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THE SHAPE OF INCOMPLETE PREFERENCES'

BY ROBERT NAU
Duke University

Incomplete preferences provide the epistemic foundation for models
of imprecise subjective probabilities and utilities that are used in robust
Bayesian analysis and in theories of bounded rationality. This paper presents a
simple axiomatization of incomplete preferences and characterizes the shape
of their representing sets of probabilities and utilities. Deletion of the com-
pleteness assumption from the axiom system of Anscombe and Aumann
yields preferences represented by a convex set of state-dependent expected
utilities, of which at least one must be a probability/utility pair. A strength-
ening of the state-independence axiom is needed to obtain a representation
purely in terms of a set of probability/utility pairs.

1. Introduction. In the Bayesian theory of choice under uncertainty, a deci-
sion maker holds rational preferences among acts that are mappings from states
of nature {s} to consequences {c}. It is typically assumed that rational preferences
are complete, meaning that, for any two acts X and Y, either X 7 Y (X is weakly
preferred to Y) or else Y 7~ X, or both. This assumption, together with other ra-
tionality axioms such as transitivity and independence, leads to a representation
of preferences by a unique subjective probability distribution on states p(s) and a
unique utility function u(c) on consequences, such that X =~ Y if and only if the
subjective expected utility of X is greater than or equal to that of Y [1, 5, 24].
However, the completeness assumption may be inappropriate if only partial infor-
mation about the decision maker’s preferences is available, or if realistic limits on
her powers of discrimination are assumed, or if there are many decision makers
whose preferences may disagree.

Incomplete preferences are generally represented by imprecise (set-valued)
probabilities and/or utilities. Varying degrees and types of imprecision have been
modeled previously in the literature of statistical decision theory and rational
choice:

1. If probabilities alone are considered to be imprecise, then preferences can be
represented by a set of probability distributions {p(s)} and together with a
unique, exogenously-specified utility function u#(c). The set of probability dis-
tributions is typically convex, so the representation can be derived by separating
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hyperplane arguments (e.g., [7, 15, 29, 31, 33]). Representations of this kind are
widely used in robust Bayesian statistics [22, 32] and they are also attracting
interest in economics [19].

2. If utilities alone are considered to be imprecise, preferences can be represented
by a set of utility functions {u(c)} and a unique, exogenously-specified proba-
bility distribution p(s), a representation that has been axiomatized and applied
to economic models by Aumann [2] and Dubra, Maccheroni and Ok [4]. The
set of utility functions in this case is also typically convex, so that separating hy-
perplane arguments are again applicable: the roles of probabilities and utilities
are merely reversed.

3. If both probabilities and utilities are allowed to be imprecise, they can be repre-
sented by separate sets of probability distributions {p(s)} and utility functions
{u(c)} whose elements are paired up arbitrarily. This representation of pref-
erences preserves the traditional separation of information about beliefs from
information about values when both are imprecise [20, 21]. It lacks a com-
pelling axiomatic basis, but it arises naturally when imprecise probabilities and
utilities are assessed independently, as they often are in practice.

4. More generally, incomplete preferences can be represented by sets of probabil-
ity distributions paired with state-independent utility functions {(p(s), u(c))},
a.k.a. “probability/utility pairs.” This representation has an appealing multi-
Bayesian interpretation and provides a normative basis for techniques of robust
decision analysis [14] and asset pricing in incomplete financial markets [30].
It has been axiomatized by Seidenfeld, Schervish and Kadane [28] (henceforth
SSK), starting from the “horse lottery” formalization of decision theory intro-
duced by Anscombe and Aumann [1]. However, as pointed out by SSK, the
set of probability/utility pairs is typically nonconvex and may even be uncon-
nected, so that separating hyperplane arguments are hard to apply. Instead, SSK
introduce methods of transfinite induction and indirect reasoning.

The objective of this paper is to derive a simple representation of incomplete
preferences for the elementary case of finite state and reward spaces, and to charac-
terize the shape of the resulting sets of probabilities and utilities. First, it is shown
that deleting both completeness and state-independence from the horse-lottery ax-
iom system of Anscombe and Aumann leads to a representation of preferences by
a set of probabilities paired with state-dependent utility functions {(p(s), u(s, c))}.
Such pairs will be called state-dependent expected utility (s.d.e.u.) functions. State-
dependent utilities have been used in economic models by Karni [9] and Dreze [3]
and are also discussed by Schervish, Seidenfeld and Kadane [25]. A set of s.d.e.u.
functions is typically convex—unlike a set of probability/utility pairs—so that
separating-hyperplane methods are still applicable at this stage. Next, the usual
state-independence axiom is reintroduced and shown to impose (only) the further
requirement that the representing set should contain at least one probability/utility
pair, analogous to SSK’s result establishing one-way agreement between a par-
tially ordered preference relation and a nonempty set of probability/utility pairs.
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However, those assumptions are too weak to yield two-way agreement in which
every extremal preference has an agreeing state-independent utility, because the
state-independence axiom may have limited applicability when preferences are
incomplete. The main result of this paper is to show that two-way agreement
between incomplete preferences and state-independent utilities can be achieved
by strengthening the state-independence axiom. Although the representing set of
probability/utility pairs is nonconvex, it is characterized simply as the intersection
of a convex set of s.d.e.u. functions and the nonconvex set of state-independent
utilities.

The organization of the paper is as follows. Section 2 introduces basic notation
and derives a representation of preferences by convex sets of s.d.e.u. functions
when neither completeness nor state-independence is assumed. Section 3 incorpo-
rates Anscombe and Aumann’s state-independence assumption and shows that it
requires (only) the existence of at least one agreeing state-independent utility. Sec-
tion 4 discusses an example of SSK to highlight the implications of different conti-
nuity and strictness conditions. Section 5 presents the stronger constructive axiom
that is needed to obtain a representation purely in terms of probability/utility pairs,
illustrated by another example. Section 6 briefly discusses the results. Proofs are
given in the Appendix.

