A

s1
(h),(A.15)

and for 1 ≤ s′ ≤ 4 and 0 ≤ s ≤ 4 − s′,

W(s, s′) :=
√

n

c

1

H

H∑
h=1

1

c

c∑
j=1

εs
(h,j)

1

c4−s
A4−s−s′

(h) Bs′
(h,j).(A.16)

Therefore, our task is to prove that they are all op(1). For K(s1)’s, we need only
show that their second moments asymptotically converge to 0, the main idea of
which is to use the conditioning method to compute their conditional expectations
given yi ’s and to use a sum of i.i.d. random variables to approximate the K(s1)’s.
The arguments are very similar to those in the proof of Theorem 2.1 and the details
can be found in [18].

For W(s, s′) of (A.16), we note that if we let d = max1≤i≤n(|εi |), then

|A(h)

c
| ≤ d and thus

W(s, s′) ≤
√

nd4−s′

c2+s′
1

H

H∑
h=1

c∑
j=1

Bs′
(h,j).
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For each q such that 0 < q < 1
2 , we divide the outer summation over h into three

summations—from 1 to [Hq], [Hq]+1 to [H(1−q)] and [H(1−q)]+1 to H—
which allows us to write W(s, s ′) = W1(s, s

′)+W2(s, s
′)+W3(s, s

′). We then use
the argument that was used to prove Theorem 2.1 to show that W(s, s′) = op(1).
(A.14) is thus proved and the proof of Theorem 3.2 is complete. �

PROOF OF COROLLARY 3.1. We want to show that for any p(p+1)/2 vector
a, aT vech{CSAVEn − �} is asymptotically univariate normal with zero mean and
finite variance. Denote

Znh = aT vech

{
(c − 1)

(c − 1)2 + 1

c∑
l=1

c∑
v=1

(ε2
(h,l)ε

2
(h,v)) − c� − 1

c

c∑
j=1

(ε(h,j) − ε̄(h))
4

− 2

c − 1

c∑
l=2

l−1∑
j=1

(
(ε(h,l) − ε(h,j))

2 − 2E(�z|y)
)}

.

To prove the asymptotic normality, we will check the four conditions with the
conditional central limit theorem (CCLT) that was provided by Hsing and Carroll
[14], Theorem A.4. From Theorem 3.2,

√
naT vech{CSAVEn − E(Ip − �z|y)2}

is asymptotically equivalent to 1√
n

∑H
h=1 Znh. As Zn1, . . . ,ZnH are conditionally

independent given Fn, condition (1) of the CCLT is satisfied.
To check conditions (2)–(4) of the CCLT, the calculation is very similar to that

in the proofs of Theorem 2.2 and Theorem 3.2. For the conditional expectation of
Znh, we have

1√
n

H∑
h=1

E(Znh|Fn)

= 1√
n

n∑
j=1

aT vech
{
m2

1(y(j)) − � − 2
(
m1(y(j)) − E(�z|y)

)} + op(1)(A.17)

→d N(0,aT 	1a),

where 	1 = var(vech{m2
1(y(j)) − � − 2(m1(y(j)) − E(�z|y))}), and hence con-

dition (4) of the CCLT is satisfied. For condition (2), we only need to note that,
together with conditional independence,

1

n

H∑
h=1

E
{(

Znh − E(Znh|Fn)
)2|Fn

}

= 1

n

n∑
j=1

aT vech
{(

m2(y(j)) − m2
1(y(j))

)
m2

1(y(j))
}
a
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+ 4

n

n∑
j=1

aT vech{m2(y(j)) − m2
1(y(j))}a

− 4

n

n∑
j=1

aT vech
{(

m2(y(j)) − m2
1(y(j))

)
m1(y(j))

}
a + op(1)(A.18)

= aT vech
{
E

[(
m2(y) − m2

1(y)
)
m2

1(y) + 4
(
m2(y) − m2

1(y)
)

− 4
(
m2(y) − m2

1(y)
)
m1(y)

]}
a + op(1)

=: aT 	2a + op(1).

Condition (3) of the CCLT can be checked using a similar argument. The main idea
is as follows. Invoking the conditional independence of the Znh’s and the existence
of the 12th moment, we can use a method similar to that which was used to prove
Liapounoff’s central limit theorem (see, e.g., Pollard [19]) to verify condition (3)
of the CCLT. Hence, the CCLT implies that 1√

n

∑H
h=1 Znh is asymptotically normal

with zero mean and variance aT (	1 + 	2)a.
When the ẑi’s are used to construct the statistic, as with the proofs of the other

theorems, the asymptotic normality holds with limiting variance aT (	1 + 	2 +
E1)a, where E1 is the random matrix defined in (2.11). The proof is thus complete.

�
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