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SEMIPARAMETRICALLY EFFICIENT RANK-BASED
INFERENCE FOR SHAPE

II. OPTIMAL R-ESTIMATION OF SHAPE

BY MARC HALLIN1, HANNU OJA2 AND DAVY PAINDAVEINE1

Université Libre de Bruxelles, University of Tampere and
Université Libre de Bruxelles

A class of R-estimators based on the concepts of multivariate signed
ranks and the optimal rank-based tests developed in Hallin and Painda-
veine [Ann. Statist. 34 (2006) 2707–2756] is proposed for the estimation of
the shape matrix of an elliptical distribution. These R-estimators are root-n
consistent under any radial density g, without any moment assumptions, and
semiparametrically efficient at some prespecified density f . When based on
normal scores, they are uniformly more efficient than the traditional normal-
theory estimator based on empirical covariance matrices (the asymptotic nor-
mality of which, moreover, requires finite moments of order four), irrespec-
tive of the actual underlying elliptical density. They rely on an original rank-
based version of Le Cam’s one-step methodology which avoids the unpleas-
ant nonparametric estimation of cross-information quantities that is generally
required in the context of R-estimation. Although they are not strictly affine-
equivariant, they are shown to be equivariant in a weak asymptotic sense.
Simulations confirm their feasibility and excellent finite-sample performance.

1. Introduction.

1.1. Rank-based inference for elliptical families. An elliptical density over R
k

is determined by a location center θ ∈ R
k , a scale parameter σ ∈ R

+
0 , a real-valued

positive definite symmetric k ×k matrix V = (Vij ) with V11 = 1, the shape matrix,
and the so-called standardized radial density g1; for a precise definition and com-
ments, see Section 1.2 of [13]. We shall hereafter refer to the latter as HP, further
referring to Section HP1.2, Proposition HP2.3, Equation (HP4.5), etc.

Elliptical families have been introduced in multivariate analysis as a reaction
against pervasive Gaussian assumptions. Most classical procedures in that field—
principal components, discriminant analysis, canonical correlations, multivariate
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regression, etc.—readily extend to elliptical models, with shape playing the role
of covariances or correlations. When g1 is such that the corresponding distribution
has finite second-order moments, V is proportional to the covariance matrix and
shape-based procedures coincide with the classical covariance-based ones; unlike
covariances, however, shape still makes sense in the absence of moment restric-
tions. In such a context, robust inference methods, resisting arbitrarily heavy radial
tails, are highly desirable and distribution-free rank-based methods naturally come
into the picture (see [9–12] for closely related results).

1.2. Rank tests. In the hypothesis-testing context, HP develop a class of semi-
parametrically optimal signed rank tests for null hypotheses of the form V = V0
(θ , σ and g1 playing the role of nuisances). Let X1, . . . ,Xn be a random sam-
ple from some elliptical distribution characterized by θ , σ , V and g1. Assuming
that θ is known (in practice, this θ can be replaced by any root-n consistent es-
timate θ̂—see Section HP4.4), denote by Zi := V−1/2

0 (Xi − θ) the θ -centered,
V0-standardized observations. Define the rank Ri as the rank of di := ‖Zi‖ among
d1, . . . , dn and the multivariate sign Ui as ‖Zi‖−1Zi , i = 1, . . . , n. Considering the
matrix-valued signed rank statistic

Sf1(V0) := 1

n

n∑
i=1

Kf1

(
Ri

n + 1

)
UiU′

i ,

where Kf1 : (0,1) → R is the score function ensuring optimality at f1, the test
statistic developed in HP takes the very simple form [see (HP4.4)]

Q∼f1(V0) := nk(k + 2)

2Jk(f1)
Q(Sf1(V0)) where Q(S) := tr(S2) − 1

k
(tr S)2.(1.1)

Test procedures based on (1.1) enjoy a number of attractive features: (i) they are
valid under arbitrary standardized radial densities g1, irrespective of any moment
assumptions, (ii) they are nevertheless (semiparametrically) efficient at some pre-
specified radial density f1, (iii) they exhibit surprisingly high asymptotic relative
efficiencies with respect to classical Gaussian procedures under non-Gaussian g1’s
and, quite remarkably, (iv) when Gaussian (van der Waerden) scores are adopted,
their ARE’s with respect to the classical Gaussian tests [21, 22, 34, 35] are uni-
formly larger than one; see [38] for this extension of the celebrated Chernoff–
Savage [5] result to shape matrices.

These optimality properties, in fact, are all possessed by the noncentrality
parameters of the noncentral chi-square asymptotic distributions, under local
alternatives, of the rank-based test statistic under consideration. When the ra-
dial density under such alternatives is g1, these noncentrality parameters are
quadratic forms characterized by a symmetric positive definite matrix of the form
J 2

k (f1, g1)J −1
k (f1)ϒ

−1
k (V), where Jk(f1, g1) is a cross-information quantity

(cf. (2.7)) and ϒk depends on neither f1 nor g1; see Proposition HP4.1. This ma-
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trix, for g1 = f1, coincides with the efficient information matrix Jk(f1)ϒ
−1
k (V)

for V under f1.
An immediate question which arises is whether such tests have any natural

counterparts in the context of point estimation. That is, can we construct estimators
V̂(n) for the shape matrix that match the performances of those rank-based tests,
in the sense of (i) being root-n consistent under any radial density g1, irrespec-
tive of any moment assumptions—in sharp contrast with the Gaussian estimators,
which require finite second-order moments for consistency and finite fourth-order
moments for asymptotic normality, (ii) being nevertheless (semiparametrically) ef-
ficient at some prespecified standardized radial density f1 and (iii) exhibiting the
same asymptotic relative efficiencies, with respect to classical Gaussian estima-
tors, including (iv) the Chernoff–Savage property of [38]? Such estimators would
improve the performance of the existing ones that satisfy the consistency require-
ment (i), such as Tyler’s [45] celebrated affine-equivariant estimator of shape (scat-
ter, in Tyler’s terminology) V(n)

T or the estimator of shape based on the Oja signs
developed in [36]. These estimators are indeed root-n consistent under extremely
general conditions (second-order moments, however, are required in [36]), but they
are not efficient.

The answer, as we shall see, is positive and the estimators achieving the required
performances are R-estimators based on the same concepts of multivariate ranks
and signs as the test statistics (1.1).

1.3. R-estimation. The derivation of such R-estimators, however, is by no
means straightforward. Traditional R-estimators are defined (and computed) via
the minimization of some rank-based objective function; see [1, 19, 20, 24, 26] or
the review paper by Draper [6]. In the present context, this approach, in connection
with (1.1), leads to the definition of an R-estimator as

V∼
(n)
f1

:= argmin
V

Q∼f1(V) = argmin
V

(
tr(S2

f1
(V)) − 1

k
(tr Sf1(V))2

)
,(1.2)

that is, as the value of V minimizing the sum of squared deviations of the k eigen-
values of the rank-based matrix Sf1(V) from their arithmetic mean.

This “argmin” definition is intuitively quite appealing. However, from a prac-
tical point of view, its implementation is numerically costly when the dimension
of the parameter is high [a shape parameter has k(k + 1)/2 − 1 components]. The
same definition is hardly more convenient from a theoretical point of view: as a
function of ranks, the objective function V �→ Q∼f1(V) is discontinuous and its

monotonicity/convexity properties are all but obvious, so root-n consistency re-
mains a nontrivial issue.

Instead, therefore, we suggest a rank-based adaptation of Le Cam’s one-step
construction of locally asymptotically optimal estimators. A version, �∼

(n)
f1

(V),
measurable with respect to the ranks and signs associated with V, of the semipara-
metrically efficient (at V and f1) central sequence for shape can be constructed
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[see (HP4.1) or (2.6)]; this central sequence is distribution-free with asymptotic
covariance matrix Jk(f1)ϒ

−1
k (V). The f1-score version of our R-estimator, in

vech form (that is, stacking the upper-diagonal elements), is then defined as

vech
(
V∼

(n)
f1

) := vech(V(n)
T ) + n−1/2(α∗)−1

(
0

ϒk(V
(n)
T )�∼

(n)
f1

(V(n)
T )

)
,(1.3)

where V(n)
T is Tyler’s estimator of scatter and α∗ is a consistent estimator of the

cross-information quantity Jk(f1, g1) [the problem of estimating Jk(f1, g1) is dis-
cussed in Section 4]. The resulting V∼

(n)
f1

is a genuine R-estimator since the one-step
correction in (1.3) only depends on Tyler’s V(n)

T and the corresponding ranks Ri

and signs Ui . Moreover, it is asymptotically equivalent to a random matrix (de-
pending on the actual g1) which is measurable with respect to the ranks and signs
associated with the “true” value of V. And if (1.2) admits a root-n consistent se-
quence of solutions, this sequence of solutions and the one-step definition of V∼

(n)
f1

are asymptotically equivalent.
The main objective of this paper is to show that V∼

(n)
f1

, as defined in (1.3), indeed
satisfies the properties listed under (i)–(iv) which are required of a semiparametri-
cally efficient R-estimator.

1.4. Outline of the paper. The outline of the paper is as follows. In Sec-
tion 2 we recall the main definitions related to elliptical symmetry, local asymp-
totic normality and the relation between ranks and signs on one hand and semi-
parametric efficiency on the other; whenever possible, we refer to HP for rea-
sons of brevity. Postponing to Section 4 the delicate problem of choosing a con-
sistent estimator α∗ for Jk(f1, g1), Section 3 deals with the derivation and as-
ymptotic properties of the one-step R-estimator (1.3) based on such arbitrary α∗.
Section 4 is entirely devoted to the estimation of Jk(f1, g1). We start, in Sec-
tion 4.1, with a review of the various solutions that have been considered in the
literature, explaining why they fail to be fully convincing. Sections 4.2 and 4.3
then propose an original, more sophisticated (yet easily implementable) method
inspired by local maximum likelihood ideas. The resulting R-estimators enjoy all
the asymptotic properties expected from R-estimation and, moreover, yield sur-
prisingly high AREs with respect to the existing methods: see Table 1. These es-
timators, however, remain unsatisfactory on one count: for fixed sample size n,
they are not affine-equivariant. They are, nevertheless, equivariant in a weak
asymptotic sense, as shown in Section 5. A numerical study (Section 6) con-
firms the excellent performance of the method. The Appendix collects technical
proofs.
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2. Semiparametric efficiency under elliptical symmetry.

2.1. Uniform local asymptotic normality. Let X(n) := (X(n)′
1 , . . . ,X(n)′

n )′, n ∈
N, be a triangular array of k-dimensional observations. Let P(n)

θ,σ 2,V;f1
denote the

distribution of X(n) under the assumption that the X(n)
i ’s are i.i.d. with the elliptical

density f
θ,σ 2,V;f1

described in Section HP1.2 [which we refer to for details, as
well as for a precise definition of the parameters θ , σ , V and ϑ , the parameter
spaces � and Vk , the radial distribution functions F̃1, the distances d

(n)
i (θ ,V), the

ranks R
(n)
i (θ ,V) and the signs U(n)

i (θ ,V)]. Our objective is the estimation of V
under unspecified θ , σ 2 and f1.

The relevant statistical experiment involves the nonparametric family

P(n) := ⋃
f1∈FA

P(n)
f1

:= ⋃
f1∈FA

{
P(n)

θ ,σ 2,V;f1
|θ ∈ R

k, σ > 0,V ∈ Vk

}
,(2.1)

where f1 ranges over the set FA of standardized radial densities satisfying As-
sumptions (A1)–(A2) in HP. The main technical tool is uniform local asymptotic
normality (ULAN), with respect to ϑ := (θ ′, σ 2, ( ˚vechV)′)′, of the families P(n)

f1
.