2. Representation of incomplete preferences. Let S denote a finite set of
states and let C denote a finite set of consequences. Let 8 = {B:S x C — 9i}.
An element X € B is a (horse) lottery if X >0 and Vs, ). X (s, c) = 1, with the
interpretation that X (s, ¢) is the objective probability of receiving consequence ¢
when state s occurs. Henceforth, the symbols X, Y, Z and H will be used to de-
note lotteries; the symbol B will denote an element of B that is not necessarily a
lottery (e.g., B will typically represent the difference between two lotteries). A lot-
tery X is constant if the probabilities it assigns to consequences are constant across
states—that is, if X (s, ¢) = X (s, ¢) for all 5, 5", ¢. The symbol 7~ will denote weak
preference between lotteries: X ~~ Y means that X is preferred or indifferent to Y,
which is the behavioral primitive. The domain of - is the set of all lotteries. The
asymmetric part of =~ is denoted by >, but it will not be used except in stating
axiom AS. An extension of 7~ is any preference relation 77 that is stronger in the
sense that X ~ Y implies X 7~ Y but not necessarily vice versa.

An event is a subset of S. The symbols E and F will be used interchangeably
as names for events and for their indicator functions on S x C, so that for all c,
E (s, c) = 1][0] if the event E includes [does not include] state s. E; will denote
the indicator vector for state s, so that for all ¢, Eg(s’, ¢) = 1[0] if s = s'[s # s'].
If o is a scalar between O and 1, then X + (1 — «)Y is an objective mixture
of X and Y: it yields consequence c in state s with probability « X (s, c) + (1 —
a)Y (s, c). If Eis an event, then EX+ (1 —E)Y is a subjective mixture of X and Y:
it yields consequence c in state s with probability X (s, ¢) if E(s, c) = 1, and with
probability Y (s, ¢) otherwise.
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Assume that C contains a “worst” and a “best” consequence, labeled 0 and 1,
respectively. This assumption follows Luce and Raiffa [13] and Anscombe and
Aumann [1], and it is technically without loss of generality in the sense that the
preference order can always be extended to a larger domain that includes two ad-
ditional consequences which, by construction, are better and worse, respectively,
than all the original consequences. (Such an extension is demonstrated by SSK,
Theorem 2.) The best and worst consequences ultimately serve to calibrate the
definition and measurement of subjective probabilities, but even so the probabili-
ties remain somewhat arbitrary, as will be shown. Intermediate consequences are
labeled 2,3, ..., K, and for all c € {0, 1,2, ..., K}, H. denotes the special lot-
tery that yields consequence ¢ with probability 1 in every state. That is, for all s,
H.(s,c) =1[0]if ¢ =c[c’ #c].

The first group of axioms that are assumed to govern rational preference is as
follows:

A1l (Quasi order) 77 is transitive and reflexive.

A2 (Mixture-independence) X 7Y G aX+ (1 —a)Z ZaY+ (1 —a)ZVa e
0, 1).

A3 (Continuity in probability) If {X,} and {Y,} are convergent sequences such
that X, 72 Y,, then limX,, 7~ limY,,.

A4 (Existence of best and worst) For all ¢ > 1, H; Z H; 7~ Hyp.

A5 (Coherence or nontriviality) Hy > Hy (i.e., not Hy 77 Hy).

Al and A2 are von Neumann and Morgenstern’s first two axioms of expected
utility, minus completeness, as applied to horse lotteries by Anscombe and
Aumann [1]; see also [5]. A3 is a strong continuity condition used by Garcia del
Amo and Rios Insua [6] that also works in infinite-dimensional spaces. A4 and A5
ensure nontriviality and provide reference points for probability measurement, as
noted earlier.

The following definition (following SSK) will prove useful for distinguishing a
subset of preferences that implicitly determines the entire preference order:

DEFINITION. A collection of preferences {X,, 2~ Y,,} is a basis for 2~ under
an axiom system if every preference X 7~ Y can be deduced from {X, = Y,} by
direct application of those axioms.

The primal geometric representation of 2~ is now given by the following:

THEOREM 1. = satisfies A1-AS5 if and only if there exists a closed convex
cone B* C B, receding from the origin, such that X 7Y < X —-Y € B8*. In
particular, if {X, 7= Y,} is a basis for -, under A1-AS, then B* is the closed
convex hull of the rays whose directions are {X,, — Y} for all n, together with
{H; — H.} and {H. — Hy} for all c.
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Thus, the direction of preference between two lotteries X and Y depends only
on their difference X — Y, with X 2~ Y if and only if X — Y is in a convex cone B*
of preferred directions. It follows that if EX+ (1 —E)Z =~ EY+ (1—E)Z, where E
is an event, then EX 4+ (1 — E)Z' =~ EY + (1 — E)Z’ for any Z/,which is the so-
called “sure-thing principle”: where two lotteries agree, it does not matter how
they agree there. Henceforth, because agreeing conditional components of lot-
teries do not affect preferences, the expression EX >~ EY will be used as short-
hand for EX + (1 — E)Z =~ EY + (1 — E)Z for all Z, which means that X is
preferred to Y conditional on the event E, or, equivalently, that EX —-Y) is a
preferred direction. Similarly, for conditional lotteries embedded in objective mix-
tures, tEX+ (1 —a)X' = aEY + (1 — )Y’ will be used (in Section 5) as shorthand
for(EX+(1—-E)Z)+ (1 —a)X Za(EY+ (1 —-E)Z) + (1 — )Y for all Z,
meaning that tE(X —Y) + (1 — a)(X' — Y’) is a preferred direction.

To set the stage for the representation of incomplete preferences by sets of state-
dependent utilities, let a state-dependent expected utility (s.d.e.u.) function be de-
fined as a function v : S x C +— i, with the interpretation that v (s, ¢) is an expected
utility associated with consequence ¢ when it is to be received in state s, and let
U, : B — N denote the utility function on lotteries that is induced by v according
to the linear formula

UyX)= > X(s,0)v(s, o).

seS,ceC

In particular, U, (E;H, 4+ (1 — E;)Hp) = v(s, ¢).

