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SEMIPARAMETRICALLY EFFICIENT RANK-BASED
INFERENCE FOR SHAPE

I. OPTIMAL RANK-BASED TESTS FOR SPHERICITY

BY MARC HALLIN AND DAVY PAINDAVEINE1

Université Libre de Bruxelles

We propose a class of rank-based procedures for testing that the shape
matrix V of an elliptical distribution (with unspecified center of symmetry,
scale and radial density) has some fixed value V0; this includes, for V0 = Ik ,
the problem of testing for sphericity as an important particular case. The
proposed tests are invariant under translations, monotone radial transforma-
tions, rotations and reflections with respect to the estimated center of symme-
try. They are valid without any moment assumption. For adequately chosen
scores, they are locally asymptotically maximin (in the Le Cam sense) at
given radial densities. They are strictly distribution-free when the center of
symmetry is specified, and asymptotically so when it must be estimated. The
multivariate ranks used throughout are those of the distances—in the metric
associated with the null value V0 of the shape matrix—between the obser-
vations and the (estimated) center of the distribution. Local powers (against
elliptical alternatives) and asymptotic relative efficiencies (AREs) are derived
with respect to the adjusted Mauchly test (a modified version of the Gaussian
likelihood ratio procedure proposed by Muirhead and Waternaux [Biometrika
67 (1980) 31–43]) or, equivalently, with respect to (an extension of ) the
test for sphericity introduced by John [Biometrika 59 (1972) 169–173]. For
Gaussian scores, these AREs are uniformly larger than one, irrespective of the
actual radial density. Necessary and/or sufficient conditions for consistency
under nonlocal, possibly nonelliptical alternatives are given. Finite sample
performance is investigated via a Monte Carlo study.

1. Introduction.

1.1. The hypothesis of sphericity. The distribution of a k-dimensional random
vector X is called spherical if for some θ ∈ R

k , the distribution of X−θ is invariant
under orthogonal transformations. For multinormal variables, sphericity is equiv-
alent to the covariance matrix � of X being proportional to the identity matrix Ik .
Under the assumption of ellipticity, finite second order moments need not exist and
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sphericity is equivalent to the shape matrix V being equal to the unit matrix Ik ; see
Section 1.2 for precise definitions. Under more general nonelliptical distributions,
however, this equivalence no longer holds: V = Ik (the hypothesis of unit shape)
does not imply sphericity, nor even that the directions U := (X − θ)/‖X − θ‖ be
uniform over the unit sphere (the hypothesis of isotropy), and � (when finite) and
V no longer coincide up to a positive scalar factor. The hypothesis of sphericity
thus is a strict subhypothesis of the hypothesis of isotropy, itself a strict subhy-
pothesis of the unit shape hypothesis. While isotropy and unit shape only deal
with the U’s, that is, with the directional features of X − θ , sphericity also imposes
a strong symmetry structure on the moduli ‖X − θ‖. This symmetry plays a cru-
cial role in the approach we are adopting here and the null hypothesis of interest
throughout is the hypothesis of spherical symmetry rather than that of unit shape;
a detailed discussion of this issue is provided in Section 5.

Sphericity assumptions play a key role in a number of statistical problems, al-
though the distinction between sphericity, isotropy, unit shape and a covariance
matrix proportional to Ik is far from clear in the literature. Indeed, additional as-
sumptions (Gaussian or elliptical densities, finite second-order moments, etc.)—
the necessity of which is all too rarely questioned—in general cause the afore-
mentioned assumptions to coincide. Besides this role as a technical assumption
underlying some of the most frequently used statistical methods, null hypotheses
of the type V = V0—which (depending on the assumptions) reduce to the hy-
potheses of sphericity, isotropy or unit shape by substituting V−1/2

0 (X − θ) for
(X − θ)—are also of direct interest in several specific domains of application such
as geostatistics, paleomagnetic studies in geology, animal navigation, astronomy
and wind direction data; see [5, 34, 53] or [35] for references. Finally, shape matri-
ces provide robust alternatives to traditional covariance matrices; as such, they are
obvious candidates for serving as the basic tools in a host of multivariate analysis
techniques. Null hypotheses of the form V = V0, in their various guises (reducing
to sphericity, isotropy or unit shape) are thus of interest in their own right.

Because of its importance for applications, the problem of testing the hypoth-
esis of sphericity has a long history and has generated a considerable body of
literature which we only very briefly summarize here. For normal populations, the
asymptotic theory has been thoroughly investigated. The Gaussian likelihood ra-
tio test was introduced by Mauchly [36] and belongs to the classical toolkit of
multivariate analysis. The (Gaussian) locally most powerful invariant (under shift,
scale and orthogonal transformations) test was obtained by John [24, 25] and by
Sugiura [48]. In their original versions these tests are valid under Gaussian assump-
tions only; however, with slight modifications, they remain valid under elliptical
populations with finite fourth-order moments; see Section 5.3 of [38] for the ad-
justed Mauchly test and Section 3.3 of the present paper for an adjusted version
of John’s test. Without elliptical symmetry, however, these adjusted tests are no
longer valid; therefore, they qualify as tests of sphericity, not as tests of isotropy
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or unit shape. Moreover, it has been shown (see [23]) that they behave rather badly
under heavy tails (a fact that is confirmed by the Monte Carlo study in Section 6).
Although they still require elliptical symmetry and finite fourth-order radial mo-
ments, a more robust behavior can be expected from the test statistics introduced
by Tyler [50], who proposes replacing covariance matrices with more robust esti-
mators of scatter.

Non-Gaussian models have been investigated by Kariya and Eaton [27], where
elliptical densities, possibly with infinite variances, are considered. Uniformly
most powerful unbiased tests are derived, basically against specified nonspherical
shape values. The results of that paper do not allow for more general optimality
concepts (such as maximinity or stringency) involving unspecified shape alterna-
tives. Despite their obvious theoretical value, such tests thus have limited practical
value.

As a reaction to Gaussian and other strong distributional assumptions, nonpara-
metric tests of sphericity have also been constructed. Their main advantage is that
they remain consistent against all possible nonspherical alternatives, including the
nonelliptical ones. The drawback is that they are computationally heavy and only
achieve slow nonparametric consistency rates. Examples include Beran [6] and
Koltchinskii and Sakhanenko [28] for the null hypothesis of ellipticity and Baring-
haus [5] for sphericity. Another way of escaping Gaussian or fourth-order moment
assumptions involves basing the tests on statistics that are measurable with respect
to invariant or distribution-free quantities such as the multivariate concepts of signs
and ranks developed, mainly, in the robustness literature; see [39] for a review.

This sign-and/or-rank-based approach has been adopted by Tyler [53], Ghosh
and Sengupta [13] and Marden and Gao [33]. Tyler [53] addresses the problem
of testing uniformity over the sphere for directional data and proposes a sign test
related to his celebrated [52] estimator of shape. In a slightly different context,
Ghosh and Sengupta [13] also propose a test entirely based on multivariate signs,
that is, on cosines of the form U′

iUj = (Xi − θ)′(Xj − θ)/‖Xi − θ‖‖Xj − θ‖,
where Xi , i = 1, . . . , n, denote the k-dimensional observations. These two multi-
variate sign tests are of a heuristic nature and do not rely on any clear optimality
concerns. Their advantages and disadvantages are those which are usually asso-
ciated with sign tests: they remain valid under a broad class of densities and are
consistent against a broad class of alternatives, none of which requires elliptical
symmetry. As a test of sphericity, the Ghosh and Sengupta test is not consistent
against nonspherical alternatives with unit shape matrix. Therefore, rather than
a test of sphericity, it should be considered a test of isotropy, or even a test of
the hypothesis of unit shape with isotropic fourth-order directional moments; see
Section 5 for details and an extension to the null hypothesis of unit shape. If el-
lipticity is assumed (so sphericity becomes the null hypothesis of interest), how-
ever, restricting to signs leads to a substantial loss of efficiency since the distances
di := ‖Xi − θ‖, which are not taken into account, then also carry much relevant
information.
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In Marden and Gao [33], a variety of structural hypotheses on covariance matri-
ces are considered, including sphericity and unit shape. Appropriate multivariate
sign- and rank-based competitors of the Gaussian likelihood procedures are pro-
posed. The ranks used by the authors are the spatial ranks introduced by Möttönen
and Oja [37] and Chaudhuri [9]; see also [32]. Although Pitman efficiencies (with
respect to the Gaussian methods) are obtained, no attempt is made to achieve any
optimality and the authors restrict themselves to procedures of the Wilcoxon and
sign test types; even so, they show that the sign-and-rank (Wilcoxon) procedures
perform much better than those based on the signs alone, a finding that will be
confirmed (both qualitatively and quantitatively) by the form of the information
matrices we will derive in Section 2.

The approach we are adopting in the present paper is in the same spirit. How-
ever, throughout we combine robustness (distribution-freeness under sphericity,
without any moment assumptions) and optimality concerns. Our tests are based
on multivariate signs and the ranks of the norms of the observations centered at θ

(or an estimate θ̂ ), with test statistics that have a structure similar to that of John.
According to whether the center of symmetry θ is specified or not, these statistics
are strictly distribution-free under sphericity, or asymptotically so. With adequate
scores they are asymptotically optimal (in the Le Cam sense) against nonspherical
elliptical distributions at chosen radial densities. In the elliptical setup, asymptotic
relative efficiencies (AREs) with respect to the adjusted John and Mauchly tests
are derived and appear to be surprisingly high (particularly for the van der Waer-
den version). Actually, Paindaveine [43] shows that the celebrated Chernoff and
Savage [10] result concerning AREs of normal score tests for location with respect
to Student’s extends to the present situation: the AREs of the normal score versions
of our tests with respect to the traditional John–Mauchly–Muirhead–Waternaux
tests are uniformly larger than one, irrespective of the underlying radial density.

The optimality properties of our tests are related to local elliptical alternatives;
however, it is shown in Section 5.2 that provided nonconstant score functions are
used (the “constant-score case” corresponds to the extended sign test proposed in
Section 5.1), our tests nevertheless remain consistent against most elliptical as well
as nonelliptical alternatives (some nonelliptical simulation results are reported in
Section 6). We refer to Section 5 for a discussion of this matter.

Some basic reasons for considering sphericity as an alternative to classical
Gaussian assumptions have been discussed above. Another non-Gaussian exten-
sion of the assumption of Gaussian sphericity is the assumption of i.i.d.-ness, un-
der which the k components of the observed X are independent and identically
distributed (i.i.d.), with common unspecified symmetric marginal density f . Un-
der Gaussian marginals, i.i.d.-ness and sphericity coincide, but not under general
densities. In fact, Kac [26] shows that this hypothesis of i.i.d.-ness is rotation-
invariant only on the class of multivariate Gaussian distributions. If Gaussian
assumptions are abandoned, this hypothesis is no longer rotation-invariant and
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becomes strongly coordinate-dependent. Therefore, it does not fit into the semi-
parametric, coordinate-free setting we are adopting here.

However, the same assumption of i.i.d.-ness implies unit shape. The null hy-
pothesis of i.i.d.-ness is thus strictly included in that of unit shape. Therefore, one
might consider testing i.i.d.-ness by performing a test of unit shape such as the
extended sign test proposed in Section 5.1. Although valid from the point of view
of type I risk, such a test, for the null hypothesis of i.i.d.-ness, would be severely
biased and inconsistent. Indeed the Maxwell–Hershell theorem (see, e.g., pages
51–52 of [8]) indicates that all non-Gaussian spherical distributions are part of the
alternative, while our Proposition 5.1(v) establishes that α-level extended sign tests
at spherical alternatives have asymptotic power α. For all of these reasons, it seems
that i.i.d.-ness, in this context, is not the appropriate generalization of traditional
Gaussian assumptions.

1.2. Elliptical densities: location, scale, shape and radial density. Denote by
X(n) := (X(n)′

1 , . . . ,X(n)′
n )′, n ∈ N, a triangular array of k-dimensional observations.

Throughout, X(n)
1 , . . . ,X(n)

n are assumed to be i.i.d., with elliptical density

f
θ ,σ 2,V;f1

(x) := ck,f1

1

σk|V|1/2 f1

(
1

σ

(
(x − θ)′V−1(x − θ)

)1/2
)
,

(1.1)
x ∈ R

k,

where θ ∈ R
k is a location parameter, σ 2 ∈ R

+
0 := (0,∞) a scale parameter, and

V := (Vij ) a symmetric positive definite real k × k matrix with V11 = 1, a shape
parameter. The infinite-dimensional parameter f1 : R+

0 −→ R
+ := [0,∞) is an

a.e. strictly positive function, the constant ck,f1 a normalization factor depending
on the dimension k and f1.

The function f1 will be called, conveniently but improperly, a radial density
(f1 does not integrate to one, and is therefore not a probability density). Denote
by d

(n)
i = d

(n)
i (θ ,V) := ‖Z(n)

i (θ ,V)‖ the modulus of the centered and sphericized

observations Z(n)
i = Z(n)

i (θ ,V) := V−1/2(X(n)
i −θ), i = 1, . . . , n. If the X(n)

i ’s have
density (1.1), these moduli are i.i.d. with density and distribution functions

r �→ 1

σ
f̃1k

(
r

σ

)
:= 1

σµk−1;f1

(
r

σ

)k−1

f1

(
r

σ

)
I[r>0]

and

r �→ F̃1k(r/σ ) :=
∫ r/σ

0
f̃1k(s) ds,

respectively, provided, however, that

µk−1;f1 :=
∫ ∞

0
rk−1f1(r) dr < ∞,(1.2)
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an assumption we shall henceforth always make on f1. This function f̃1k is the
actual radial density and (1.2) thus merely ensures that it will be a probability
density function; in particular, it does not imply any moment restriction on f̃1k ,
the d

(n)
i ’s or the X(n)

i ’s. Any square root V1/2 of V [satisfying V1/2(V1/2)′ = V]
can be used in the above definitions, provided, of course, it is used in a consistent
way. For the sake of simplicity, however, A1/2 throughout stands for the symmetric
root of any symmetric positive semi-definite matrix A, thus avoiding superfluous
“prime” notation.

Now, if σ and f1 (or, more precisely, σ and ck,f1f1) are to be identifiable, a scale
constraint is required. Still endeavoring to avoid moment restrictions, we impose
the condition that the d

(n)
i ’s, under (1.1), have common median σ , that is,

F̃1k(1) = 1/2 or, equivalently,
(
µk−1;f1

)−1
∫ 1

0
rk−1f1(r) dr = 1/2.(1.3)

When this is to be emphasized, we call f1 a standardized radial density. Special
cases are:

(a) the k-variate multinormal distribution, with radial density f1(r) = φ1(r) :=
exp(−akr

2/2);
(b) the k-variate Student distributions, with radial densities (for ν degrees of

freedom) f1(r) = f t
1,ν(r) := (1 + ak,νr

2/ν)−(k+ν)/2;
(c) the k-variate power-exponential distributions, with radial densities of the

form f1(r) = f e
1,η(r) := exp(−bk,ηr

2η).

[The constants ak > 0, ak,ν > 0 and bk,η > 0 are such that (1.3) is satisfied; note
that ak = 2bk,1 = limν→∞ ak,ν .]

Writing vech M := (M11, (
◦

vech M)′)′ for the k(k + 1)/2-dimensional vector
obtained by stacking the upper-triangular elements of a k × k symmetric matrix
M = (Mij ), we denote by P(n)

ϑ;f1
or P(n)

θ ,σ 2,V;f1
the distribution of X(n) under given

values of ϑ = (θ ′, σ 2, (
◦

vech V)′)′ and f1 [f1 satisfying (1.2) and (1.3)]. The pa-
rameter space is thus � := R

k × R
+
0 × Vk , where Vk either stands for the set

of all k × k symmetric positive definite matrices V such that V11 = 1 or for the
corresponding set (in R

(k(k+1)/2)−1) of values of
◦

vech V.
The notation R

(n)
i = R

(n)
i (θ ,V) will be used for the rank of d

(n)
i = d

(n)
i (θ ,V)

among d
(n)
1 , . . . , d

(n)
n ; under P(n)

ϑ;f1
, the vector (R

(n)
1 , . . . ,R

(n)
n ) is uniformly distrib-

uted over the n! permutations of (1, . . . , n). Let U(n)
i = U(n)

i (θ ,V) := Z(n)
i /d

(n)
i .

The vectors U(n)
i under P(n)

ϑ;f1
are i.i.d. and uniformly distributed over the unit

sphere. They are independent of the ranks R
(n)
i and are usually considered as mul-

tivariate signs associated with the centered observations (Xi − θ), since they are
totally insensitive to transformations of (Xi − θ) that preserve half-lines through
the origin.
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The definition of the shape parameter V under elliptic symmetry readily fol-
lows from the special form of the density (1.1). A more general definition, which
remains valid under possibly nonelliptical symmetric distributions, has been given
by Tyler [52], where V is defined as the unique symmetric positive definite matrix
such that V11 = 1 (Tyler actually uses the normalization tr V = k) and

E[(X − θ)(X − θ)′/(X − θ)′V−1(X − θ)] = 1

k
V

(where θ denotes the center of symmetry). The sample Tyler matrix V(n)
T then pro-

vides a universally root-n consistent estimator of V. This ingenious extension may
be somewhat misleading, however, as this “shape,” in the absence of ellipticity, has
a much weaker, and purely directional, interpretation. In particular, it is no longer
associated with any family of contours and, under finite second-order moments, it
loses its relation to covariance matrices—hence much of its intuitive content.

