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DISCUSSION: LOCAL RADEMACHER COMPLEXITIES AND
ORACLE INEQUALITIES IN RISK MINIMIZATION

BY SARA VAN DE GEER

ETH Zürich

1. Introduction. This paper unifies and extends important theoretical results
on empirical risk minimization and model selection. It makes extensive and effi-
cient use of new probability inequalities for the amount of concentration of the
(possibly symmetrized) empirical process around its mean. The results are very
subtle and very pleasing indeed, as they show that oracle inequalities exist for very
general problems.

There are in my view two aspects which need special attention. First, the paper
assumes that the loss functions f ∈ F satisfy |f | ≤ K for some fixed constant K .
Let us call this the uniform bound condition (Condition B below). Second, it is not
clear how the approach used will work in practice: the estimators depend on (un-
specified) constants which may be too large for all practical purposes, and more-
over, it is difficult to explain the method to nonspecialists. This discussion will
address these two problems.

We reformulate some of the results as a starting point for possible extensions or
alternative approaches. For transparency, we will invoke simple, and not the most
general, assumptions.

Section 2 in this discussion presents a distribution-dependent upper bound for
the excess risk, replacing the uniform bound condition by convexity conditions and
a bound on the renormalized loss functions (Condition BB).

The background of Section 3 in this discussion is the question whether cross-
validation can be a more user-friendly model selection method than applying
bounds in terms of Rademacher complexities. We first study why (data-dependent)
upper and lower bounds for excess risks are useful when aiming at oracle behavior
in model selection. We then show that when the margin behavior of the excess risk
in each model is known, cross-validation can lead to oracle behavior.

Let us now first introduce our notation, following mostly that of the paper. As-
sume the observations X1, . . . ,Xn are i.i.d. copies of a random variable X ∈ S

with distribution P . Let F be a given class of functions f on S. The empirical risk
minimizer is

f̂ := arg min
f ∈F

Pnf,
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and its theoretical counterpart is

f̄ := arg min
f ∈F

Pf.

We assume for simplicity that the minimizers exist. The excess risk at f is defined
as E(f ) := Pf − P f̄ .

A distribution-dependent upper bound for E(f̂ ) depends on two ingredients,
which we refer to as (1) the empirical process behavior and (2) the margin behav-
ior.

Let

σ 2(f ) := Pf 2 − (Pf )2,

and let

Fσ := {f ∈ F :σ(f − f̄ ) ≤ σ, |f − f̄ | ≤ 1}.
Consider the maximal increment of the empirical process,

Z(σ) := sup
f ∈Fσ

|Pn(f − f̄ ) − P(f − f̄ )|.

The empirical process behavior is the behavior of EZ(σ) as function of σ . Bous-
quet’s inequality [1] implies that for all ε̄ > 0,

P

(
Z(σ) ≥ (1 + ε̄)EZ(σ) + σ

√
2t

n
+

(
1

3
+ 1

ε̄

)
t

n

)
≤ e−t ∀t > 0.(1)

The margin behavior of Pf is the behavior of E(f ) for σ(f − f̄ ) small. This is
described by

D(δ) = sup{σ(f − f̄ ) :f ∈ F :E(f ) ≤ δ}.
Condition A below (and also Conditions CC, C and {C(k)}) imposes certain con-
ditions on the margin behavior.

We now combine empirical process behavior and margin behavior in the quan-
tity Wt(D(δ)), where

Wt(σ) = 8

5
EZ(σ) + σ

√
2t

n

is inspired by (1). We set (quite arbitrarily) the value of ε̄ at ε̄ = 3/5, that is, we do
not attempt here to optimize our constants (for simplicity).

Lemma 1 below (and its proof) is a slight variant of the approach used in
the paper. It will be applied in Lemmas 2 and 3 to obtain distribution-dependent
bounds. In the lemma we invoke conjugates. The conjugate of a convex nonde-
creasing function G on [0,∞) with G(0) = 0 is defined as the function H(v) =
supu≥0[uv − G(u)].

Let us now fix some t > 0, and assume:
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CONDITION A. There exists a strictly increasing concave upper bound ψt(δ)

of Wt(D(δ)), satisfying:

(i) ψ−1
t has conjugate Ht ,

(ii) ψt(δ)/δ is nonincreasing in δ.