DEFINITIONS. (i) An s.d.e.u. function v is a probability/utility pair if it can
be expressed as the product of a probability distribution p: S + [0, 1] and a state-
independent utility function u: C — N, so that v(s, c) = p(s)u(c) for all s and c.
(ii) An s.d.e.u. function v agrees (one way) with 27 if X - Y = U,(X) > U,(Y).
(iii) A set 'V of s.d.e.u. functions represents 7~ if X = Y & U,(X) — Uy(Y) >0
YveV.

A v that agrees with 2~ is unique only up to positive linear scaling and the addi-
tion of state-dependent constants and, by A4, it must satisfy U, (Hp) < U, (H,) <
U,(Hy); hence, there is no loss of generality in assuming that it belongs to the
normalized set

vt = v:v(s,0) =0Vs; OSZU(S,C)SIVCZZ; Zv(s, H=1;¢.

seS seS

In these terms, the dual to Theorem 1 can now be given as follows:

THEOREM 2. - satisfies A1-AS if and only if it is represented by a nonempty
closed convex set of s.d.e.u. functions V* € V¥, In particular, if {X,, = Y,} is a
basis for =, then V* is the set of v € V7 satisfying (U, (X,,) > Uy (Y,)).
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The proof relies on a separating hyperplane argument. (For a similar result on a
more general space, see [21].) If the basis is finite, then V* is a convex polytope
whose elements need not be probability/utility pairs. Subsequent sections of the
paper will discuss the additional assumptions needed to ensure that some points
of V*—especially its extreme points—are probability/utility pairs.

3. The state-independence axiom. An additional axiom of Anscombe and
Aumann, which they call “monotonicity in the prizes” or “substitutability,” pro-
vides the usual separation of subjective probability from utility, and its implica-
tions in the context of incompleteness will now be explored. (Essentially the same
axiom appears as P3 in Savage’s system [24].) Some additional notation will be
helpful. First, for all p € (0, 1), let H,, denote the lottery that yields the best and
worst consequences with probabilities p and 1 — p in every state, which is the
objective mixture

H, = pH; + (1 — p)Ho.

Next define Hg, as the lottery that yields the best consequence if event E occurs
and the worst consequence otherwise, that is, the subjective mixture

Hg = EH, + (1 — E)H,.

A not-potentially-null event can then be defined by a comparison of subjective and
objective mixtures:

DEFINITION.  An event E is not potentially null it Hg 27 H,, for some p > 0.

The additional axiom asserts that conditional preferences among constant lot-
teries may be propagated from not-potentially-null events to all other conditioning
events:

A6 (State-independence) If X and Y are constant and E is not potentially null,
then EX - EY = FX ~ FY for every other event F.

This assumption of state-independent preferences among constant lotteries
makes possible the assignment of state-independent utilities to the underlying con-
sequences, which is central to the program of defining subjective probabilities in
terms of preferences. A6 together with A4 ensures that consequences 0 and 1 are
worst and best in every state, that is, E;Ho < E;He < E H; for all s and ¢, which
implies U, (EsHp) < Uy (EsH,) < U, (EsH;) for every agreeing v, which is equiv-
alent to v(s,0) < v(s,c) < v(s, 1). The s.d.e.u. functions representing a relation
that satisfies A6 can therefore be normalized to lie within the set

Vi =1v:0=v(s,0) <v(s,c)<v(s, 1) <1

VseS,c>2) v(s, 1)=1¢.

seS



2436 R. NAU

Under this normalization, it is “as if”” consequences 0 and 1 have state-independent
utilities of 0 and 1, respectively, and the probability assigned to state s by v can be
interpreted as

pU(s) = pU(EY) = U(S, l)v

because this is the expected utility of a lottery that yields a utility of 1 if state s
obtains and a utility of O otherwise. Correspondingly, the probability assigned to
any event E by v is defined by the summation

po(B) =Uy(HE) =) py(s).
seE
(The same approach is used by Karni [10].) Under this interpretation, bounds on
subjective probabilities can be expressed by the decision maker in either primal or
dual terms in light of Theorems 1-2. The assertion that “the probability of E is at
least p,” that is, that p is a lower probability for E, is defined primally by the pref-
erence Hg 7 H), and dually by the constraint that p,(E) > p for any v agreeing
with 7Z. Upper probabilities are defined analogously. An event is not potentially
null if it has a strictly positive lower probability.

Unfortunately, the attribution of state-independent utilities to consequences is
ultimately arbitrary and untestable: the decision maker’s true utilities could have
state-dependent origin and scale factors, even if the state-independence axiom is
satisfied, in which case the conventionally-defined subjective probabilities would
not represent true degrees of belief. (State-dependent utility scale factors would
have exactly the same effects as beliefs.) The classic behavioral definitions of sub-
jective probability given by Savage, Anscombe—Aumann and others all suffer from
the same arbitrariness. The intrinsic impossibility of inferring true probabilities
from material preferences is discussed in more depth by Karni, Schmeidler and
Vind [12], Rubin [23], Kadane and Winkler [8], Schervish, Seidenfeld and Kadane
[25], Karni and Mongin [11] and Nau [16, 17].

Notwithstanding those caveats, the s.d.e.u. function v can be further decom-
posed by dividing the expected utility of consequence c in state s by the probability
of the state to obtain

uy(s,c) =v(s, c)/pu(s) if py(s) >0

as the utility assigned to consequence c in state s. This utility is state-independent
if v is a probability/utility pair, and otherwise it is state-dependent. In these terms,
the expected utility assigned to any lottery X by v can be rewritten as the expected
value of a possibly-state-dependent utility:

Up(X) =D pu(s) ) uu(s, )X (s, 0).