1.3. Outline of the paper. The problem we are considering is that of testing
the hypothesis that the shape matrix V is equal to some given value V0 (admis-
sible for a shape parameter). The special case V0 = Ik , where Ik stands for the
k-dimensional identity matrix, yields the problem of testing for sphericity. In the
notation of the previous section, the shape matrix V in this problem is thus the
parameter of interest, while θ , σ 2 and f1 play the role of nuisance parameters.
Hence, it is highly desirable that the null distributions of the test statistics to be
used remain invariant under variations of θ , σ 2 and f1.

When θ is specified, we achieve this objective by basing our tests on the signs
U(n)

i and ranks R
(n)
i computed from Z(n)

i (θ ,V0), i = 1, . . . , n. These tests are in-
variant under monotone radial transformations (including scale transformations),
rotations and reflections of the observations (with respect to θ ), hence distribution-
free with respect to such transformations. When θ is unspecified, the ranks and

signs are to be computed from Z(n)
i (θ̂ ,V0), i = 1, . . . , n, where θ̂ = θ̂

(n)
is an

arbitrary root-n consistent estimator of the location parameter θ ; however, for θ̂ ,
we recommend the (rotation-equivariant) spatial median of Möttönen and Oja [37]
which is itself “sign-based.” This issue is treated in Section 4.4.

The tests φ˜
(n)
K based on these multivariate signed-rank statistics, whether ranks

and signs are computed from θ or from θ̂ , are locally asymptotically optimal (actu-
ally, locally asymptotically maximin-efficient, as the nonspecification of the scale
σ induces a strict loss of efficiency) in the Le Cam sense, under adequately cho-
sen score functions. The test statistics take the very simple form (dropping super-
fluous superscripts, c being some positive constant and K a score function; see
Section 4.2 for details)

Q˜ K = c

(
tr S2

K − 1

k
tr2 SK

)
with SK := 1

n

n∑
i=1

K

(
Ri

n + 1

)
UiU′

i ,(1.4)
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to be compared with the Gaussian statistic of John [24] (d is some positive con-
stant; see Section 3.3 for details),

QN = d

tr2 S

(
tr S2 − 1

k
tr2 S
)

with S := 1

n

n∑
i=1

ZiZ′
i = 1

n

n∑
i=1

d2
i UiU′

i .(1.5)

The special case of a constant score [K(u) = 1, 0 < u < 1] yields SS :=
1
n

∑n
i=1 UiU′

i and a test φ˜
(n)
S which is essentially that proposed by Ghosh and Sen-

gupta [13].
The rest of the paper is organized as follows. In Section 2 we establish the local

asymptotic normality result (with respect to the location, scale and shape parame-
ters) that provides the main theoretical tool of the paper. This result allows the de-
velopment of asymptotically optimal parametric procedures for V under specified
values of f1 and σ (with possibly unspecified θ ). This is explained in detail in Sec-
tion 3 where we also derive the asymptotically optimal (efficient, at given f1) “σ -
free” tests for hypotheses of the form V = V0 (tests for sphericity being a special
case) and explicitly compute the loss (in local powers) due to the nonspecification
of scale. The Gaussian version of this test is investigated further and its link with
some classical tests of sphericity is discussed. In Section 4 we propose nonpara-
metric (signed-rank-based) versions of the optimal procedures defined in Section 3
and study their invariance and asymptotic properties. Asymptotic relative efficien-
cies with respect to the parametric Gaussian tests are derived in the elliptical case.
All of these results are obtained under specified θ first; then, in Section 4.4 we
show that under minimal regularity assumptions on the actual underlying density
(essentially, those ensuring ULAN), θ can safely be replaced by any root-n consis-

tent estimator θ̂
(n)

. In Section 5, we study the validity (under extensions of the null
hypothesis of sphericity) and consistency properties under nonlocal alternatives of
our testing procedures. An adjusted version of the sign test is proposed, extending
the validity of φ˜

(n)
S to the null hypothesis of unit shape. Necessary and/or suffi-

cient conditions for consistency are established. For Wilcoxon (i.e., linear) scores,
these necessary and sufficient conditions take a very simple form which shows
that the corresponding rank tests are consistent against essentially all nonspher-
ical alternatives, including the nonelliptical ones. As for the (adjusted) sign test
φ˜

(n)
S , it is shown to be consistent against all non-unit-shape alternatives, confirm-

ing its qualification as a fully consistent test for unit shape. Section 6 provides
some simulation results which indicate that finite-sample performances reflect the
asymptotic powers derived in the previous sections, as well as the nonelliptical
consistency property established in Section 5. The Appendix compiles some tech-
nical proofs.
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1.4. Notation. The following notation will be used throughout. Denoting by
e� the �th vector in the canonical basis of R

k and by Ik the k × k unit matrix, let

Kk :=
k∑

i,j=1

(eie′
j ) ⊗ (ej e′

i ) and Jk :=
k∑

i,j=1

(eie′
j ) ⊗ (eie′

j ) = (vec Ik)(vec Ik)
′;

the k2 × k2 matrix Kk is known as the commutation matrix. With this nota-
tion, Kk vec(A) = vec(A′) and Jk vec(A) = (tr A)(vec Ik). Note that (1/k)Jk and
J

⊥
k := Ik2 − (1/k)Jk are the matrices of the projections onto the mutually orthog-

onal subspaces {λ(vec Ik)|λ ∈ R} and {vec(A)| tr A = 0}, respectively. Define Mk

as the (k(k + 1)/2 − 1)× k2 matrix such that M′
k(

◦
vech (v)) = vec(v) for any sym-

metric k × k matrix v = (vij ) with v11 = 0, and let Nk be the (k(k +1)/2−1)× k2

real matrix such that Nk(vec v) = ◦
vech v for any symmetric k×k matrix v. Finally,

we write V⊗2 for the Kronecker product V ⊗ V.

2. Uniform local asymptotic normality (ULAN). Our objective is to per-
form inference on the shape parameter V under unspecified location θ , unspecified
scale σ and unspecified standardized radial density f1: V is thus the parameter of
interest, whereas θ , σ 2 and f1 play the role of nuisance parameters. The relevant
statistical experiment involves the nonparametric family

P (n) := ⋃
f1∈FA

P (n)
f1

:= ⋃
f1∈FA

⋃
σ>0

P (n)

σ 2;f1

(2.1)
:= ⋃

f1∈FA

⋃
σ>0

{
P(n)

θ,σ 2,V;f1

∣∣θ ∈ R
k,V ∈ Vk

}
[f1 ranges over the set FA of standardized densities satisfying Assumptions
(A1) and (A2) below], in which the partition of P (n) into a collection of paramet-
ric subexperiments P (n)

σ 2;f1
, all indexed by the same parameters θ and V, induces a

semiparametric structure. The main technical tool is uniform local asymptotic nor-
mality (ULAN), with respect to ϑ = (θ ′, σ 2, (

◦
vech V)′)′, of the families P (n)

f1
. This

LAN (ULAN) issue has been briefly touched by Bickel (Example 4 in [7]). The
very particular case of bivariate distributions with finite second-order moments
has been treated recently by Falk [11] in his investigation of the inefficiency of
empirical correlation coefficients.

In order to describe the extremely mild assumptions under which the families
P (n)

f1
are ULAN, we introduce the following definitions. Consider the measure

space (�,B�,λ), where λ is some measure on the open subset � ⊂ R equipped
with its Borel σ -field B�. Denote by L2(�,λ) the space of measurable func-
tions h :� → R satisfying

∫
�[h(x)]2 dλ(x) < ∞. In particular, consider the space

L2(R+
0 ,µ�) [resp. L2(R, ν�)] of square integrable functions w.r.t. Lebesgue mea-

sure with weight x� on R
+
0 (resp. with weight e�x on R), that is, the space of mea-

surable functions h : R+
0 → R satisfying

∫∞
0 [h(x)]2x� dx < ∞ (resp. h : R → R
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satisfying
∫∞
−∞[h(x)]2e�x dx < ∞). Recall that g ∈ L2(�,λ) admits a weak deriv-

ative T iff
∫
� g(x)ϕ′(x) dx = − ∫� T (x)ϕ(x) dx for all infinitely differentiable (in

the classical sense) compactly supported functions ϕ on �. The mapping T is also
called the derivative of g in the sense of distributions in L2(�,λ). If, moreover, T

itself is in L2(�,λ), then g belongs to W 1,2(�,λ), the Sobolev space of order 1
on L2(�,λ). For the sake of simplicity, we will write L2(�) and W 1,2(�) when
λ is the Lebesgue measure on �. The family P (n)

f1
is ULAN under the following

assumptions on the radial density f1.

ASSUMPTION (A1). The mapping x �→ f
1/2
1 (x) is in W 1,2(R+

0 ,µk−1).

Letting ϕf1(r) := −2(f
1/2
1 )′(r)/f 1/2

1 (r), where (f
1/2
1 )′ stands for the weak

derivative of f
1/2
1 in L2(R+

0 ,µk−1), Assumption (A1) ensures the finiteness of

radial Fisher information for location (the expectation is taken under P(n)
ϑ;f1

),

Ik(f1) := E
[
ϕ2

f1

(
d

(n)
i (θ,V)/σ

)]= ∫ 1

0
ϕ2

f1
(F̃−1

1k (u)) du.

ASSUMPTION (A2). The mapping x �→ f
1/2
1;exp(x) := f

1/2
1 (ex) is

in W 1,2(R, νk).

Letting ψf1(r) := −2r−1(f
1/2
1;exp)

′(ln r)/f
1/2
1;exp(ln r), where (f

1/2
1;exp)

′ stands for

the weak derivative of f
1/2
1;exp in L2(R, νk) and Kf1(u) := ψf1(F̃

−1
1k (u))F̃−1

1k (u),
Assumption (A2) ensures the finiteness of radial Fisher information for shape
(and scale—expectations are still taken under P(n)

ϑ;f1
),

Jk(f1) := E
[
ψ2

f1

(
d

(n)
i (θ ,V)/σ

)(
d

(n)
i (θ ,V)/σ

)2]= ∫ 1

0
K2

f1
(u) du.

In principle, the functions ϕf1 and ψf1 differ. However, they do coincide (a.e.)
under the following Assumption (A1-2), which, though slightly more stringent
than Assumptions (A1) and (A2), holds for most densities considered in practice.

ASSUMPTION (A1-2). The radial density f1 is absolutely continuous with
a.e.-derivative ḟ1 and, letting ϕf1 = ψf1 := −ḟ1/f1, the integrals

Ik(f1) :=
∫ 1

0
ϕ2

f1
(F̃−1

1k (u)) du and Jk(f1) :=
∫ 1

0
K2

f1
(u) du

are finite.

It should be stressed that none of these assumptions requires the existence of
any moment for the radial density f̃1k . They are satisfied, for instance, for all
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multivariate Student radial densities, including the Cauchy ones. For the radial
density f t

1,ν of the k-variate t-distribution with ν degrees of freedom [ν ∈ (0,∞)],
it can be checked that

Ik(f
t
1,ν) = ak,ν

k(k + ν)

k + ν + 2
and Jk(f

t
1,ν) = k(k + 2)(k + ν)

k + ν + 2
.(2.2)

The same remark holds for the power-exponential distributions, provided that
k ≥ 2 (which is not a limitation, since the problem under consideration is void
for k = 1), with

Ik(f
e
1,η) = 4η2bk,η

�((4η + k − 2)/2η)

�(k/2η)
and Jk(f

e
1,η) = k(k + 2η)(2.3)

(� denotes the Euler Gamma function). The corresponding values for k-variate
multinormal distributions can be obtained by taking limits of the information quan-
tities in (2.2) as ν → ∞ or, equivalently, by evaluating (2.3) at η = 1:

Ik(φ1) = akk and Jk(φ1) = k(k + 2).

Note that limν→0 Jk(f
t
1,ν) = limη→0 Jk(f

e
1,η) = k2, which is a sharp lower

bound for radial shape/scale information since, by Jensen’s inequality and inte-
gration by parts,

(Jk(f1))
1/2 ≥

∫ 1

0
Kf1(u) du =

∫ 1

0
ψf1(F̃

−1
1k (u))F̃−1

1k (u) du = k.(2.4)

Similarly, assuming that the density in (1.1) has finite second-order moments, the
radial information for location Ik(f1) satisfies (the Cauchy–Schwarz inequality)

Ik(f1) ≥ k2
(∫ 1

0
(F̃−1

1k (u))2 du

)−1

,

with equality in the multinormal case only.

PROPOSITION 2.1. Under Assumptions (A1) and (A2), the family P (n)
f1

:=
{P(n)

ϑ;f1
|ϑ ∈ �} is ULAN, with [writing di and Ui , resp., for d

(n)
i (θ ,V) and

U(n)
i (θ,V)] central sequence

�
(n)
f1

(ϑ) :=


�

(n)
f1;1(ϑ)

�
(n)
f1;2(ϑ)

�
(n)
f1;3(ϑ)


(2.5)

:=


n−1/2 1

σ

n∑
i=1

ϕf1

(
di

σ

)
V−1/2Ui

1

2
n−1/2

(
σ−2(vec Ik)

′

Mk(V⊗2)−1/2

) n∑
i=1

vec
(
ψf1

(
di

σ

)
di

σ
UiU′

i − Ik

)
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and full-rank information matrix

�f1(ϑ) :=
�f1;11(ϑ) 0 0

0 �f1;22(ϑ) �′
f1;32(ϑ)

0 �f1;32(ϑ) �f1;33(ϑ)

 ,(2.6)

where

�f1;11(ϑ) := 1

kσ 2 Ik(f1)V−1,

�f1;22(ϑ) := 1

4σ 4

(
Jk(f1) − k2),

�f1;32(ϑ) := 1

4kσ 2

(
Jk(f1) − k2)Mk vec(V−1)

and

�f1;33(ϑ) := 1

4
Mk(V⊗2)−1/2

[
Jk(f1)

k(k + 2)
(Ik2 + Kk + Jk) − Jk

]
(2.7)

× (V⊗2)−1/2M′
k.

More precisely, for any ϑ (n) = (θ (n)′, σ 2(n), (
◦

vech V(n))′)′ = ϑ + O(n−1/2) and
any bounded sequence τ (n) := (t(n)′, s(n), (

◦
vech v(n))′)′ = (τ

(n)′
1 , τ

(n)
2 ,τ

(n)′
3 )′ in

R
k+k(k+1)/2, we have

�
(n)

ϑ (n)+n−1/2τ (n)/ϑ (n);f1
:= log

(
dP(n)

ϑ (n)+n−1/2τ (n);f1
/dP(n)

ϑ (n);f1

)
= (τ (n))′�(n)

f1

(
ϑ (n))− 1

2

(
τ (n))′�f1(ϑ)τ (n) + oP(1)

and

�
(n)
f1

(
ϑ (n)) L−→ N

(
0,�f1(ϑ)

)
under P(n)

ϑ (n);f1
as n → ∞.

The proof is given in Section A.1 of the Appendix.
Note that the structure of the information matrix for shape (2.7) is not unfa-

miliar, having been previously obtained under much more restrictive assumptions;
see, for example, page 219 of [8].
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3. Parametrically efficient tests for shape.

3.1. An efficient central sequence for shape. The block-diagonal structure of
the information matrix (2.6) and ULAN imply that substituting a (in principle,

discretized—see, e.g., [30], page 125) root-n consistent estimator θ̂ = θ̂
(n)

for the
unknown θ has no influence, asymptotically, on the (σ 2,V)-part of the central
sequence �

(n)
f1

(ϑ). Optimal inference about (σ 2,V) can thus be based, without
any loss of (asymptotic) efficiency, on (�

(n)
f1;2(θ̂ , σ 2,V),�

(n)′
f1;3(θ̂ , σ 2,V))′ as if θ̂

were the actual location parameter; see Section 4.4 for details. Therefore, in this
section we assume throughout that θ is known. Similarly, replacing σ 2 and V with
root-n consistent estimators σ̂ 2(n) and V̂(n) in the θ -part of the central sequence
�

(n)
f1

(ϑ) has no impact, asymptotically, on inference about θ .
Unlike the asymptotic covariances between the location and scatter components

of the central sequence �
(n)
f1

(ϑ), the asymptotic covariances between the σ 2-part

�
(n)
f1;2(ϑ) and the V-part �

(n)
f1;3(ϑ) are not zero. This means that a local perturba-

tion of scale has the same asymptotic impact on �
(n)
f1;3(ϑ) as a local perturbation

of V. It follows that the cost of not knowing the actual value of σ 2 is strictly pos-
itive when performing inference on V. Since it is hard to think of any practical
problem where the scale (but not the shape) is specified, we concentrate on opti-
mality under unspecified scale σ 2 and explicitly compute the information loss due
to the presence of this nuisance.

