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TREE-STRUCTURED REGRESSION AND THE DIFFERENTIATION
OF INTEGRALS1
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This paper provides answers to questions regarding the almost sure lim-
iting behavior of rooted, binary tree-structured rules for regression. Exam-
ples show that questions raised by Gordon and Olshen in 1984 have negative
answers. For these examples of regression functions and sequences of their
associated binary tree-structured approximations, for all regression functions
except those in a set of the first category, almost sure consistency fails dra-
matically on events of full probability. One consequence is that almost sure
consistency of binary tree-structured rules such as CART requires conditions
beyond requiring that (1) the regression function be in L1, (2) partitions of
a Euclidean feature space be into polytopes with sides parallel to coordinate
axes, (3) the mesh of the partitions becomes arbitrarily fine almost surely and
(4) the empirical learning sample content of each polytope be “large enough.”
The material in this paper includes the solution to a problem raised by Dudley
in discussions. The main results have a corollary regarding the lack of almost
sure consistency of certain Bayes-risk consistent rules for classification.

1. Introduction. Rooted, binary tree-structured methods have been important
modern statistical tools for regression, classification, probability class estimation,
clustering and survival analysis; see books by Breiman, Friedman, Olshen and
Stone [1], Gersho and Gray [7], Devroye, Györfi and Lugosi [4], Ripley [12],
Zhang and Singer [15], Hastie, Tibshirani and Friedman [9] and their references.
These books include algorithms, wide ranging applications, and theory. The last
has involved an “empirical Lebesgue integral” (an expression first used by Peter
Huber), along with connections to the asymptotically minimax approximation of
functions (see [6]), and has motivated improvements to the celebrated large devia-
tion result of Vapnik and Chervonenkis; see [10, 11]. To put this paper in context,
see [5, 8].

My primary goal is to answer in the negative questions raised by Gordon and
Olshen [8] regarding the almost sure limiting behavior of rooted, binary tree-
structured rules for regression. There is also solution to a problem posed by Dudley
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in discussions. The arguments regarding regression can be applied to obtain a cer-
tain negative result concerning classification. The remainder of this section is an
introduction to terminology and the results in the remainder of the paper. The first
part of Section 2 is a summary of relevant results on martingales, on the differen-
tiation of integrals and also on equivariance. It is intended to place Theorems 1.2
and 1.3 and Corollary 1.4 in the somewhat subtle context of previous work. Read-
ers will see that conclusions have two distinct parts, one probabilistic and the other
concerning the differentiation of integrals; see (4.1). Lemma 2.1 and Section 3 are
expositions of the key parts of the counterexamples; they concern the differentia-
tion of integrals insofar as it is related to rooted, binary tree-structured statistical
rules. Section 4 provides details by means of which proofs of the two theorems
and the corollary are completed.

As in Breiman, Friedman, Olshen and Stone ([1], Chapter 10), a finite rooted
binary tree is a finite nonempty set T of positive integers together with (for
t ∈ T ) two functions, left(t) and right(t), that map T to T ∪ {0} and which sat-
isfy the following two properties: (1) for each t ∈ T , either left(t) = right(t) = 0,
or left(t) > t and right(t) > t ; (2) for each t ∈ T , other than the smallest integer in
T , there is exactly one s ∈ T for which either t = left(s) or t = right(s). The mini-
mum element of T is called the root of T . If s, t ∈ T and t = left(s) or t = right(s),
then s is called the parent of t . The root of T has no parent, but every other t ∈ T

has a unique parent. A t ∈ T is called a terminal node if it is not a parent, that is, if
left(t) = right(t) = 0. A finite partition of a set � is called a finite, rooted, binary
tree-structured partition if there exist a finite, rooted, binary tree and a bijection
that associates members of the partition with terminal nodes of the tree. For each
member of any sequence of nested subtrees of T with common root, it is required
that there exist a bijection that associates that subtree with a corresponding sub-
partition, where the nesting of partitions and of subtrees correspond in an obvious
way. A real-valued function h on � is a binary tree-structured function if there
is a finite, rooted, binary tree-structured partition of � and h is constant on each
member of the partition.

Throughout, d-dimensional Euclidean space is denoted by Rd , an important
subset being the open unit cube Ud . Much mathematics concerns the case d = 2.
Our principal focus is on rooted, binary tree-structured partitions of Rd (or Ud )
into boxes.