The conjugate Ht(z) corresponds roughly speaking to a bound for the
�-transform U

�
n,t (

1
z
) defined in the paper. We use conjugates to clarify the rela-

tion with our margin Conditions CC, C and {C(k)}.
For δ > 0, we let

F δ
1 = {f ∈ F : |f − f̄ | ≤ 1,E(f ) > δ}.

LEMMA 1. Suppose Condition A holds. Then we have for all q > 1, ε > 0,
t > 0 and δ > 0,

P
(

sup
F δ

1

∣∣∣∣ (Pn − P)(f − f̄ )

ε(Ht (
1
ε
) + E(f )) + 2t

qn

∣∣∣∣ ≥ q

)
≤ logq

q

δ
e−t .

PROOF. Define δj = q−j , j = 0,1, . . . . Then for any δ > 0, and for δJ ≥ δ,

P
(

sup
F δ

1

∣∣∣∣(Pn − P)(f − f̄ )

ψt (E(f )) + 2t
qn

∣∣∣∣ ≥ q

)
≤

J∑
j=0

P
(
Z(D(δj )) ≥ qψt(δj+1) + 2t

n

)

≤
J∑

j=0

P
(
Z(D(δj )) ≥ ψt(δj ) + 2t

n

)
≤ logq

q

δ
e−t .

The result now follows, since for any ε > 0 and any x > 0, ψt(x) ≤
ε(Ht(

1
ε
) + x). �

The following lemma presents an upper bound for the excess risk. The lemma
(and its proof) is a simplified (less general) version of Theorem 1 (and its proof)
in the paper. We present the lemma here in order to allow comparison with the
extension to the case where a uniform bound on the functions in F is not available
(see Lemma 3 below).

Assuming a uniform bound condition, a distribution-dependent bound for the
excess risk takes the form

δt,n := qε

1 − qε
Ht

(
1

ε

)
+ 2t

(1 − qε)n
.(2)

CONDITION B. We have |f − f̄ | ≤ 1 for all f ∈ F .
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LEMMA 2. Suppose Conditions A and B hold. Then for all q > 1, 0 < ε <

1/q and δ ≥ δt,n,

P
(
E(f̂ ) > δ

) ≤ logq

q

δ
e−t .

PROOF. Let δ > 0 and let E be the event

sup
f ∈F :E(f )>δ

∣∣∣∣ (Pn − P)(f − f̄ )

ε(Ht (
1
ε
) + E(f )) + 2t

qn

∣∣∣∣ ≤ q.

Since

E(f̂ ) ≤ |(Pn − P)(f̂ − f̄ )|,
we know that on E,

E(f̂ ) ≤ δt,n ∧ δ.

Therefore, when δ ≥ δt,n

P
(
E(f̂ ) > δ

) ≤ 1 − P(E) ≤ logq

q

δ
e−t . �

2. The case of possibly unbounded functions. In this section, we assume
that F is indexed by a parameter θ in some space �:

F = {γθ : θ ∈ �}.
We moreover assume that � is a convex subset of a normed vector space with
norm τ , and that θ �→ γθ (x) is convex for all x ∈ S. We let f̄ = γθ̄ and f̂ = γ

θ̂
.

CONDITION BB. Suppose that for some ηn > 0,

ηn|γθ − γθ̄ | ≤ τ(θ − θ̄ ) ∨ ηn.

We also need a margin condition. Let �1 := {θ ∈ � : |γθ − γθ̄ | ≤ 1}.

CONDITION CC. For some increasing function D,

D(E(γθ )) ≥ τ(θ − θ̄ ) ∀θ ∈ �1.

Define now

τn := D(δt,n),

where δt,n is given in (2).
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LEMMA 3. Let q > 1 and 0 < ε < 1/q be arbitrary. Assume Conditions A,
BB and CC hold, and that τn ≤ ηn/2. Then we have

E
(
E(f̂ ) > δt,n

) ≤ logq

q

δt,n

e−t .

PROOF. Define

θ̃ = αθ̂ + (1 − α)θ̄,

with

α = 2τn

2τn + τ(θ̂ − θ̄ )
.

Then

|γθ̃ − γθ̄ | =
2τn|γθ̂

− γθ̄ |
2τn + τ(θ̂ − θ̄ )

≤ 2τn|γθ̂
− γθ̄ |

τ(θ̂ − θ̄ )
≤ 1.