LAN and the convergence of local experiments to the Gaussian shift experiment(
�2

�3

)
∼ N

((
�f1;22(ϑ) �′

f1;32(ϑ)

�f1;32(ϑ) �f1;33(ϑ)

)(
τ2

τ 3

)
,(

�f1;22(ϑ) �′
f1;32(ϑ)

�f1;32(ϑ) �f1;33(ϑ)

))
,(3.1)

(τ2,τ
′
3)

′ ∈ R
k(k+1)/2,

imply that locally optimal inference on shape, in the presence of an unspecified
scale parameter, should be based on the residual of the regression [in (3.1)] of
�3 with respect to �2, computed at �

(n)
f1;3(ϑ) (the shape part of the central se-

quence) and �
(n)
f1;2(ϑ) (the scale part of the same). This residual takes the form

�3 − �f1;32(ϑ)�−1
f1;22(ϑ)�2(ϑ); the resulting f1-efficient central sequence for

shape is thus

�
�(n)
f1

(ϑ) = �
(n)
f1;3(ϑ) − �f1;32(ϑ)�−1

f1;22(ϑ)�
(n)
f1;2(ϑ),

which, after some elementary algebra, reduces to

�
�(n)
f1

(ϑ) = 1

2
n−1/2Mk(V⊗2)−1/2J

⊥
k

n∑
i=1

ψf1

(
di

σ

)
di

σ
vec(UiU′

i).



2720 M. HALLIN AND D. PAINDAVEINE

This efficient central sequence under P(n)
ϑ,f1

is asymptotically normal, with mean
zero and covariance (the efficient Fisher information for shape under radial den-
sity f1) given by

��
f1

(ϑ) = �f1;33(ϑ) − �f1;32(ϑ)�−1
f1;22(ϑ)�′

f1;32(ϑ).

After some routine computation, this efficient information takes the form

��
f1

(ϑ) = 1

4
Mk(V⊗2)−1/2J

⊥
k

×
[

Jk(f1)

k(k + 2)
(Ik2 + Kk + Jk) − Jk

]
J

⊥
k (V⊗2)−1/2M′

k

(3.2)

= Jk(f1)

4k(k + 2)
Mk(V⊗2)−1/2

[
Ik2 + Kk − 2

k
Jk

]
(V⊗2)−1/2M′

k

=: Jk(f1)ϒ
−1
k (V),

a form that is not unfamiliar in the area of robust estimation of covariance matrices;
see, for instance, the asymptotic covariances in [40, 42, 50, 51] for the covariances
of scatter estimates [as in (2.6), (2.7)], [41, 52] for covariances of shape estimates
[as in (3.2)].

In the sequel, optimality (in the local and asymptotic sense, at radial density f1)
is to be understood in the context of the Gaussian shift experiments associated with
the efficient central sequences �

�(n)
f1

(ϑ). In particular, a sequence of tests will be
called locally and asymptotically maximin-efficient (at asymptotic level α) if it is
asymptotically maximin in the sequence of experiments associated with �

�(n)
f1

(ϑ).

3.2. Optimal parametric tests for shape. Consider the problem of testing a
null hypothesis of the form H0 : V = V0 in the parametric model where f1 is
known and the scale σ 2 is unspecified. Optimality (in a local and asymptotic
sense—see Proposition 3.1 for a precise statement) is reached by tests based on
quadratic forms in the f1-efficient central sequence for shape. More precisely, the
optimal test statistics take the form

Qf1 = Q
(n)
f1

:= (��(n)
f1

(ϑ̂0)
)′(

��
f1

(ϑ̂0)
)−1

�
�(n)
f1

(ϑ̂0),

where, denoting by σ̂ a root-n consistent estimator for σ , we let ϑ̂0 := (θ ′, σ̂ 2,

(
◦

vech V0)
′)′. Note that consistent estimation of σ under the family⋃

f1

⋃
σ>0{P(n)

θ,σ 2,V0;f1
} is easily achieved since σ is then the common median

of the distances di(θ ,V0). As we shall see in Section 3.3, the Gaussian version of
these optimal parametric tests allows the bypassing of this estimation of σ .

Lemma 3.1 below leads to the more explicit form

Qf1 = k(k + 2)

2nJk(f1)

n∑
i,j=1

didj

σ̂ 2 ψf1

(
di

σ̂

)
ψf1

(
dj

σ̂

)(
(U′

iUj )
2 − 1

k

)
,
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with di := d
(n)
i (θ ,V0) and Ui := U(n)

i (θ ,V0).

LEMMA 3.1. Denote by ek2,1 the first vector of the canonical basis of R
k2

.
Then if V = (Vij ) is symmetric with V11 = 1, we have

1

k(k + 2)
M′

kϒk(V)Mk

= [Ik2 + Kk](V⊗2) − 2(V⊗2)ek2,1(vec V)′(3.3)

− 2(vec V)(ek2,1)
′(V⊗2) + 2(vec V)(vec V)′.

The proof is given in Section A.2 of the Appendix.

PROPOSITION 3.1. Let f1 satisfy Assumptions (A1) and (A2). Then, denoting
by ‖A‖ := [tr(AA′)]1/2 the Frobenius norm of A,

(i) Q
(n)
f1

is asymptotically chi-square with k(k + 1)/2 − 1 degrees of freedom

under
⋃

σ 2{P(n)

θ,σ 2,V0;f1
} and asymptotically noncentral chi-square, still with k(k +

1)/2 − 1 degrees of freedom but with noncentrality parameter

Jk(f1)

2k(k + 2)

[
tr((V−1

0 v)2) − 1

k
(tr V−1

0 v)2
]

= Jk(f1)

2k(k + 2)
(tr V−1

0 v)2
∥∥∥∥ V−1

0 v

tr V−1
0 v

− 1

k
Ik

∥∥∥∥2

,

under
⋃

σ 2{P(n)

θ ,σ 2,V0+n−1/2v;f1
};

(ii) the sequence of tests φ
(n)
f1

which consists of rejecting H0 : V = V0 as soon as

Q
(n)
f1

exceeds the α upper-quantile of a chi-square variable with k(k +1)/2−1 de-

grees of freedom has asymptotic level α under
⋃

σ 2{P(n)

θ ,σ 2,V0;f1
} and is locally and

asymptotically maximin-efficient, still at asymptotic level α, for
⋃

σ 2{P(n)

θ ,σ 2,V0;f1
}

against alternatives of the form
⋃

σ 2
⋃

V=V0
{P(n)

θ,σ 2,V;f1
}.

The proof is given in Section A.2 of the Appendix.
In contrast with this unspecified-σ 2 test, the locally and asymptotically optimal

procedure for testing H0 : V = V0 under specified radial density f1, specified θ

and specified scale σ 2 rejects H0 (at asymptotic level α) whenever

Qσ 2,f1
= Q

(n)

σ 2,f1
(3.4)

:= (�(n)
f1;3(θ, σ 2,V0)

)′(
�f1;33(θ , σ 2,V0)

)−1
�

(n)
f1;3(θ, σ 2,V0)
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exceeds the α upper-quantile of a chi-square with k(k + 1)/2 − 1 degrees of
freedom. The efficiency loss due to an unspecified σ 2 can thus be measured
by the difference between the noncentrality parameters in the asymptotic chi-
square distributions of Qσ 2,f1

and Qf1 under local alternatives. Along the same
lines as the proof of Proposition 3.1, one can show that this difference, un-
der P(n)

θ,σ 2,V0+n−1/2v;f1
, is

1

4k2

(
Jk(f1) − k2)(tr V−1

0 v)2.(3.5)

Inequality (2.4) confirms the unsurprising fact that this loss is nonnegative and an
increasing function of the information for shape (or scale) Jk(f1). Quite remark-
ably, it does not depend on the scale σ 2 itself. Also, note that the loss is nil against
local alternatives such that tr V−1

0 v = 0. When testing for sphericity (V0 = Ik),
this reduces to tr v = 0; in particular, there is no loss in the case vii = 0 for all
i = 2, . . . , k.

Further investigation of (3.5) reveals some interesting facts concerning the rela-
tion between this loss and the tails of underlying radial densities. Assume, for the
sake of simplicity, that V0 = Ik and consider the “elementary diagonal deviations
from sphericity” associated with v = λeie′

i for some i = 2, . . . , k. The relative loss
in local powers (strictly speaking, the relative loss in the corresponding noncen-
trality parameters) can be evaluated as the ratio of (3.5) and the noncentrality pa-
rameter one would obtain for the specified-σ test statistic (3.4)—namely, the sum
of (3.5) and the noncentrality parameter in Proposition 3.1(i). This relative loss no
longer depends on λ and takes the form

(k + 2)(Jk(f1) − k2)

3k(Jk(f1) − k2) + 2k2(k − 1)
,(3.6)

an increasing function of Jk(f1), with lower and upper bounds 0 and (k + 2)/3k,
corresponding to arbitrarily heavy- and light-tailed distributions, respectively. In-
deed, these bounds can be obtained, for example, by letting η → 0 and η → ∞,
respectively, in the power-exponential family of distributions considered in Sec-
tion 1.2. We refer to [18] for more general results on efficiency losses in the related
problem of estimating the shape parameter.

Some numerical values of these relative losses (3.6) are provided in Table 1,
where we consider:

(a) the family of power-exponential densities (providing a full range of tail
behaviors), with relative loss (k + 2)η/(k(k + 3η − 1)), and

(b) the more familiar heavy-tailed Student densities with ν degrees of freedom
(including the Gaussian as ν → ∞), with relative loss ν/(k(k + ν − 1)),

for several values of the space dimension k. Limits as k → ∞ are taken for fixed ν

or η; note that the η = 1 power-exponential and ν = ∞ Student columns both
correspond to the Gaussian case.
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TABLE 1
Numerical values of the relative power losses in (3.6) under k-variate power-exponential densities

(with η = 0.1, 0.5, 1, 2, 5, along with the limiting values obtained for η → 0 and η → ∞), and
under k-variate Student densities (with ν degrees of freedom, ν = 1, 3, 5, 8, 15, along with the

limiting values obtained for ν → 0 and ν → ∞), for k = 2, 3, 4, 6, 10 and for k → ∞

Parameter η of the power-exponential density

k → 0 0.1 0.5 1 2 5 → ∞
2 0.000 0.154 0.400 0.500 0.571 0.625 0.667
3 0.000 0.072 0.238 0.333 0.417 0.490 0.556
4 0.000 0.045 0.167 0.250 0.333 0.417 0.500
6 0.000 0.025 0.103 0.167 0.242 0.333 0.444

10 0.000 0.013 0.057 0.100 0.160 0.250 0.400
∞ 0.000 0.000 0.000 0.000 0.000 0.000 0.333

Degrees of freedom of the underlying t density

→ 0 1 3 5 8 15 → ∞
2 0.000 0.250 0.375 0.417 0.444 0.469 0.500
3 0.000 0.111 0.200 0.238 0.267 0.294 0.333
4 0.000 0.063 0.125 0.156 0.182 0.208 0.250
6 0.000 0.028 0.063 0.083 0.103 0.125 0.167

10 0.000 0.010 0.025 0.036 0.047 0.063 0.100
∞ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3.3. Optimal Gaussian tests for shape. The parametric tests φ
(n)
f1

described in
part (ii) of Proposition 3.1 achieve local and asymptotic optimality at radial density
f1 but are generally not valid when the underlying radial density is g1 = f1. If
correctly formulated, the Gaussian version of these tests (obtained for f1 = φ1,
where φ1 was defined in Section 1.2) is an interesting exception to this rule and
can easily be written in a form that remains valid under the class of all radial
densities g1 such that g̃1k has finite fourth-order moments.

Denote by Dk(g1) := E[(G̃−1
1k (U))2] and Ek(g1) := E[(G̃−1

1k (U))4] < ∞, where
U stands for a random variable with uniform distribution over (0,1), the second-
and fourth-order moments of g̃1k , respectively, and assume that Ek(g1) < ∞
[hence also that Dk(g1) < ∞]. These two quantities are closely related to the kur-
tosis of the elliptical distribution under consideration. To be precise, the kurtosis
3κk(g1) of an elliptically symmetric random k-vector X = (Xi) with location cen-
ter θ = (θ1, . . . , θk)

′, scale σ 2, shape matrix V and radial density g1 is defined to
be

3κk(g1) := E[(Xi − θi)
4]

E2[(Xi − θi)2] − 3;
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see, for example, [1], page 54, [38] or [50]. This quantity depends only on the
dimension k and the radial density g1, not on i or on the other parameters char-
acterizing the elliptical distribution (which of course justifies the notation); it is
related to Dk(g1) and Ek(g1) by the simple expression

κk(g1) = k

k + 2

Ek(g1)

D2
k (g1)

− 1.

At the k-variate Gaussian distribution and t-distribution with ν degrees of freedom
(ν > 4), this kurtosis parameter takes values κk(φ1) = 0 and κk(f

t
1,ν) = 2/(ν − 4),

respectively.
The Gaussian version of the efficient central sequence for shape �

�(n)
f1

(ϑ) can

be written as �
�(n)
φ1

(ϑ) = akσ
−2Tθ ,V, where

Tθ ,V = T(n)
θ,V := 1

2n−1/2Mk(V⊗2)−1/2J
⊥
k (V⊗2)−1/2

n∑
i=1

vec
(
(Xi − θ)(Xi − θ)′

)
.

It is convenient to work with Tθ ,V and an estimate �̂
(n)

of its asymptotic covariance
rather than with �

�(n)
φ1

(ϑ) and an estimate of the corresponding information matrix

since the scalar factor akσ
−2 in the quadratic form in �

�(n)
φ1

(ϑ) cancels out. For

optimality (at Gaussian radial densities), it is sufficient for �̂
(n)

to consistently
estimate the asymptotic covariance of Tθ ,V0 under

⋃
σ 2{P(n)

θ ,σ 2,V0;φ1
}.

Letting

�̂
(n) :=

(
1

n

n∑
i=1

d4
i

)
ϒ−1

k (V),

with the same di = d
(n)
i (θ ,V0)’s as in Section 3.2, it is easy to check that �̂

(n)

provides, for all θ , a consistent estimate of the asymptotic variance of Tθ ,V0 , not

only under
⋃

σ 2{P(n)

θ ,σ 2,V0;φ1
}, but also under

⋃
σ 2
⋃

g1
{P(n)

θ,σ 2,V0;g1
}, where the union

is taken over the set of all densities g1 such that Ek(g1) < ∞. The Gaussian test

statistic then takes the form QN = Q
(n)
N := T(n)′

θ ,V0
(�̂

(n)
)−1T(n)

θ ,V0
. Lemma 3.1 and

standard algebra yield

QN = k(k + 2)

2(
∑n

i=1 d4
i )

n∑
i,j=1

d2
i d2

j

(
(U′

iUj )
2 − 1

k

)
,(3.7)

with the same Ui = U(n)
i (θ ,V0) as in Section 3.2. Now, defining

S = S(n) := 1

n

n∑
i=1

[V−1/2
0 (Xi − θ)][V−1/2

0 (Xi − θ)]′
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and letting κ̂ (n) := [k(n−1∑n
i=1 d4

i )]/[(k + 2)(n−1∑n
i=1 d2

i )2] − 1 be a consistent
estimate of the kurtosis parameter κk(g1), (3.7) takes the form

QN = n2k(k + 2)

2(
∑n

i=1 d4
i )

(
tr S2 − 1

k
tr2 S
)

= 1

1 + κ̂ (n)

nk2

2

∥∥∥∥ S
tr S

− 1

k
Ik

∥∥∥∥2

.(3.8)

It is straightforward to check that QN is invariant under rotations, scale trans-
formations and reflections (with respect to θ , in the metric associated with V0),
but that it is not (even asymptotically) invariant under the group of monotone con-
tinuous radial transformations (see Section 4.1 below). The following proposition
summarizes the asymptotic properties of the Gaussian procedure based on QN .

PROPOSITION 3.2. Denote by φ
(n)
N the parametric Gaussian test rejecting the

null hypothesis H0 : V = V0 whenever Q
(n)
N exceeds the α upper-quantile of a chi-

square distribution with k(k + 1)/2 − 1 degrees of freedom. Then (unions over g1

are taken over all densities such that g̃1k has finite fourth-order moments):

(i) Q
(n)
N is asymptotically chi-square with k(k + 1)/2 − 1 degrees of freedom

under
⋃

σ 2
⋃

g1
{P(n)

θ ,σ 2,V0;g1
} and asymptotically noncentral chi-square, still with

k(k + 1)/2 − 1 degrees of freedom, but with noncentrality parameter

1

2(1 + κk(g1))

[
tr((V−1

0 v)2) − 1

k
(tr V−1

0 v)2
]

under
⋃

σ 2{P(n)

θ ,σ 2,V0+n−1/2v;g1
};

(ii) the sequence of tests φ
(n)
N under

⋃
σ 2
⋃

g1
{P(n)

θ ,σ 2,V0;g1
} has asymptotic level

α and is locally and asymptotically maximin-efficient, still at asymptotic level α,
for
⋃

σ 2
⋃

g1
{P(n)

θ ,σ 2,V0;g1
} against alternatives of the form

⋃
σ 2
⋃

V=V0
{P(n)

θ,σ 2,V;φ1
}.