A box is a set {x} = B ⊂ Rd that is the solution set of a system of inequalities
defined by inner products b(k) · x ≤ c or b(k) · x > c, k = 1,2, . . . ,K < ∞, where
Rd � b(k) �= 0 and c is real. If for each linear inequality that defines B exactly one
coordinate is not 0, then B is a basic box or, alternatively, an interval.

Our focus is on rooted, binary tree-structured partitions of Rd (alternatively, of
Ud ) into a finite number of basic boxes. There is an obvious bijection that asso-
ciates terminal leaves of the tree and basic boxes of the partition without nonempty
subsets that are themselves basic boxes of the partition. Q is a generic symbol for
a finite partition of Rd (or Ud ), all of whose component subsets are basic boxes.
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For x ∈ Rd , denote by B(x) the unique, smallest basic box in Q that contains x.
For a sequence of such partitions Q(N), B(N)(x) has an obvious meaning. Write
B(N) for {B(N)(x)}.

The diameter of BN(x) is defined as

δN(x) = sup{‖z − y‖ : y, z ∈ B(N)(x)},
while the norm of Q(N), ‖Q(N)‖, is defined as

‖Q(N)‖ = max
x

δN(x).

The assumptions entail that writing “max” makes sense because {δN(x)} is finite.
Suppose that (X, Y ), (X1, Y1), . . . , (XN,YN) are independent, identically dis-

tributed (i.i.d.) vectors,

X ∈ Rd, Y ∈ R1, E(|Y |) < ∞.(1.1)

Write

h(x) = E(Y |X = x)(1.2)

for the regression of Y on X. The test case X and learning sample {(Xi , Yi) : i =
1, . . . ,N} are given; h is to be estimated. Write

ĥN = ĥN (X) = ĥN (X, (X1, Y1), . . . , (XN,YN)).(1.3)

Throughout, ĥN is a simple average of those Yi ’s, 1 ≤ i ≤ N , for which Xi lies in
the same box of a partition of Rd as X, provided the box has positive empirical
probability. Equalities (1.3) are made precise in what follows by (1.7) and (1.8).

For a measurable subset S ⊂ Rd , define µ(S) and F(S) as

µ(S) = E(YIS(X)), F (S) = E(IS(X)) = P(X ∈ S).(1.4)

IS(X) = 1 if X ∈ S and is 0 otherwise. The reader can check that a version of h(x)

is dµ
dF

(x). For P(X ∈ B(N)(x)) > 0, define

hN(x) = µ(B(N)(x))

P (X ∈ B(N)(x))
.(1.5)

Of course, we do not observe hN in applications. At each stage N of sampling, we
are given Q(N), a finite, rooted, binary tree-structured partition of Rd into basic
boxes that depends measurably on {(Xn, Yn) : n = 1, . . . ,N}. Define FN by

FN = σ {(Xn, Yn) : n = 1, . . . ,N : IB(X) : B ∈ Q(N)},(1.6)

where σ {·} is the σ -field generated by the random quantities inside {·}. I quote a
lemma that appears as Lemma 3.12 in [3].

LEMMA 1.1. E(Y |FN) = hN(X).
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DEFINITIONS AND NOTATION. For x ∈ Rd and B(N)(x) = B , write

ĥN (x) = µ̂N(B)

F̂N(B)
I{F̂N (B)>0},(1.7)

where

µ̂N(B) = 1

N

N∑
n=1

YnIB(Xn)(1.8)

and F̂N(B) = 1
N

∑N
n=1 IB(Xn).

Note from Lemma 1.1 and (1.7) and (1.8) that ĥN (x) bears the same relationship
to B(N) and F̂N that hN(x) does to B(N) and F .

One can show that ĥN (X) → h(X) in various senses as N grows without bound;
see, for example, [8], Theorem 12.7 of [1] and [4, 5, 10, 11, 14]. A particularly
strong notion of convergence, but one that matters for applications, is uncondi-
tional almost sure convergence, where “unconditional” is meant with respect to
the learning sample and test case. The question arises as to whether ĥN is consis-
tent in this very strong sense. A major point of this paper is that this strong notion
of consistency does not generally hold.