If v is a probability/utility pair, then v(s, c) = py(Es)Uy(H,) for all s and c.
Bounds on expected utilities can also be expressed in both primal and dual terms.
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The assertion that “the expected utility of X is at least #” is defined primally by the
preference X 77 H,, and dually by the constraint that U, (X) > u for any v agreeing
with 7~ . Similarly, for conditional expected utility, define

Uy(X|E) = Uy(XE)/ py(E),

provided p,(E) > 0. Then the assertion “the conditional expected utility of X
given E is at least u” has the primal definition EX 7~ EH,, and the dual definition
that U, (X|E) > u for any v agreeing with 2~ and satisfying p,(E) > 0, because,
for any agreeing v

EXZEH, = U,(EX)>U,(EH,)=up,(E)
<— Uy(X|E) > u orelse p,(E) =0.

If preferences are complete, in addition to A1-AS5, then the primal represen-
tation B* expands to an entire half-space of preferred directions and the dual
representation V* shrinks to a unique s.d.e.u. function v*. When A6 is also as-
sumed, the unique v* must be a probability/utility pair, which is the result obtained
by Anscombe and Aumann [1]. In the absence of completeness, the contribution
of A6 to the separation of probability and utility is weaker, as summarized by the
main theorem of this section:

THEOREM 3. 7 satisfies A1-A6 only if it is represented by a nonempty closed
convex set of s.d.e.u. functions V** € VT on which the maximum and minimum
expected utilities of every constant lottery are achieved at probability/utility pairs.
In particular, if {X,, 77, Y.} is a basis for - under axioms A1-A6, then V** con-
tains every probability/utility pair v € VT that satisfies {U, (X)) > Uy(Y,)}, of
which there must be at least one.

Apart from the fact that 'V** contains all the probability/utility pairs in V*+
that agree with the basis preferences, its “‘shape” is not easy to describe, as will be
illustrated in Section 5.

An immediate implication of Theorem 3 is the property of stochastic domi-
nance, namely, that if X is obtained from Y by shifting probability mass to con-
sequence 1 from any other consequence, and/or from consequence 0 to any other
consequence, in any state, then X 7~ Y because in this case U,(X) > U,(Y) for
all v € V1. To make this result more precise, let the [-]yin (minimum s.d.e.u.)
operation be defined on 8B as

(Blnin = min_Uy(B) = Isnei?|:B(s, 1) 4+ Y " min{0, B(s, c)}:|.

c>2

This quantity is the minimum possible state-dependent expected utility that could
be assigned to B: it is achieved by assigning, within each state, a utility of O to
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those consequences ¢ > 2 for which B is positive and a utility of 1 to those conse-
quences ¢ > 2 for which B is negative, then assigning a subjective probability of 1
to the state in which the conditional expected utility of B is minimized. Stochastic
dominance and the negative orthant in 8 can now be defined in a natural way:

DEFINITIONS. (1) X >* [>*]Y (“X [strictly] dominates Y”) if [X — Y]min >
[>]0. (i1) The open negative orthant B~ consists of those B that are strictly dom-
inated by the zero vector, that is, B~ ={Be B8:0>*B} ={B e B8:B(s, 1) +
> e>pmax{0, B(s,c)} <0 Vs}.

Theorem 3 then implies that X >* [>*]Y = X 7 [>~]Y.

4. Strict vs. weak preference: an example. The closedness of the repre-
sentative sets of s.d.e.u. functions in Theorems 2 and 3 is attributable to the use
of weak preference as the behavioral primitive, together with a strong continu-
ity assumption. In contrast, SSK use strict preference as the behavioral primitive,
together with a weaker continuity assumption, to explicitly allow for the represen-
tation of incomplete preferences by open sets that may fail to contain probabil-
ity/utility pairs.

The differences in these approaches are illustrated by an example of SSK (Ex-
ample 4.1) involving two states and three consequences, that is, S = {1, 2} and
C =1{0,1,2}. Consequences 0 and 1 have state-independent utilities of 0 and 1 by
assumption, so that a probability/utility pair can be parameterized by the proba-
bility assigned to state 1 and the utility assigned to consequence 2. Consider two
probability/utility pairs (p;, u;) in which pg(1) = 0.1, p1(1) = 0.3, uo(2) = 0.1
and u1(2) = 0.4. Let vg and vy denote the corresponding s.d.e.u. functions—that
is, v;(s,c) = pi(s)u;(c) for i =0, 1. Then U,,(X) denotes the expected utility
assigned to lottery X by (p;, u;), with Uy,(Hz) = 0.1 and U,, (H) = 0.4. Now
let > be defined as the preference relation that satisfies a weak Pareto condition
with respect to these two probability/utility pairs—that is, X > Y & {U,,(X) >
U,,(Y) and Uy, (X) > U,,(Y)}. Any s.d.e.u. function that is a convex combination
of vy and v; also agrees with >, so the representing set V** is the closed line
segment whose endpoints are vg and vy, but none of its interior points are proba-
bility/utility pairs.

Next SSK extend > to obtain a new preference relation =" by imposing the
additional strict preferences Ho 4 =" Hp =" Hy 1. The effect of this extension is to
remove the two endpoints of the representing set of s.d.e.u. functions, so that >" is
represented by the open line segment connecting vy with vy. SSK point out that, al-
though =" satisfies all their axioms, there is no agreeing probability/utility pair for
it, since the only two candidates have been deliberately excluded. They proceed to
axiomatize the concept of “almost state-independent” utilities, which agree with a
strict preference relation and are “within &” of being state-independent. Clearly, >"
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has an almost-state-independent representation, containing points arbitrarily close
to vg and vj.

In the present framework, where weak preference is primitive, there is no way to
implement a constraint such as Hy > Hy | except by asserting that Hy 77 Hg 4. for
some ¢ > 0. If this assertion is made, axiom A6 begins to nibble on the vy end of
the line segment and continues nibbling until the representation collapses to the v,
end. (See [18] for details.) If instead the other endpoint is removed, by adding the
constraint Hy4—, 77 Hy for ¢ > 0, collapse occurs to vg. If both constraints are
added, the entire interval is annihilated, yielding incoherence (a violation of AS5).
Hence, this example is unstable in the sense that any finite extension of the original
preference relation leads to a collapse to one or the other of the original probabil-
ity/utility pairs, or else to incoherence.