The proof is given in Section A.3 of the Appendix.
For V0 = Ik , the test statistic QN in (3.8) and Proposition 3.2 actually appears

as a modification of the test statistic

QJohn := nk2

2

∥∥∥∥ S
tr S

− 1

k
Ik

∥∥∥∥2

= nk2

2
tr
[(

S
tr S

− 1

k
Ik

)2]
(3.9)

proposed by John [24, 25]. The only difference is that QJohn relies on the Gaussian
value κ = 0 of the kurtosis parameter, whereas QN instead involves an estimation
κ̂ (n) of the same, which makes the asymptotic null distribution of QN agree, un-
der any elliptical distribution with finite fourth-order moments, with the limiting
distribution of QJohn in the multinormal case.
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This adjustment is very much in the spirit of the Muirhead and Waternaux
version [38] of Mauchly’s Gaussian likelihood ratio test [36]—probably the
most widely used test of sphericity. Muirhead and Waternaux [38] actually show
that the limiting distribution of (−2 log�(n))/(1 + κk(g1)), where −2 log�(n)

is the Gaussian likelihood ratio test statistic, is asymptotically chi-square, with
k(k + 1)/2 − 1 degrees of freedom, under

⋃
σ 2
⋃

g1
{P(n)

θ ,σ 2,Ik;g1
} (the union is taken

over all g1 such that g̃1k has finite fourth-order moments); the population kur-
tosis parameter κk(g1) can of course be replaced by its sample counterpart κ̂ (n)

without modifying the asymptotic chi-square distribution. These results straight-
forwardly extend to the problem of testing for a specified shape V0 rather than
for sphericity. It also follows from [38] that the adjusted version of John’s test
statistic, namely our Gaussian test statistic QN , is asymptotically equivalent to
their adjusted version of the Mauchly test. In the sequel, the expression “optimal
parametric Gaussian test” will refer to any of these tests. Note, however, that opti-
mality here follows from Proposition 3.2 and is therefore of an asymptotic nature.
Actually, only John’s original (nonadjusted) test [24] enjoys some finite-sample
optimality properties (restricted to the Gaussian case), being locally most powerful
invariant at the multinormal distribution. Our adjusted tests inherit, under weaker
asymptotic form, this optimality property from John’s test; on the other hand, they
remain valid under non-Gaussian densities, which is not the case for John’s.

4. Rank-based tests for shape.

4.1. Rank-based versions of efficient central sequences for shape. As already
mentioned, the problem with tests based on efficient central sequences is that (with
the exception of the adjusted Gaussian tests described in Section 3.3) they are only
valid under correctly specified radial densities. In practice, a correct specification
f1 of the actual radial density g1 is rather unrealistic and thus the problem has
to be treated from a semiparametric point of view, where g1 plays the role of a
nuisance.

Within the family of distributions
⋃

σ 2
⋃

V
⋃

g1
{P(n)

θ,σ 2,V;g1
}, where θ is fixed,

consider the null hypothesis H0(θ ,V0) under which V = V0. Throughout, there-
fore, θ and V = V0 are fixed, and σ 2 and the radial density g1 remain unspecified
(no moment assumptions are being made here). As we have seen, the scalar nui-
sance σ 2 can be taken care of by means of a simple projection, yielding the efficient
central sequence. In principle, the infinite-dimensional nuisance g1 can be treated
similarly, by projecting central sequences along adequate tangent spaces; see Ex-
ample 4 of [7]. This approach is rather technical, however. Hallin and Werker [20]
showed that appropriate group invariance structures allow for the same result by
conditioning central sequences with respect to maximal invariants such as ranks or
signs. This is the approach we also adopt here.
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Clearly, the null hypothesis H0(θ,V0) is invariant under the following two
groups of transformations acting on the observations X1, . . . ,Xn:

(i) the group Gorth(n),◦ := Gorth(n)
θ ,V0

,◦ of V0-orthogonal transformations (cen-
tered at θ ) consisting of all transformations of the form

X �→ GO(X1, . . . ,Xn)

= GO
(
θ + d1(θ ,V0)V

1/2
0 U1(θ ,V0), . . . , θ + dn(θ ,V0)V

1/2
0 Un(θ ,V0)

)
:= (θ + d1(θ ,V0)V

1/2
0 OU1(θ,V0), . . . , θ + dn(θ ,V0)V

1/2
0 OUn(θ ,V0)

)
,

where O is an arbitrary k × k orthogonal matrix. In particular, this group contains
“rotations” (in the metric associated with V0) around θ , as well as the reflection
with respect to θ , that is, the mapping (X1, . . . ,Xn) �→ (θ − (X1 − θ), . . . , θ −
(Xn − θ));

(ii) the group G(n),◦ := G(n)
θ ,V0

,◦ of continuous monotone radial transforma-
tions, of the form

X �→ Gh(X1, . . . ,Xn)

= Gh

(
θ + d1(θ ,V0)V

1/2
0 U1(θ ,V0), . . . , θ + dn(θ,V0)V

1/2
0 Un(θ ,V0)

)
:= (θ + h

(
d1(θ ,V0)

)
V1/2

0 U1(θ,V0), . . . , θ + h
(
dn(θ ,V0)

)
V1/2

0 Un(θ ,V0)
)
,

where h : R
+ → R

+ is continuous, monotone increasing and such that h(0) = 0
and limr→∞ h(r) = ∞. In particular, this group includes the subgroup of scale
transformations (X1, . . . ,Xn) �→ (θ + a(X1 − θ), . . . , θ + a(Xn − θ)), a > 0.

Clearly, the group G(n),◦ of continuous monotone radial transformations is
a generating group for the family of distributions

⋃
σ 2
⋃

f1
{P(n)

θ ,σ 2,V0;f1
}, that is,

a generating group for the null hypothesis H0(θ,V0) under consideration. The in-
variance principle therefore leads to the consideration of test statistics that are mea-
surable with respect to the corresponding maximal invariant, namely the vector
(R1(θ ,V0), . . . ,Rn(θ ,V0),U1(θ,V0), . . . ,Un(θ ,V0)), where Ri(θ ,V0) denotes
the rank of di(θ ,V0) among d1(θ ,V0), . . . , dn(θ ,V0). The resulting signed rank
test statistics are (strictly) invariant under G(n),◦, hence distribution-free under
H0(θ ,V0).

Now, in the construction of the proposed tests for the null hypothesis H0(θ ,V0),
we intend to combine invariance and optimality arguments by considering a
(signed-)rank-based version of the f1-efficient central sequences for shape [re-
call that central sequences are always defined up to oP(1)—under P(n)

ϑ;f1
, as

n → ∞—terms]. The signed-rank version �˜ (n)
f1

(ϑ) of the shape-efficient central
sequence �

�(n)
f1

(ϑ) we plan to use in our nonparametric tests is the f1-score ver-
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sion (based on the scores K = Kf1 ) of the statistic

�˜ (n)
K (ϑ) := 1

2
n−1/2Mk(V⊗2)−1/2J

⊥
k

n∑
i=1

K

(
Ri

n + 1

)
vec(UiU′

i)

= 1

2
n−1/2Mk(V⊗2)−1/2

n∑
i=1

K

(
Ri

n + 1

)
vec
(

UiU′
i − 1

k
Ik

)
(4.1)

= 1

2
n−1/2Mk(V⊗2)−1/2

×
n∑

i=1

(
K

(
Ri

n + 1

)
vec(UiU′

i) − m
(n)
K

k
vec(Ik)

)
,

where Ri = R
(n)
i (θ ,V) denotes the rank of di = d

(n)
i (θ ,V) among d1, . . . , dn,

Ui = U(n)
i (θ ,V) and m

(n)
K := n−1∑n

i=1 K(i/(n + 1)).
Beyond its role in the derivation of the asymptotic distribution of the rank-based

random vector (4.1), the following asymptotic representation result shows that
�˜ (n)

f1
(ϑ) is indeed another version of the efficient central sequence �

�(n)
f1

(ϑ).

LEMMA 4.1. Assume that the score function K : (0,1) → R is continuous,
square integrable and that it can be expressed as the difference of two monotone
increasing functions. Then, defining

�
�(n)
K;g1

(ϑ) := 1

2
n−1/2Mk(V⊗2)−1/2J

⊥
k

n∑
i=1

K

(
G̃1k

(
di

σ

))
vec(UiU′

i ),(4.2)

we have �˜ (n)
K (ϑ) = �

�(n)
K;g1

(ϑ) + oL2(1) as n goes to infinity, under P(n)
ϑ;g1

.

The proof is given in Section A.3 of the Appendix.

4.2. The proposed class of tests. Let K : (0,1) → R be some score func-
tion as in Lemma 4.1. Writing E[K(U)] and E[K2(U)] for

∫ 1
0 K(u)du and∫ 1

0 K2(u) du, respectively, the K-score version of the statistics we propose for test-
ing H0 : V = V0 is

Q˜ K = Q˜
(n)
K

(4.3)

:= k(k + 2)

2nE[K2(U)]
n∑

i,j=1

K

(
Ri

n + 1

)
K

(
Rj

n + 1

)(
(U′

iUj )
2 − 1

k

)
,

where Ri = R
(n)
i (θ ,V0) and Ui = U(n)

i (θ ,V0). Letting

SK = S(n)
K := 1

n

n∑
i=1

K

(
Ri

n + 1

)
UiU′

i ,
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these test statistics can be rewritten as

Q˜ K = nk(k + 2)

2E[K2(U)]
(

tr S2
K − 1

k
tr2 SK

)
(4.4)

= k(k + 2)E2[K(U)]
k2E[K2(U)]

nk2

2

∥∥∥∥ SK

tr SK

− 1

k
Ik

∥∥∥∥2

+ oP(1)

= k(k + 2)

2E[K2(U)]
∥∥∥∥∥n−1/2

n∑
i=1

K

(
Ri

n + 1

)(
UiU′

i − 1

k
Ik

)∥∥∥∥∥
2

+ oP(1)(4.5)

as n goes to infinity, under any distribution [cf. (3.8)]. These test statistics are
strictly invariant under Gorth(n),◦ as well as under G(n),◦. They admit (up to a
multiplicative constant) an interesting interpretation as the sum of squared devia-
tions of the eigenvalues of SK from their arithmetic mean.

The power functions Ka(u) = ua , a ≥ 0, provide some traditional score func-
tions. The corresponding test statistics are

Q˜ Ka := (2a + 1)k(k + 2)

2n(n + 1)2a

n∑
i,j=1

Ra
i Ra

j

(
(U′

iUj )
2 − 1

k

)
.(4.6)

Important particular cases are the sign-, Wilcoxon- and Spearman-type test sta-
tistics, defined by Q˜ S := Q˜ K0 , Q˜ W := Q˜ K1 and Q˜ SP := Q˜ K2 , respectively. In
general, the resulting tests are not optimal at any density (they sometimes are,
though—for instance, the Wilcoxon test Q˜ W is optimal in dimension k = 2 at Stu-
dent densities with two degrees of freedom; see Section 4.3), but they nevertheless
yield good overall performance and are simple to compute. The sign test statistic
Q˜ S essentially coincides with that proposed by Ghosh and Sengupta [13] where,
however, the U′

iUj are computed from Randles’ interdirections (see [46]).
Local asymptotic optimality under radial density f1 is achieved by the test based

on Q˜ f1 := Q˜ Kf1
. This test statistic takes the form

Q˜ f1 = k(k + 2)

2nJk(f1)

n∑
i,j=1

Kf1

(
Ri

n + 1

)
Kf1

(
Rj

n + 1

)(
(U′

iUj )
2 − 1

k

)
(4.7)

which, letting Sf1 = S(n)
f1

:= (1/n)
∑n

i=1 Kf1(Ri/(n + 1))UiU′
i , simplifies to

Q˜ f1 = nk(k + 2)

2Jk(f1)

(
tr S2

f1
− 1

k
tr2 Sf1

)
(4.8)

= k(k + 2)

Jk(f1)

nk2

2

∥∥∥∥ Sf1

tr Sf1

− 1

k
Ik

∥∥∥∥2

+ oP(1)

as n goes to infinity, still under any distribution. The van der Waerden (Gaussian
scores f1 = φ1) test, for instance, is based on the statistic

Q˜ vdW := 1

2n

n∑
i,j=1

�−1
k

(
Ri

n + 1

)
�−1

k

(
Rj

n + 1

)(
(U′

iUj )
2 − 1

k

)
,(4.9)
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where �k stands for the chi-square distribution function with k degrees of freedom.
See (4.10) for the rank-based test statistics based on Student scores.

In order to describe the asymptotic behavior of Q˜ K and Q˜ f1 , we will need the

quantities

Jk(K;g1) :=
∫ 1

0
K(u)Kg1(u) du and Jk(f1, g1) :=

∫ 1

0
Kf1(u)Kg1(u) du

[Jk(f1, g1) can be interpreted as a measure of cross-information].
Denote by φ˜

(n)
K (resp. by φ˜

(n)
f1

) the rank-based test which consists in reject-

ing H0 : V = V0 as soon as Q˜
(n)
K , defined in (4.3) [resp. Q˜

(n)
f1

, defined in (4.7)]
exceeds the α-upper-quantile of a chi-square distribution with k(k + 1)/2 − 1 de-
grees of freedom. We can now state the main result of this paper. Note that here
the unions over g1 extend over all possible standardized radial densities: contrary
to the Gaussian tests described in Section 3.3, where finite fourth-order moments
are required, the tests φ˜

(n)
K and φ˜

(n)
f1

are valid without any moment restrictions.

PROPOSITION 4.1. Let K be a continuous, square integrable score function
defined on (0,1) that can be expressed as the difference of two monotone increas-
ing functions. Similarly, assume that f1 [satisfying Assumptions (A1) and (A2)] is
such that Kf1 is continuous and can be expressed as the difference of two monotone
increasing functions. Then:

(i) Q˜
(n)
K and Q˜

(n)
f1

are asymptotically chi-square with k(k + 1)/2 − 1 degrees

of freedom under
⋃

σ 2
⋃

g1
{P(n)

θ,σ 2,V0;g1
} and asymptotically noncentral chi-square,

still with k(k + 1)/2 − 1 degrees of freedom but with noncentrality parameters

J2
k(K;g1)

2k(k + 2)E[K2(U)]
[
tr((V−1

0 v)2) − 1

k
(tr V−1

0 v)2
]

and

J2
k(f1, g1)

2k(k + 2)Jk(f1)

[
tr((V−1

0 v)2) − 1

k
(tr V−1

0 v)2
]
,

respectively, under
⋃

σ 2{P(n)

θ ,σ 2,V0+n−1/2v;g1
};

(ii) the sequences of tests φ˜
(n)
K and φ˜

(n)
f1

have asymptotic level α under⋃
σ 2
⋃

g1
{P(n)

θ ,σ 2,V0;g1
};

(iii) the sequence of tests φ˜
(n)
f1

is locally and asymptotically maximin-efficient,

still at asymptotic level α, for
⋃

σ 2
⋃

g1
{P(n)

θ ,σ 2,V0;g1
} against alternatives of the form⋃

σ 2
⋃

V=V0
{P(n)

θ,σ 2,V;f1
}.
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The proof is given in Section A.3 of the Appendix.
Throughout the paper, our rank-based tests are described in terms of approxi-

mate critical values based on asymptotic chi-square null distributions. Of course,
exact critical values could also be considered. These exact values can easily be
simulated by sampling the n! possible values of the vector of ranks and by inde-
pendently generating uniformly distributed (over the unit sphere) signs.

4.3. Asymptotic relative efficiencies. Propositions 3.2 and 4.1 allow the com-
putation of ARE values for φ˜

(n)
K (hence, for φ˜

(n)
f1

) with respect to the adjusted John

test φ
(n)
N (therefore, also with respect to the adjusted Mauchly test) as ratios of the

noncentrality parameters in the asymptotic distributions of their respective test sta-
tistics under local alternatives, for various radial densities g1. These adjusted tests
are still not valid unless κk(g1) < ∞ and, therefore, our ARE values also require fi-
nite fourth-order moments. Recall, however, that the signed rank tests φ˜

(n)
K remain

valid without such a moment assumption so that, when g1 is such that κk(g1) = ∞,
the asymptotic relative efficiency of any φ˜

(n)
K with respect to φ

(n)
N can actually be

considered as being infinite.

PROPOSITION 4.2. Let K satisfy the assumptions of Proposition 4.1. Then
the asymptotic relative efficiency of φ˜ K with respect to the parametric Gaussian
test φN , under radial density g1 satisfying Assumptions (A1), (A2) and κk(g1) <

∞, is

AREk,g1(φ˜ K/φN ) = 1

(k + 2)2

Ek(g1)

D2
k (g1)

J2
k(K;g1)

E[K2(U)] .

For K of the form Kf1 , this yields

AREk,g1(φ˜ f1/φN ) = 1

(k + 2)2

Ek(g1)

D2
k (g1)

J2
k (f1, g1)

Jk(f1)
.

In order to investigate the numerical values of these AREs, we consider the
tests φf t

1,ν
based on tν -scores, that is, the scores associated with the Student ra-

dial densities introduced in Section 1.2. One can easily check that ψf t
1,ν

(r) =
(k + ν)ak,νr/(ν + ak,νr

2). Also, since ak,ν‖X1‖2/k, under P(n)

0,1,Ik;f t
1,ν

, is Fisher–

Snedecor with k and ν degrees of freedom, one can show that the test statistic
Q˜ f t

1,ν
takes the form

Q˜ f t
1,ν

= k2(k + ν)(k + ν + 2)

2n
(4.10)

×
n∑

i,j=1

T
(n)
i

ν + kT
(n)
i

T
(n)
j

ν + kT
(n)
j

(
(U′

iUj )
2 − 1

k

)
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[see (2.2)], where, denoting by Gk,ν the Fisher–Snedecor distribution function
with k and ν degrees of freedom, we let T

(n)
i := G−1

k,ν(Ri/(n + 1)). Note that the
sign test and the van der Waerden test are obtained by letting ν → 0 and ν → ∞,
respectively. An easy calculation also shows that for ν = 2, Q˜ tν and Q˜ Ka coincide
for a = 2/k, k = 2,3,4, . . . . Hence, for k = 2, the Wilcoxon test statistic Q˜ W is
optimal at Student densities with two degrees of freedom.

