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DISCUSSION: LOCAL RADEMACHER COMPLEXITIES AND
ORACLE INEQUALITIES IN RISK MINIMIZATION1

BY A. B. TSYBAKOV

Université Paris 6

The paper of Vladimir Koltchinskii has been circulating around for several years
and already has become an important reference in statistical learning theory. One
of the main achievements of the paper (further abbreviated as [VK]) is to pro-
pose very general techniques of proving oracle inequalities for excess risk un-
der a control of the variance, that is, for example, under conditions (6.1) or (6.2)
(often called margin or low noise conditions) or similar assumptions in terms of
L2-diameters DP (F , δ) and other related characteristics. These conditions lead to
fast rates for the excess risk, that is, to rates that are faster than n−1/2. The setup
in [VK] is classical: methods based on empirical risk minimizers (ERM) f̂n are
studied under the bounded loss functions.

My comments and questions will be mainly about optimality of the excess risk
bounds. This issue is not at all obvious, even in the case where the underlying
class F is finite. We assume in what follows that either F = {f1, . . . , fM}, where
fj are some functions on S, or this class is a convex hull F = conv{f1, . . . , fM}.
Such classes F are used in aggregation problems where the functions fj are
viewed either as “weak learners” or as some preliminary estimators constructed
from a training sample which is considered as frozen in further analysis.

Let Z1, . . . ,Zn be i.i.d. random variables taking values in a space Z, with com-
mon distribution P , and denote by F0 the space where the fj live. Consider a loss
function Q :Z × F0 → R and the associated risk

R(f ) = EQ(Z,f )

assuming that the expectation EQ(Z,f ) is finite for all f ∈ F0 where Z has
the same distribution as Zi . Introduce two oracle risks: RMS = min1≤j≤M R(fj )

corresponding to model selection-type aggregation (MS-aggregation), and RC =
inff ∈conv{f1,...,fM } R(f ) corresponding to convex aggregation (C-aggregation).
The excess risk of a statistic f̃n(Z1, . . . ,Zn) is defined by

E(f̃n) = E{R(f̃n)} − ROR,

where the oracle risk ROR equals either RMS or RC. A natural question about
optimality is how to find an estimator f̃n for which the excess risk is as small
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as possible. Of course, this question cannot be answered simultaneously for all
distributions P . However, optimality can be treated in a minimax sense: introduce
a class P of distributions and call εn,M optimal rate of aggregation if

inf
Tn

sup
GM

E(Tn) � εn,M

where GM = {(P,f1, . . . , fM) :P ∈ P , fj ∈ F0} and the infimum is taken over
all estimators Tn. An estimator f̃n is declared to be optimal if it achieves

sup
GM

E(f̃n) ≤ Cεn,M

for some constant C independent of n and M . Optimal rates of aggregation are
known for several important special cases [6]: for instance, if F0 is the class of
all functions bounded in absolute value by a given constant, in a Gaussian (or
bounded) regression model with squared loss the optimal rates are

εn,M �




M/n, for C-aggregation if M ≤ √
n,√

1

n
log

(
M√
n

+ 1
)
, for C-aggregation if M >

√
n,

(logM)/n, for MS-aggregation,

(1)

and optimal procedures f̃n attaining these rates are available [6].
The paper [VK] suggests very general bounds on probabilities of deviations of

R(f̂n) − ROR where f̂n is an empirical risk minimizer. Clearly, these bounds can
be applied to evaluate the expected risk E(f̂n) and to check whether f̂n attains
optimality (at least for the bounded regression model). I think that this should
be the case for C-aggregation, probably under some more assumptions on n and
M , but in general not for MS-aggregation. Furthermore, presumably no selector,
that is, no procedure that chooses only one of the M functions as an estimator, can
achieve the MS-rate given in (1) under strictly convex loss. On the other hand, MS-
optimality can be achieved by estimators f̃n that are convex mixtures of f1, . . . , fM

with data-dependent coefficients. A simple aggregation method of this kind called
mirror averaging [3, 4] is defined as follows.

Let �M = {θ = (θ(1), . . . , θ (M)) : θ(j) ≥ 0,
∑M

j=1 θ(j) = 1} be the unit simplex
in R

M , and let G : RM → �M be a function satisfying certain assumptions [3].
A possible choice of G is

G(z) =
(

exp(−z(1))∑M
j=1 exp(−z(j))

, . . . ,
exp(−z(M))∑M
j=1 exp(−z(j))

)
,

z = (z(1), . . . , z(M)). This particular function G (corresponding to the Gibbs distri-
bution) will be considered in what follows. To any z ∈ R

M we associate its “mirror



DISCUSSION 2683

image” in the simplex �M , that is, a probability vector G(z/β) where β > 0 is a
tuning parameter.