5. The need for stronger state-independence. In the preceding example a
strict preference relation was represented by an open set of s.d.e.u. functions
whose extreme points were state-independent, and in extending that relation by
imposing e-tighter weak preferences, it was impossible to retain any agreeing
state-dependent utilities that were not convex combinations of agreeing state-
independent utilities. A second example shows that this is not always the case
under axioms A1-A6: the representing set of state-dependent utilities is not always
a convex hull of state-independent utilities, so that nonconstant lotteries may have
lower or upper expected utilities that are not supported by any probability/utility
pairs. This is not due to the choice of weak vs. strict preference as a primitive,
but rather due to an inherent weakness of the usual state-independence axiom in
the absence of completeness. A6 serves (only) to extend conditional preferences
between constant lotteries to other conditioning events, but, without completeness,
there may be few pairs of constant lotteries whose conditional preferences are
known, and hence, there may be limited opportunity to apply this axiom.

To illustrate this problem, let there be three states and three consequences, and
let X be the lottery defined by X (1,0) = X (2,2) = X(3,1) = 1. That is, X yields
consequences 0, 2 and 1 with certainty in states 1, 2 and 3 respectively. Suppose
that all states are judged to have probability at least 0.1, and X is judged to have an
unconditional expected utility of at least 0.5. Furthermore, a coin flip between X
and {consequence 2 if state 1, otherwise Z} is preferred to a coin flip between
utility 0.5 and {utility 0.9 if state 1, otherwise Z}, but also a coin flip between X
and {utility 0.1 if state 2, otherwise Z} is preferred to a coin flip between utility 0.5
and {consequence 2 given state 2, otherwise Z}. The common alternative Z in each
comparison is arbitrary by Theorem 1. The basis for 7~ can then be expressed as

5.1 Hg 7~ Ho for E=E{,E,, Es,
(5.2) X 7 Hos,
(5.3) sEiHy +3X 7 SEHo9 + 5Hoss,

(5.4) 5E:Ho 1 + 3X 7 3EHy + 5Hpss,
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where the arbitrary common term %(1 — E1)Z has been suppressed on both sides
of (5.3), and likewise %(1 — E»)Z has been suppressed in (5.4). Notice that, by
Theorem 1, (5.2) implies E1Y + 3X 5 JE|Y + $Ho s for any Y, from which
(5.3) has been constructed by replacing Y with H, on the LHS and replacing it
with Hoo on the RHS. Similarly, (5.2) implies JE;Y + X+ = 1E,Y + JHoss,
from which (5.4) has been constructed by replacing Y with Hy ; on the LHS and
with H, on the RHS. These two new preferences imply that the lower bound on the
expected utility of X among all probability/utility pairs agreeing with >~ must be
strictly greater than 0.5, which can be seen as follows. First, an s.d.e.u. function v
agrees with (5.3) if and only if U, (X) — U, (Ho5) > U,(E1Hp9) — U, (E1H>), and
it agrees with (5.4) if and only if U,(X) — Uy(Ho5) > Uy(Eo2Hy) — Uy (E2Hp 1).
Second, because U,(Hp 1) < U,(Hpo), any v must satisfy either U,(Hpo) —
Uy(Hy) > 0 or Uy(Hy) — Uy(Hp.1) > 0 or both, and if v is a probability/utility
pair that agrees with (5.1), it must also satisfy the corresponding conditional in-
equalities Uy (E{Hp9) — Uy,(E{H3) > 0 or U, (E2H3) — U, (E2Hp 1) > 0 or both,
because E; and E, have positive lower probability. Hence, a probability/utility
pair v can agree with (5.1), (5.3) and (5.4) only if U,(X) — U,(Hps5) > 0, that
is, Uy(X) > 0.5. In fact, by nonlinear programming, the minimum expected
utility of X among all agreeing probability/utility pairs is achieved at p(1) =
0.41, p(2)=0.1, p(3) =0.49, u(2) = 0.379/0.51 = 0.74314, and its value is
pu2) + p(3) =0.564314.

However, by direct application of axiom A6 together with A1-A5, the expected
utility of X cannot be determined to be strictly greater than 0.5. To apply A6, it is
first necessary to find nonnegative linear combinations of the differences between
the LHS’s and RHS’s of (5.1)—(5.4) that are conditionally constant—that is, of the
form EB, where E is a not-potentially-null event and B is constant across states.
But the search for such conditionally constant terms is constrained here by the
presence of a nonconstant term proportional to X — Hy 5 in the differences between
LHS’s and RHS’s of (5.2)-(5.4), as well as by the use of two different condition-
ing events in (5.3) and (5.4). Furthermore, in order for A6 to “bite,” B needs to
have a negative lower expected utility when conditioned on some other event F.
The effect of applying A6 will then be to raise this lower expected utility to zero,
which shrinks the set of s.d.e.u. functions representing >-. In the example the few
conditionally-constant lottery differences EB that can be constructed from (5.1)—
(5.4) all turn out to satisfy B >* 0, which is uninformative. (This can be deter-
mined by solving a sequence of 14 linear programs.) The lower expected utility
of X therefore remains at 0.5 despite the fact that this value is not realized, or even
closely approached, by any probability/utility pair agreeing with 7.