Numerical values of the AREs of several of the proposed rank-based tests with
respect to the Gaussian test, under various tν and normal densities, are given in
Table 2. For the sign test φ˜ S , closed-form expressions are

AREk,f t
1,ν

[φ˜ S/φN ] = k(ν − 2)

(k + 2)(ν − 4)
and AREk,φ1[φ˜ S/φN ] = k

k + 2

[recall that κk(f
t
1,ν) < ∞ iff ν > 4, which is the condition for a Student radial den-

sity to satisfy Ek(f
t
1,ν) < ∞]. Also, the highest ARE with respect to the Gaussian

test φN that can be achieved under tν is

AREk,f t
1,ν

[
φ˜ f t

1,ν
/φN
]= (k + ν)(ν − 2)

(k + ν + 2)(ν − 4)
.

The ARE values in Table 2 are all uniformly good, especially for the van der
Waerden test φ˜ vdW, for which they are not only uniformly larger than 1, but also
uniformly larger than the corresponding AREs for location—namely, the AREs
of van der Waerden rank tests with respect to the classical Hotelling ones when
testing that the center of symmetry θ of an elliptical distribution is equal to some
fixed θ0, as in [17]. This Pitman dominance of φ˜ vdW over φN also holds un-
der lighter-than-Gaussian radial tails, as can be checked by again considering the
power-exponential radial densities defined in Section 1.2; for instance, in the prob-
lem of testing for trivariate sphericity, the corresponding AREs are 1.166, 1.014,
1.000, 1.039, 1.108 and 1.183 for η = 0.5, 0.8, 1, 1.5, 2 and 2.5, respectively. Ac-
tually, it can be shown [43] that this is a general property and that φ˜ vdW, from the
Pitman point of view, uniformly dominates its Gaussian parametric competitors.

4.4. Unspecified location θ . In practice, the center of symmetry θ is seldom
specified and must be replaced, in test statistics, by an estimator θ̂ = θ̂

(n)
. Under

very mild conditions, any root-n consistent estimator will be adequate (in princi-
ple, after due discretization), but we recommend the (rotation-equivariant) spatial
median (see, e.g., Möttönen and Oja [37]), which is itself “sign-based.”

The asymptotic impact of this substitution on the validity of the signed rank
tests proposed in Section 4.2 could be studied directly (see, e.g., [45]), but is more
conveniently handled via Le Cam’s third lemma, which allows the derivation of the
asymptotic distribution under P(n)

θ ,σ 2,V;g1
of the test statistic Q˜

(n)
K =: Q˜

(n)
K;θ consid-

ered in Section 4.2, but computed at θ̂ instead of θ . This lemma applies in the para-
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TABLE 2
AREs of the t6-, van der Waerden-, sign- and Wilcoxon-score rank-based tests for shape and

(in parentheses) location, with respect to the corresponding parametric Gaussian tests, under
k-dimensional Student (1, 3, 4, 5, 8, 15 and 20 degrees of freedom) and

normal densities, for k = 2, 3, 4, 6 and 10

Degrees of freedom of the underlying t density

ν k 1 3 4 5 8 15 20 ∞
φ˜ t6 2 +∞ +∞ +∞ 2.331 1.248 1.045 1.013 0.957

(+∞) (2.067) (1.484) (1.294) (1.107) (1.009) (0.986) (0.927)
3 +∞ +∞ +∞ 2.398 1.267 1.052 1.018 0.957

(+∞) (2.174) (1.540) (1.331) (1.124) (1.014) (0.988) (0.919)
4 +∞ +∞ +∞ 2.453 1.284 1.058 1.023 0.958

(+∞) (2.258) (1.584) (1.361) (1.139) (1.019) (0.990) (0.913)
6 +∞ +∞ +∞ 2.537 1.311 1.070 1.031 0.959

(+∞) (2.382) (1.652) (1.408) (1.163) (1.028) (0.995) (0.905)
10 +∞ +∞ +∞ 2.646 1.349 1.087 1.044 0.963

(+∞) (2.534) (1.736) (1.468) (1.196) (1.043) (1.005) (0.896)

φ˜ vdW 2 +∞ +∞ +∞ 2.204 1.215 1.047 1.025 1.000
(+∞) (1.729) (1.301) (1.171) (1.060) (1.016) (1.009) (1.000)

3 +∞ +∞ +∞ 2.270 1.233 1.052 1.028 1.000
(+∞) (1.798) (1.336) (1.194) (1.069) (1.019) (1.011) (1.000)

4 +∞ +∞ +∞ 2.326 1.249 1.057 1.031 1.000
(+∞) (1.853) (1.364) (1.212) (1.077) (1.022) (1.012) (1.000)

6 +∞ +∞ +∞ 2.413 1.275 1.066 1.036 1.000
(+∞) (1.935) (1.408) (1.242) (1.092) (1.027) (1.016) (1.000)

10 +∞ +∞ +∞ 2.531 1.312 1.080 1.045 1.000
(+∞) (2.041) (1.467) (1.283) (1.112) (1.035) (1.021) (1.000)

φ˜ S 2 +∞ +∞ +∞ 1.500 0.750 0.591 0.563 0.500
(+∞) (2.000) (1.388) (1.185) (0.984) (0.877) (0.851) (0.785)

3 +∞ +∞ +∞ 1.800 0.900 0.709 0.675 0.600
(+∞) (2.162) (1.500) (1.281) (1.063) (0.947) (0.920) (0.849)

4 +∞ +∞ +∞ 2.000 (1.000 0.788 0.750 0.667
(+∞) (2.250) (1.561) (1.333) (1.107) (0.986) (0.958) (0.884)

6 +∞ +∞ +∞ 2.250 (1.125 0.886 0.844 0.750
(+∞) (2.344) (1.626) (1.389) (1.153) (1.027) (0.997) (0.920)

10 +∞ +∞ +∞ 2.500 1.250 0.985 0.938 0.833
(+∞) (2.422) (1.681) (1.436) (1.192) (1.062) (1.031) (0.951)

φ˜W 2 +∞ +∞ +∞ 2.258 1.174 0.956 0.919 0.844
(+∞) (1.748) (1.317) (1.185) (1.066) (1.015) (1.005) (0.985)

3 +∞ +∞ +∞ 2.386 1.246 1.022 0.985 0.913
(+∞) (1.621) (1.233) (1.117) (1.019) (0.983) (0.978) (0.975)

4 +∞ +∞ +∞ 2.432 1.273 1.048 1.012 0.945
(+∞) (1.533) (1.171) (1.064) (0.979) (0.954) (0.952) (0.961)

6 +∞ +∞ +∞ 2.451 1.283 1.060 1.026 0.969
(+∞) (1.422) (1.090) (0.994) (0.921) (0.908) (0.911) (0.938)

10 +∞ +∞ +∞ 2.426 1.264 1.045 1.013 0.970
(+∞) (1.315) (1.007) (0.919) (0.855) (0.851) (0.857) (0.907)
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metric location experiment E (n)
g := {P(n)

θ,σ 2,V;g1
|θ ∈ R

k}, provided that it is ULAN,
which essentially requires g1 to satisfy Assumption (A1) (see [17]).

The asymptotic distribution, as n → ∞, of Q˜
(n)

K;θ+n−1/2τ (n) under P(n)

θ ,σ 2,V;g1
for

any bounded sequence τ (n) is the same as under P(n)

θ+n−1/2τ (n),σ 2,V;g1
[viz., in view

of part (i) of Proposition 4.1, chi-square with k(k + 1)/2 − 1 degrees of freedom],
provided that the asymptotic joint distribution, under P(n)

θ,σ 2,V;g1
, of �

(n)
K;g1

(ϑ) [de-

fined in (4.2)] and the central sequence for location �
(n)
g1;1(ϑ) in E (n)

g [as defined
in (2.5)] is normal with block-diagonal asymptotic covariance. Now, this is au-
tomatically satisfied under the assumptions made on K : indeed, both �

�(n)
K;g1

(ϑ)

and �
(n)
g1;1(ϑ) are sums of i.i.d. vectors with finite variances and, in view of

the independence under P(n)

θ ,σ 2,V;g1
between d

(n)
i (θ,V) and U(n)

i (θ,V), have a

cross-covariance matrix proportional to E[vec(UiU′
i )U

′
i] = 0. Classical reason-

ing then extends this to random sequences of the form τ (n) = n1/2(θ̂ − θ), where
n1/2(θ̂ − θ) is OP(1) and θ̂ is locally discrete, that is, such that the number, un-
der P(n)

θ,σ 2,V;g1
, of its possible values in balls of the form {z ∈ R

k|‖z − θ‖2 ≤ b2}
remains bounded as n → ∞. It is well known that this latter assumption has no
practical consequences (see, e.g., [30]). The null distribution of Q˜

(n)

K;θ̂ is thus the

same, then, as that of Q˜
(n)
K;θ .

However, Le Cam’s third lemma only provides asymptotic equivalence in dis-
tribution results. Asymptotic equivalence in probability [i.e., a result of the form
Q˜

(n)

K;θ̂ − Q˜
(n)
K;θ = oP(1)] under P(n)

θ,σ 2,V;g1
requires more stringent asymptotic lin-

earity results, such as those in Proposition A.1 of [16], or more general methods,
such as the one recently developed by Andreou and Werker [2].

Note that Q˜
(n)

K;θ̂ is no longer strictly invariant or distribution-free, but remains
asymptotically so, in the sense of being asymptotically equivalent to its gen-
uinely invariant and distribution-free counterpart Q˜

(n)
K;θ . This asymptotic equiv-

alence carries over to contiguous alternatives so that local optimality properties
are also preserved. Incidentally, note that Q˜

(n)

K;θ̂ is translation-invariant whenever

θ̂ is translation-equivariant.

5. Validity and consistency properties.

5.1. Null hypothesis: sphericity or unit shape? Our rank tests are basically in-
tended for the null hypothesis of sphericity—not for the hypothesis of isotropy,
or for that of unit shape. Indeed the (asymptotic) size of φ˜ K does not, in gen-
eral, match the nominal α-level under nonelliptical densities, even for unit shape
matrices V = Ik .



EFFICIENT RANK-BASED INFERENCE FOR SHAPE I 2735

One important exception to this general rule is the multivariate sign test φ˜ S ,
based on the test statistic [with scores K(u) = 1] Q˜ S := Q˜ K0 given in (4.6). This
test in [13] is described as a test of sphericity. However, since the ranks are not
involved, φ˜ S remains valid under the hypothesis of isotropy and hence (since only
the centering and second-order structure of the matrices UiU′

i matter) under the
hypothesis of unit shape with isotropic fourth-order moments, that is, provided
that the moments of the signs Ui coincide with those of the uniform distribution
over the unit sphere in R

k up to order four, so that

E[UiU′
i] = 1

k
Ik

and

E[vec(UiU′
i)(vec(UiU′

i ))
′] = 1

k(k + 2)
[Ik2 + Kk + Jk].

The validity of this test can be extended to the whole hypothesis of unit shape
if estimated moments of order four are substituted for the isotropic ones, yielding
the adjusted sign test φ˜ ∗

S , based on the statistic

Q˜ ∗
S :=

(
n∑

i=1

vec(UiU′
i) − n

k
vec(Ik)

)′
(V⊗2)−1/2M′

k

×
[

Mk(V⊗2)−1/2

(5.1)

×
n∑

i=1

(
(vec(UiU′

i))(vec(UiU′
i ))

′ − n

k2 Jk

)
(V⊗2)−1/2M′

k

]−1

× Mk(V⊗2)−1/2

(
n∑

i=1

vec(UiU′
i ) − n

k
vec(Ik)

)
.

Unfortunately, the benefits of Lemma 3.1 are lost and the adjusted test statistic
Q˜ ∗

S does not retain the elegant and simple structure [cf. (1.4) and (1.5)] of John’s
test.

One is tempted to apply a similar idea to our rank-based tests φ˜ K . An estimate
of the covariance matrix of �˜ (n)

K (ϑ) that does not exploit the elliptical indepen-
dence between the ranks and the signs is indeed quite possible. But the expectation
of
∑n

i=1 K(Ri/(n + 1))vec(UiU′
i) [reducing to k−1∑n

i=1 K(i/(n + 1))vec(Ik)

under sphericity] is no longer distribution-free if the assumption of ellipticity is
abandoned, and replacing this expectation by an empirical centering would induce
a noncentrality parameter in the asymptotic null distribution of the test statistic
Q˜ K .
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From the point of view of (asymptotic) validity and with the exception of the
multivariate sign test [the adjusted version (5.1)] which is a test of unit shape, our
rank-based tests φ˜ K thus only qualify for the null hypothesis of sphericity.

5.2. Nonlocal alternatives: consistency issues. Validity under the null hypoth-
esis is not the only requirement for a test φ to qualify as a test of H0, say,
against H1, and consistency under H1 is certainly an equally important issue.
In this respect, the larger the overarching model H := H0 + H1 (with + stand-
ing for disjoint union), the better the test. Although optimality results have been
derived under an overall hypothesis H of ellipticity, the most “natural” H here
should consist of the collection of all i.i.d. sample distributions from nonvanishing
k-dimensional densities f .

However, the results of the previous sections are entirely local to the null hy-
pothesis of sphericity and do not allow for any conclusions under nonlocal alter-
natives. Proposition 5.1 below, on the other hand, provides a characterization of
consistency under nonlocal alternatives. Denote by K(n)(f ) the hypothesis under
which the observations Xi are i.i.d. with nonvanishing, possibly nonelliptic den-
sity f . Our rank tests φ˜

(n)
K are consistent under K(n)(f ) iff the quadratic test sta-

tistic Q˜
(n)
K is unbounded in probability, that is, iff for any fixed q P[Q˜

(n)
K > q] → 1

as n → ∞, under K(n)(f ) or, equivalently, iff for all t ≥ 0

P

[
n−1/2

∥∥∥∥∥
n∑

i=1

K

(
Ri

n + 1

)
vec
(

UiU′
i − 1

k
Ik

)∥∥∥∥∥> t

]
−→ 1(5.2)

as n → ∞, under K(n)(f ) [see (4.5)], which we unambiguously write as

n−1/2∑n
i=1 K((Ri/(n + 1)))vec(UiU′

i − 1
k
Ik)

P→ ∞ as n → ∞. We then have
the following necessary and/or sufficient consistency conditions:

PROPOSITION 5.1. Assume that the score function K : (0,1) → R can be ex-
pressed as the difference K1 − K2 of two monotone increasing, absolutely contin-
uous and square integrable functions. Then:

(i) φ˜
(n)
K is consistent iff, under K(n)(f ), as n → ∞,

n−1/2
n∑

i=1

E
[
K

(
R

(n)
i

n + 1

)∣∣∣U(n)

]
vec
(

UiU′
i − 1

k
Ik

)
P−→ ∞,(5.3)

where R
(n)
i = R

(n)
i (θ, Ik), Ui = Ui(θ, Ik) and U(n) := (U1, . . . ,Un).

(ii) If the square integrability condition on K1 and K2 in (i) is reinforced into

J (Ki) :=
∫ 1

0
u1/2(1 − u)1/2 dKi(u) < ∞, i = 1,2(5.4)
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(a classical condition that goes back to Hoeffding [22]), then φ˜
(n)
K is consistent iff,

under K(n)(f ), as n → ∞,

n−1/2
n∑

i=1

E

[
K

(
1

n

n∑
j=1

P[dj ≤ di |di,Ui ,Uj ]
)∣∣∣U(n)

]
(5.5)

× vec
(

UiU′
i − 1

k
Ik

)
P−→ ∞.

(iii) If the Hoeffding condition (5.4) is satisfied and, moreover, K is convex,
then a sufficient condition for φ˜

(n)
K to be consistent is that for some � either

K

(
E[I [d2 ≤ d1]vec(U1U′

1 − (1/k)Ik)
−
� ]

E[vec(U1U′
1 − (1/k)Ik)

−
� ]

)
(5.6)

− E[K(P[d2 ≤ d1|d1,U1,U2])vec(U1U′
1 − (1/k)Ik)

+
� ]

E[vec(U1U′
1 − (1/k)Ik)

−
� ] > 0

or

K

(
E[I [d2 ≤ d1]vec(U1U′

1 − (1/k)Ik)
+
� ]

E[vec(U1U′
1 − (1/k)Ik)

+
� ]

)
(5.7)

− E[K(P[d2 ≤ d1|d1,U1,U2])vec(U1U′
1 − (1/k)Ik)

−
� ]

E[vec(U1U′
1 − (1/k)Ik)

+
� ] > 0

under K(n)(f ), where vec(U1U′
1 − 1

k
Ik)

±
� stand for the positive and negative parts

of vec(U1U′
1 − 1

k
Ik)�, respectively.