This ULAN property is stated and proved in Section HP2, which we refer to for
the definitions of the score functions ϕf1 , ψf1 and Kf1 and for the explicit forms

of the central sequences �
(n)
f1

(ϑ) and information matrices �f1(ϑ).
The block-diagonal structure of �f1(ϑ) and ULAN imply that substituting (in

principle, after adequate discretization) a root-n consistent estimator θ̂ = θ̂
(n)

for
the unknown location θ has no influence, asymptotically, on the V-part �

(n)
f1;3 of

the central sequence. Hence, optimal inference about V can be based, without any
loss of (asymptotic) efficiency, on �

(n)
f1;3(θ̂ , σ 2,V), as if θ̂ were the actual location

parameter. This actually follows from the asymptotic linearity property of Sec-
tion A.1. Therefore, in the derivation of theoretical results, we may tacitly assume
without loss of generality that θ = 0. The notation P(n)

σ 2,V;f1
, d

(n)
i (V), U(n)

i (V),

�
(n)
f1

(σ 2,V), �f1(σ
2,V), etc. will be used in an obvious way instead of P(n)

0,σ 2,V;f1
,

d
(n)
i (0,V), U(n)

i (0,V), �(n)
f1;3(0, σ 2,V), �f1;3(0, σ 2,V), etc. Experiment (2.1) now

takes the form

P(n) := ⋃
f1∈FA

P(n)
f1

:= ⋃
f1∈FA

⋃
σ>0

P(n)

σ 2;f1
:= ⋃

f1∈FA

⋃
σ>0

{
P(n)

σ 2,V;f1
|V ∈ Vk

}
.(2.2)

Although any root-n consistent estimator θ̂ could be used, we suggest adopting the
multivariate affine-equivariant median introduced by Hettmansperger and Randles
[18], which is itself a “sign-based” estimator. The multivariate signs to be con-
sidered, then, are the U(n)

i (θ̂,V)’s and the ranks to be considered are those of the

d
(n)
i (θ̂ ,V)’s.
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2.2. Semiparametric efficiency, ranks and signs. The partition (2.2) of P(n)

into a collection of parametric subexperiments P(n)
f1

, all indexed by V and σ 2,
induces a semiparametric structure, where V is the parameter of interest, while
(σ 2, f1) plays the role of a nuisance. Except for the unavoidable loss of efficiency
resulting from the presence of this nuisance, we would like our estimators to be
optimal, that is, to reach semiparametric efficiency bounds, either at some pre-
specified radial density f1 or at any density belonging to some class F∗ of radial
densities.

The semiparametric efficiency bound at f1 is provided by the so-called efficient
information matrix (see Section HP3.1),

�∗
f1

(V) := Jk(f1)

4k(k + 2)
Mk(V⊗2)−1/2

[
Ik2 + Kk − 2

k
Jk

]
(V⊗2)−1/2M′

k

(2.3)
=: Jk(f1)ϒ

−1
k (V);

we refer to Section HP1.4 for definitions of the matrices V⊗2, Kk , Jk and Mk , as
well as for those of J

⊥
k and Nk which we will use later on. This information matrix

(2.3) is the asymptotic covariance (under shape matrix V and density f1) of the
efficient central sequence

�
∗(n)
f1

(V) := 1

2
n−1/2Mk(V⊗2)−1/2J

⊥
k

n∑
i=1

ϕf1

(
di

σ

)
di

σ
vec(UiU′

i)(2.4)

(see Section HP3.1) which, like �∗
f1

(V), does not depend on σ (hence the no-

tation). An estimator V(n) of V is semiparametrically efficient at (σ 2, f1) iff the
asymptotic distribution under P(n)

σ 2,V;f1
of n1/2 ˚vech(V(n) − V) is the same as that

of (�∗
f1

(V))−1�
∗(n)
f1

(V), that is, iff, under P(n)

σ 2,V;f1
,

n1/2 ˚vech(V(n) − V)
L−→ N

(
0,

(
�∗

f1
(V)

)−1)
.(2.5)

The difference between �f1(σ
2,V) and �∗

f1
(V) quantifies the loss of informa-

tion on V which is due to the non-specification of (σ 2, f1). It should be emphasized
that, whereas this loss depends on the definition of shape (that is, on the arbitrary
choice of the normalization V11 = 1), the semiparametric information bound does
not; see Sections HP3.1, HP3.2 [14] and [39] for details.

A general result by Hallin and Werker [17] suggests that, in case

(i) for all f1 ∈ FA and σ > 0, the sequence of parametric subexperiments P(n)

σ 2;f1

[see (2.2)] is ULAN with central sequence �
(n)
f1

(σ 2,V) and information ma-

trix �f1(σ
2,V) and

(ii) for all V ∈ Vk and n ∈ N, the nonparametric subexperiment P(n)
V := {P(n)

σ 2,V;f1
|

σ > 0, f1 ∈FA} is generated by a group of transformations G(n)
V with maximal

invariant σ -field B(n)
V ,
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then the projection E[�(n)
f1

(σ 2,V)|B(n)
V ] of �

(n)
f1

(σ 2,V) onto B(n)
V yields a distri-

bution-free version of the semiparametrically efficient central sequence (2.4).
In the present context, this double structure exists: condition (i) is an im-

mediate consequence of Proposition HP2.1 and the generating groups G(n)
V

are the groups of order-preserving radial transformations described in Sec-
tion HP4.1, which admit the ranks Ri = R

(n)
i (V) of the distances d

(n)
i (V)

and the multivariate signs Ui = U(n)
i (V) as maximal invariants. Moreover,

E[�(n)
f1

(σ 2,V)|R1, . . . ,Rn,U1, . . . ,Un] is asymptotically equivalent to

�∼
(n)
f1

(V) := 1

2
n−1/2Mk(V⊗2)−1/2J

⊥
k

n∑
i=1

Kf1

(
Ri

n + 1

)
vec(UiU′

i )

(2.6)

= 1

2
n−1/2Mk(V⊗2)−1/2

n∑
i=1

[
Kf1

(
Ri

n + 1

)
vec(UiU′

i ) − m
(n)
f1

k
vec(Ik)

]
(see Lemma HP4.1), with Kf1(u) := ϕf1(F̃

−1
1 (u))F̃−1

1 (u) and exact centerings

m
(n)
f1

:= 1
n

∑n
i=1 Kf1(i/(n + 1)).

The properties of �∼
(n)
f1

(V) are summarized in Proposition 2.1 below. For

any g1 ∈ FA, define �∗
f1,g1

(V) := Jk(f1, g1)ϒ
−1
k (V), where

Jk(f1, g1) :=
∫ 1

0
Kf1(u)Kg1(u) du(2.7)

(a cross-information quantity); the notation G̃1k , ϕg1 is used in an obvious way.
Note that Jk(f1, f1) = Jk(f1) so that �∗

f1,f1
(V) reduces to �∗

f1
(V).

PROPOSITION 2.1. For any f ∈FA, the rank-based random vector �∼
(n)
f1

(V):

(i) is distribution-free under {P(n)

σ 2,V;g1
|σ > 0, g1 ∈ F}, where F denotes the

class of all possible standardized radial densities;
(ii) is asymptotically equivalent, in P(n)

σ 2,V;g1
-probability for any g1 ∈ F , to

�
∗(n)
f1,g1

(V) := 1

2
n−1/2Mk(V⊗2)−1/2J

⊥
k

n∑
i=1

Kf1

(
G̃1k

(
di

σ

))
vec(UiU′

i),(2.8)

hence, in P(n)

σ 2,V;f1
-probability, to the semiparametrically efficient (at f1, for any

σ ) central sequence for shape (2.4);
(iii) is asymptotically normal under {P(n)

σ 2,V;g1
|σ > 0, g1 ∈ F} with mean zero

and covariance matrix �∗
f1

(V);

(iv) is asymptotically normal under P(n)

σ 2,V+n−1/2v;g1
, with mean �∗

f1,g1
(V)×

˚vech(v) and covariance matrix �∗
f1

(V) for any symmetric matrix v such that v11 =
0, any σ > 0 and any g1 ∈ FA;
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(v) satisfies, under P(n)

σ 2,V;g1
, as n → ∞, the asymptotic linearity property

�∼
(n)
f1

(V + n−1/2v(n)) − �∼
(n)
f1

(V) = −�∗
f1,g1

(V) ˚vech(v(n)) + oP(1)(2.9)

for any bounded sequence v(n) of symmetric matrices such that v
(n)
11 = 0, any σ > 0

and any g1 ∈ FA.

PROOF. Part (i): distribution-freeness readily follows from the distribution-
freeness under ellipticity of the ranks R

(n)
i (V) and the signs U(n)

i (V) with respect

to which �∼
(n)
f1

(V) is measurable. Part (ii) is covered by Lemma HP4.1. Parts (iii)–
(iv) are established in the proof of Proposition HP4.1. Part (v) follows from the
more general result given in Proposition A.1 (see Appendix A.1). �

3. Optimal one-step R-estimation of shape. Tyler’s celebrated estimator of
shape, V(n)

T , was introduced by Tyler [45] based on the very simple idea that
if X is elliptical with location θ , then its shape V is entirely characterized by
the fact that U(θ ,V) := V−1/2(X − θ)/‖V−1/2(X − θ)‖ is centered, with covari-
ance (1/k)Ik . Accordingly, V(n)

T is defined as the unique shape matrix satisfying
1
n

∑n
i=1 U(n)

i (θ ,V)(U(n)
i (θ,V))′ = 1

k
Ik .

Denote by V(n)
# a discretized version of V(n)

T . Such discretizations, which turn
root-n consistent preliminary estimators into uniformly root-n consistent ones
(see, e.g., Lemma 4.4 in [30] for a typical use), are quite standard in Le Cam’s one-
step construction of estimators (see [31]), and several of them, characterized by a

# subscript, will appear in the sequel. Denoting by �x� the smallest integer larger
than or equal to x and by c0 an arbitrary positive constant that does not depend
on n, the discretized shape V(n)

# can be obtained, for instance, by mapping each

entry v
(n)
ij , (i, j) = (1,1), of V(n)

T onto v
(n)
ij# := c−1

0 sign(v
(n)
ij )n−1/2�n1/2c0|v(n)

ij |�.
In practice (where n = n0 is fixed), such discretization is not required (as c0 can be
arbitrarily large) and actually makes little sense, as one can always decide to start
discretization at n = n0 + 1; see Section 4.3 for practical implementation.

Since �∼
(n)
f1

(V) is a version of the efficient central sequence for shape, Le Cam’s

classical one-step method suggests estimating ˚vech(V) by means of

˚vech
(
V∼

(n)
f1#

) := ˚vech(V(n)
# ) + n−1/2(

�∗
f1,g1

(V(n)
# )

)−1
�∼

(n)
f1

(V(n)
# ).(3.1)

Such an estimator is semiparametrically efficient at P(n)
f1

, in the sense of (2.5).
Indeed, in view of Proposition 2.1 and the continuity of V �→ �∗

f1,g1
(V),
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n1/2 ˚vech
(
V∼

(n)
f1# − V

) = n1/2 ˚vech(V(n)
# − V) + (

�∗
f1,g1

(V(n)
# )

)−1
�∼

(n)
f1

(V(n)
# )

= n1/2 ˚vech(V(n)
# − V) + (

�∗
f1,g1

(V(n)
# )

)−1

× (
�∼

(n)
f1

(V) − �∗
f1,g1

(V) n1/2 ˚vech(V(n)
# − V)

) + oP(1)

= (
�∗

f1,g1
(V)

)−1
�∼

(n)
f1

(V) + oP(1)(3.2)

= (
�∗

f1,g1
(V)

)−1
�

∗(n)
f1,g1

(V) + oP(1)(3.3)

under P(n)

σ 2,V;g1
, as n → ∞, where application to �∼

(n)
f1

(V(n)
# ) of the asymptotic lin-

earity property (2.9) is made possible, as usual, by the local discreteness of V(n)
# .

The asymptotic representation (3.3) implies, for g1 = f1, the efficiency of V∼
(n)
f1#,

whereas (3.2), by providing for V∼
(n)
f1# an asymptotic representation as a signed-

rank-measurable quantity, justifies its status as an R-estimator.
A major problem, unfortunately, is that (3.1), via �∗

f1,g1
(V(n)

# ), involves the un-

known cross-information quantity Jk(f1, g1) defined in (2.7); V∼
(n)
f1# is, therefore,

just a pseudo-estimator which cannot be computed from the observations. In order

to obtain a genuine estimator, V̂∼
(n)

f1#, say, a consistent estimator α∗ must clearly
be substituted for Jk(f1, g1). This estimation of Jk(f1, g1) is absolutely crucial
in several respects since it not only explicitly enters the definition of the one-step
estimator, but also characterizes its asymptotic covariance. However, obtaining a
consistent estimator α∗ of Jk(f1, g1)—the expectation of a function that depends
on the unknown underlying g1—is a delicate problem. Accordingly, we defer the
discussion of this issue to Section 4, where, after a review of the various methods
available in the literature, we present an original method inspired by local maxi-
mum likelihood ideas.