This example shows that when preferences are incomplete, axiom A6 is in-
sufficient to guarantee that they are represented by (the convex hull of ) a set of
probability/utility pairs. Evidently, a stronger condition is needed, such as follows:
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A6* (Strong state-independence) If X and Y are constant, X' - Y, and

Hg 2 H, and Hy 2 H, with p > 0, then

aEX + (1 —a)X' —aEY + (1 —a)Y’

= BFX+ (1 -pX = BFY+(1-8Y

for 8 =1 if @ = 1 and otherwise for all 8 such that % < %g.
In words, A6* requires that whenever a weak preference between two arbitrary
lotteries X" and Y’ is preserved under an objective mixture with two conditional
constant lotteries EX and EY, respectively, and the common conditioning event E
is not potentially null, then the same preference is preserved under a mixture with
the same constant lotteries conditioned on any other common event F, where the
odds-ratio of the new mixture can be at least as large as the original odds-ratio
multiplied by the ratio of the lower probability of E to the upper probability
of F. In terms of a primal set B*** of preferred directions, A6* requires that if
B’ € 8*** and B’ + EB € 8***, where B is constant and E is not potentially null,
then B’ + (p/q)FB € 8***. If - satisfies A1-A6, then it must have an extension
that also satisfies A6*, because A1-A6 require the existence of at least one agree-
ing probability/utility pair, and the additional preferences implied by A6* do not
eliminate any agreeing probability/utility pairs. The scale factor p/q ensures pre-
cisely that, even in the worst case where U,(B’) > 0, U,(B) <0, p,(E) = p and
pv(F) =q, Uy(B) + py(E)U,(B) > 0 = U,(B') + (p/q) py(F)U,(B) > 0 for
any v that is a probability/utility pair.

The stronger axiom does affect the counterexample discussed above. Let
B’ = X — Hps, in terms of which (5.2), (5.3) and (5.4) are equivalent to
B' € 8***, B’ + E{(H, — Hypy) € 8** and B’ + E;(Hy;—H;) € 8***, re-
spectively. By linear programming, E{, E; and E3; are found to have identical
lower probabilities of 0.1 and upper probabilities of 0.41, 0.4444 ... and 0.8,
respectively. A6* can then be applied to add the following preferred directions
to 8**: B’ 4+ (0.1/0.4444.. )E,(H, — Hpo), B' + (0.1/0.8)E3(H, — Hpo),
B’ + (0.1/0.41)E;(Hy; — Hy) and B’ + (0.1/0.8)E3(Hy ; — Hy). These vectors
must have nonnegative expected utility under any agreeing s.d.e.u. function, which
immediately raises the lower expected utility of X from 0.5 to 0.54, and further
iterations of A6* approach the lower limit of 0.564314 among agreeing proba-
bility/utility pairs. However, iteration of A6* via linear programming and vertex
enumeration is a cumbersome way to compute probability and utility bounds. The
main theorem of this section shows that there is a simpler way:

THEOREM 4. - satisfies A1-AS5 and A6* if and only if it is represented by a
nonempty set V*** € Vt+ of s.d.e.u. functions that is the convex hull of a set of
probability/utility pairs. In particular, if {X, 7= Yy} is a basis for 7, then V*** is
the convex hull of the set of probability/utility pairs in V™ that satisfy {U,(X,) >
Uy (Yn)}-
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If the basis is finite, the construction of V*** can be carried out as follows.
First, form the convex polytope defined by the constraints {U,(X,) > U,(Yn)},
v € V1. Next, take the intersection of this polytope with the nonconvex set of all
probability/utility pairs. (If the latter intersection is empty, the preferences do not
satisfy AS given A1-A4 and A6*: they are incoherent.) Finally, take the convex
hull of what remains: this is the set V***.

6. Discussion. It has been shown that, in order to obtain a convenient rep-
resentation of incomplete preferences by sets of probability/utility pairs, it does
not suffice merely to delete the completeness axiom from the standard axiomatic
framework of Anscombe and Aumann, due to a fundamental weakness of the tra-
ditional state-independence axiom in the absence of completeness. The approach
here has been to substitute a stronger state-independence postulate (A6*), which
still has “bite” in the absence of completeness. This approach follows a common
theme in axiomatic rational choice theory, namely, the search for a small number of
independent, constructive norms of behavior which collectively turn out to imply
the existence of measurable beliefs and values.

Seidenfeld [26] has suggested a modified approach: instead of directly strength-
ening the state-independence property, simply “compel the missing preferences”
by the principle of indirect reasoning, namely, compel the preference Y > X
[Y - X] whenever the contrary assertion X 72 Y [X > Y] would lead to a violation
of the prevailing axioms in light of preferences already known. According to this
principle, wherever a weak [strict] preference is “precluded,” the opposite strict
[weak] preference must be affirmed. In the example of the previous section, it is
not directly implied by A1-A6 that X 7~ H,, for any u > 0.5, yet the same axioms
preclude that H,, 2~ X for any u < 0.564314. If indirect reasoning were invoked,
the preferences X > H,, would immediately be compelled for all # < 0.564314. By
the same token, Theorem 3 would suffice to fix the lower [upper] expected utility
of any lottery at the minimum [maximum] achieved among all agreeing proba-
bility/utility pairs, and the stronger state-independence axiom A6* would not be
needed for the tighter representation of Theorem 4. (SSK use indirect reasoning in
a more limited role to deal with closure of the sets of target utilities in their model,
a step which is avoided here through the use of weak rather than strict preference
as a primitive.)

Indirect reasoning, otherwise known as modus tollens ((p — q) A —q) — —p),
is a tautological implication of two-valued propositional logic; hence, it applies
to preferences that are complete: if either X 7~ Y or else Y > X must be true,
then if one is precluded, the other naturally must be affirmed. Indirect reasoning
also applies tautologically to incomplete preferences under axioms A1-AS (only),
because according to Theorem 1, the preference X - Y merely adds the new di-
rection X — Y to the convex cone B* of preferred directions, which is to say, it
interacts linearly with preferences already known. Thus, X 7~ Y is precluded pre-
cisely when X — Y combines linearly with an existing element of 8* to produce
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a vector in the open negative orthant, implying that Y — X + Z € 8* for some
Z € B8, which does entail Y > X. However, the tautology breaks down when
the conventional state-independence axiom A6 is added to the mix, because the
new direction X — Y then interacts nonlinearly with an already-known direction
of preference if they can be linearly combined to yield a conditionally constant
direction that can be propagated to other conditioning events. When the new con-
ditional directions are also added to the cone, a vector in the open negative orthant
may result, thus precluding X >~ Y even if it is not already implied that Y > X.
Under these conditions, indirect reasoning becomes a logically separate “axiom”
of rational choice to which we may or may not wish to subscribe.