Moreover, by the convexity of Pn(γθ ), for f̃ := fθ̃ ,

Pn(f̃ ) ≤ αPn(f̂ ) + (1 − α)Pn(f̄ ) ≤ Pn(f̄ ).

This implies

E(f̃ ) ≤ |(Pn − P)(f̃ − f̄ )|.
Let En be the event

sup
F

δt,n
1

∣∣∣∣ (Pn − P)(f − f̄ )

ε(Ht (
1
ε
) + E(f )) + 2t

qn

∣∣∣∣ ≤ q.

By the same arguments as in Lemma 2, we have on En

E(f̃ ) ≤ δt,n.

But then

τ(θ̃ − θ̄ ) ≤ D(δt,n) = τn.

Hence

τ(θ̂ − θ̄ ) ≤ 2τn.

But then also

|γ
θ̂
− γθ̄ | ≤ 1.

So on En also

E(f̂ ) ≤ δt,n. �
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3. Model selection. Consider now a set of models {Fk}, with Fk ⊂ F for
all k. Let

f∗ := arg min
f ∈F

Pf, f̄k := arg min
f ∈Fk

Pf,

and denote the empirical risk minimizer in model k by

f̂k := arg min
f ∈Fk

Pnf.

We moreover define the excess risk at f̂k within the model k as

Ek := P(f̂k − f̄k)

and the “empirical” excess risk at f̄k ,

Êk := Pn(f̄k − f̂k).

The overall excess risk at f is

E∗(f ) := P(f − f∗).

Let π̂ (k) be some (data-dependent) penalty, and

k̂ := arg min{Pnf̂k + π̂ (k)},
assuming for simplicity that the minimum exists. It is important to find good es-
timates of the (“empirical”) excess risks, because we can use these in the con-
struction of a penalty π̂ . To clarify why, we reformulate Lemma 4 in the paper,
combined with part of the proof of its Theorem 6. We also impose its margin con-
dition (5.3), which we refer to as Condition C.

CONDITION C. We have

E∗(f ) ≥ φ[σ(f − f∗)] ∀f ∈ F ,

where φ is a function with conjugate φ∗.

LEMMA 4. Assume Conditions B and C hold. Let 0 < ε < 1 be arbitrary and
let {tk} be an arbitrary positive sequence. Define for all k,

α(k) := εφ∗
(√

tk

nε2

)
+ tk

n
.

Then

P
(
E∗(f̂k̂

) >
1

(1 − ε)2 min
k

{E∗(f̄k) + (1 − ε)[α(k) + π̂(k)]}
)

≤ ∑
k

e−tk + P
(∃k : π̂(k) < Êk + (1 − ε)Ek + α(k)

)
.
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PROOF. By Bernstein’s inequality, with probability at least 1 − e−tk ,

|(Pn − P)(f̄k − f∗)| ≤
√

2tk

n
σ (f̄k − f∗) + tk

n

≤ εφ[σ(f̄k − f∗)] + α(k) ≤ εE∗(f̄k) + α(k).

But then

(1 − ε)E∗(f̄k) ≤ Pn(f̄k − f∗) + α(k)

and

Pn(f̄k − f∗) ≤ (1 + ε)E∗(f̄k) + α(k) ≤ 1

1 − ε
{E∗(f̄k) + (1 − ε)α(k)}.

Let E be the set where it holds for all k that

E∗(f̄k) ≤ 1

1 − ε
{Pn(f̄k − f∗) + α(k)},Pn(f̄k − f∗)

≤ 1

1 − ε
{E∗(f̄k) + (1 − ε)α(k)}

and

π̂(k) ≥ Êk + (1 − ε)Ek + α(k).

We have on E,

Pn(f̂k̂
− f∗) + π̂(k̂) = min

k
{Pn(f̂k − f∗) + π̂(k)} ≤ min

k
{Pn(f̄k − f∗) + π̂(k)}

≤ 1

1 − ε
min

k
{E∗(f̄k) + (1 − ε)[α(k) + π̂(k)]}.

We also have on E,

E∗(f̄k̂
) ≤ 1

1 − ε
{Pn(f̄k̂

− f∗) + α(k̂)} = 1

1 − ε
{Pn(f̂k̂

− f∗) + Ê
k̂
+ α(k̂)}.