Therefore, in the present section we define the f1-score R-estimator V̂∼
(n)

f1# as
the value of V∼

(n)
f1# resulting from substituting into (3.1) an arbitrary consistent es-

timator α∗ for the unknown Jk(f1, g1). Up to discretization, V̂∼
(n)

f1# thus is defined
as in (1.3). Irrespective of the choice of α∗, the resulting one-step R-estimators

V̂∼
(n)

f1# are asymptotically equivalent (under P(n)) to the pseudo-estimator V∼
(n)
f1#

and, hence, also to the signed rank statistics (3.2) based on the “genuine ranks.”
Proposition 3.1 summarizes the main properties of these estimators: (i) they are
asymptotically equivalent to a function of the genuine ranks and signs, they are
asymptotically normal, and their covariance matrix is the inverse of the covari-
ance matrix characterizing the local powers of the optimal rank tests derived in
HP; (ii) when based on f1-scores, they are semiparametrically efficient at radial
density f1; (iii) for finite n, they can be expressed as a linear combination of the
Tyler shape matrix and a rank-based shape matrix involving the Tyler ranks and
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signs; (iv) their asymptotic covariance matrix, under any elliptical density, is pro-
portional to the asymptotic covariance matrices of the Tyler and Gaussian ML
estimators. The proportionality constant, which can be considered to be a measure
of asymptotic relative efficiency, is provided in (v). In order to obtain a simpler
expression for the asymptotic covariance matrix of vec(V∼

(n)
f1#) (cf. 3.8), we define

Qk(V) := [k(k + 2)]−1M′
kϒk(V)Mk . As shown in the proof of Lemma HP3.1

(with Nk defined in Section HP1.4),

ϒk(V) = k(k + 2)NkQk(V)N′
k.(3.4)

PROPOSITION 3.1. Let f1 and g1 belong to FA. Then:

(i) under P(n)

σ 2,V;g1
, as n → ∞,

n1/2 ˚vech
(
V̂∼

(n)

f1# − V
) = (

�∗
f1,g1

(V)
)−1

�∼
(n)
f1

(V) + oP(1)(3.5)

= (
�∗

f1,g1
(V)

)−1
�

∗(n)
f1,g1

(V) + oP(1)(3.6)

L−→ N
(
0,

(
Jk(f1)/J 2

k (f1, g1)
)
ϒk(V)

)
(3.7)

or, in terms of vec V,

n1/2vec
(
V̂∼

(n)

f1# − V
) L−→ N

(
0,

(
k(k + 2)Jk(f1)/J 2

k (f1, g1)
)
Qk(V)

);(3.8)

(ii) V̂∼
(n)

f1# is semiparametrically efficient at {P(n)

σ 2,V;f1
|σ > 0,V ∈ Vk};

(iii)

V̂∼
(n)

f1# =
(

1 − k(k + 2)

α∗
(
W∼

(n)
f1#

)
11

)
V(n)

#

(3.9)

+
(

k(k + 2)

α∗
(
W∼

(n)
f1#

)
11

)
W∼

(n)
f1#

/(
W∼

(n)
f1#

)
11

for all n, where W∼
(n)
f1# := W∼

(n)
f1

(V(n)
# ), with

W∼
(n)
f1

(V) := V1/2

[
1

n

n∑
i=1

Kf1

(
R

(n)
i (V)

n + 1

)
U(n)

i (V)U(n)′
i (V)

]
V1/2(3.10)

and α∗ is the consistent estimator of Jk(f1, g1) entering the construction of V̂∼
(n)

f1#;

(iv) the Gaussian ML estimator is V(n)
G := �(n)/(�(n))11 with

�(n) := (n − 1)−1
n∑

i=1

(Xi − X̄)(Xi − X̄)′;



EFFICIENT RANK-BASED INFERENCE FOR SHAPE II 2767

provided that the kurtosis coefficient κk(g1) := (kEk(g1))/((k + 2)D2
k (g1)) − 1

[where we let Ek(g1) := ∫ 1
0 (G̃−1

1k (u))4 du and Dk(g1) := ∫ 1
0 (G̃−1

1k (u))2 du] is fi-

nite, then under P(n)

σ 2,V;g1
,

n1/2vec
(
V(n)
G − V

) L−→N
(
0,

(
1 + κk(g1)

)
Qk(V)

)
as n → ∞;

(v) the ARE (i.e., the inverse ratio of asymptotic variances) under P(n)

σ 2,V;g1
,

where g1 is such that κk(g1) < ∞ (resp., without any moment assumption on g1),

of V̂∼
(n)

f1# with respect to V(n)
G (resp., with respect to V(n)

T ), is 1+κk(g1)
k(k+2)

J 2
k (f1,g1)

Jk(f1)
(resp.,

1
k2

J 2
k (f1,g1)

Jk(f1)
).

The proof is given in Section A.2 of the Appendix.
Note that the AREs in part (v) of the proposition are unambiguously defined,

despite the multivariate setting, as the asymptotic covariance matrices of (the vec

versions of) V̂∼
(n)

f1#, V(n)
G and V(n)

T all are proportional to Qk(V). Their relative
performances can thus be described by a single number, a fact that was already
observed in [44] (see also [33]); the situation is entirely different for covariance
matrices, where two numbers are required [36, 37, 43].

These AREs coincide with those obtained in HP for the problem of testing V =
V0 (see Proposition HP4.2). An immediate corollary is that the Chernoff–Savage
result of [38] also applies here: the AREs of the van der Waerden (Gaussian-score)

versions V̂∼
(n)

vdW# of our R-estimators (Kf1 = �−1
k , where �k stands for the chi-

square distribution function with k degrees of freedom—see Section HP4.2) with
respect to the Gaussian estimator V(n)

G are uniformly larger than 1 (and equal to

one only at the multinormal); the Pitman-inadmissibility of V(n)
G follows.

Table 1 provides some numerical values, under various Student (tν) and nor-
mal (N ) radial densities g1, of the AREs in Proposition 3.1(v); for details on ellip-
tical Student densities, see Section HP1.2. Note that under Student densities with

four degrees of freedom or less, the ARE of V̂∼
(n)

f1# with respect to V(n)
G is infinite

since n1/2(V(n)
G − V) is not even OP(1). Also, note that the limits as ν → 0 of the

AREs under tν , with respect to Tyler’s V(n)
T , of any V̂∼

(n)

ν0# (the R-estimator associ-

ated with tν0 scores) and V̂∼
(n)

vdW# are relatively modest and strictly less than 1; see
column t0 in Table 1 for numerical values. In fact,

lim
ν→0

AREtν

[
V̂∼

(n)

ν0# /V(n)
T

] = k(k + ν0 + 2)

(k + 2)(k + ν0)
< 1

and

lim
ν→0

AREtν

[
V̂∼

(n)

vdW# /V(n)
T

] = k

k + 2
< 1.
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TABLE 1

ARE’s of the rank-based estimators V̂∼
(n)
0.5# , V̂∼

(n)
3# , V̂∼

(n)
10# and V̂∼

(n)
vdW# (associated with t0.5, t3, t10

and Gaussian scores, respectively) with respect to Tyler’s V(n)
T and, in parentheses, with respect to

the Gaussian estimator V(n)
G , under k-variate Student densities (with ν degrees of freedom,

ν = 0.5,3,10), along with the limiting values obtained for ν → 0 and ν → ∞ (the multinormal
case), for k = 2, 3, 4, 6 and 10

Underlying density

k t0 t0.5 t3 t10 NNN

V̂∼
(n)
0.5# 2 0.900 (∞) 1.111 (∞) 1.246 (∞) 1.280 (0.853) 1.296 (0.648)

3 0.943 (∞) 1.061 (∞) 1.145 (∞) 1.173 (0.939) 1.189 (0.713)

4 0.963(∞) 1.038 (∞) 1.098 (∞) 1.121 (0.996) 1.136 (0.757)

6 0.981 (∞) 1.020 (∞) 1.054 (∞) 1.070 (1.070) 1.083 (0.813)

10 0.992 (∞) 1.008 (∞) 1.024 (∞) 1.034 (1.149) 1.044 (0.870)

V̂∼
(n)
3# 2 0.700 (∞) 0.969 (∞) 1.429 (∞) 1.651 (1.101) 1.792 (0.896)

3 0.800 (∞) 0.972 (∞) 1.250 (∞) 1.400 (1.120) 1.507 (0.904)

4 0.857(∞) 0.977 (∞) 1.667 (∞) 1.278 (1.136) 1.366 (0.911)

6 0.917 (∞) 0.985 (∞) 1.091 (∞) 1.162 (1.162) 1.229 (0.921)

10 0.962 (∞) 0.992 (∞) 1.040 (∞) 1.078 (1.198) 1.123 (0.936)

V̂∼
(n)
10# 2 0.583 (∞) 0.829 (∞) 1.376 (∞) 1.714 (1.143) 1.961 (0.980)

3 0.692 (∞) 0.861 (∞) 1.212 (∞) 1.444 (1.156) 1.633 (0.979)

4 0.762(∞) 0.887 (∞) 1.136 (∞) 1.313 (1.167) 1.468 (0.979)

6 0.844 (∞) 0.921 (∞) 1.070 (∞) 1.185 (1.185) 1.304 (0.978)

10 0.917 (∞) 0.955 (∞) 1.027 (∞) 1.091 (1.212) 1.174 (0.978)

V̂∼
(n)
vdW# 2 0.500 (∞) 0.720 (∞) 1.280 (∞) 1.681 (1.120) 2.000 (1.000)

3 0.600 (∞) 0.757 (∞) 1.130 (∞) 1.415 (1.132) 1.667 (1.000)

4 0.667 (∞) 0.786 (∞) 1.063 (∞) 1.285 (1.142) 1.500 (1.000)

6 0.750 (∞) 0.829 (∞) 1.005 (∞) 1.159 (1.159) 1.333 (1.000)

10 0.833 (∞) 0.877 (∞) 0.973 (∞) 1.067 (1.186) 1.200 (1.000)

This can be explained by the fact that, roughly speaking, “V(n)
T is optimal at t0.” In

more rigorous terms, we have that, for any fixed n,

V̂∼
(n)

ν# − V(n)
T = o(1), P(n)-a.s., as ν → 0.(3.11)

Indeed, the scores Kν associated with the k-dimensional Student tν are Kν(u) =
k(k + ν)G−1

k,ν(u)/(ν + kG−1
k,ν(u)), u ∈ (0,1), where Gk,ν stands for the Fisher–

Snedecor distribution function with k and ν degrees of freedom. It is eas-
ily checked that G−1

k,ν(u)/ν → ∞ as ν → 0 so that limν→0 Kν(u) = k for

all u ∈ (0,1). It follows (with obvious notation) that W∼
(n)
ν# − V(n)

# = o(1),

P(n) -a.s., as ν → 0. This, in view of (3.9), implies (3.11). Similarly, it can be

shown that (using obvious notation) for all fixed n and ν, V̂∼
(n)

ν# (xk) − V(n)
T (xk) is
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o(1) as k → ∞ along any sequence (xk , k = 2,3, . . .), where xk = (xk1, . . . ,xkn)

is an n-tuple of vectors in R
k ; here, for k > n, V(n)

T (xk) can be taken as any solu-
tion of Tyler’s M-equation. This explains the fact that for all fixed ν, the ARE of

V̂∼
(n)

ν# with respect to V(n)
T goes to 1 as k → ∞. Incidentally, this also holds for the

van der Waerden version of our estimators: as the dimension k of the observation
space goes to infinity, the information contained in the radii di becomes negligible
when compared with that contained in the directions Ui .

4. Estimation of cross-information coefficients. Our estimators V̂∼
(n)

f1#, thus
far, have only been defined up to the choice of a consistent estimator α∗ of the
unknown cross-information quantity Jk(f1, g1) defined in (2.7). In this section, we
first review the various methods available in the literature for estimating Jk(f1, g1)

and then present an original method which relies on a local maximum likelihood
argument.

4.1. A brief review of the literature. The problem of estimating the cross-
information coefficient Jk(f1, g1) has always been around in R-estimation and
probably explains why it has never been as popular as rank tests in applications.
Simple consistent estimators of cross-information coefficients (the definition of
which depends on the problem under study) have been proposed by Lehmann [32]
and Sen [42] for one- and two-sample location problems; these estimators are
based on comparisons of confidence interval lengths, a method involving the arbi-
trary choice of a confidence level (1 − α) which has quite an impact on the final
result.