(iv) The Wilcoxon test φ˜ W based on

Q˜ W := 3k(k + 2)

2n(n + 1)2

n∑
i=1

R
(n)
i R

(n)
j

(
(U′

iUj )
2 − 1

k

)

[see (4.6)] is consistent iff, under K(n)(f ),

E
[
I [d2 ≤ d1]vec

(
U1U′

1 − 1

k
Ik

)]
= 0.(5.8)

(v) The adjusted sign test φ˜ ∗
S based on (5.1) is consistent iff, under K(n)(f ),

E
[
vec
(

U1U′
1 − 1

k
Ik

)]
= 0.(5.9)
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The proof is given in Section A.4 of the Appendix.
Note that the Hoeffding condition in (ii) only slightly reinforces the square

integrability condition on K : Hoeffding [22] shows that (5.4) holds as soon as∫ 1
0 (K(u))2[log(1 + |K(u)|)]1+δ du is finite for some δ > 0, a condition that is sat-

isfied by all particular score functions considered in this paper.
These consistency results imply that our rank-based tests φ˜

(n)
K (excluding the

sign test), although unrestrictedly valid under the null hypothesis of sphericity, are
consistent under most nonspherical alternatives, which include nonspherical el-
liptic, nonelliptical unit shape and nonunit-shape cases. For Wilcoxon scores, for
instance, only the very particular densities f for which I [d2 ≤ d1] is orthogonal
to the k(k + 1)/2 variables U1,rU1,s − (δrs/k), r, s = 1, . . . , k (δrs standing for
the Kronecker symbol), result in an inconsistent φ˜

(n)
W . This either corresponds to

E[U1U′
1] = Ik/k and the joint distribution of d1,U1 and d2 compensating exactly

for the deviations of all U1,rU1,s ’s from δrs/k (r, s = 1, . . . , k), or to unit shape
densities under which I [d2 ≤ d1] and U1U′

1 are uncorrelated. To the best of our
knowledge, the only test retaining consistency under the whole nonspherical alter-
native is Baringhaus’ test [5]; but the price that must be paid is that the separation
rates are nonparametric, which entails that its ARE with respect to φ˜

(n)
K is zero at

elliptical alternatives.
The situation is slightly different with the adjusted sign test. As already men-

tioned, the natural null hypothesis for this test is that of unit shape and consistency
is achieved at all nonunit shape alternatives, since the score [K(u) = 1] cannot
here compensate for deviations from Ik/k of UiU′

i . On the other hand, the price
to be paid in terms of efficiency at elliptical alternatives can be quite high: the
AREs of sign tests with respect to their van der Waerden counterparts φ˜

(n)
vdW are

only 0.681, 0.500 and 0.279, respectively, at t5, Gaussian and e3 alternatives, in
dimension k = 2.

As the dimension k of the observation space goes to ∞, however, it can easily
be shown that, for fixed n, φ˜

(n)
vdW − φ˜

(n)
S = o(1) P (n)-a.s.; this justifies the em-

pirical finding that the AREs of the sign test with respect to the van der Waerden
test converge to 1, as k → ∞, irrespective of the underlying distribution. Most
interestingly, this convergence also implies that the van der Waerden test in some
sense inherits, as k → ∞, most of the nice validity/consistency properties of the
sign test, whereas the latter, on the other hand, inherits the attractive efficiency
properties of van der Waerden procedures.

6. Simulation results. The asymptotic relative efficiencies of the tests (of the
null hypothesis V = V0) described in Sections 3.3 and 4.2 do not depend on the
null value V0 of the shape matrix. Therefore, in this section we concentrate on
the particular case (V0 = Ik) of testing for sphericity. We generated N = 2,500
independent samples ε1, . . . ,ε500 of size n = 500 from various bivariate spherical
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densities (the bivariate normal and bivariate t-distributions with 0.2, 1 and 6 de-
grees of freedom, resp.), with center of symmetry θ = (0,0)′. From each of these
samples, we constructed four series of 500 spherical (for m = 0) or elliptical (for
m = 1,2,3) observations X1, . . . ,X500, characterized by

Xi = (Ik + mv)εi , m = 0,1,2,3,(6.1)

with
◦

vech v = (0, .14)′.
Although designed against elliptical alternatives, our tests also perform quite

well under a broad class of nonelliptical alternatives. In order to show this, we
considered the following skew populations. Population SN refers to samples of
n = 500 observations X1, . . . ,X500 characterized by

Xi = (signVm;i)Wm;i − E[(signVm;i)Wm;i], m = 0,1,2,3,(6.2)

where the i.i.d. vectors (Vm;i ,W′
m;i)′ are drawn from the trivariate standard normal

distribution with mean 0 and covariance matrix(
1 δ′

δ I2

)
, δ = (1 + m2v′v)−1/2mv,

with v = (0.15,0)′. The distribution of the resulting Xi’s is the so-called bivariate
skew normal distribution with parameters 0, I2 and mv (see, e.g., [3] or [4]). Pop-
ulation St2 is obtained in the same way, but with trivariate t2-distributed vectors
(Vm;i ,W′

m;i)′ with the same mean and covariance matrix as in the Gaussian case
above, but v = (0.25,0)′ (see [4]).

On each of these samples, we performed the following eleven tests for spheric-
ity (all at asymptotic level α = 5%): John’s test [based on (3.9)], the Gaussian
test φN [based on (3.7)], the sign, Wilcoxon and Spearman tests [based on Q˜K0 ,
Q˜K1 and Q˜K2 in (4.6), resp.], the van der Waerden test φ˜vdW [based on (4.9)],
and several tν -score tests φ˜f t

1,ν
(ν = 0.2,0.5,1,2 and 6) [based on (4.10)]. Rejec-

tion frequencies are reported in Table 3. The corresponding individual confidence
intervals (for N = 2,500 replications) at confidence level 0.95 have half-widths
0.0044, 0.0080 and 0.0100, for frequencies of the order of 0.05 (0.95), 0.20 (0.80)
and 0.50, respectively.

Inspection of Table 3 reveals that the Gaussian test φN collapses under the
heavy-tailed distributions t0.2 and t1 (which have infinite fourth-order moments)
and confirms the fact that John’s test is only valid under normal distributions. All
rank-based tests apparently satisfy the 5% probability level constraint. Power rank-
ings are essentially consistent with the corresponding ARE values, which we also
report in Table 3. In particular, the asymptotic optimality of φ˜f t

1,ν
under the Stu-

dent distribution with ν degrees of freedom is confirmed. The performances under
elliptical and nonelliptical alternatives of the various procedures seem to be quite
similar.

Finally, in order to investigate the performances of our tests in very small sam-
ples, we generated N = 2,500 independent samples of size n = 25 based on (6.1)
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TABLE 3
Rejection frequencies (out of N = 2,500 replications), under various null and nonnull distributions

[see (6.1) and (6.2) for details], of John’s test (φJohn), the Gaussian parametric test (φN ) and
the signed-rank van der Waerden (φ˜ vdW), tν -score (φ˜f1,ν

, ν = 0.2, 0.5, 1, 2, 6), sign(φ˜S),
Wilcoxon-type (φ˜W ) and Spearman-type (φ˜SP ) tests, respectively; the sample size

is 500 (“ND” means “not defined,” which occurs as soon as one of the two tests
involved is not valid under the distribution being considered; “?” indicates that

no theoretical ARE values are available under nonelliptical alternatives)

m

Test 0 1 2 3 ARE

φJohn N 0.0504 0.2380 0.6856 0.9492 1.000

φN 0.0492 0.2348 0.6824 0.9492 1.000
φ˜ vdW 0.0460 0.2208 0.6652 0.9432 1.000
φ˜ f1,6 0.0468 0.2260 0.6644 0.9404 0.957
φ˜ f1,2 = φ˜W 0.0544 0.2052 0.6036 0.9028 0.844
φ˜ f1,1 0.0544 0.1900 0.5532 0.8600 0.741
φ˜ f1,0.5 0.0560 0.1732 0.5000 0.8024 0.648
φ˜ f1,0.2 0.0560 0.1628 0.4536 0.7476 0.568
φ˜ S 0.0568 0.1484 0.4016 0.6908 0.500
φ˜ SP 0.0460 0.2180 0.6576 0.9356 0.934

φJohn t6 0.1928 0.3712 0.7016 0.9092 ND

φN 0.0480 0.1580 0.4528 0.7608 1.000
φ˜ vdW 0.0428 0.1816 0.5708 0.8800 1.531
φ˜ f1,6 0.0460 0.1956 0.5916 0.8956 1.600
φ˜ f1,2 = φ˜W 0.0520 0.1904 0.5832 0.8860 1.531
φ˜ f1,1 0.0500 0.1836 0.5444 0.8588 1.408
φ˜ f1,0.5 0.0464 0.1708 0.4980 0.8148 1.269
φ˜ f1,0.2 0.0468 0.1480 0.4432 0.7648 1.172
φ˜ S 0.0488 0.1284 0.3884 0.7064 1.000
φ˜ SP 0.0480 0.1980 0.5956 0.8888 1.579

φJohn t1 0.9868 0.9872 0.9848 0.9840 ND

φN 0.0060 0.0052 0.0064 0.0088 ND
φ˜ vdW 0.0432 0.1244 0.3620 0.6508 ND
φ˜ f1,6 0.0456 0.1492 0.4256 0.7376 ND
φ˜ f1,2 = φ˜W 0.0480 0.1636 0.4668 0.7936 ND
φ˜ f1,1 0.0468 0.1632 0.4724 0.8028 ND
φ˜ f1,0.5 0.0460 0.1636 0.4700 0.7964 ND
φ˜ f1,0.2 0.0428 0.1548 0.4404 0.7644 ND
φ˜ S 0.0452 0.1408 0.4020 0.7064 ND
φ˜ SP 0.0488 0.1444 0.4092 0.7240 ND

Continued
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TABLE 3 (Continued)

m

Test 0 1 2 3 ARE

φJohn t0.2 0.9468 0.9460 0.9460 0.9500 ND
φN 0.0196 0.0184 0.0252 0.0352 ND
φ˜ vdW 0.0412 0.0924 0.2468 0.4644 ND
φ˜ f1,6 0.0452 0.1144 0.2996 0.5572 ND
φ˜ f1,2 = φ˜W 0.0528 0.1284 0.3460 0.6220 ND
φ˜ f1,1 0.0544 0.1348 0.3760 0.6672 ND
φ˜ f1,0.5 0.0476 0.1356 0.3908 0.6996 ND
φ˜ f1,0.2 0.0500 0.1372 0.3940 0.7016 ND
φ˜ S 0.0468 0.1296 0.3724 0.6764 ND
φ˜ SP 0.0468 0.1056 0.2752 0.5100 ND

φJohn SN 0.0520 0.0624 0.2596 0.8000 ?
φN 0.0528 0.0664 0.2600 0.8000 ?
φ˜ vdW 0.0472 0.0608 0.2488 0.7828 ?
φ˜ f1,6 0.0508 0.0620 0.2456 0.7808 ?
φ˜ f1,2 = φ˜W 0.0492 0.0620 0.2304 0.7336 ?
φ˜ f1,1 0.0488 0.0608 0.2012 0.6784 ?
φ˜ f1,0.5 0.0476 0.0620 0.1796 0.6112 ?
φ˜ f1,0.2 0.0492 0.0568 0.1568 0.5540 ?
φ˜ S 0.0512 0.0544 0.1412 0.4972 ?
φ˜ SP 0.0528 0.0652 0.2504 0.7752 ?

φJohn St2 0.8640 0.8616 0.9044 0.9520 ?
φN 0.0196 0.0188 0.0640 0.1896 ?
φ˜ vdW 0.0536 0.0740 0.4144 0.8504 ?
φ˜ f1,6 0.0536 0.0724 0.4184 0.8276 ?
φ˜ f1,2 = φ˜W 0.0512 0.0744 0.3592 0.6964 ?
φ˜ f1,1 0.0472 0.0724 0.2964 0.5048 ?
φ˜ f1,0.5 0.0484 0.0720 0.2324 0.3280 ?
φ˜ f1,0.2 0.0464 0.0688 0.1744 0.2076 ?
φ˜ S 0.0468 0.0604 0.1524 0.1556 ?
φ˜ SP 0.0552 0.0756 0.4592 0.8820 ?

[but with
◦

vech v = (0,0.2)′]. Only Gaussian and t0.2 densities were considered.
The corresponding rejection frequencies are reported in Table 4. Similar conclu-
sions as in the first Monte Carlo study above hold in this small sample simulation.
However, note that for such a small sample size, the asymptotic approximation
seems to produce strictly conservative critical values for the van der Waerden- and
t6-score versions of our tests.
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TABLE 4
Rejection frequencies (still out of N = 2,500 replications) under spherical and elliptic Gaussian

and t0.2 distributions, of the same tests as in Table 3; the sample size is now 25

m

Test 0 1 2 3 ARE

φJohn N 0.0412 0.6032 0.9252 0.9860 1.000

φN 0.0424 0.5848 0.8924 0.9708 1.000
φ˜ vdW 0.0172 0.4136 0.8088 0.9408 1.000
φ˜ f1,6 0.0356 0.5280 0.8684 0.9628 0.957
φ˜ f1,2 = φ˜W 0.0416 0.5400 0.8612 0.9584 0.844
φ˜ f1,1 0.0468 0.5036 0.8316 0.9432 0.741
φ˜ f1,0.5 0.0496 0.4500 0.7924 0.9132 0.648
φ˜ f1,0.2 0.0484 0.4016 0.7328 0.8724 0.568
φ˜ S 0.0480 0.3580 0.6736 0.8216 0.500
φ˜ SP 0.0396 0.5600 0.8856 0.9696 0.934

φJohn t0.2 0.8652 0.9076 0.9360 0.9484 ND

φN 0.0004 0.0008 0.0016 0.0020 ND
φ˜ vdW 0.0148 0.1476 0.3608 0.5192 ND
φ˜ f1,6 0.0308 0.2492 0.5080 0.6844 ND
φ˜ f1,2 = φ˜W 0.0452 0.3288 0.6168 0.7968 ND
φ˜ f1,1 0.0496 0.3592 0.6784 0.8376 ND
φ˜ f1,0.5 0.0488 0.3824 0.7172 0.8584 ND
φ˜ f1,0.2 0.0508 0.3892 0.7272 0.8692 ND
φ˜ S 0.0480 0.3752 0.7044 0.8504 ND
φ˜ SP 0.0348 0.2320 0.4620 0.6352 ND

APPENDIX

A.1. Proof of Proposition 2.1. Our proof relies on Lemma 1 from
Swensen [49] (more precisely, on its extension by Garel and Hallin [12]). The
sufficient conditions for LAN given in Swensen’s result follow from standard
arguments once it is shown that (θ , σ 2,V) �→ f

1/2
θ ,σ 2,V;f1

(x) is differentiable in
quadratic mean, where f

θ ,σ 2,V;f1
is the density in (1.1), and we therefore focus

on this. The main step in establishing this quadratic mean differentiability is the
following [here and in the sequel, all o(‖ · ‖) and O(‖ · ‖) quantities are taken as
‖ ·‖ → 0]:

LEMMA A.1. Let Assumptions (A1) and (A2) hold. Define

g
θ ,�;f1

(x) := ck,f1 |�|−1/2f1(‖x − θ‖�), x ∈ R
k,

Dθg
1/2
θ ,�;f1

(x) := 1
2g1/2

θ,�;f1
(x)ϕf1(‖x − θ‖�)�−1/2u(θ,�)
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and

D�g1/2
θ ,�;f1

(x) := 1
4g1/2

θ ,�;f1
(x)Pk(�

⊗2)−1/2

× vec
(
ψf1(‖x − θ‖�)‖x − θ‖�u(θ ,�)u′(θ ,�) − Ik

)
,

where ‖z‖� := (z′�−1z)1/2, u(θ,�) := �−1/2(x − θ)/‖x − θ‖� and Pk is such
that P′

k(vech H) = vec H for any symmetric k × k matrix H = (Hij ). Then:

(i)
∫ {

g
1/2
θ+t,�;f1

(x) − g
1/2
θ ,�;f1

(x) − t′
(
Dθg

1/2
θ ,�;f1

(x)
)}2

dx = o(‖t‖2),

(ii)
∫ {

g
1/2
θ ,�+H;f1

(x) − g
1/2
θ ,�;f1

(x) − (vech H)′
(
D�g

1/2
θ ,�;f1

(x)
)}2

dx

= o(‖H‖2) and

(iii)
∫ {

g
1/2
θ+t,�+H;f1

(x) − g
1/2
θ,�;f1

(x) −
( t

vech H

)′(Dθg
1/2
θ ,�;f1

(x)

D�g
1/2
θ ,�;f1

(x)

)}2

dx

= o

(∥∥∥∥( t

vech H

)∥∥∥∥2)
.

To prove Lemma A.1, we need the following reformulation of Assumption (A2):

LEMMA A.2. Assumption (A2) holds iff (i) f
1/2
1;exp ∈ L2(R, νk) and (ii) there

exists Df
1/2
1;exp ∈ L2(R, νk) such that∫

[f 1/2
1;exp(x + h) − f

1/2
1;exp(x) − h(Df

1/2
1;exp)(x)]2ekx dx = o(h2)

as h → 0. In that case, Df
1/2
1;exp and (f

1/2
1;exp)

′ are equal in L2(R, νk).