The argument in favor of indirect reasoning is that, at the end of the day,
the decision maker in the example of Section 5 might face a choice between,
say, X and Hg s54. If the preference Hos4 7~ X is precluded, it would appear as
though the choice of Hps4 over X should also be precluded, in which case the
implication X > Hy 54 would appear to be inescapable as a requirement of rational
choice. However, the counterargument is that the point of dropping the complete-
ness assumption is precisely to permit the decision maker to judge some alterna-
tives to be noncomparable, which weakens the link between preference and choice
to a one-way implication: a preferred alternative should be chosen where it exists,
but a chosen alternative need not be preferred if the alternatives are regarded as
noncomparable. In the example, X and Hps4 are noncomparable under axioms
A1-A6 given (only) the preferences (5.1)—(5.4), hence, either may be chosen on
that basis, and the choice of Hy s4 over X is in fact supported by some agreeing
state-dependent utilities that are not ruled out by A6 because of the relatively weak
constraints it imposes on the shape of the agreeing set V**. (What is actually pre-
cluded is not the preference of Hy s4 over X per se, but rather the additional con-
ditional preferences that would be implied by declaring Hg 54~ X in the presence
of A6.) Still, even if indirect reasoning is not an inescapable requirement of ratio-
nal choice, it can be defended as an axiom that might be useful to enforce when
preferences are incomplete, as it is used elsewhere in the foundations of mathe-
matics (e.g., in geometry). However, in this regard, it does not have the elementary
character of the other axioms and cannot be tested independently of them, so it
is still of interest to ask whether there is some other “direct” postulate that will
reduce indirect reasoning once again to a tautology, and that is precisely what A6*
accomplishes here.

This paper has considered the case of finite sets of states and consequences.
SSK consider the somewhat more general case of a countable set of consequences
and a finite partition of a possibly-infinite underlying state space. However, it is
often desirable to consider even more abstract settings involving uncountable sets.
The case in which the state space is a compact subset of :i” and the consequence
space is a compact subset of iR or N is of particular importance (e.g., in financial
economics), where a lottery would naturally be defined by a probability density
or cumulative mass at a given consequence in a given state. The axioms of this
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paper are applicable to such objects, and Theorems 1 and 2 can still be obtained by
appropriately generalized separating hyperplane theorems: the primal representa-
tion of - is again a convex cone whose directions are differences between more-
preferred and less-preferred lotteries, and the dual representation is a convex set
of agreeing s.d.e.u. functions; indeed, just such a representation is given by Garcia
Del Amo and Rios Insua [6]. The further restriction to state-independent repre-
sentations consisting of sets of probability/utility pairs is more problematic but
very much of interest in order to reduce the dimensionality of the parameter space
in Bayesian robustness applications. Under suitable regularity (e.g., smoothness)
conditions, it might be conjectured that a representation of incomplete preferences
by sets of state-independent or almost state-independent utilities could still be ob-
tained, since any discretization of the state space and consequence space would
have to satisfy Theorems 3 and 4 of this paper. The issue of “missing preferences”
would presumably still arise, requiring either an axiom such as A6* of this paper
or else the indirect reasoning principle. An analogous set of results in Savage’s
framework (which requires an infinite state space but does not involve objective
probabilities) would appear to be more difficult to obtain, since it does not lend it-
self to the same techniques of convex analysis that are made possible by objective
mixtures, although his state-independence axiom is essentially the same as that of
Anscombe—Aumann and might be expected to suffer a similar loss of traction in
the absence of completeness.

APPENDIX

PROOF OF THEOREM 1. Suppose that X — Y o« X' — Y/, that is, (X — Y) =

(1 — )X’ —Y') for some « € (0, 1), where X, Y, X', Y are lotteries. Then, by
the mixture-independence axiom, X -2 Y ¢ oX+ (1 —o)X' ZaY+ (1 —a)X' =
aX + (I —a)Y & X' = Y/, establishing that there is a collection of vectors B*
such that Be 8* = aB € 8*Va >0 and X 7Y & X — Y € 8*. Mixture-
independence and transitivity together imply that if X =~ Y and X' >~ Y/, then
aX+ (1 —a)X' ZaY + (1 —a)Y/, establishing that B* is convex. The best/worst
axiom establishes that 8* is nonempty (in particular, it includes H. — Hy and
H; — H, for ¢ > 1), but coherence requires that it not be the whole space (in par-
ticular, it excludes Hy — Hj), and the continuity axiom implies that it is closed.
O

PROOF OF THEOREM 2. Every convex cone 8* C B is associated with a dual
cone V* C B such that B € 8* if and only if U,(B) = v”B > 0 for all v € V*,
and coherence requires that U,(H; — Hp) > 0 for all v € V*. Since the elements
of B8* are differences between pairs of lotteries, their components sum to zero
within states. Hence, U,(B) > 0 < U, (B) > 0, where v/'(s, ¢) = av(s, ¢) + B(s)
for a > 0 and arbitrary {B(s)}, so w.l.o.g. it can be assumed that v € V*. [
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PROOF OF THEOREM 3. It suffices to show that a preference relation satis-
fying A1-A6 can be extended to assign a unique state-independent utility to any
consequence ¢ > 1. This extension can then be performed for c =2,3,..., K, in
turn, to obtain a unique state-independent utility function, for which every agreeing
s.d.e.u. function is a probability/utility pair. Therefore, consider some consequence
¢ > 1, and let u(c) denote the maximum value of u such that H, 7~ H,—that is,
the greatest lower utility for consequence c. (The maximum exists by virtue of
continuity.) Since A1-AS5 apply, there exists a cone of preferred directions repre-
senting 7. When A6 also applies, let this cone be denoted by B**: in this case
it contains all vectors of the form E;(H. — H,(.)). Then 7 can be coherently ex-
tended so as to assign ¢ an upper utility also equal to u(c). To show this, let B}*
denote the convex hull of 8** and the rays whose directions are Eg(H, ) — H¢)
for all states s, noting that these vectors are opposite in sign to those already known
(by A6) to belong to B8**. Since B* is also a convex cone, it represents a relation
satisfying A1-A4; and since it is formed by adding to 8** a difference between
two constant lotteries and all the conditionalizations thereof, the relation it repre-
sents also satisfies A6. If B}* is also disjoint from the negative orthant 8-, then
the relation it represents is coherent and is the desired extension 7~.. It remains to
be shown, then, that 8" is disjoint from B~. Suppose that this is not true. Then
there must exist B € 8** and {8(s)} € [0, 1] such that