Another simple method can be obtained from the asymptotic linearity property
of rank statistics (see [2, 29] or [25], page 321 for univariate location and regres-
sion). This method extends quite easily to the present context via the asymptotic
linearity property (2.9). The latter indeed implies that for all f1, g1 ∈ FA and any
k × k symmetric matrix v such that v11 = 0,

�∼
(n)
f1

(V(n)
# + n−1/2v) − �∼

(n)
f1

(V(n)
# ) = �∼

(n)
f1

(V + n−1/2v) − �∼
(n)
f1

(V) + oP(1)

= −Jk(f1, g1)ϒ
−1
k (V) ˚vech(v) + oP(1),

under P(n)

σ 2,V;g1
, as n → ∞. Thus, for any v,

α∗(v) := ∥∥�∼
(n)
f1

(V(n)
# + n−1/2v) − �∼

(n)
f1

(V(n)
# )

∥∥/∥∥ϒ−1
k (V(n)

# ) ˚vech(v)
∥∥(4.1)

is a consistent estimate, under P(n)

σ 2,V;g1
, of Jk(f1, g1). This method, however, is

likely to suffer the same weaknesses as the univariate traditional idea; in particu-
lar, these “naive” estimators involve the arbitrary choice of a “small” perturbation
of the parameter [the choice of a particular v in (4.1) is indeed as good/bad as
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that of 2v, 3v, etc.). Theory again provides no guidelines for this choice which,
unfortunately, has a dramatic impact on the output.

More elaborate approaches involve a kernel estimate of g1 and, hence, cannot
be expected to perform well under small and moderate sample sizes. Such ker-
nel methods have been considered for Wilcoxon scores in [41] (see also [3, 4,
7] and, in a more general setting, in Section 4.5 of [27]. They also require arbi-
trary choices (window width and kernel or, as in [27], the choice of the order α of
an empirical quantile) for which universal recommendation seems hardly possible
(see [28] for an empirical investigation). Moreover, estimating the actual under-
lying density is somewhat incompatible with the group-invariance spirit of the
rank-based approach: if, indeed, the unknown density g1 is eventually to be esti-
mated by some ĝ1, then why not simply adopt a more traditional estimated-score
approach based on the asymptotic reconstruction, via �

∗(n)

ĝ1
, of the efficient central

sequence �∗(n)
g1

?

4.2. An original (local likelihood) method: consistency and efficiency. A more
sophisticated way of dealing with the estimation of Jk(f1, g1) can be obtained by
further exploiting the ULAN structure of the model. The basic intuition is that
of solving a local likelihood equation. Consistency, however, requires somewhat
confusing discretization steps which, as usual, are needed in formal proofs only.
Therefore, we provide two descriptions of the method: this section carefully cov-
ers the details of discretization and establishes the consistency of the proposed

estimator (hence, that of the resulting V̂∼
(n)

f1#), while Section 4.3 below, where dis-
cretization is skipped, can be used for practical implementation.

Consider the sequence of (random) half-lines,

D(n)
# = D(n)

#
(
V(n)

# ; �∼
(n)
f1

(V(n)
# )

) = { ˚vech
(
V∼

(n)
f1#(β)

)∣∣β ∈ R
+}

, n ∈ N,

with equation

˚vech
(
V∼

(n)
f1#(β)

) := ˚vech(V(n)
# ) + n−1/2βϒk(V

(n)
# )�∼

(n)
f1

(V(n)
# )

(4.2)
= ˚vech(V(n)

# ) + βk(k + 2)Nk

[
Ik2 − (vec V(n)

# )e′
k2,1

]
vec

(
W∼

(n)
f1#

)
,

where ek2,1 stands for the first vector of the canonical basis in R
k2

and W∼
(n)
f1# :=

W∼
(n)
f1

(V(n)
# ); the last equality is obtained exactly as in the proof of Proposi-

tion 3.1(iii). Each value of β defines on D(n)
# a sequence of root-n consistent esti-

mators V∼
(n)
f1#(β) of V; one of them, namely V∼

(n)
f1#(J

−1
k (f1, g1)), coincides with

V∼
(n)
f1# in (3.1) and is efficient at P(n)

f1
[actually, an estimator V̂(n) is efficient iff

V̂(n) − V∼
(n)
f1# = oP(n−1/2) under P(n)

f1
].

However, these estimators V∼
(n)
f1#(β) are not locally discrete since the multi-
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variate signs U(n)
i in W∼

(n)
f1# are not discretized (even though evaluated at V(n)

# );

therefore, we discretize them further by discretizing W∼
(n)
f1#: let W∼

(n)
f1## be the

k × k matrix obtained by mapping each entry w
(n)
ij# of W∼

(n)
f1# onto w

(n)
ij## :=

c−1
1 sign(w

(n)
ij#)n

−1/2�n1/2c1|w(n)
ij#|�, where c1 > 0 is some arbitrarily large con-

stant. Replacing (4.2) (but keeping the same notation for the sake of simplicity)
with

˚vech
(
V∼

(n)
f1#(β	)

) := ˚vech(V(n)
# ) + β	k(k + 2)Nk

[
Ik2 − (vec V(n)

# )e′
k2,1

]
vec

(
W∼

(n)
f1##

)
(4.3) =: ˚vech(V(n)

# ) + n−1/2β	 ϒk

(
V(n)

#
)
�∼

(n)
f1#(V

(n)
# ), 	 ∈ N,

where β	 := 	/c2, with some other arbitrary constant c2 > 0, yields root-n con-
sistent estimators V∼

(n)
f1#(β	) that are locally discrete, in the sense that the number

of possible values of ˚vech(V∼
(n)
f1#(β	)) in balls with O(n−1/2) radius centered at

˚vech(V) is bounded as n → ∞. Still, for simplicity we keep the notation D(n)
#

for this new sequence D(n)
# (V(n)

# ; �∼
(n)
f1#(V

(n)
# )) of fully-discretized half-lines. For

any 	 ∈ N, V∼
(n)
f1#(β	) can again serve as the preliminary estimator in a rank-based

one-step procedure: letting

˚vech
(
V∼

(n)
f1#(β	; δ)) := ˚vech

(
V∼

(n)
f1#(β	)

) + n−1/2δϒk

(
V∼

(n)
f1#(β	)

)
�∼

(n)
f1

(
V∼

(n)
f1#(β	)

)
,

˚vech(V∼
(n)
f1#(β	;J −1

k (f1, g1))) is such that

˚vech
(
V∼

(n)
f1#(β	;J −1

k (f1, g1))
) − ˚vech

(
V∼

(n)
f1#

) = oP
(
n−1/2)

(4.4)

under P(n)

σ 2,V;g1
. However, ˚vech(V∼

(n)
f1#(β	;J −1

k (f1, g1))) still cannot be computed
from the observations.

Denote by uD the unit vector along D(n)
# (corresponding to D(n)

# ’s natural ori-
entation as a half-line) and define

	+ := min
{
	 ∈ N0|h#(β	) := u′

Dϒ
(
V∼

(n)
f1#(β	)

)
�∼

(n)
f1

(
V∼

(n)
f1#(β	)

) ≤ 0
}
,(4.5)

	− := 	+ − 1 and β± := β	± . The integers 	± are random; in order for V∼
(n)
f1#(β

±)

to remain root-n consistent and locally discrete, it is sufficient to check that 	±
is OP(1). This implies that for any ε > 0, there exist integers Lε and Nε such
that for all n ≥ Nε , the minimization in (4.5) with probability larger than 1 − ε

only runs over the finite set 	 ∈ {1, . . . ,Lε} (equivalently, over the finite set β ∈
{β1, . . . , βLε}). In order to show this, let us assume that 	± is not OP(1). Then
there exist ε > 0 and a sequence ni ↑ ∞ such that for all L ∈ N and some σ 2, V∼
and g1, P(ni)

σ 2,V;g1
[	− > L] > ε.
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Pythagoras’ Theorem then implies that for L > c2J −1
k (f1, g1), with P(ni)

σ 2,V;g1
-

probability larger than ε,∥∥ ˚vech
(
V∼

(ni)
f1# (βL;J −1

k (f1, g1))
) − ˚vech

(
V∼

(ni)
f1#

)∥∥
≥ ∥∥ ˚vech

(
V∼

(ni)
f1#(βL)

) − ˚vech
(
V∼

(ni)
f1#

)∥∥
= n

−1/2
i

(
c−1

2 L −J −1
k (f1, g1)

)∥∥ϒk(V
(ni)
# )�∼

(ni)
f1# (V(ni)

# )
∥∥,

which contradicts the fact that (4.4) holds for 	 = L. Thus, 	± are OP(1) and
V∼

(n)
f1#(β

±) can also serve as initial estimators in a one-step strategy.

The final step in the construction of our estimator V̂∼
(n)

f1#, then, is a “fine tun-

ing” step which consists of selecting an intermediate point between β− and
β+. This intermediate value, as we shall see, turns out to consistently estimate
J −1

k (f1, g1). Denote by π
(n)
± (δ) the projection onto D(n)

# of ˚vech(V∼
(n)
f1#(β

±; δ))
and let π

(n)
± (δ) := ‖π (n)

± (δ) − ˚vech(V(n)
# )‖. Note that δ �→ π

(n)
− (δ) [resp., δ �→

π
(n)
+ (δ)] is P(n)-a.e. continuous and strictly monotone increasing (resp., decreas-

ing). Therefore, there exists a unique δ∗ such that π
(n)
− (δ∗) = π

(n)
+ (δ∗). The pro-

posed R-estimator of V is the shape matrix V̂∼
(n)

f1# characterized by ˚vech(V̂∼
(n)

f1#) :=
π

(n)
± (δ∗).
Let us show, to conclude, that π

(n)
± (δ∗) − ˚vech(V∼

(n)
f1#) = oP(n−1/2) under P(n)

g1 .

Either we have π
(n)
− (J −1

k (f1, g1)) ≤ π
(n)
+ (J −1

k (f1, g1)) and

π
(n)
− (J −1

k (f1, g1)) ≤ π
(n)
± (δ∗) ≤ π

(n)
+ (J −1

k (f1, g1)),

or π
(n)
− (J −1

k (f1, g1)) > π
(n)
+ (J −1

k (f1, g1)) and

π
(n)
+ (J −1

k (f1, g1)) < π
(n)
± (δ∗) ≤ π

(n)
− (J −1

k (f1, g1)).

In both cases, π
(n)
± (δ∗) is in the interval [π (n)

− (J −1
k (f1, g1)),π

(n)
+ (J −1

k (f1, g1))].
Now, both π

(n)
− (J −1

k (f1, g1)) and π
(n)
+ (J −1

k (f1, g1)) are efficient estimators
satisfying (3.2) and (3.3). Indeed, from Pythagoras’ Theorem,∥∥π (n)

± (J −1
k (f1, g1)) − ˚vech

(
V∼

(n)
f1#

)∥∥
≤ ∥∥ ˚vech

(
V∼

(n)
f1#(β	±;J −1

k (f1, g1))
) − ˚vech

(
V∼

(n)
f1#

)∥∥= oP(n−1/2)

under P(n)
g1 . Therefore, as a convex linear combination of π

(n)
− (J −1

k (f1, g1)) and

π
(n)
+ (J −1

k (f1, g1)), ˚vech(V̂∼
(n)

f1#) = π
(n)
± (δ∗) is also an efficient estimator satisfy-

ing (3.2) and (3.3) and, contrary to π
(n)
± (J −1

k (f1, g1)), it is computable from the



EFFICIENT RANK-BASED INFERENCE FOR SHAPE II 2773

sample. Now, clearly,

α∗
# := (β∗

# )−1 := [
n1/2∥∥π (n)

± (δ∗)− ˚vech(V(n)
# )

∥∥/∥∥ϒk(V
(n)
# )�∼

(n)
f1#(V

(n)
# )

∥∥]−1(4.6)

and (Jk(f1)/(α
∗
#)2)ϒk(V̂∼

(n)

f1#) yield consistent (under P(n)
g1 ) estimators of

Jk(f1, g1) and consistent (under P(n)) estimators of the asymptotic covariance

matrix of ˚vech(V̂∼
(n)

f1#), respectively.