The proof of this lemma relies on the following result by Schwartz (see [47],
pages 186–188):

LEMMA A.3 (Schwartz). The real function g is in W 1,2(R) (with weak
derivative g′, say) iff (i) g ∈ L2(R) and (ii) there exists Dg ∈ L2(R) such
that x �→ g(x + h) − g(x) − h(Dg(x)) is o(h) in L2(R) (as h → 0), that is,∫ [g(x + h) − g(x) − h(Dg(x))]2 dx = o(h2) as h → 0. In that case, Dg and g′
are equal in L2(R).

PROOF OF LEMMA A.2. Throughout this proof, we write f instead of f
1/2
1;exp,

and all o(h)’s are taken as h → 0.
(Necessity) It is easy to show that the real function x �→ g(x) := f (x)ekx/2

admits the weak derivative x �→ g′(x) = f ′(x)ekx/2+(k/2)g(x), where f ′ denotes
the weak derivative of f . In view of the assumptions on f , both g and g′ are
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in L2(R). Lemma A.3 therefore yields that x �→ Mh(x) := g(x + h) − g(x) −
hg′(x) is o(h) in L2(R). But Mh = Ih + Jh + Kh + Lh, where

Ih(x) := (f (x + h) − f (x) − hf ′(x)
)
ekx/2,

Jh(x) := f (x + h)ek(x+h)/2e−kh/2(ekh/2 − 1 − hk/2),

Kh(x) := (f (x + h)ek(x+h)/2 − f (x)ekx/2)hk/2

and

Lh(x) := f (x + h)ek(x+h)/2(e−kh/2 − 1)hk/2.

Since Jh, Kh and Lh are also o(h) in L2(R), so is Ih.
(Sufficiency) Assume now that f ∈ L2(R, νk) is such that x �→ Ih(x) :=

(f (x +h)−f (x)−hDf (x))ekx/2 is o(h) in L2(R) for some Df ∈ L2(R, νk) and
again define x �→ g(x) := f (x)ekx/2 [g ∈ L2(R)]. With Dg(x) := Df (x)ekx/2 +
(k/2)g(x) [Dg ∈ L2(R)], we have that

x �→ M̃h(x) := g(x + h) − g(x) − hDg(x)

= (f (x + h) − f (x) − hDf (x)
)
ekx/2 + Jh(x) + Kh(x) + Lh(x)

is o(h) in L2(R). Lemma A.3 thus yields that Dg is the weak derivative of g; this
implies that, for all infinitely differentiable compactly supported functions ϕ,∫

[ϕ(x)e−kx/2][Df (x)ekx/2 + (k/2)g(x)]dx

= −
∫

[ϕ′(x)e−kx/2 − (k/2)ϕ(x)e−kx/2][f (x)ekx/2]dx,

that is, that Df is the weak derivative of f . �

PROOF OF LEMMA A.1. (i) See [17].
(ii) Using the fact that (C

′ ⊗ A)vec B = vec(ABC) and letting y := �−1/2(x −
θ), the left-hand side of (ii) takes the form

ck,f1

∫ { 1

|Ik + H�|1/4 f
1/2
1

(‖y‖Ik+H�

)− f
1/2
1 (‖y‖) − 1

4
f

1/2
1 (‖y‖)

× (vec H�)′ vec
(
ψf1(‖y‖) yy′

‖y‖ − Ik

)}2

dy

≤ C(T1 + T2 + T3),

where H� := �−1/2H�−1/2, C is some positive constant,

T1 :=
∫ { 1

|Ik + H�|1/4 − 1 + 1

4
(vec H�)′(vec Ik)

}2

f1
(‖y‖Ik+H�

)
dy,

T2 :=
∫

1
16 [(vec H�)′(vec Ik)]2{f 1/2

1

(‖y‖Ik+H�

)− f
1/2
1 (‖y‖)}2 dy
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and

T3 :=
∫ {

f
1/2
1

(‖y‖Ik+H�

)− f
1/2
1 (‖y‖)

− 1

4
f

1/2
1 (‖y‖)(vec H�)′ vec

(
ψf1(‖y‖) yy′

‖y‖
)}2

dy.

Since (vec A)′(vec B) = tr(A′B) and |A + B|a = |A|a + a|A|a tr(A−1B) + o(‖B‖)
for all a (see, e.g., [31], page 149),

T1 = |Ik + H�|1/2

ck,f1

{
|Ik + H�|−1/4 − 1 + 1

4
(tr H�)

}2

= o(‖H‖2).

Now, working in spherical coordinates (r,u) := (‖y‖,y/‖y‖), we obtain

T3 = C

∫ ∫ {
f

1/2
1

(
r‖u‖Ik+H�

)− f
1/2
1 (r)

− 1
4f

1/2
1 (r)ψf1(r)r[u′H�u]}2rk−1 dr dσ(u)

= C

∫ ∫ {
f

1/2
1;exp

(
(ln r) + (ln‖u‖Ik+H�

))− f
1/2
1;exp(ln r)

+ (f
1/2
1;exp)

′(ln r)
[1

2u′H�u
]}2

rk−1 dr dσ(u)

= C

∫ ∫ {
f

1/2
1;exp

(
s + (ln‖u‖Ik+H�

))
− f

1/2
1;exp(s) + (f

1/2
1;exp)

′(s)
[1

2u′H�u
]}2

eks ds dσ(u)

≤ C(T3a + T3b),

where

T3a :=
∫ ∫ {

f
1/2
1;exp

(
s + (ln‖u‖Ik+H�

))
− f

1/2
1;exp(s) − (f

1/2
1;exp)

′(s)
[
ln‖u‖Ik+H�

]}2
eks ds dσ(u)

and

T3b :=
∫ ∫ {[

ln‖u‖Ik+H�

]+ [12u′H�u
]}2[(f 1/2

1;exp)
′(s)]2eks ds dσ(u).

By using Lemma A.2 and the fact that ln‖u‖Ik+H� = O(‖H‖) for all u, we
obtain that∫ {

f
1/2
1;exp

(
s + (ln‖u‖Ik+H�

))− f
1/2
1;exp(s) − (f

1/2
1;exp)

′(s)
[
ln‖u‖Ik+H�

]}2
eks ds

= o(‖H‖2)
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for all u. Therefore, from Lebesgue’s dominated convergence theorem, it follows
that T3a = o(‖H‖2). As for T3b, we have that

T3b ≤ sup
u∈Sk−1

{[
ln‖u‖Ik+H�

]+ [12u′H�u
]}2 = o(‖H‖2)

since [ln‖u‖Ik+H� ]+[1
2u′H�u] = o(‖H‖), uniformly for u ∈ Sk−1 (see, e.g., [31],

page 151). Consequently, T3 = o(‖H‖2), so that T3 = o(1) as ‖H‖ goes to zero,
and hence

T2 ≤ C‖H�‖2
∫ {

f
1/2
1

(‖y‖Ik+H�

)− f
1/2
1 (‖y‖)}2 dy

≤ C‖H�‖2
∫ {1

4
f

1/2
1 (‖y‖)(vec H�)′ vec

(
ψf1(‖y‖) yy′

‖y‖
)}2

dy + o(‖H‖2),

which shows that T2 = o(‖H‖2). This proves (ii).
(iii) The left-hand side in (iii) is bounded by C(S1 + S2 + ‖vech H‖2S3), where

S1 :=
∫ {

g
1/2
θ+t,�;f1

(x) − g
1/2
θ ,�;f1

(x) − t′
(
Dθg

1/2
θ,�;f1

(x)
)}2

dx,

S2 :=
∫ {

g
1/2
θ ,�+H;f1

(x) − g
1/2
θ,�;f1

(x) − (vech H)′
(
D�g

1/2
θ,�;f1

(x)
)}2

dx

and
S3 :=

∫
‖D�g

1/2
θ+t,�;f1

(x) − D�g
1/2
θ ,�;f1

(x)‖2 dx

=
∫

‖D�g
1/2
θ,�;f1

(x − t) − D�g
1/2
θ,�;f1

(x)‖2 dx.

Now, from (i) and (ii), respectively, S1 and S2 are o(‖(t′...(vech H)′)′‖2). As for S3,
the quadratic mean continuity of x → D�g

1/2
θ ,�;f1

(x) ∈ L2(Rk) implies that it is
o(1) as t → 0. The result follows. �

LEMMA A.4. Let x �→ Gη(x) be differentiable in quadratic mean at η0, with
gradient x �→ DGη0(x), say. Let h be a diffeomorphism in a neighborhood of
ξ0 := h−1(η0). Then x �→ Gh(ξ)(x) is differentiable in quadratic mean at ξ0, with
gradient x �→ (Dhξ0

)′(DGh(ξ0)
(x)), where Dhξ0

:= ( ∂hi

∂ξ j
(ξ0)) denotes the Jaco-

bian matrix of h at ξ0.

PROOF OF LEMMA A.4. This is straightforward. �
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Applied to Lemma A.1(iii), the last result implies that x �→ f
1/2
ϑ;f1

(x) =
f

1/2
θ ,σ 2,V;f1

(x) = g
1/2
θ ,σ 2V;f1

(x) is differentiable in quadratic mean, with gradient

Df 1/2
ϑ;f1

(x) =


Dθg

1/2
θ ,σ 2V;f1

(x)(
1 (

◦
vech V)′

0 σ 2I

)
D�g

1/2
θ,σ 2V;f1

(x)

= 1

2
f 1/2

ϑ;f1
(x)Wϑ;f1(x),

where

Wϑ;f1(x) :=



1

σ
ϕf1

(‖x − θ‖V

σ

)
V−1/2u(θ,V)

1

2

(
σ−2(vec Ik)

′

Mk(V⊗2)−1/2

)
× vec

(
ψf1

(‖x − θ‖V

σ

)‖x − θ‖V

σ
u(θ,V)u′(θ ,V) − Ik

)


.

Checking Swensen’s sufficient conditions for LAN is then a routine task.
For example, letting ν

(n)
i := (f

1/2
ϑ+n−1/2τ (n);f1

(Xi )/f
1/2
ϑ;f1

(Xi)) − 1 and Z
(n)
i :=

(1/2)(τ (n))′n−1/2Wϑ;f1(Xi ), i = 1, . . . , n, we have

E

[
n∑

i=1

(
ν

(n)
i − Z

(n)
i

)2]

= n

∫ {
f

1/2
ϑ+n−1/2τ (n);f1

(x)

− f 1/2
ϑ;f1

(x) − (1/2)
(
τ (n))′n−1/2f 1/2

ϑ;f1
(x)Wϑ;f1(x)

}2
dx

= n

∫ {
f

1/2
ϑ+n−1/2τ (n);f1

(x) − f 1/2
ϑ;f1

(x) − (n−1/2τ (n))′(Df 1/2
ϑ;f1

(x)
)}2

dx,

which is o(1) as n → ∞. The other conditions easily follow. Now, the lin-
ear term in the second-order decomposition of the local log-likelihood ratio
is 2
∑n

i=1 Z
(n)
i = (τ (n))′�(n)

f1
(ϑ), where �

(n)
f1

(ϑ) is the central sequence given
in (2.5).

A.2. Proofs of Lemma 3.1 and Proposition 3.1.

PROOF OF LEMMA 3.1. Denote by Qk(V) the matrix on the right-hand side
of (3.3). Tedious but routine algebra yields

NkQk(V)N′
k = 1

k(k + 2)
ϒk(V)

(where Nk is defined in Section 1.4). In order to prove the lemma, it is therefore
sufficient to show that M′

kNkQk(V) = Qk(V). Now, it is easily seen that

Qk(V) = [Ik2 − (vec V)(ek2,1)
′][Ik2 + Kk](V⊗2)[Ik2 − (vec V)(ek2,1)

′]′.
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But, letting Eij := eie′
j + ej e′

i [where (e1, . . . , ek) stands for the canonical basis

of R
k], we have

[Ik2 − (vec V)(ek2,1)
′][Ik2 + Kk]

= Ik2 + Kk − 2(vec V)(ek2,1)
′

= 1
2

k∑
i,j=1

(i,j) =(1,1)

(vec Eij )(vec Eij )
′ + 2
(
vec(e1e′

1 − V)
)
(ek2,1)

′.

The result follows, since M′
kNk(vec W) = (vec W) for any symmetric k ×k matrix

W = (Wij ) such that W11 = 0 [recall that it is assumed that V = (Vij ) is symmetric
with V11 = 1]. �

PROOF OF PROPOSITION 3.1. Under P(n)
ϑ0;f1

, for any fixed ϑ ′
0 := (θ ′, σ 2,

(
◦

vech V0)
′), we have

Q
(n)
f1

= (��(n)
f1

(ϑ0)
)′(

��
f1

(ϑ0)
)−1

�
�(n)
f1

(ϑ0) + oP(1)

as n → ∞. The proof of the first statement in part (i) of Proposition 3.1 follows,
since �

�(n)
f1

(ϑ0) is asymptotically Nk(k+1)/2−1(0,��
f1

(ϑ0)) under P(n)
ϑ0;f1

. On the

other hand, it is easy to see, still under P(n)
ϑ0;f1

, that �
�(n)
f1

(ϑ0) and the local log-

likelihood ratio �
(n)

ϑ0+n−1/2τ/ϑ0;f1
, where τ ′ := (t′, s, ( ◦

vech v)′), are jointly multi-

normal, with asymptotic covariance (��
f1

(ϑ0))(
◦

vech v). Le Cam’s third lemma

thus implies that �
�(n)
f1

(ϑ0) is asymptotically

Nk(k+1)/2−1
((

��
f1

(ϑ0)
)
(

◦
vech v),��

f1
(ϑ0)
)

under P(n)

ϑ0+n−1/2τ ;f1
, which establishes the second statement in part (i) of the

proposition.
As for part (ii), the fact that φ

(n)
f1

has asymptotic level α follows directly from the
asymptotic null distribution given in part (i) and the classical Helly–Bray theorem,
while local asymptotic maximinity is a consequence of the weak convergence to
Gaussian shifts of local shape experiments (see, e.g., Section 11.9 of [29]). �

A.3. Proofs of Propositions 3.2 and 4.1 and Lemma 4.1.

PROOF OF PROPOSITION 3.2. Under P(n)
ϑ0;φ1

, for any fixed ϑ ′
0 := (θ ′, σ 2,

(
◦

vech V0)
′), we have

Q
(n)
N = (��(n)

φ1
(ϑ0)
)′(

a2
kEk(g1)ϒ

−1
k (V0)

)−1
�

�(n)
φ1

(ϑ0) + oP(1)
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as n → ∞, where ϒ−1
k (V0) was defined in (3.2). The result then follows—as in

Proposition 3.1—by proving that, under P(n)

ϑ0+n−1/2τ ;g1
[with τ ′ := (t′, s, ( ◦

vech v)′)],
we have

�
�(n)
φ1

(ϑ0)

L−→ N
(
akE
[
ψg1(G̃

−1
1 (u))(G̃−1

1 (u))3]ϒ−1
k (V0)(

◦
vech v), a2

kEk(g1)ϒ
−1
k (V0)

)
[also note that integration by parts yields E[ψg1(G̃

−1
1 (u))(G̃−1

1 (u))3] = (k +
2)Dk(g1)]. As for the optimality statement in part (ii) of the proposition, it is ob-
tained as in the proof of Proposition 3.1 and by noting that a2

kEk(φ1)ϒ
−1
k (V0) =

��
φ1

(ϑ0). �

PROOF OF LEMMA 4.1. Let

T˜ (n)
ϑ;K := n−1/2J

⊥
k

n∑
i=1

K

(
Ri

n + 1

)
vec(UiU′

i)

and

T(n)
ϑ;K;g1

:= n−1/2J
⊥
k

n∑
i=1

K

(
G̃1k

(
di

σ

))
vec(UiU′

i).