For any θ = (θ(1), . . . , θ (M)) ∈ �M set fθ = ∑M
j=1 θ(j)fj and assume that

Q(Z, fθ ) is differentiable w.r.t. θ with gradient ∇θQ(Z, fθ ). Given two sequences
of positive numbers βi and γi , the mirror averaging (MA) algorithm is defined as
follows:

• i = 0: initialize values ζ0 ∈ R
M , θ̄0 ∈ �M , θ̃0 = 0,

• for i = 1, . . . , n, iterate:

ζi = ζi−1 + γi∇θQ(Zi, fθ̄i−1
) (GRADIENT DESCENT)

θ̄i = G(ζi/βi) (MIRRORING)

θ̃i =
∑i

t=1 γt θ̄t−1∑i
t=1 γt

(AVERAGING)

• output θ̃n and set f̃n = fθ̃n
.

We remark that the vector of weights θ̃n belongs to the simplex �M , so that f̃n is
a convex mixture of initial functions (estimators) fj with data-dependent weights.
The following theorem proved in [3] shows that the MA estimator satisfies a sharp
oracle inequality.

THEOREM 1 (Convex aggregation). Let θ 	→ Q(Z, fθ ) be convex on �M for
all Z ∈ Z and

sup
θ∈�M

E‖∇θQ(Z, fθ )‖2∞ ≤ Q�(2)

where ‖ · ‖∞ is the sup-norm in R
M . Then the mirror averaging algorithm with

appropriate βi and γi outputs f̃n that satisfies

E{R(f̃n)} − RC ≤ 2
√

Q�

√
logM

n
(3)

for all n ≥ 1, M ≥ 2.

If Q� does not depend on M , the rate of convergence on the right-hand side
of (3) is optimal for M comfortably larger than

√
n [cf. (1)]. Although this is not

explicitly stated in [VK], it seems that a similar result can be obtained for the ERM
f̂n if Q is strictly convex in θ (condition (7.5) of [VK]) using the techniques of
Sections 7 and 8. In particular, the second statement of Theorem 13 covers the case
of squared loss Q. It would be interesting to compare these developments to (3)
and to check whether, for a general class of convex functions, the ERM or MA
estimators achieve optimality in the zone M ≤ √

n where the bound of Theorem 1
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is suboptimal. Note that, in a difference with [VK], Theorem 1 is not restricted
to bounded loss functions or to loss functions with bounded gradient. Moment
conditions on the components of the gradient suffice, but lead to coarser bounds
where Q� grows with M .

A particular instance of the MA algorithm can be used to mimic the MS-oracle
with sharp bounds on the excess risk. It is called the linearized mirror averaging
(LMA) algorithm and is defined in the same way as MA, with the only difference
being that the gradient descent step is modified as [4]

ζi = ζi−1 + ui where ui = (Q(Zi, f1), . . . ,Q(Zi, fM))�.

Thus, LMA is a special case of mirror averaging associated with the “surrogate”
linear risk QL(Z, θ) = θ�u(Z) where u(Z) = (Q(Z,f1), . . . ,Q(Z,fM))�. Two
special cases of LMA, for regression with squared loss and for density estima-
tion with Kullback loss, have been studied previously (cf. [2] and the references
therein).

To state a general excess risk bound for LMA, introduce the random vari-
able ω taking values 1, . . . ,M with the distribution P defined conditionally on
(Z1, . . . ,Zn) by P(ω = j) = θ̃

(j)
n where θ̃

(j)
n is the j th component of θ̃n. The

expectation corresponding to P is denoted by E. The following bound is proved
in [4].

THEOREM 2 (MS). Let θ̃n be the output of the LMA algorithm with βi ≡ β >

0, γi ≡ 1, and let the loss function Q be such that

E log
(

E exp
[
Q(Z,E[ω]) − Q(Z,ω)

β

])
≤ 0,(4)

where E denotes the expectation w.r.t. the joint distribution of n + 1 i.i.d. random
variables (Z1, . . . ,Zn,Z). Then

E{R(f̃n)} − RMS ≤ β logM

n + 1
.(5)

Condition (4) is satisfied for loss functions Q that are “on the average” (or ap-
proximately, up to a set in Z of small measure) strongly convex in θ ; several suffi-
cient conditions for (4) can be found in [4]. The most simple of them is concavity
of the mapping

θ 	→ E exp
(

Q(Z, θ ′) − Q(Z, θ)

β

)
(6)

on the simplex �M for any fixed θ ′ ∈ �M . We will say that a loss function is
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nice if it satisfies (4). In contrast to the convex aggregation bound considered in
Theorem 1, inequality of the form (5) for the excess risk is not obtained for empir-
ical risk minimizers, and I conjecture that it is not true for them without additional
strong restrictions on P such as RMS = 0 or the margin assumption with parameter
κ = 1.