4.3. An original (local likelihood) method: practical implementation. As
usual, the discretization technique which complicates the proofs of asymptotic
results and obscures the definition of the estimator makes little sense in prac-
tice, where n is fixed. Discretization in the previous sections was achieved in
three steps: discretization of Tyler’s V(n)

T into V(n)
# (based on c0), discretization

of �∼
(n)
f1

(V(n)
# ) into �∼

(n)
f1#(V

(n)
# ) (based on c1) and discretization of β into β	 (based

on c2). The “undiscretized version” V̂∼
(n)

f1 of V̂∼
(n)

f1# corresponds to arbitrarily large

values of these three discretization constants, leaving V(n)
T and �∼

(n)
f1

unchanged and

bringing (for the sample size at hand) β+ and β− so close to each other that the
final tuning [involving the solution δ∗ of π

(n)
− (δ) = π

(n)
+ (δ)] becomes numerically

meaningless. Alternatively, denoting by V̂∼
(n)

f1#(c) the estimator associated with the

discretization constants c := (c0, c1, c2), we have V̂∼
(n)

f1 := limc→∞ V̂∼
(n)

f1#(c), where
c → ∞ means that ci → ∞ for i = 0, 1, 2.

This practical implementation V̂∼
(n)

f1 of V̂∼
(n)

f1# can be obtained more directly as
follows. Letting

˚vech
(
V∼

(n)
f1

(β)
) := ˚vech(V(n)

T ) + n−1/2βϒk(V
(n)
T )�∼

(n)
f1

(V(n)
T ), β ∈ R

+

[the undiscretized version of ˚vech(V∼
(n)
f1#(β	))], consider the P(n)-a.e. piecewise

continuous function

β �→ h(β) := (
�∼

(n)
f1

(
V(n)

T

))′
ϒk

(
V(n)

T

)
ϒk

(
V∼

(n)
f1

(β)
)
�∼

(n)
f1

(
V∼

(n)
f1

(β)
)
,

(4.7)
β ∈ R

+,

and put β∗ := inf{β > 0|h(β) ≤ 0}, β∗− := β∗ − 0 and β∗+ := β∗ + 0. The
matrices V∼

(n)
f1

(β∗−) and V∼
(n)
f1

(β∗+) are clearly the “undiscretized counterparts”

of V∼
(n)
f1#(β

−) and V∼
(n)
f1#(β

+), respectively. However, β �→ V∼
(n)
f1

(β) being continu-

ous, V∼
(n)
f1

(β∗−) = V∼
(n)
f1

(β∗+). The estimator proposed in Section 4.2 lies between

V∼
(n)
f1#(β

−) and V∼
(n)
f1#(β

+). Accordingly, the R-estimator we are proposing in prac-

tice is V̂∼
(n)

f1 := V∼
(n)
f1

(β∗) = V∼
(n)
f1

(β∗±); α∗ := (β∗)−1 provides the corresponding

estimator of Jk(f1, g1), the “undiscretized” version of (4.6).
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Let us stress, however, that all asymptotic properties—including asymptotic

optimality—are properties of the discretized estimators V̂∼
(n)

f1#, whereas nothing can
be said about the asymptotics of the practical implementation V̂∼

(n)

f1 .

5. Asymptotic affine-equivariance. An estimator V(n) of the shape matrix V
is said to be (strictly, that is, for any fixed n) affine-equivariant iff for any invertible
k × k matrix M and any k-vector a,

V(n)(M,a) = (MV(n)M′)/(MV(n)M′)11,(5.1)

where V(n)(M,a) denotes the value of the statistic V(n) computed from the trans-
formed sample MX1 + a, . . . ,MXn + a. Both Tyler’s V(n)

T and the Gaussian es-

timator V(n)
G are affine-equivariant. Unfortunately, the final estimators V̂∼

(n)

f1 pro-
posed in Section 4.3 are not.

The question arises as to whether V̂∼
(n)

f1 is at least asymptotically affine-
equivariant, that is, whether V̂∼

(n)

f1 is asymptotically equivalent to some strictly
affine-equivariant sequence (not necessarily a sequence of estimators): for all prac-
tical purposes, a sequence of pseudo-estimators, or simply a sequence of random
shape matrices, would be fine. Closer inspection of this idea, however, reveals a
major conceptual problem. Indeed, recall that all asymptotic results belong to the
discretized estimators V̂∼

(n)

f1#, while nothing can be said about the asymptotics of
V̂∼

(n)

f1 : a definition of asymptotic equivariance relying on the asymptotic behavior

of V̂∼
(n)

f1 is thus totally ineffective.
Therefore, we propose the following, slightly weaker, definition. Denote by

S(n) := {
S(n)

m (X(n)) |m ∈ N
}

and T (n) := {
T(n)

m (X(n)) |m ∈ N
}
, n ∈ N,

two countable sequences of X(n)-measurable random vectors or matrices such that
the a.s. limits S(n) := limm→∞S(n)

m (X(n)) and T(n) := limm→∞T(n)
m (X(n)) exist for

all fixed n. Then if:

(i) S(n) and T (n) are asymptotically equivalent, meaning that for all m (or, more
generally, for m large enough), S(n)

m (X(n)) − T(n)
m (X(n)) = oP(n−1/2) as n →

∞, and if
(ii) S(n) is strictly equivariant,

we may consider that T(n) inherits, under approximate or asymptotic form, the
equivariance property of S(n); we say that T(n) is weakly asymptotically equivari-
ant.

In order to show that the proposed estimators V̂∼
(n)

f1 := limc→∞ V̂∼
(n)

f1#(c) are

weakly asymptotically affine-equivariant, consider the class T (n) := {V̂∼
(n)

f1#(cm)|
m ∈ N}, where the sequence cm = (cm,0, cm,1, cm,2) is such that limm→∞ cm,i =
∞, i = 0,1,2 and let us construct a class S(n) such that conditions (i) and (ii) for
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weak asymptotic equivariance are satisfied. Incidentally, note that a choice of the
form S(n) := {V∼

(n)
f1#(c0,m)|m ∈ N} (with c0,m → ∞), where V∼

(n)
f1#(c0) denotes the

pseudo-estimator defined in (3.1), is not suitable since the corresponding practical
implementation V∼

(n)
f := limc0→∞ V∼

(n)
f1#(c0) is not strictly affine-equivariant.

Inspired by V̂∼
(n)

f1#’s representation (3.9) as a linear combination of V(n)
# and the

rank-based shape matrix W∼
(n)
f1# defined in (3.10), consider now the shape pseudo-

estimators

V∼∼
(n)
f1# = V∼∼

(n)
f1#(c0) := B∼

(n)
f1#

/(
B∼

(n)
f1#

)
11(5.2)

with B∼
(n)
f1# := (1 − k(k+2)

Jk(f1,g1)
)V(n)

# + k(k+2)
Jk(f1,g1)

W∼
(n)
f1#, where c0 is the constant used

in the discretization of Tyler’s V(n)
T . Although, due to discretization, neither V(n)

#

nor V∼∼
(n)
f1# is affine-equivariant for fixed n, the class S(n) := {V∼∼

(n)
f1#(c0,m) | m ∈ N}

allows us to establish the weak asymptotic affine-equivariance of V̂∼
(n)

f1 , as shown
in the following proposition.

PROPOSITION 5.1. Denote by V∼∼
(n)
f1# := V∼∼

(n)
f1#(c0) and by V̂∼

(n)

f1# := V̂∼
(n)

f1#(c) the

pseudo-estimator defined in (5.2) and the estimator defined in Section 4.2, respec-

tively. Then (i) V∼∼
(n)
f1# − V̂∼

(n)

f1# = oP(n−1/2) under P(n) as n → ∞ and (ii) the prac-

tical implementation V∼∼
(n)
f1

:= limm→∞ V∼∼
(n)
f1#(c0,m) is strictly affine-equivariant.

The proof is given in Section A.3 of the Appendix.
Whether or not weak asymptotic equivariance is a satisfactory property is a mat-

ter of statistical taste. If it is, then this section shows that V̂∼
(n)

f1 is the estimator to
be used. The reader who feels that strict equivariance is an essential requirement

is referred to [15], where it is shown that an adequate modification of V̂∼
(n)

f1 pro-

ducing a strictly equivariant V̂∼∼
(n)

f1 is possible (at the price of some technicalities).

Alternatively, it is shown in [8] that, under mild additional assumptions, an affine-
equivariant R-estimator of shape can also be obtained by iterating the mapping
V �→ W∼

(n)
f1

(V)/(W∼
(n)
f1

(V))11, where W∼
(n)
f1

is defined in (3.10).

6. Simulations. In this section we conduct a Monte Carlo study in order to

compare the finite-sample performance of the one-step R-estimators V̂∼
(n)

f1 pro-
posed in Section 4.3 (as well as those of their analogs using the Gaussian esti-
mator V(n)

G , instead of Tyler’s V(n)
T , as a preliminary estimator) to those of V(n)

T

and V(n)
G themselves. We restrict our attention to the bivariate spherical case

(V = I2). We generated M = 1,000 samples of i.i.d. observations X1, . . . ,Xn,
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TABLE 2
Empirical bias and mean-square error, under various bivariate t-, power-exponential and normal densities, of the preliminary estimators V(n)

G and V(n)
T

and the corresponding one-step R-estimators V̂∼
(n)
0.5 , V̂∼

(n)
3 , V̂∼

(n)
10 and V̂∼

(n)
vdW . The simulation is based on 1000 replications; sample size is

n = 50/n = 250

Preliminary
estimator

BIAS (n = 50/ n = 250)

t0.5 t3 t10 NNN e3 e5

– V(n)
T 0.0042/−0.0043 −0.0038/−0.0043 −0.0016/0.0003 0.0006/−0.0030 0.0067/0.0070 −0.0070/−0.0023

0.0830/0.0207 0.0973/0.0219 0.0865/0.0062 0.0895/0.0024 0.1118/0.0201 0.0906/0.0072

– V(n)
G −0.6148/−0.0522 0.0012/−0.0005 −0.0003/−0.0010 −0.0058/0.0005 0.0025/0.0021 −0.0024/−0.0021

310.8334/20.6781 0.1782/0.0410 0.0497/0.0058 0.0375/0.0024 0.0484/0.0041 0.0308/0.0006

V̂∼
(n)
0.5 V(n)

T 0.0034/−0.0024 −0.0004/−0.0031 0.0004/−0.0006 −0.0006/−0.0019 0.0039/0.0043 −0.0030/−0.0026
0.0771/0.0183 0.0806/0.0180 0.0619/0.0031 0.0674/0.0030 0.0821/0.0115 0.0664/0.0037

V(n)
G 0.0001/0.0021 0.0004/−0.0030 −0.0005/−0.0006 −0.0007/−0.0019 0.0033/0.0043 −0.0036/−0.0026

0.0798/0.0171 0.0782/0.0178 0.0612/0.0032 0.0671/0.0032 0.0820/0.0116 0.0661/0.0037

V̂∼
(n)
3 V(n)

T 0.0002/−0.0014 0.0019/−0.0017 0.0005/−0.0009 −0.0024/−0.0004 0.0023/0.0022 −0.0017/−0.0022
0.0861/0.0216 0.0680/0.0142 0.0438/0.0024 0.0444/0.0028 0.0533/0.0047 0.0338/0.0006

V(n)
G 0.0014/0.0051 0.0028/−0.0017 0.0002/−0.0009 −0.0021/−0.0004 0.0023/0.0023 −0.0019/−0.0021

0.1717/0.0219 0.0665/0.0140 0.0433/0.0023 0.0442/0.0030 0.0531/0.0043 0.0336/0.0006

V̂∼
(n)
10 V(n)

T −0.0001/−0.0008 0.0025/−0.0015 0.0004/−0.0008 −0.0036/0.0001 0.0023/0.0014 −0.0019/−0.0021
0.0962/0.0250 0.0681/−0.0261 0.0427/0.0029 0.0395/0.0026 0.0441/0.0032 0.0253/0.0000

V(n)
G 0.0037/0.0075 0.0034/−0.0014 0.0001/−0.0008 −0.0031/0.0001 0.0023/0.0016 −0.0019/−0.0020

0.1074/0.0254 0.0672/0.0128 0.0419/0.0028 0.0398/0.0028 0.0440/0.0032 0.0250/−0.0000

V̂∼
(n)
vdW V(n)