Clearly, it is sufficient to prove that T˜ (n)
ϑ;K −T(n)

ϑ;K;g1
goes to zero in quadratic mean

under P(n)
ϑ;g1

as n → ∞. For all � = 1,2, . . . , k2, we have

E
[(

T˜ (n)
ϑ;K − T(n)

ϑ;K;g1

)2
�

]= C�,kn
−1

n∑
i=1

E
[(

K

(
Ri

n + 1

)
− K

(
G̃1k

(
di

σ

)))2]
,

where, denoting by Ui,j the j th component of Ui , C�,k = Var[U2
1,1] = 2(k −

1)/(k2(k + 2)) for � ∈ Lk := {mk + m + 1,m = 0,1, . . . , k − 1} and C�,k =
Var[U1,1U1,2] = 1/k2 for � /∈ Lk . Hájek’s classical projection result for linear
signed rank statistics ([15]; see also [44], Chapter 3) thus yields the desired re-
sult. �

PROOF OF PROPOSITION 4.1. From Lemma 4.1, we easily obtain [for any
fixed value ϑ ′

0 := (θ ′, σ 2, (
◦

vech V0)
′) of the parameter]

Q˜
(n)
K = (��(n)

K;g1
(ϑ0)
)′(E[K2(U)]ϒ−1

k (V0)
)−1

�
�(n)
K;g1

(ϑ0) + oP(1)

as n → ∞, under
⋃

σ 2
⋃

g1
{P(n)

θ,σ 2,V0;g1
}. Part (i) of Proposition 4.1 follows, since

�
�(n)
K;g1

(ϑ0)
L−→ N

(
Jk(K;g1)ϒ

−1
k (V0)(

◦
vech v),E[K2(U)]ϒ−1

k (V0)
)
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as n → ∞, under
⋃

σ 2
⋃

g1
{P(n)

θ ,σ 2,V0;g1
}, with τ ′ := (t′, s, ( ◦

vech v)′). Again,
part (ii) follows—as in the proof of Proposition 3.1—by noting that the asymptotic
variance of �

�(n)
Kf1 ;f1

(ϑ0) = �
�(n)
f1

(ϑ0) under
⋃

σ 2{P(n)

θ,σ 2,V0;f1
} is Jk(f1)ϒ

−1
k (V) =

��
f1

(ϑ0). �

A.4. Proof of Proposition 5.1. (i) Letting

T˜ (n)
K := n−1/2

n∑
i=1

K

(
Ri

n + 1

)
vec
(

UiU′
i − 1

k
Ik

)
,

the necessary and sufficient consistency condition (5.2) holds iff E[P[‖T˜ (n)
K ‖ >

t |U(n)]] → 1 under K(f ) as n → ∞, for any t ∈ R. Since P[‖T˜ (n)
K ‖ > t |U(n)] is

a strictly bounded random variable, this is equivalent to

P
[∥∥T˜ (n)

K

∥∥> t |U(n)]= 1 + oP(1), under K(f ) as n → ∞.(A.1)

Now, conditional on U(n), each component T˜ (n)
K,� of T˜ (n)

K is a linear rank sta-
tistic with approximate scores K( i

n+1). Under the assumptions made, the Hájek
variance inequality (Theorem 3.1 in [14]) applies (conditional on U(n)), yield-
ing for all � [with appropriate r and s, m

(n)
K := 1

n

∑n
i=1 K( i

n+1) and σ 2
K :=∫ 1

0 K2(u) du − (
∫ 1

0 K(u)du)2],

Var
(
T˜ (n)

K,�|U(n)) ≤ 21 max
1≤i≤n

(
Ui,rUi,s − 1

k
δrs

)2 1

n

n∑
i=1

(
K

(
i

n + 1

)
− m

(n)
K

)2

(A.2)
< 21σ 2

K,

since max1≤i≤n |Ui,rUi,s − 1
k
δrs | < 1 and

n−1
n∑

i=1

(
K

(
i

n + 1

)
− m

(n)
K

)2

= n−1
n∑

i=1

K2
(

i

n + 1

)
− (m(n)

K

)2 → σ 2
K < ∞.

The bound (A.2) on the conditional variance being uniform, it follows that T˜ (n)
K =

µ˜
(n)
T (U(n)) + OP(1), with

µ˜
(n)
T
(
U(n)) := E

[
T˜ (n)

K |U(n)]
= n−1/2

n∑
i=1

E
[
K

(
R

(n)
i

n + 1

)∣∣∣U(n)

]
vec
(

UiU′
i − 1

k
Ik

)
.
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Consequently, the necessary and sufficient condition (A.1) takes the form

µ˜
(n)
T (U(n))

P→ ∞ [under K(f ), as n → ∞], which concludes the proof of (i).

(ii) Returning to µ˜
(n)
T (U(n)) and denoting by Fdi |Ui the distribution function

under K(n)(f ) of di = di(θ, Ik) conditional on Ui = Ui(θ, Ik), we have

µ˜
(n)
T
(
U(n)) = n−1/2

n∑
i=1

E
[
K

(
Ri

n + 1

)∣∣∣U(n)

]
vec
(

UiU′
i − 1

k
Ik

)

= n−1/2
n∑

i=1

(
E
[
K

(
Ri

n + 1

)∣∣∣U(n)

]

−
∫ ∞

0
K

(
n−1

n∑
j=1

Fdj |Uj (r)

)
dFdi |Ui (r)

)

× vec
(

UiU′
i − 1

k
Ik

)

+ n−1/2
n∑

i=1

∫ ∞
0

K

(
n−1

n∑
j=1

Fdj |Uj (r)

)
dFdi |Ui (r)

× vec
(

UiU′
i − 1

k
Ik

)
=: E(n)

1 + E(n)
2 , say.

Clearly,

E(n)
2 = n−1/2

n∑
i=1

E

[
K

(
1

n

n∑
j=1

P[dj ≤ di |di,Ui ,Uj ]
)∣∣∣U(n)

]
vec
(

UiU′
i − 1

k
Ik

)
.

As for E(n)
1 , Proposition 2 in [22] implies that for each component E(n)

1;� of E(n)
1 and

appropriate r and s,

∣∣E(n)
1;�
∣∣≤ n−1/2

n∑
i=1

∣∣∣∣∣E
[
K

(
Ri

n + 1

)∣∣∣U(n)

]

−
∫ ∞

0
K

(
n−1

n∑
j=1

Fdj |Uj (r)

)
dFdi |Ui (r)

∣∣∣∣∣
∣∣∣∣Ui,rUi,s − 1

k
δrs

∣∣∣∣
≤ n−1/2

n∑
i=1

∣∣∣∣∣E
[
K

(
Ri

n + 1

)∣∣∣U(n)

]
−
∫ ∞

0
K

(
n−1

n∑
j=1

Fdj |Uj (r)

)
dFdi |Ui (r)

∣∣∣∣∣
≤ n−1/2E[Cn1/2J (K)] = CJ(K),
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with J (K) < ∞ defined in (5.4) and C ≤ 8 (cf. page 359 of [44]). Hence,

µ˜
(n)
T (U(n)) = E(n)

2 + OP(1) and µ˜
(n)
T (U(n))

P→ ∞ iff E(n)
2

P→ ∞; (5.5) follows.
(iii) For each �, convexity of K implies

E

[
K

(
1

n

n∑
j=1

P[dj ≤ di |di,Ui ,Uj ]
)∣∣∣U(n)

]

≤ 1

n

n∑
j=1

E
[
K(P[dj ≤ di |di,Ui ,Uj ])Ui ,Uj

]
.

Similarly, Jensen’s inequality implies that

n−1/2
n∑

i=1

E

[
K

(
1

n

n∑
j=1

P[dj ≤ di |di,Ui ,Uj ]
)∣∣∣U(n)

]
vec
(

UiU′
i − 1

k
Ik

)−

�

≥ 1

n

n∑
m=1

vec
(

UmU′
m − 1

k
Ik

)−

�

× n1/2K

((
1

n

n∑
m=1

vec
(

UmU′
m − 1

k
Ik

)−

�

)−1

× 1

n2

n∑
i=1

n∑
j=1

E
[
P[dj ≤ di |di,Ui ,Uj ]|Ui ,Uj

]

× vec
(

UiU′
i − 1

k
Ik

)−

�

)
.

It follows that E(n)
2;� is bounded from above by

n1/2

{
1

n(n − 1)

∑
1≤i =

∑
j≤n

E
[
K(P[dj ≤ di |di,Ui ,Uj ])|Ui ,Uj

]
vec
(

UiU′
i − 1

k
Ik

)+

�

− E
[
vec
(

U1U′
1 − 1

k
Ik

)−

�

]

× K

((
E
[
vec
(

U1U′
1 − 1

k
Ik

)−

�

])−1

× 1

n(n − 1)

∑
1≤i =

∑
j≤n

E
[
I [dj ≤ di]|Ui ,Uj

]
vec
(

UiU′
i − 1

k
Ik

)−

�

)}

+ oP(1),
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where

1

n(n − 1)

∑
1≤i =

∑
j≤n

E
[
K(P[dj ≤ di |di,Ui ,Uj ])|Ui ,Uj

]
vec
(

UiU′
i − 1

k
Ik

)+

�

and

1

n(n − 1)

∑
1≤i =

∑
j≤n

E
[
I [dj ≤ di]|Ui ,Uj

]
vec
(

UiU′
i − 1

k
Ik

)−

�

are U -statistics with finite-variance kernels

(u,v) �→ E
[
K(P[d2 ≤ d1|d1,U1 = u,U2 = v])|U1 = u,U2 = v

]
× vec

(
uu′ − 1

k
Ik

)+

�

and

(u,v) �→ E
[
I [d2 ≤ d1]|U1 = u,U2 = v

]
vec
(

uu′ − 1

k
Ik

)−

�

,

respectively. The continuous mapping theorem and standard asymptotic normality
results for U-statistics (see, e.g., [21]) imply that

E(n)
2;� ≤ n1/2E

[
vec
(

U1U′
1 − 1

k
Ik

)−

�

]

×
{

E[K(P[d2 ≤ d1|d1,U1,U2])vec(U1U′
1 − (1/k)Ik)

+
� ]

E[vec(U1U′
1 − (1/k)Ik)

−
� ](A.3)

− K

(
E[I [d2 ≤ d1]vec(U1U′

1 − (1/k)Ik)
−
� ]

E[vec(U1U′
1 − (1/k)Ik)

−
� ]

)}
+ OP(1).

A sufficient condition for (5.5) to hold is thus that the quantity in braces in this
upper bound be strictly negative, yielding part (5.6) of the claim. Similar arguments
imply that

E(n)
2;� ≥ n1/2E

[
vec
(

U1U′
1 − 1

k
Ik

)+

�

]

×
{
K

(
E[I [d2 ≤ d1]vec(U1U′

1 − (1/k)Ik)
+
� ]

E[vec(U1U′
1 − (1/k)Ik)

+
� ]

)
(A.4)

− E[K(P[d2 ≤ d1|d1,U1,U2])vec(U1U′
1 − (1/k)Ik)

−
� ]

E[vec(U1U′
1 − (1/k)Ik)

+
� ]

}
+ OP(1),

yielding part (5.7) of the claim.
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(iv) For Wilcoxon scores, the upper bound (A.3) and the lower bound (A.4) both
reduce to

n1/2
{

E
[
I [d2 ≤ d1]vec

(
U1U′

1 − 1

k
Ik

)+

�

]

− E
[
I [d2 ≤ d1]vec

(
U1U′

1 − 1

k
Ik

)+

�

]}
+ OP(1)

= n1/2E
[
I [d2 ≤ d1]vec

(
U1U′

1 − 1

k
Ik

)
�

]
+ OP(1).

Part (iv) of the proposition follows.
(v) For the sign test, that is, when the score function K reduces to a constant,

the necessary and sufficient condition (5.3) takes the form

n−1/2
n∑

i=1

vec
(

UiU′
i − 1

k
Ik

)
P−→ ∞ under K(n)(f ) as n → ∞.(A.5)

The central limit theorem implies that this happens iff the summands in (A.5) are
incorrectly centered, that is, whenever (5.9) holds. This completes the proof of
Proposition 5.1. �
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ance matrices. Sankhyā Ser. A 64 653–677. MR1985405

[34] MARDIA, K. V. (1972). Statistics of Directional Data. Academic Press, London. MR0336854
[35] MARDIA, K. V. and JUPP, P. E. (2000). Directional Statistics. Wiley, Chichester. MR1828667

http://www.ams.org/mathscinet-getitem?mr=0100322
http://www.ams.org/mathscinet-getitem?mr=1889781
http://www.ams.org/mathscinet-getitem?mr=1364260
http://www.ams.org/mathscinet-getitem?mr=1932047
http://www.ams.org/mathscinet-getitem?mr=0222988
http://www.ams.org/mathscinet-getitem?mr=1926170
http://www.ams.org/mathscinet-getitem?mr=2205969
http://www.ams.org/mathscinet-getitem?mr=1963675
http://www.ams.org/mathscinet-getitem?mr=0026294
http://www.ams.org/mathscinet-getitem?mr=0362689
http://www.ams.org/mathscinet-getitem?mr=0275568
http://www.ams.org/mathscinet-getitem?mr=0312619
http://www.ams.org/mathscinet-getitem?mr=0000371
http://www.ams.org/mathscinet-getitem?mr=0428590
http://www.ams.org/mathscinet-getitem?mr=1857342
http://www.ams.org/mathscinet-getitem?mr=0856411
http://www.ams.org/mathscinet-getitem?mr=1784901
http://www.ams.org/mathscinet-getitem?mr=1698873
http://www.ams.org/mathscinet-getitem?mr=1719102
http://www.ams.org/mathscinet-getitem?mr=1985405
http://www.ams.org/mathscinet-getitem?mr=0336854
http://www.ams.org/mathscinet-getitem?mr=1828667


2756 M. HALLIN AND D. PAINDAVEINE

[36] MAUCHLY, J. W. (1940). Significance test for sphericity of a normal n-variate distribution.
Ann. Math. Statist. 11 204–209. MR0002084

[37] MÖTTÖNEN, J. and OJA, H. (1995). Multivariate spatial sign and rank methods. J. Nonpara-
metr. Statist. 5 201–213. MR1346895

[38] MUIRHEAD, R. J. and WATERNAUX, C. M. (1980). Asymptotic distributions in canonical
correlation analysis and other multivariate procedures for nonnormal populations. Bio-
metrika 67 31–43. MR0570502

[39] OJA, H. (1999). Affine invariant multivariate sign and rank tests and corresponding estimates:
A review. Scand. J. Statist. 26 319–343. MR1712063

[40] OLLILA, E., CROUX, C. and OJA, H. (2004). Influence function and asymptotic efficiency of
the affine equivariant rank covariance matrix. Statist. Sinica 14 297–316. MR2036774

[41] OLLILA, E., HETTMANSPERGER, T. P. and OJA, H. (2005). Affine equivariant multivariate
sign methods. Preprint, Univ. Jyväskylä.

[42] OLLILA, E., OJA, H. and CROUX, C. (2003). The affine equivariant sign covariance matrix:
Asymptotic behavior and efficiencies. J. Multivariate Anal. 87 328–355. MR2016942

[43] PAINDAVEINE, D. (2006). A Chernoff–Savage result for shape. On the nonadmissibility of
pseudo-Gaussian methods. J. Multivariate Anal. 97 2206–2220.

[44] PURI, M. L. and SEN, P. K. (1985). Nonparametric Methods in General Linear Models. Wiley,
New York. MR0794309

[45] RANDLES, R. H. (1982). On the asymptotic normality of statistics with estimated parameters.
Ann. Statist. 10 462–474. MR0653521

[46] RANDLES, R. H. (1989). A distribution-free multivariate sign test based on interdirections.
J. Amer. Statist. Assoc. 84 1045–1050. MR1134492

[47] SCHWARTZ, L. (1973). Théorie des Distributions. Hermann, Paris.
[48] SUGIURA, N. (1972). Locally best invariant test for sphericity and the limiting distributions.

Ann. Math. Statist. 43 1312–1316. MR0311032
[49] SWENSEN, A. R. (1985). The asymptotic distribution of the likelihood ratio for autoregressive

time series with a regression trend. J. Multivariate Anal. 16 54–70. MR0778489
[50] TYLER, D. E. (1982). Radial estimates and the test for sphericity. Biometrika 69 429–436.

MR0671982
[51] TYLER, D. E. (1983). Robustness and efficiency properties of scatter matrices. Biometrika 70

411–420. MR0712028
[52] TYLER, D. E. (1987). A distribution-free M-estimator of multivariate scatter. Ann. Statist. 15

234–251. MR0885734
[53] TYLER, D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the

sphere. Biometrika 74 579–589. MR0909362

DÉPARTEMENT DE MATHÉMATIQUE

INSTITUTE FOR RESEARCH IN STATISTICS AND E.C.A.R.E.S.
UNIVERSITÉ LIBRE DE BRUXELLES

CAMPUS DE LA PLAINE CP 210
B-1050 BRUXELLES

BELGIUM

E-MAIL: mhallin@ulb.ac.be
dpaindav@ulb.ac.be

URL: http://homepages.ulb.ac.be/~dpaindav

http://www.ams.org/mathscinet-getitem?mr=0002084
http://www.ams.org/mathscinet-getitem?mr=1346895
http://www.ams.org/mathscinet-getitem?mr=0570502
http://www.ams.org/mathscinet-getitem?mr=1712063
http://www.ams.org/mathscinet-getitem?mr=2036774
http://www.ams.org/mathscinet-getitem?mr=2016942
http://www.ams.org/mathscinet-getitem?mr=0794309
http://www.ams.org/mathscinet-getitem?mr=0653521
http://www.ams.org/mathscinet-getitem?mr=1134492
http://www.ams.org/mathscinet-getitem?mr=0311032
http://www.ams.org/mathscinet-getitem?mr=0778489
http://www.ams.org/mathscinet-getitem?mr=0671982
http://www.ams.org/mathscinet-getitem?mr=0712028
http://www.ams.org/mathscinet-getitem?mr=0885734
http://www.ams.org/mathscinet-getitem?mr=0909362
mailto:mhallin@ulb.ac.be
mailto:dpaindav@ulb.ac.be
http://homepages.ulb.ac.be/~dpaindav

	Introduction
	The hypothesis of sphericity
	Elliptical densities: location, scale, shape and radial density
	Outline of the paper
	Notation

	Uniform local asymptotic normality (ULAN)
	Parametrically efficient tests for shape
	An efficient central sequence for shape
	Optimal parametric tests for shape
	Optimal Gaussian tests for shape

	Rank-based tests for shape
	Rank-based versions of efficient central sequences for shape
	The proposed class of tests
	Asymptotic relative efficiencies
	Unspecified location theta

	Validity and consistency properties
	Null hypothesis: sphericity or unit shape
	Nonlocal alternatives: consistency issues

	Simulation results
	Appendix
	Proof of Proposition 2.1
	Proofs of Lemma 3.1 and Proposition 3.1
	Proofs of Propositions 3.2, 4.1 and Lemma 4.1
	Proof of Proposition 5.1

	Acknowledgments
	References
	Author's Addresses