Note that on the right-hand side of (5) we have the optimal rate of MS-
aggregation, which proves that the LMA procedure is rate optimal for nice loss
functions. To see how sharp the bound (5) is, consider the classification model with
convex loss. Let Z = (X,Y ) where X ∈ R

d is a random predictor and Y ∈ {−1,1}
is a random label. Assume that we have M classifiers fj : Rd → [−1,1], j =
1, . . . ,M . Consider the loss function Q(Z,f ) = ϕ(−Yf (X)) where ϕ : R → R+
is a convex twice differentiable function. The associated risk is the ϕ-risk of clas-
sification,

R(f ) = Eϕ(−Yf (X)).(7)

Then the mapping (6) is concave if (ϕ′(x))2 ≤ βϕ′′(x), ∀ |x| ≤ 1. This implies, for
example, that inequality (5) holds for R of the form (7) with rather sharp constants:
β = e if ϕ(x) = ex (exponential boosting) and β = e log 2 if ϕ(x) = log2(1 + ex)

(logit boosting). It would be interesting to study whether these constants can be
improved by any estimation method.

Finally, let me mention some other open problems related to optimality of ex-
cess risk bounds.

(I) Theorem 1 holds for convex loss and Theorem 2 for nice (essentially, strongly
convex) loss. What are optimal excess risk bounds for other loss functions?

(II) What are optimal excess risk bounds over restricted classes of underlying
distributions, for example, under control of the variance (such as the low
noise, or margin, assumption)?

(III) Theorems 1 and 2 deal with two simple classes F : finite classes and their
convex hulls. How does one treat general classes F ? What are optimal rates
of aggregation [analog of (1)] for general F ?

Theorem 12 in [VK] gives insight into (III). It considers the class F which is
a convex hull of a V -dimensional set. Instead of the number of functions M (in
our case), the key parameter in Theorem 12 is the metric dimension or the VC-
dimension V . Theorem 12 gives only an upper bound. How optimal is it?

Some first results for the problems (I) and (II) have been recently obtained by
Lecué [5]. He considers the classification setup as stated above, with ϕ being ei-
ther the hinge loss or the indicator loss, for the class of distributions P satisfying
the margin assumption (cf. (6.2) in [VK]) with exponent κ ≥ 1, and he suggests
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aggregate classifiers f �
n such that

E{R(f �
n )} ≤ RMS + C

[√
(RMS − R�)1/κ logM

n
+

(
logM

n

) κ
2κ−1

]
(8)

where R is either the hinge risk or the probability of misclassification, RMS is the
corresponding MS-oracle risk, R� is the risk of the Bayes classifier and C > 0 is a
constant. Furthermore, [5] proves a minimax lower bound showing that the expres-
sion in square brackets in (8) plays the role of optimal rate, analogous to εn,M . It is
interesting that, in contrast to the bounds of Theorems 1 and 2, here the optimal rate
depends not only on n and M , but also on the difference between the oracle risk
and the risk of Bayes classifier. Note also that, for the hinge risk, C-aggregation is
identical to MS-aggregation since for classifiers taking values in [−1,1] we have
RMS = RC. The optimal rate of MS-aggregation cannot be as fast as for nice loss
functions [cf. (1)], except for the most favorable case where κ = 1. These remarks
show that what we should expect to get in (I) and (II) is quite different from the
previously obtained results.

My last question falls somewhat apart from the above discussion. Consider
again the classification problem under the margin condition with exponent κ > 1,
and assume that the regression function η belongs to a class of functions with the
L∞ log-covering number of the order ε−ρ , ρ > 0 (such as a Hölder or Sobolev
class). The last assumption is natural when plug-in classifiers, in particular, the
SVM or boosting-type ones, are studied. The optimal rate of convergence of the
excess Bayes risk under these assumptions is a (potentially fast) rate of the order
ψn � n

− κ
2κ−1+ρ(κ−1) [1]. The ERM classifiers attaining this rate suggested in [1] are

based on L∞-covering of the set of regression functions η, while the argument
in [VK] uses L2-covering of the set of indicators f (·) = I {η(·) ≥ 1/2}, which ap-
parently leads to slower rates. Can this argument be extended to prove that the
ERM attains the optimal rate ψn?
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