T 0.0005/−0.0003 0.0027/−0.0014 0.0005/−0.0007 −0.0044/0.0003 0.0024/0.0011 −0.0024/−0.0020
0.1057/0.0281 0.0702/0.0124 0.0441/0.0036 0.0387/0.0025 0.0404/0.0026 0.0217/−0.0000

V(n)
G 0.0034/0.0091 0.0035/−0.0013 −0.0001/−0.0007 −0.0041/0.0004 0.0024/0.0013 −0.0022/−0.0019

0.1164/0.0284 0.0696/0.0122 0.0435/0.0036 0.0392/0.0026 0.0402/0.0026 0.0211/−0.0001
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TABLE 2
(Continued)

MSE (n = 50/n = 250)

t0.5 t3 t10 NNN e3 e5

– V(n)
T 0.0410/0.0083 0.0407/0.0081 0.0408/0.0075 0.0404/0.0075 0.0444/0.0080 0.0423/0.0085

0.2009/0.0392 0.2467/0.0357 0.2192/0.0337 0.2311/0.0369 0.2163/0.0337 0.2031/0.0320

– V(n)
G 298.8463/11.3416 0.1033/0.0329 0.0265/0.0050 0.0183/0.0038 0.0155/0.0028 0.0138/0.0029

80,313,350/42,948 0.7141/0.2358 0.1247/0.0211 0.0941/0.0175 0.0624/0.0115 0.0617/0.0109

V̂∼
(n)
0.5 V(n)

T 0.0368/0.0075 0.0328/0.0065 0.0312/0.0058 0.0307/0.0058 0.0320/0.0057 0.0296/0.0061
0.1862/0.0339 0.1879/0.0285 0.1629/0.0258 0.1701/0.0282 0.1425/0.0233 0.1411/0.0223

V(n)
G 0.1152/0.0278 0.0337/0.0065 0.0308/0.0057 0.0309/0.0058 0.0318/0.0057 0.0294/0.0061

0.2700/0.0566 0.1852/0.0284 0.1614/0.0258 0.1686/0.0281 0.1416/0.0233 0.1398/0.0223

V̂∼
(n)
3 V(n)

T 0.0419/0.0090 0.0290/0.0057 0.0238/0.0044 0.0208/0.0042 0.0178/0.0031 0.0149/0.0030
0.2239/0.0371 0.1546/0.0247 0.1169/0.0199 0.1138/0.0198 0.0715/0.0127 0.0676/0.0112

V(n)
G 0.1184/0.0295 0.0296/0.0058 0.0235/0.0044 0.0209/0.0042 0.0175/0.0031 0.0146/0.0030

5.6092/0.0598 0.1537/0.0247 0.1162/0.0199 0.1132/0.0197 0.0709/0.0128 0.0668/0.0112

V̂∼
(n)
10 V(n)

T 0.0490/0.0106 0.0300/0.0060 0.0234/0.0043 0.0191/0.0039 0.0147/0.0025 0.0118/0.0022
0.2701/0.0428 0.1579/1.5539 0.1117/0.0191 0.1005/0.0180 0.0568/0.0102 0.0519/0.0084

V(n)
G 0.1307/0.0339 0.0306/0.0060 0.0232/0.0043 0.0190/0.0039 0.0143/0.0025 0.0114/0.0022

0.3796/0.0662 0.1583/0.0253 0.1108/0.0191 0.1006/0.0180 0.0562/0.0101 0.0511/0.0083

V̂∼
(n)
vdW V(n)

T 0.0552/0.0121 0.0316/0.0064 0.0238/0.0044 0.0187/0.0039 0.0135/0.0022 0.0106/0.0019
0.3134/0.0486 0.1652/0.0267 0.1129/0.0192 0.0964/0.0176 0.0518/0.0092 0.0457/0.0073

V(n)
G 0.1406/0.0377 0.0322/0.0064 0.0238/0.0044 0.0185/0.0039 0.0131/0.0022 0.0102/0.0018

0.4237/0.0726 0.1665/0.0266 0.1121/0.0192 0.0967/0.0175 0.0511/0.0092 0.0449/0.0072
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with sizes n = 50 and n = 250, from the bivariate standard normal distribution
(N ), the Student distributions (t0.5), (t3) and (t10) (with 0.5, 3 and 10 degrees of
freedom) and the power-exponential distributions (e3) and (e5) (with parameters
η = 3 and 5); for details on power-exponential densities, see Section HP1.2. This
choice of Student and power-exponential distributions allows for the consideration
of heavier-than-normal and lighter-than-normal tail distributions, respectively.

For each replication, we computed V(n)
T , V(n)

G and the V(n)
T - and V(n)

G -based one-

step R-estimators V̂∼
(n)

vdW , V̂∼
(n)

0.5 , V̂∼
(n)

3 and V̂∼
(n)

10 , corresponding to semiparametric

efficiency at Gaussian and Student densities with 0.5, 3 and 10 degrees of freedom,
respectively. In Table 2, we report, for each estimate V(n)(l) = (V

(n)
ij (l)), the two

components of the average bias

BIAS(n) := 1

M

M∑
l=1

˚vech
(
V(n)(l) − V

) = 1

M

M∑
l=1

(
V

(n)
12 (l),V

(n)
22 (l) − 1

)′
and the two components of the mean square error

MSE(n) := 1

M

M∑
l=1

((
V

(n)
12 (l)

)2
,
(
V

(n)
22 (l) − 1

)2)′
,

based on the M replications V(n)(l), l = 1, . . . ,M .
These simulations show that the proposed rank-based estimators behave re-

markably well under all distributions under consideration and significantly im-
prove on Tyler’s estimator. They confirm the optimality of the Tyler-based f1-score
R-estimators under radial density f and essentially agree with the ARE rank-
ings presented in Table 1. Also, the van der Waerden rank-based estimator (based
on the preliminary estimator V(n)

T or V(n)
G ) uniformly dominates the parametric

Gaussian estimator V(n)
G and performs equally well in the normal case; this domi-

nance, which is observed under both lighter-than-normal and heavier-than-normal
tail distributions, provides an empirical validation of the Chernoff–Savage result
of [38].

The behavior of one-step rank-based estimators does not seem to depend much
on the preliminary estimator used (V(n)

T or V(n)
G ), confirming that the influence of

the preliminary estimator is asymptotically nil. More surprising is the fact that
R-estimators based on V(n)

G behave reasonably well under heavy tails (under t0.5),

although V(n)
G itself is not even root-n consistent there (which explains its total col-

lapse under t0.5). Quite remarkably, these conclusions are equally valid for small
(n = 50) as for large (n = 250) sample sizes. This is another non-negligible ad-
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vantage of our method over kernel-based ones (see Section 4.1), which typically
require much larger sample sizes.

APPENDIX

A.1. Local asymptotic linearity. Rather than Proposition 2.1(v), we prove in
this section a more general asymptotic linearity result in which both the location
and the shape parameters are locally perturbed.

PROPOSITION A.1. For any bounded sequences of k-dimensional vectors t(n)

and symmetric matrices v(n) satisfying v
(n)
11 = 0 and for any g1 ∈ FA, the central

sequence �∼
(n)
f1

(θ ,V) satisfies, under P(n)

θ ,σ 2,V;g1
, as n → ∞, the asymptotic linear-

ity property

�∼
(n)
f1

(
θ + n−1/2t(n),V + n−1/2v(n)) − �∼

(n)
f1

(θ ,V)
(A.1) = −�∗

f1,g1
(V) ˚vech(v(n)) + oP(1).

The proof of Proposition A.1 relies on a series of lemmas. In this section, we let
θn := θ + n−1/2t(n) and Vn := V + n−1/2v(n). Accordingly, let Z0

i := V−1/2(Xi −
θ), d0

i := ‖Z0
i ‖, U0

i := Z0
i /d

0
i , Zn

i := (Vn)−1/2(Xi − θn), dn
i := ‖Zn

i ‖ and Un
i :=

Zn
i /d

n
i . We begin with the following preliminary result.

LEMMA A.1. For all i, as n → ∞, under P(n)

θ ,σ 2,V;g1
:

(i) |dn
i − d0

i | = oP(1) and
(ii) ‖Un

i − U0
i ‖ = oP(1).

PROOF. First, note that, defining ‖M‖L := sup‖x‖=1 ‖Mx‖,

‖Zn
i − Z0

i ‖ ≤ ∥∥(Vn)−1/2(θ − θn)
∥∥ + ∥∥(

(Vn)−1/2 − V−1/2)
(Xi − θ)

∥∥
≤ n−1/2∥∥(Vn)−1/2∥∥

L‖t(n)‖ + ∥∥(Vn)−1/2 − V−1/2∥∥
L‖V1/2‖Ld0

i

≤ C(n)(1 + d0
i )

for some positive sequence C(n), with C(n) = o(1) as n → ∞. Now, since for
all δ > 0, P(n)

θ ,σ 2,V;g1
[C(n)(d0

i )a > δ] = o(1) as n → ∞ (a = −1,0,1), we obtain

that ‖Zn
i − Z0

i ‖ and ‖Zn
i − Z0

i ‖/d0
i are oP(1) under P(n)

θ,σ 2,V;g1
as n → ∞. The

result follows since (i) |dn
i − d0

i | ≤ ‖Zn
i − Z0

i ‖ and (ii) ‖Un
i − U0

i ‖ ≤ |(1/dn
i −

1/d0
i )|‖Zn

i ‖ + ‖Zn
i − Z0

i ‖/d0
i ≤ 2‖Zn

i − Z0
i ‖/d0

i . �

PROOF OF PROPOSITION A.1. We first consider the following truncation of
the score function Kf1 . For all 	 ∈ N0, define
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K
(	)
f1

(u) := Kf1

(
2

	

)
	

(
u − 1

	

)
I[ 1

	
<u≤ 2

	
] + Kf1(u)I[ 2

	
<u≤1− 2

	
]

+ Kf1

(
1 − 2

	

)
	

((
1 − 1

	

)
− u

)
I[1− 2

	
<u≤1− 1

	
],

where IA denotes the indicator function of A. Since u �→ Kf1(u) is continuous,

the functions u �→ K
(	)
f1

(u) are also continuous on (0,1). It follows that the trun-

cated scores K
(	)
f1

are bounded for all 	. Clearly, it can be safely assumed that Kf1

is a monotone increasing function (rather than the difference of two monotone in-
creasing functions) so that there exists some L such that |K(	)

f1
(u)| ≤ |Kf1(u)| for

all u ∈ (0,1) and all 	 ≥ L.
We have to prove that, under P(n)

θ,σ 2,V;g1
, as n → ∞,

�∼
(n)
f1

(θn,Vn) − �∼
(n)
f1

(θ ,V) +Jk(f1, g1)ϒ−1
k (V) ˚vech(v(n))(A.2)

is oP(1). Proposition 2.1(ii) shows that �∼
(n)
f1

(θ ,V) − �
∗(n)
f1,g1

(θ ,V) is oP(1) as

n → ∞, under the same sequence of hypotheses. Similarly, the difference
�∼

(n)
f1

(θn,Vn)−�
∗(n)
f1,g1

(θn,Vn) is oP(1) as n → ∞, under P(n)

θn,σ 2,Vn;g1
(hence, from

contiguity, also under P(n)

θ,σ 2,V;g1
). Consequently, (A.2) is asymptotically equiva-

lent, under P(n)

θ ,σ 2,V;g1
, to

�
∗(n)
f1,g1

(θn,Vn) − �
∗(n)
f1,g1

(θ,V) +Jk(f1, g1)ϒ
−1
k (V) ˚vech(v(n)).(A.3)

Now, n−1/2J⊥
k vec [∑n

i=1 Kf1(G̃1k(d
n
i /σ ))Un

i Un ′
i ], under P(n)

θn,σ 2,Vn;g1
, is

asymptotically normal as n → ∞, with mean zero and covariance matrix
(k(k + 2))−1Jk(f1)[Ik2 + Kk − 2

k
Jk], so that

1

2
n−1/2Mk

[(
(Vn)⊗2)−1/2 − (V⊗2)−1/2

]
J⊥
k vec

[
n∑

i=1

Kf1(G̃1k(d
n
i /σ ))Un

i Un ′
i

]

is oP(1) as n → ∞ under P(n)

θn,σ 2,Vn;g1
, as well as under P(n)

θ,σ 2,V;g1
(by contiguity).