THEOREM 1.2. There exists a sequence Q(N) of finite, rooted, binary tree-
structured partitions of U2 for which ‖Q(N)‖ → 0, as well as a set {(Xn, Yn) :
n = 1,2, . . .} and an X that satisfy (1.1) where X is uniformly distributed on U2,
E(|Y |) is finite, P(ĥN(X)−hN(X) → 0) = 1, and yet P(hN(X)−h(X) → 0) = 0.
Thus, the analogue of “variance” tends to 0 almost surely and the diameters of
basic boxes of partitions tend to 0 surely. However, the analogue of bias almost
surely does not tend to 0 and P(ĥN(X) → h(X)) = 0.

The perverse behavior of hN(X) in the example of interest here is summarized
in the next theorem. Without loss of generality, we assume that Y ≥ 0, so h(x) ≥ 0.

THEOREM 1.3. With (X, Y ) and {Q(N)} as in Theorem 1.2 and Y ≥ 0, {h :
E(h(X) < ∞ and limhN(x) < ∞ for some x ∈ U2} is of the first category in
L1(U2).

The main examples are also relevant to understanding the (two-class) classifi-
cation problem. Thus, let Y = 1 or 2 with probability 1/2 each. Scale the non-
negative h of Theorem 1.2 to have integral 1 and thus to be a probability density
on U2. Suppose that given Y = 1, X has density h and given Y = 2, X has the
uniform distribution on U2. Given the training sample described in (1.1), a (mea-
surable) empirical classification rule dN(x) = dN({(Xi , Yi) : i = 1, . . . ,N})(x) is
given. Then dN(x) takes values 1 or 2 and is a guess of the unknown Y when
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X = x. We lose one dollar for an incorrect guess, otherwise we lose nothing. It is
not difficult to show that the rule “dB(x) = 1 if h(x) > 1, otherwise dB(x) = 2” is
a Bayes rule. Its expected loss is the “Bayes risk” of the Bayes rule dB . In practice,
we would not know h, so we could not compute a Bayes rule.

A sequence dN of classification rules is said to be Bayes-risk consistent if the
sequence of expected losses converges to the Bayes-risk of a Bayes rule as N

increases without bound.

COROLLARY 1.4. For any ε > 0 and the stated problem of two-class classi-
fication, with the learning sample as in (1.1) and that which precedes it and with
{Q(N)} as in Theorem 1.2, there is a sequence of rooted, binary tree-structured
classification rules dN with the following property: the rules are Bayes-risk con-
sistent, but P(dN(X) → dB(X)) < ε. As before, dB is a Bayes rule for the problem.

2. Martingales and the differentiation of integrals. The goal of this section
is to lend perspective to the main examples of this paper.

Given an L1 function f on a probability space and a monotonic sequence of
sub-σ -fields of a base σ -field, the martingale convergence theorem ensures that
the sequence of successive conditional expectations converges almost surely to
the conditional expectation given the “limit” σ -field. We are interested in the case
where the sequence is monotonically increasing. If f is measurable with respect
to the σ -field (T , say) that is generated by the sequence, then the limit random
variable is f itself, at least up to a T set of probability 0.

With our notions of basic box and ĥN (X), provided each hyperplane determined
by the boundary of each Bm ∈ Q(N) contains at least one Xn,1 ≤ n ≤ N , then
hN is equivariant to strictly monotonic transformations of the coordinate axes.
Thus, if T : Rd → Rd is of the form T (x1, . . . , xd) = (h1(x1), . . . , hd(xd)) with
hi strictly monotone, then T maps basic boxes to basic boxes—in an abuse of
notation, ĥN (T (x)) ≡ ĥN (x). Note that nothing is lost if we take the range of X to
be Ud . Clearly, mappings such as T do not preserve ratios of sides of boxes.

Our application allows restrictions on neighborhood systems that are different
from bounds on the ratios of sides of boxes. For one, rectangular neighborhoods
are always members of finite partitions of U2, each of which is a rooted, binary
tree-structured partition. The members of a partition are the atoms of a finite σ -
field of subsets of U2. Because the finite σ -fields are shown not to differentiate
every L1 function, or even “most” such functions, they cannot be nested. Even
so, Gordon and Olshen ([8], Section 6) asked if the restrictions to the particularly
simple probability space and shapes of the atoms would allow the relaxation of
assumptions on nesting and thereby an extension of the martingale theorem, not
to mention extensions of theorems regarding the almost sure consistency of binary
tree-structured algorithms for regression.
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DEFINITION. For B ⊂ Rn, let

δ(B) = sup{‖z − y‖ : y, z ∈ B}.
For each x ∈ Rn, suppose that B(x) is a collection of bounded Borel sets with
positive Lebesgue measure, that B ∈ B(x) implies x ∈ B and that for each x, there
exists a sequence Rk = Rk(x) ⊂ B(x) for which δ(Rk) → 0 as k → ∞. Then

B = ⋃
x∈Rn

B(x) is a differentiation basis.