Hence, on E,

E∗(f̂k̂
) = E

k̂
+ E∗(f̄k̂

) ≤ 1

1 − ε
{Pn(f̂k̂

− f∗) + Ê
k̂
+ α(k̂) + (1 − ε)E

k̂
}

≤ 1

1 − ε
{Pn(f̂k̂

− f∗) + π̂(k̂)}

≤ 1

(1 − ε)2 min
k

{E∗(f̄k) + (1 − ε)[α(k) + π̂ (k)]}. �

The above lemma indicates that one needs bounds for the (“empirical”) ex-
cess risk, as well as knowledge of the margin behavior, that is, of the function φ.
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This is also the message of the paper, and it is the reason why it studies such
bounds. Theorem 2 in the paper handles the empirical excess risk Êk . Its Theo-
rem 3 shows that one can estimate the distribution-dependent upper bounds for the
excess risk Ek . The latter is done using Rademacher complexities, which are based
on symmetrized versions of the empirical process.

Symmetrization inequalities are based on comparing Pn with an independent
copy P ′

n = 1
n

∑n
i=1 δX′

i
, where {X′

n, . . . ,X
′
n} is a second sample independent of

{X1, . . . ,Xn}. The question arises whether simple data splitting can also be used
to estimate Ek and Êk . Suppose indeed we have observed {X′

n, . . . ,X
′
n} in addition

to {X1, . . . ,Xn}. We let

f̂ ′
k = arg min

f ∈Fk

P ′
nf.

Moreover, we define

E ′
k = P(f̂ ′

k − f̄k), Ê ′
k = P ′

n(f̄k − f̂ ′
k).

We now assume the following margin condition:

CONDITION {C(k)}. For all k,

P(f − f̄k) ≥ φk[σ(f − f̄k)] ∀f ∈ Fk,

where φk has conjugate φ∗
k .

Define now for all k the (truly) empirical quantities

β̂(k) := (P ′
n − Pn)(f̂k − f̂ ′

k).

LEMMA 5. Assume Conditions B and {C(k)} hold. Let 0 < ε < 1 be arbitrary
and let {tk} be an arbitrary positive sequence. Define

γ (k) = εφ∗
k

(√
2tk

nε2

)
+ tk

n
.

Then with probability at least 1 − ∑
k e−tk , we have for all k

β̂(k) + 2γ (k) ≥ (1 − ε){E ′
k + Ek} + Ê ′

k + Êk.

PROOF. By Bernstein’s inequality, conditionally on X1, . . . ,Xn, we have with
probability at least 1 − 1

2e−tk , that

(P − P ′
n)(f̂k − f̄k) ≤

√
2tk

n
σ (f̂k − f̄k) + tk

n
.

But then

(P − P ′
n)(f̂k − f̄k) ≤ εEk + γ (k) or P ′

n(f̂k − f̄k) ≥ (1 − ε)Ek − γ (k).
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Similarly for Pn(f̂
′
k − f̄k).

Let E be the set where for all k

P ′
n(f̂k − f̄k) ≥ (1 − ε)Ek − γ (k)

and

Pn(f̂
′
k − f̄k) ≥ (1 − ε)E ′

k − γ (k).

Then on E we have

(P ′
n − Pn)(f̂k − f̂ ′

k) = (P ′
n − Pn)(f̂k − f̄k) + (Pn − P ′

n)(f̂
′
k − f̄k)

= P ′
n(f̂k − f̄k) + Êk + Pn(f̂

′
k − f̄k) + Ê ′

k

≥ (1 − ε){Ek + E ′
k} + Êk + Ê ′

k − 2γ (k). �

It follows that if the margin behavior of all models {Fk} and F is known, one
may take as a data-dependent penalty

π̂(k) = β̂(k) + α(k) + 2γ (k).(3)

One can then apply Lemma 4. One may proceed by proving a distribution-
dependent upper bound for this choice of π̂(k) (this bound actually follows from
the paper). The penalty clearly has the advantage that it is simple to implement.
But as it requires the margin behavior to be known, there are many problems (e.g.,
classification) where it cannot be used. In the paper, Theorems 5 and 6, only the
margin behavior of the model F is assumed to be known. Thus, one might say that
by estimating the upper bounds for the excess risks (using Rademacher complex-
ities), instead of the excess risks themselves, one overcomes the problem of not
knowing the margin behavior of all models Fk .

The paper moreover shows that by replacing the penalization method by a com-
parison method, the margin problem can be solved. Another promising approach
is in my view the use of l1-type penalties, but these are only defined within the
context of linear parameter spaces.
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