Consequently, (A.3) is asymptotically equivalent, under P(n)

θ ,σ 2,V;g1
, to

C(n) := 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k vec

[
n∑

i=1

Kf1(G̃1k(d
n
i /σ ))Un

i Un ′
i

]

− 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k vec

[
n∑

i=1

Kf1(G̃1k(d
0
i /σ ))U0

i U0 ′
i

]
(A.4)

+Jk(f1, g1)ϒ
−1
k (V) ˚vech(v(n))
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and we need only prove that C(n) = oP(1). Decompose C(n) into C(n) = D(n;	)
1 +

D(n;	)
2 − R(n;	)

1 + R(n;	)
2 + R(n;	)

3 , where, denoting by E0 expectation under

P(n)

θ,σ 2,V;g1
and defining J (	)

k (f1;g1) := ∫ 1
0 K

(	)
f1

(u)Kg1(u) du,

D(n;	)
1 := 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k vec

[
n∑

i=1

K
(	)
f1

(G̃1k(d
n
i /σ ))Un

i Un ′
i

]

− 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k vec

[
n∑

i=1

K
(	)
f1

(G̃1k(d
0
i /σ ))U0

i U0 ′
i

]

− 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k E0

[
vec

[
n∑

i=1

K
(	)
f1

(G̃1k(d
n
i /σ ))Un

i Un ′
i

]]
,

D(n;	)
2 := 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k E0

[
vec

[
n∑

i=1

K
(	)
f1

(G̃1k(d
n
i /σ ))Un

i Un ′
i

]]

+J (	)
k (f1;g1)ϒ

−1
k (V) ˚vech(v(n)),

R(n;	)
1 := 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k

× vec

[
n∑

i=1

[
Kf1(G̃1k(d

0
i /σ )) − K

(	)
f1

(G̃1k(d
0
i /σ ))

]
U0

i U0 ′
i

]
,

R(n;	)
2 := 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k

×vec

[
n∑

i=1

[
Kf1(G̃1k(d

n
i /σ )) − K

(	)
f1

(G̃1k(d
n
i /σ ))

]
Un

i Un ′
i

]
and

R(n;	)
3 := (

Jk(f1, g1) −J (	)
k (f1;g1)

)
ϒ−1

k (V) ˚vech(v(n)).

We prove that C(n) = oP(1) (thus completing the proof of Proposition A.1) by
establishing that D(n;	)

1 and D(n;	)
2 are oP(1) under P(n)

θ,σ 2,V;g1
, as n → ∞, for fixed 	

and that R(n;	)
1 , R(n;	)

2 and R(n;	)
3 are oP(1) under the same sequence of hypotheses,

as 	 → ∞, uniformly in n. For the sake of convenience, these three results are
treated separately (Lemmas A.2, A.3 and A.4).

LEMMA A.2. For any fixed 	, E0[‖D(n;	)
1 ‖2] = o(1) as n → ∞.

LEMMA A.3. For any fixed 	, D(n;	)
2 = o(1) as n → ∞.
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LEMMA A.4. As 	 → ∞, uniformly in n:

(i) R(n;	)
1 is oP(1) under P(n)

θ,σ 2,V;g1
,

(ii) R(n;	)
2 is oP(1) under P(n)

θ,σ 2,V;g1
for n sufficiently large,

(iii) R(n;	)
3 is o(1).

PROOF OF LEMMA A.2. First, note that

D(n;	)
1 = 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k

n∑
i=1

[
T(n;	)

i − E0[T(n;	)
i ]],

where T(n;	)
i := vec [K(	)

f1
(G̃1k(d

n
i /σ ))Un

i Un ′
i − K

(	)
f1

(G̃1k(d
0
i /σ ))U0

i U0 ′
i ], i =

1, . . . , n, are i.i.d. Writing Var0 for variances under P(n)

θ,σ 2,V;g1
, we have

E0
[‖D(n;	)

1 ‖2] ≤ Cn−1E0

[∥∥∥∥∥
n∑

i=1

[
T(n;	)

i − E0[T(n;	)
i ]]∥∥∥∥∥

2]

≤ Cn−1 tr

[
Var0

[
n∑

i=1

[
T(n;	)

i − E0[T(n;	)
i ]]]]

= C tr
[
Var0[T(n;	)

1 ]] ≤ CE0
[‖T(n;	)

1 ‖2]
,

and it only remains to be shown that

E0
[‖T(n;	)

1 ‖2] = E0
[∥∥K(	)

f1
(G̃1k(d

n
1 /σ))vec [Un

1Un ′
1 ]

− K
(	)
f1

(G̃1k(d
0
1/σ))vec [U0

1U0 ′
1 ]∥∥2] = o(1)

(A.5)

as n → ∞. Noting that ‖vec (uv′)‖ = ‖u‖‖v‖, we have∥∥K(	)
f1

(G̃1k(d
n
1 /σ))vec [Un

1Un ′
1 ] − K

(	)
f1

(G̃1k(d
0
1/σ))vec [U0

1U0 ′
1 ]∥∥2

≤ 2
∣∣K(	)

f1
(G̃1k(d

n
1 /σ)) − K

(	)
f1

(G̃1k(d
0
1/σ))

∣∣2‖vec [Un
1Un ′

1 ]‖2

+ 2
∣∣K(	)

f1
(G̃1k(d

0
1/σ))

∣∣2∥∥vec [Un
1Un ′

1 − U0
1U0 ′

1 ]∥∥2

≤ C
∣∣K(	)

f1
(G̃1k(d

n
1 /σ)) − K

(	)
f1

(G̃1k(d
0
1/σ))

∣∣2 + C‖Un
1 − U0

1‖2,

for some constant C. Lemma A.1(i) and the continuity of K
(	)
f1

◦ G̃1k together imply

that K
(	)
f1

(G̃1k(d
n
1 /σ)) − K

(	)
f1

(G̃1k(d
0
1/σ)) = oP(1), under P(n)

θ ,σ 2,V;g1
, as n → ∞.

Since K
(	)
f1

is bounded, this convergence to zero also holds in quadratic mean.

Similarly, using Lemma A.1(ii) and the boundedness of U0
1 and Un

1, we obtain that

‖Un
1 − U0

1‖ is o(1) in quadratic mean, as n → ∞, under P(n)

θ,σ 2,V;g1
. The conver-

gence in (A.5) then follows. �
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PROOF OF LEMMA A.3. Letting

B(n;	)
1 := 1

2
n−1/2Mk(V⊗2)−1/2J⊥

k vec

[
n∑

i=1

K
(	)
f1

(G̃1k(d
0
i /σ ))U0

i U0 ′
i

]
,

one can show that, under P(n)

θ ,σ 2,V;g1
, as n → ∞,

B(n;	)
1

L−→ N
(
0,E

[(
K

(	)
f1

(U)
)2]

ϒ−1
k (V)

)
(A.6)

[throughout, U stands for a random variable uniformly distributed over (0,1)].
Under the sequence of local alternatives P(n)

θn,σ 2,Vn;g1
, as n → ∞,

B(n;	)
1 −J (	)

k (f1;g1)ϒ
−1
k (V) ˚vech(v(n))

L−→ N
(
0,E

[(
K

(	)
f1

(U)
)2]

ϒ−1
k (V)

)
.

Defining B(n;	)
2 := 1

2n−1/2Mk(V⊗2)−1/2J⊥
k vec [∑n

i=1 K
(	)
f1

(G̃1k(d
n
i /σ ))Un

i Un ′
i ], it

follows from ULAN that, under P(n)

θ,σ 2,V;g1
, as n → ∞,

B(n;	)
2 +J (	)

k (f1;g1)ϒ
−1
k (V) ˚vech(v(n))

(A.7)
L−→ N

(
0,E

[(
K

(	)
f1

(U)
)2]

ϒ−1
k (V)

)
.

Now, from (A.6) and the fact that, under P(n)

θ,σ 2,V;g1
, D(n;	)

1 = B(n;	)
2 − B(n;	)

1 −
E0[B(n;	)

2 ] = oP(1) as n → ∞ (Lemma A.2), we obtain that

B(n;	)
2 − E0

[
B(n;	)

2

] L−→ N
(
0,E

[(
K

(	)
f1

(U)
)2]

ϒ−1
k (V)

)
(A.8)

as n → ∞ under P(n)

θ,σ 2,V;g1
. Comparing (A.7) and (A.8), it follows that D(n;	)

2 =
E0[B(n;	)

2 ] +J (	)
k (f1;g1)ϒ

−1
k (V) ˚vech(v(n)) is o(1) as n → ∞. �

We now complete the proof of Proposition A.1 by proving Lemma A.4.

PROOF OF LEMMA A.4. (i) In view of the independence, under P(n)

θ ,σ 2,V;g1
,

between the d0
i ’s and the U0

i ’s, we obtain, for all n,

E0
[∥∥R(n;	)

1

∥∥2] ≤ C

n

n∑
i=1

E0
[[

Kf1(G̃1k(d
0
i /σ )) − K

(	)
f1

(G̃1k(d
0
i /σ ))

]2]
× E0

[[vec U0
i U0 ′

i ]′J⊥
k [vec U0

i U0′
i ]]

(A.9)
= C(k − 1)

kn

n∑
i=1

E0
[[

Kf1(G̃1k(d
0
i /σ )) − K

(	)
f1

(G̃1k(d
0
i /σ ))

]2]
= C(k − 1)

k

∫ 1

0

[
Kf1(u) − K

(	)
f1

(u)
]2

du.
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Now, K
(	)
f1

(u) converges to Kf1(u) for all u ∈ (0,1). Also, since |K(	)
f1

(u)| is
bounded by |Kf1(u)| for all 	 ≥ L, the integrand in (A.9) is bounded (uniformly
in 	) by 4 |Kf1(u)|2, which is integrable on (0,1). The Lebesgue dominated con-

vergence theorem thus yields that E0[‖R(n;	)
1 ‖2] = o(1) as 	 → ∞. This conver-

gence is uniform in n, since the constant C in (A.9) does not depend on n.
(ii) The claim in part (ii) of the lemma is the same as in part (i), except that

dn
i and Un

i replace d0
i and U0

i , respectively. Accordingly, part (ii) holds under

P(n)

θn,σ 2,Vn;g1
. That it also holds under P(n)

θ,σ 2,V;g1
follows from Lemma 3.5 of [23].

(iii) Note that |Jk(f1, g1)−J (	)
k (f1;g1)|2 = | ∫ 1

0 (Kf1(u)−K
(	)
f1

(u))Kg1(u) du|2
≤ Jk(g1)

∫ 1
0 |Kf1(u) − K

(	)
f1

(u)|2 du. Again, |K(	)
f1

(u) − Kf1(u)|2 ≤ 4|Kf1(u)|2
with

∫ 1
0 |Kf1(u)|2 du < ∞. Pointwise convergence of (K

(	)
f1

) to K implies that

Jk(f1, g1) − J (	)
k (f1;g1) = o(1) as 	 → ∞. The result then follows from the

boundedness of (v(n)). �
A.2. Properties of R-estimators.

PROOF OF PROPOSITION 3.1. (i) The asymptotic representations (3.5) and
(3.6) are just restatements of (3.2) and (3.3), to which we refer for the proof.
The convergence in (3.7) then readily results from part (iii) of Proposition 2.1. As
for (3.8), it follows directly from the fact that vec(V∼

(n)
f1# −V) = M′

k
˚vech(V∼

(n)
f1# −V)

and the definition of Qk(V).
(ii) Semiparametric efficiency follows from the fact that Jk(f1, f1) = Jk(f1),

so that under P(n)

σ 2,V;f1
, the asymptotic variance in (3.7) reduces to Jk(f1)

−1ϒk(V),

the inverse of the efficient information matrix �∗
f1

(V).