Write f ∈ L1(Rn) if a version of f is Borel and the Lebesgue integral∫
Rn |f (x)|λ(dx) is finite. If f ∈ L1(Rn) and B is a differentiation basis, then

B differentiates L1(Rn) if for Lebesgue almost every x, x ∈ Bk , k = 1,2, . . . ,
Bk ∈ B and δ(Bk) → 0 implies

lim
k→∞(λ(Bk))

−1
∫
Bk

f (u)λ(du) = f (x).

Write B1(x) for the collection of open, bounded cubes containing x ∈ Rn

and B∗
1 (x) for the collection of open, bounded cubes centered at x. Write B1 =⋃

x B1(x) and B∗
1 = ⋃

x B∗
1 (x). Both B1 and B∗

1 are differentiation bases. The
Lebesgue differentiation theorem says that B∗

1 differentiates L1(Rn). Also, B1

differentiates L1. These conclusions remain true if the definitions of B1 and B∗
1

are relaxed to allow their members to be basic boxes instead of cubic intervals, but
with a finite bound on the ratio of dimensions of any two sides of the boxes.

Let B2(x) be the set of otherwise unrestricted basic boxes that contain x ∈ Rn,
and define B∗

2 (x) by analogy. Let B2 = ⋃
x B2(x) and B∗

2 = ⋃
x B∗

2 (x). Neither
B2 nor even B∗

2 differentiates L1(Rn) or, for that matter, L1(U2) (pages 95 and
96 of [8]). If in addition to f ∈ L1(Rn), we also have

∫
|f (x)|(1 + max(0, log |f (x)|))n−1

λ(dx) < ∞,

then B2 differentiates f .
The author believes the proof of Lemma 2.1 given below to be new. This lemma

is at the heart of the counterexamples.

LEMMA 2.1. For N = 3,4,5, . . . , there is a nonnegative Borel fN on U2 for
which:

(i)
∫
U2 fN(u)λ(du) ≤ N−1;

(ii) for each x ∈ U2, there exists a basic box B2,N (x) with δ(B2,N (x)) < N−1;
(iii)

∫
B2,N (x) fN(u)λ(du) > Nλ(B2,N (x)).
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Obviously, {B2,N (x)} can here be taken to be open intervals.

PROOF OF LEMMA 2.1. Let ε > 0 be given. Further, set βn = 1/n(lnn)2,
ηn = (lnn)−1 and γn = (lnn)1/2. Write Sn for {0 < x ≤ βn/ηn,0 < y ≤ ηn}∪{0 <

x ≤ ηn,0 < y ≤ βn/ηn}. The set Sn is the union of two oblong rectangles, one
contiguous to the x-axis and one contiguous to the y-axis. For (x, y) = u ∈ U2,
gn = gn(u) is defined to be γnISn(u). Obviously, gn ≥ 0 and γnβn ≤ ‖gn‖1 ≤
2γnβn. Write Rn = Sn ∪ {u ∈ U2 : xy ≤ βn, (βn/ηn) < x < ηn, (βn/ηn) < y <

ηn}. Thus, Rn is the union of Sn and a set that is bounded by the x-axis, the y-
axis, {x = ηn}, {y = ηn} and the hyperbola {xy = βn}. Furthermore, the hyperbola
has nonempty intersection with Sn. Note that for u ∈ Rn, there exists a basic box
R′

n(u) = R′
n ⊂ Rn bounded by the x-axis, the y-axis and with a vertex on the

hyperbola {xy = βn} such that
∫
R′

n

gn/λ(R′
n) ≥ 1

2
γnβnβn = 1

2
γn ↗ ∞.

{R′
n(u)} can be assumed to consist of only a countable class of open subsets of Rn.