[—B — (Zﬁ(s)Es (Hy() — HC))} >0

seS

— |:_B - (Z(l — B(s))Es(He — HM(C))) — (Hue — HC)1| _ >0

seS

< [—B/ — (Hu(c) — Hc)] >0,

min
where

B'=B+) (1—B(s))Es(He — Hy(e)).
seS

Note that B’ € 8**, because B** includes all vectors of the form E(H. — Hy,())
and their nonnegative linear combinations. Rearrangement of the last inequality
yields (H, — H,()) > B/, which is equivalent to (H. — Hy,(¢)+¢) > B’ for some
e > 0. Because H, — H, ()4, stochastically dominates B’ € 8**, it follows that
H. — H, )+« € 8™, whence also H. 22 Hy(¢)+¢. Thus, u(c) + ¢ is a lower utility
for ¢, contradicting the assumption that u(c) was the greatest lower utility for ¢
under the relation 27, therefore 8;* must be disjoint from $B~. Finally, the same
method of extension, namely, adding a preference which asserts that the greatest
lower utility is also an upper utility, can be applied to an arbitrary constant lot-
tery X prior to {H.} to show that the maximum or minimum expected utility of a
constant lottery must be achieved by an agreeing probability/utility pair. [
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PROOF OF THEOREM 4. The earlier results (based on A1-A6 only) establish
that 7 is represented by a convex cone of preferred directions and dually by a con-
vex set of s.d.e.u. functions containing at least one probability/utility pair. When
the stronger A6* holds, let these sets be denoted by B8*** and V***, respectively.
It must be shown that V*** is the convex hull of a set of probability/utility pairs,
which means that, for any lotteries X, Y, the minimum of U, (X) — U,(Y) over
all v € V*** is achieved at some v which is a probability/utility pair. Suppose that
d = min, ey (Uy (X) — Uy(Y)). Since U, (Hp) = 0 and U, (H,) = u, it follows
that d is the maximum value of u for which

(7.1) Uy(3X+ 1Ho) > U,(AY + 1H,)

for all v € V***, or, equivalently, the maximum value of u for which %X + %Ho =
%Y + %Hu or, equivalently, the maximum value of u for which X+ Hg — Y —
H, € 8**. To prove that there is a probability/utility pair for which (7.1) holds
with equality, it will suffice to show that >~ has an extension satisfying A1-A®6,
denoted -4, in which the reverse preference also holds, namely, %Y 4+ %Hd Zd

%X + %Ho. [It is not necessary to enforce the stronger axiom A6* on =4, be-
cause if (7.1) holds with equality for all v agreeing with >4, A6 guarantees via
Theorem 3 that at least one must be a probability/utility pair.] The primal repre-
sentation of 7-,4 is constructed as follows. First, define B; = X + Hy — Y — Hy,
noting that it is an extreme direction of 8***. Then include the reverse prefer-
ence by adding to the convex cone B*** the ray whose direction is —B,;. Then
apply A1-A3, which convexifies the set, yielding an expanded cone. (A4 and AS
are automatically satisfied thus far.) Finally, apply A6 (the special case of A6*
with « = 1), which means to (i) determine which new conditional directions of the
form F;B;, where F; is a not-potentially-null event and B; is constant, are in the
expanded cone; (ii) then propagate the same conditional preferences to all possible
conditioning events by adding the directions {E;B;} for all s and i; and (iii) take
the convex hull again. Thus, the primal cone consists of all vectors of the form
Bo — vaBa + >_;.; v5iEsBi, where Bg € 8", y; > 0 and y;; > 0. Suppose that
one such vector is in the open negative orthant 887, in violation of A5, that is,
suppose that Bg — yyBg + 35 ; v5siEsBi = Z, or, equivalently,

(7.2) By + Z VsiEsBi = vaBa + Z,

S,i

where By € 8*** and Z € 8. It will be shown that this leads to a contradiction.
Because the conditional direction F;B; is in the convex hull of B8*** plus the
additional direction —B,, but not in B*** alone, it satisfies B; + F;B; € 8***.
Because B; € 8*** and each F; is not-potentially-null and the original relation
satisfies A6*, there exist positive constants {d,;} such that B; 4+ §;E;B; € B***
for all i and s. Multiplying through by ys;/38si, summing and invoking the con-
vexity of B8*** yields (3_; ; ¥5i/8si)Ba + X5 ; vsiEsBi € B***, whence also Bo +
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(O si Vsi/8si)Ba + 25 VsiEsBi € 8. Adding (3_; ; ¥s5i/dsi)Ba to both sides
of (7.2) and comparing, it follows that (yg + > ; ¥si/8si)Ba + Z € 8™**. Multi-
plication by k = (v + >, ; vsi/8si) ! yields By + kZ € B**, where kZ € B,
contradicting the assumption that B; was an extreme direction of B8*** and con-
structively proving the existence of u > d for which %X + %Ho = ly + %Hu.

0
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