(iii) From (3.4) and (3.1) [with Ri = R
(n)
i (V(n)

# ) and Ui = U(n)
i (V(n)

# )],

˚vech
(
V∼

(n)
f1#

) = ˚vech(V(n)
# ) + k(k + 2)

n1/2Jk(f1, g1)
NkQk(V

(n)
# )N′

k �∼
(n)
f1

(V(n)
# )

= ˚vech(V(n)
# ) + k(k + 2)

2nJk(f1, g1)
NkQk(V

(n)
# )

(
(V(n)

# )⊗2)−1/2

×
n∑

i=1

[
Kf1

(
Ri

n + 1

)
vec(UiU′

i ) − m
(n)
f1

k
vec(Ik)

]
,

where we have used the fact that (see Section 4.2 for the definition of ek2,1)

Qk(V)N′
kMk = Qk(V)

= [
Ik2 − (vec V)e′

k2,1

][Ik2 + Kk](V⊗2)[
Ik2 − (vec V)e′

k2,1

]′
= [Ik2 + Kk](V⊗2) − 2(V⊗2)ek2,1(vec V)′

− 2(vec V)e′
k2,1

(
V⊗2) + 2(vec V)(vec V)′;
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see the proof of Lemma HP3.1. Routine algebra yields

˚vech
(
V̂∼

(n)

f1

) = ˚vech(V(n)
# )+ k(k + 2)

α∗ Nk

[
Ik2 − (vec V(n)

# )e′
k2,1

](
(V(n)

# )⊗2)1/2

×
(

1

n

n∑
i=1

Kf1

(
Ri

n + 1

)
vec(UiU′

i )

)
(A.10)

= ˚vech(V(n)
# ) + k(k + 2)

α∗ Nk

[
Ik2 − (vec V(n)

# )e′
k2,1

]
vec

(
W∼

(n)
f1#

)
= ˚vech(V(n)

# ) + k(k + 2)

α∗ Nk vec
(
W∼

(n)
f1# − (

W∼
(n)
f1#

)
11V(n)

#
)
,

which establishes the result since ˚vechv = ˚vechw if and only if v = w for all k × k

symmetric matrices v = (vij ), w = (wij ) such that v11 = w11.
(iv) Due to the identification constraints, the population covariance matrix

under P(n)

σ 2,V;g1
with finite second-order moments is not � := σ 2V, but η� :=

k−1σ 2Dk(g1)V. Provided that κk(g1) < ∞, the multivariate central limit theorem

yields n1/2vec(�(n) − η�)
L−→ N (0,A), where

A := σ 4Ek(g1)

k(k + 2)
[Ik2 + Kk](V⊗2) + σ 4κk(g1)D

2
k (g1)

k2 (vec V)(vec V)′.

Now, applying Slutsky’s lemma, we obtain, as n → ∞, under P(n)

σ 2,V;g1
,

n1/2vec(V(n)
G − V) = 1

η�11
[Ik2 − (vec V)e′

k2,1][n1/2vec(�(n) − η�)] + oP(1)

L−→ N
(

0,
1

η2σ 4 [Ik2 − (vec V)e′
k2,1]A[Ik2 − (vec V)e′

k2,1]′
)
,

where the covariance matrix after lengthy but standard algebra reduces to (1 +
κk(g1))Qk(V), yielding the desired result; see also [36].

(v) The asymptotic covariance matrices of vec(V∼
(n)
f1#) in (3.8) and vec(V(n)

G )

in (iv) are proportional; AREs with respect to V(n)
G in (v) follow directly as ratios of

the corresponding proportionality factors. AREs with respect to V(n)
T follow from

the fact that in the normalization adopted [i.e., (V(n)
T )11 = 1], n1/2 vec(V(n)

T −V) is
asymptotically normal with mean zero and covariance matrix ((k + 2)/k)Qk(V).
�

A.3. Asymptotic equivariance.

PROOF OF PROPOSITION 5.1. (i) We first prove that

W∼
(n)
f1# − V(n)

# = OP(n−1/2),(A.11)
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under P(n), as n → ∞ [recall that W∼
(n)
f1# := W∼

(n)
f1

(V(n)
# )]. To this end, define

T∼
(n)
f1

(V) := n−1/2(V⊗2)1/2
n∑

i=1

[
Kf1

(
Ri

n + 1

)
vec(UiU′

i ) − m
(n)
f1

k
vec(Ik)

]
[with Ri = R

(n)
i (V) and Ui = U(n)

i (V)], which is asymptotically normal with mean
zero and covariance matrix Jk(f1)Hk(V), where

Hk(V) := 1

k(k + 2)
(V⊗2)1/2

[
Ik2 + Kk − 2

k
Jk

]
(V⊗2)1/2.

Proceeding exactly as in the proof of Proposition A.1, we obtain that for any
bounded sequence v(n) of symmetric matrices such that v

(n)
11 = 0, the difference

T∼
(n)
f1

(V + n−1/2v(n)) − T∼
(n)
f1

(V) + 1

2
Jk(f1, g1)Hk(V)(V⊗2)−1 vec(v(n))

is oP(1), under P(n)

σ 2,V;g1
, as n → ∞. The local discreteness of V(n)

# allows us to

replace the nonrandom quantity V(n) = V + n−1/2v(n) by the random one V(n)
#

(see, e.g., [30], Lemma 4.4), yielding

T∼
(n)
f1

(V(n)
# ) − T∼

(n)
f1

(V) + 1

2
Jk(f1, g1)Hk(V)(V⊗2)−1n1/2 vec(V(n)

# − V) = oP(1),

under P(n)

σ 2,V;g1
, as n → ∞. This establishes (A.11) since

n1/2 vec
(
W∼

(n)
f1# − V(n)

#
) = T∼

(n)
f1

(V(n)
# ) + n1/2k−1(

m
(n)
f1

− k
)

vec
(
V(n)

#
)

= n1/2k−1(
m

(n)
f1

− k
)

vec(V(n)
# ) + T∼

(n)
f1

(V)
(A.12)

− 1

2
Jk(f1, g1)Hk(V)(V⊗2)−1n1/2 vec(V(n)

# − V)

+ oP(1)

(still under P(n)

σ 2,V;g1
, as n → ∞) and since the square-integrability of Kf1 over

(0,1) implies that m
(n)
f1

− k = m
(n)
f1

− ∫ 1
0 Kf1(u) du = o(n−1/2) (see the proof of

Proposition 3.2(i) in [16]).
Now, denoting by V∼

(n)
f1# := V∼

(n)
f1#(c0) the pseudo-estimator defined in (3.1), it

follows from (A.11) that [letting b := k(k + 2)J −1
k (f1, g1)]

vec
(
V∼∼

(n)
f1# − V∼

(n)
f1#

) = (−b2(
W∼

(n)
f1# − V(n)

#
)
11

)(
1 + b

(
W∼

(n)
f1# − V(n)

#
)
11

)−1

× [
Ik2 − (vec V(n)

# )e′
k2,1

]
vec

(
W∼

(n)
f1# − V(n)

#
)

is oP(n−1/2), under P(n), as n → ∞. This yields the result since in Section 4.2 we

proved that V∼
(n)
f1# − V̂∼

(n)

f1# = oP(n−1/2), under P(n), as n → ∞.
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(ii) If V(n) is strictly affine-equivariant [in the sense of (5.1)], then using the
same notation as in Section 5, (V(n)(M,a))1/2 = dM(V(n))1/2O for some d > 0
and some k ×k orthogonal matrix O (see, e.g., [40]). The strict affine-equivariance
of the practical implementation V∼∼

(n)
f1

= limm→∞ V∼∼
(n)
f1#(c0,m) [which is based on

V(n)
T and W∼

(n)
f1

(V(n)
T ) instead of V(n)

# and W∼
(n)
f1#] follows. �
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[25] JUREČKOVÁ, J. and SEN, P. K. (1996). Robust Statistical Procedures: Asymptotics and Inter-

relations. Wiley, New York. MR1387346
[26] KOUL, H. (1971). Asymptotic behavior of a class of confidence regions based on ranks in

regression. Ann. Math. Statist. 42 466–476. MR0288896
[27] KOUL, H. L. (2002). Weighted Empirical Processes in Dynamic Nonlinear Models, 2nd ed.

Lecture Notes in Statist. 166. Springer, New York. MR1911855
[28] KOUL, H. L., SIEVERS, G. L. and MCKEAN, J. W. (1987). An estimator of the scale parame-

ter for the rank analysis of linear models under general score functions. Scand. J. Statist.
14 131–141. MR0913258

[29] KRAFT, C. H. and VAN EEDEN, C. (1972). Linearized rank estimates and signed-rank esti-
mates for the general linear hypothesis. Ann. Math. Statist. 43 42–57. MR0301857

[30] KREISS, J.-P. (1987). On adaptive estimation in stationary ARMA processes. Ann. Statist. 15
112–133. MR0885727

[31] LE CAM, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer, New York.
MR0856411

[32] LEHMANN, E. L. (1963). Nonparametric confidence intervals for a shift parameter. Ann. Math.
Statist. 34 1507–1512. MR0164412

[33] LOPUHAÄ, H. P. (1999). Asymptotics of reweighted estimators of multivariate location and
scatter. Ann. Statist. 27 1638–1665. MR1742503

[34] MAUCHLY, J. W. (1940). Significance test for sphericity of a normal n-variate distribution.
Ann. Math. Statist. 11 204–209. MR0002084

[35] MUIRHEAD, R. J. and WATERNAUX, C. M. (1980). Asymptotic distributions in canonical
correlation analysis and other multivariate procedures for nonnormal populations. Bio-
metrika 67 31–43. MR0570502

[36] OLLILA, E., HETTMANSPERGER, T. P. and OJA, H. (2005). Affine equivariant multivariate
sign methods. Preprint, Univ. Jyväskylä.

[37] OLLILA, E., OJA, H. and CROUX, C. (2003). The affine equivariant sign covariance matrix:
Asymptotic behaviour and efficiencies. J. Multivariate Anal. 87 328–355. MR2016942

[38] PAINDAVEINE, D. (2006). A Chernoff–Savage result for shape. On the nonadmissibility of
pseudo-Gaussian methods. J. Multivariate Anal. 97 2206–2220.

[39] PAINDAVEINE, D. (2006). A canonical definition of shape. Submitted for publication.
[40] RANDLES, R. H. (2000). A simpler, affine-invariant, multivariate, distribution-free sign test.

J. Amer. Statist. Assoc. 95 1263–1268. MR1792189
[41] SCHWEDER, T. (1975). Window estimation of the asymptotic variance of rank estimators of

location. Scand. J. Statist. 2 113–126. MR0411042
[42] SEN, P. K. (1966). On a distribution-free method of estimating asymptotic efficiency of a class

of nonparametric tests. Ann. Math. Statist. 37 1759–1770. MR0199928
[43] TYLER, D. E. (1982). Radial estimates and the test for sphericity. Biometrika 69 429–436.

MR0671982



EFFICIENT RANK-BASED INFERENCE FOR SHAPE II 2789

[44] TYLER, D. E. (1983). Robustness and efficiency of scatter matrices. Biometrika 70 411–420.
MR0712028

[45] TYLER, D. E. (1987). A distribution-free M-estimator of multivariate scatter. Ann. Statist. 15
234–251. MR0885734

M. HALLIN

DÉPARTEMENT DE MATHÉMATIQUE

INSTITUTE FOR RESEARCH IN STATISTICS AND E.C.A.R.E.S.
UNIVERSITÉ LIBRE DE BRUXELLES

CAMPUS DE LA PLAINE CP 210
B-1050 BRUXELLES

BELGIUM

E-MAIL: mhallin@ulb.ac.be

H. OJA

TAMPERE SCHOOL OF PUBLIC HEALTH

UNIVERSITY OF TAMPERE

FIN-33014 TAMPERE

FINLAND

E-MAIL: Hannu.Oja@uta.fi

D. PAINDAVEINE

DÉPARTEMENT DE MATHÉMATIQUE

INSTITUTE FOR RESEARCH IN STATISTICS AND E.C.A.R.E.S.
UNIVERSITÉ LIBRE DE BRUXELLES

CAMPUS DE LA PLAINE CP 210
B-1050 BRUXELLES

BELGIUM

E-MAIL: dpaindav@ulb.ac.be
URL: http://homepages.ulb.ac.be/~dpaindav

mailto:mhallin@ulb.ac.be
mailto:Hannu.Oja@uta.fi
mailto:dpaindav@ulb.ac.be
http://homepages.ulb.ac.be/~dpaindav

	Introduction
	Rank-based inference for elliptical families
	Rank tests
	R-estimation
	Outline of the paper

	Semiparametric efficiency under elliptical symmetry
	Uniform local asymptotic normality
	Semiparametric efficiency, ranks and signs

	Optimal one-step R-estimation of shape
	Estimation of cross-information coefficients
	A brief review of the literature
	An original (local likelihood) method: consistency and efficiency
	An original (local likelihood) method: practical implementation

	Asymptotic affine-equivariance
	Simulations
	Appendix
	Local asymptotic linearity
	Properties of R-estimators
	Asymptotic equivariance

	References
	Author's Addresses