Also,

λ(Rn) = βn + βn

∫ ηn

βn/ηn

dx/x = βn + 2βn lnηn + (−βn lnβn).

Therefore,
∑

λ(Rn) = ∞. On the other hand, because
∑

γnβn converges, there
exists an N = N(ε) sufficiently large that

∑∞
N γnβn < ε/2, so ‖∑∞

N gn‖1 < ε.
For n = N,N + 1, . . . on the square with vertices (ηn, ηn), (ηn,1 − ηn),

(1 − ηn, ηn), (1 − ηn,1 − ηn), choose a point Pn uniformly at random so that
PN , PN+1, . . . are independent. Place a square with sides ηn in the cited (larger)
square so that the center is at Pn and the sides are parallel to the coordinate axes.
Call this random square (Sq)n. Three subsets of (Sq)n require definition.

In what follows, two planar sets are homothetic if one is identical to the other
up to a rigid motion of the plane not involving rotation. Denote by Sn the subset
of (Sq)n that is homothetic to Sn, by Rn the subset of (Sq)n that is homothetic to
Rn and by R′

n the subset of (Sq)n that is a basic box and is homothetic to the ba-
sic box R′

n. For u ∈ U2 define the (random) function h = h(u) by h = ∑∞
N γnISn .

Necessarily, 0 ≤ h and ‖h‖1 < ε. Because
∑

λ(Rn) = ∞, manipulation of indi-
cator functions, independence and monotone convergence guarantee that almost
surely

λ
(⋃

Rn

)
= 1.

Moreover,
∫
R′

n

h/λ(R′
n) ≥ 1

2
γn ↗ ∞.
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It now follows from Fubini’s theorem that there exists a real-valued function g on
U2 for which (i) 0 ≤ g ∈ L1(U2), (ii) ‖g‖1 < ε and (iii) for almost all u0 ∈ U2,
there exists a basic box R′′

n = R′′
n(u0) ⊂ U2 with u0 ∈ R′′

n and
∫
R′′

n

g/λ(R′′
n) ≥ ε−1,(2.1)

at least for n satisfying 1
2γn > ε−1.

Finally, one can argue that “almost all u0” can, in fact, be “all.” With the R′′
n

open, the set of u0 of full measure for which (2.1) holds is seen to be open. Its
complement is thus a closed set of Lebesgue measure 0. Call it N . One sees that
there exists G ∈ L1(U2) that is continuous on U2\N and that tends to ∞ as its
argument tends to N . Without loss of generality, G ≥ 0. Now let f = g + G in
order to establish Lemma 2.1. �

DEFINITION. For Q a finite partition of U2 into basic boxes B with λ(B) > 0
for all B ∈ Q, f ∈ L1(U2) and u ∈ U2, define

E(f |Q)(u) = ∑
B∈Q

IB(u)

(∫
B

f (x)λ(dx)/λ(B)

)
.(2.2)

3. Examples. Material in this section expands upon that of Lemma 2.1 and is
at the heart of the proofs of Theorems 1.2 and 1.3 and Corollary 1.4. Compare the
results here with those of Busemann and Feller [2] and also with those of Saks [13].

Define U2
N to be {u ∈ U2,u = (s, t) : N−1 ≤ s, t ≤ 1 − N−1}. Therefore, the

(countable class of) open basic boxes {R′′
n(u) : u ∈ U2

N }, whose existence is en-
sured by Lemma 2.1, is an open cover of U2

N . Because U2
N is compact in the

usual topology, the Heine–Borel theorem guarantees the existence of a finite sub-
cover of open basic boxes, which we denote by {B2,N (uj ) : j = 1, . . . ,KN }. Now,
fix N , j , 1 ≤ j ≤ N , and B2,N (uj ). There is clearly a rooted, finite, binary tree-
structured partition Q(N,J ) of U2 for which B2,N (uj ) ∈ Q(N,j), ‖Q(N,j)‖ < N−1

and E(fN |Q(N,j))(u) > N for u ∈ B2,N (uj ). We therefore have the following
lemma:

LEMMA 3.1. For j = 1, . . . ,KN , ‖Q(N,j)‖ < N−1 and for all x ∈ U2
N ,

max{E(fN |Q(N,j))(u) : j = 1, . . . ,KN } > N.

Now define f = f (u) on U2 by

f =
∞∑

N=3

fN2 .(3.1)
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Clearly, f ∈ L1(U2). The finite, rooted binary tree-structured partitions of U2 that
concern us are

. . . ,Q(N2,1),Q(N2,2),Q(N2,K
N2 ), . . . ,Q((N+1)2,1), . . . ,

(3.2)
Q

((N+1)2,K
(N+1)2 )

, . . . .

From Lemma 3.1, it follows that ‖Q(N2,j)‖ < N−2. Since f ≥ fN2 (N = 3,4, . . .),
it follows also from that lemma that

max{E(f |Q(N2,1))(u), . . . ,E(f |Q(N2,K
N2 ))(u)} > N2

if u ∈ U2
N2 . Therefore, if we relabel the partitions (3.2) as

. . . ,Q(n),Q(n+1), . . . ,(3.3)

then Theorem 3.2 follows.

THEOREM 3.2. With Q(n) as in (3.3), as n grows without bound, ‖Q(n)‖ → 0,
but limE(f |Q(n))(u) = +∞ on U2.

We continue now with a corollary that is due to R.M. Dudley and to Gordon and
Olshen; see ([3], pp. 161–162).

COROLLARY 3.3. There exist a probability ν on U and an open set O ⊂ U

with the property that

ν{limE(IO|Q(n)) > 0} > ν(O).

Here, Q(n) is as in (3.3).

Next, we argue that the analogue of Theorem 1.3 is true in the present context.
First, note that {Q(n)} of (3.3) can be defined inductively so that for each u ∈ U2,
|⋃∞

n=3 ∂(B(n)(u))| ≤ 4. We will assume this to be the case. Here, for S ⊂ U2,
∂(S) denotes its boundary and |S| its cardinality.

THEOREM 3.4. Let F = {g ∈ L1(U2) : limE(g|Q(n)(u)) < ∞, some u ∈
U2}. Then F is of the first category in L1(U2).

PROOF. For k = 1,2, . . . and M = 3,4, . . . , let Fk,M = {f ∈ L1(U2): for
some u ∈ U2

M,‖B(n)(u)‖ ≤ k−1 implies E(f |Q(n))(u) ≤ k}. Necessarily, F =⋃
k,M Fk,M . Therefore, it is enough to show that each Fk,M is of the first category

in L1(U2). To that end, fix k,M and assume that {gj,k,M} (each in Fk,M ) satisfies
E(|gj,k,M − g|) → 0 as j → ∞ for some g ∈ L1(U2). By the definition of Fk,M ,
for each j = 1,2, . . . , there exists uj,k,M ∈ U2

M for which ‖B(n)(uj,k,M)‖ ≤ k−1
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implies that E(gj,k,M |Q(n))(uj,k,M) ≤ k. U2
M is compact and without loss of gen-

erality, we can assume that uj,k,M → uk,M as j → ∞. For n = n(uk,M)sufficiently
large, uk,M �∈ ⋃∞

l=n ∂(B(l)(uk,M)). For l sufficiently large, ‖B(l)(uk,M)| ≤ k−1.
Eventually, for each fixed l, uj,k,M ∈ B(l)(uk,M). Therefore, B(l)(uk,M) =
B(l)(uj,k,M) for j sufficiently large. For such j , E(gj,k,M |Q(l))(uk,M) ≤ k. Now,
E(g|Q(l))(uk,M) ≤ |E(g−gj,k,M |Q(l))(uk,M)|+k ≤ E(|g−gj,k,M ||Q(l))(uk,M)+
k. By making l, then j , sufficiently large, we can conclude that g ∈ Fk,M , that is,
that Fk,M is closed.

We now show that Fk,M contains no open ball in L1(U2). Let h ∈ Fk,M , f be
as in the example and 0 < α < 1. Because every function in L1 is the limit of
bounded, continuous functions and g is taken to be in an open L1 ball in Fk,M ,
we can (and do) take h to be bounded and continuous. Define gα = (1 − α)h +
αf . Then E(|h − gα|) → 0 as α → 0. But for each fixed α, limE(gα|Q(n)) = ∞
everywhere on U2. This completes the proof of Theorem 3.4. �

4. Applications to rooted, binary tree-structured regression and classifi-
cation. We return, now, in this last section, to the application of the results of
Section 3 to arguments for Theorems 1.2 and 1.3 and Corollary 1.4. The point
of Theorem 1.2 is that there exists a sequence Q(N) of finite, rooted, binary tree-
structured partitions of the unit cube U2 in R2 for which ‖Q(N)‖ → 0, as well as
a set {(Xn, Yn) : n = 1,2, . . .} and an X that satisfy the assumptions given previ-
ously, for which X is uniformly distributed on U2 and E(|Y |) is finite, but where
P(ĥN(X) → h(X)) = 0. Write

|ĥN (X) − h(X)| ≥ |hN(X) − h(X)| − |ĥN (X) − hN(X)| := II − I.(4.1)

The original question posed by Gordon and Olshen pertained both to |ĥN (X) −
h(X)| and to II. If the counterexample to the almost everywhere convergence to 0
of II for an h in L1(U2) implies the existence of an analogous counterexample to
the almost sure convergence of |ĥN (X)−h(X)| to 0 for an h with E(|h(X)|) < ∞,
then Theorem 1.2 is proved. In fact, I can converge to 0 almost surely while II does
not.

The asymptotic behavior of I depends on the large deviation behavior of

sup
D∈D

|F̂N(D) − F(D)|,

where D is a Vapnik–Chervonenkis class, as is the set of basic boxes, that is, the
set of interval subsets of U. For Theorems 1.2 and 1.3 and Corollary 1.4, we do
not need Vapnik–Chervonenkis-like results. It is easy to adapt Theorem 3.2 so
as to preserve the lack of convergence of II, while, in fact, I tends to 0 almost
surely. Suppose that (X, Y ) and the training sample (X1, Y1), . . . , (XN,YN) are as
in (1.1), with X having a uniform distribution on U2. Fix an n and therefore Q(n)

as in (3.3) and let Fn be as in (1.6). For i = 1,2, . . . , let Yi = f (Xi ), where f

is as in (3.1) and Theorem 3.2. Recall that B ∈ Q(n) implies that λ(B) > 0 and
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that each Q(N) has only finitely many members. Therefore, the strong law of large
numbers implies that for any fixed Q(n) and ε = εn, 0 < εn < 1, there exists an
N(n, εn) sufficiently large that P(

⋃
N>N(n,εn) |ĥN (X) − hN(X)| > εn) < εn. If εn

is the term of a convergent series, then N(n, εn) can grow sufficiently fast and n

sufficiently slowly so that Q(n) applies to learning samples from size N(n, εn) to
N(n+ 1, εn+1). The Borel–Cantelli lemma implies that I tends to 0 almost surely.
That is, the cardinality of the learning sample, N , and the Q(N) that applies need
not be related, other than for convenience. It follows that II can fail to converge
to 0 on a set of probability 1, while I can converge to 0 with probability 1. When
this happens, |ĥN (X) − h(X)| fails to converge to 0 on a set of probability 1. This
completes the argument for Theorem 1.2.

A repetition of the argument in the previous paragraph, with Theorem 3.4 sub-
stituted for Theorem 3.2, completes the argument for Theorem 1.3.

Because h = h(u) can be approximated arbitrarily closely in L1(U2) by a
continuous function, it is clear that in the extended example of this section,
ĥN (X)−h(X) tends to 0 in L1 of the common probability space on which random
variables (X, Y ) and the learning sample are defined. This observation is analogous
to the argument for Proposition 1 of [15].

We now turn our attention to a brief discussion of the two-class classification
problem and argument for Corollary 1.4. A formulation is given after Theorem 1.3
of Section 1. We argue that the rule for two-class classification given next is Bayes-
risk consistent, but not almost surely consistent.

With Q(N) as in the arguments for Theorems 1.2 and 1.3, let dN(x) = 1 if

∑
B∈Q(N)

N∑
i=1

I[x∈B,Xi∈B,Y=1] >
∑

B∈Q(N)

N∑
i=1

I[x∈B,Xi∈B,Y=2],

otherwise, dN(x) = 2. It follows from the construction of {Q(N)} and Theo-
rem 12.17 of [1] that dN is Bayes-risk consistent. From the argument for Theo-
rem 1.2 in this section, it follows that for any ε > 0, Q(N) and h can be chosen so
that P(h(X) < 1) > 1 − ε, but P(h(X) < 1;dN → dB) = 0.
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