
The Annals of Statistics
2006, Vol. 34, No. 5, 2387–2412
DOI: 10.1214/009053606000000759
© Institute of Mathematical Statistics, 2006

A MULTIVARIATE EMPIRICAL BAYES STATISTIC FOR
REPLICATED MICROARRAY TIME COURSE DATA

BY YU CHUAN TAI1 AND TERENCE P. SPEED2

University of California, Berkeley and Walter and Eliza Hall Institute
of Medical Research, Australia

In this paper we derive one- and two-sample multivariate empirical
Bayes statistics (the MB-statistics) to rank genes in order of interest from
longitudinal replicated developmental microarray time course experiments.
We first use conjugate priors to develop our one-sample multivariate em-
pirical Bayes framework for the null hypothesis that the expected tem-
poral profile stays at 0. This leads to our one-sample MB-statistic and a
one-sample T̃ 2-statistic, a variant of the one-sample Hotelling T 2-statistic.
Both the MB-statistic and T̃ 2-statistic can be used to rank genes in the order
of evidence of nonzero mean, incorporating the correlation structure across
time points, moderation and replication. We also derive the corresponding
MB-statistics and T̃ 2-statistics for the one-sample problem where the null
hypothesis states that the expected temporal profile is constant, and for the
two-sample problem where the null hypothesis is that two expected temporal
profiles are the same.

1. Introduction. Microarray time course experiments differ from other mi-
croarray experiments in that gene expression values at different time points can
be correlated. This may happen when the design is longitudinal, that is, where the
mRNA samples at successive time points are taken from the same units. Such lon-
gitudinal experiments make it possible to monitor and study the temporal changes
within units of biological processes of interest for thousands of genes simulta-
neously. Two major categories of time course experiments are those involving
periodic and developmental phenomena. Periodic time courses typically concern
natural biological processes such as cell cycles or circadian rhythms, where the
temporal profiles follow regular patterns [7, 8, 25, 26]. On the other hand, devel-
opmental time course experiments measure gene expression levels at a series of
times in a developmental process, or after applying a treatment such as a drug
to the organism, tissue or cells [9, 32, 34]. In this case, we typically have few
prior expectations concerning the temporal patterns of gene expression. The gene
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ranking methods we develop in this paper are mainly for longitudinal replicated
developmental time course data.

A typical microarray time course dataset consists of expression measurements
of G genes across k time points, under one or more biological conditions (e.g.,
wildtype versus mutant). The number of genes G (1,000–40,000) is very much
larger than the number of time points k, which can be 5–10 for shorter and 11–20
for longer time courses. Many such experiments are unreplicated due to cost or
other limitations, and when replicates are done, the number n is typically quite
small, say, 2–5. We refer the reader to [29] for a fuller review of microarray time
course experiments.

One of the statistical challenges here is to identify genes of interest. In what we
call the one-sample problem, these are genes whose patterns of expression change
over time, perhaps in some specific way. In the two-sample problem we seek genes
whose temporal patterns differ across two biological conditions. Such genes are of
interest to biologists because they are often involved in the biological processes
motivating the experiment. The challenge arises from the fact that there are very
few time points, and very few replicates per gene. The series are usually so short
that we cannot consider using standard time series methods as described in [10],
such as Fourier analysis, ARMA models or wavelets. The methods proposed in
this paper are for the one- and two-sample problems with longitudinal replicated
microarray time course experiments of the developmental kind.

The gene ranking problem for such microarray experiments is relatively new.
Few methods have been proposed to deal specifically with these problems. The
most widely used method for identifying temporally changing genes in replicated
microarray experiments is to carry out multiple pairwise comparisons across times,
using statistics developed for comparing two independent samples, [2, 6, 13,
19, 20, 23, 24, 33]. These methods are not entirely appropriate as they do not
incorporate the fact that longitudinal microarray time course samples are corre-
lated. A simple and intuitive approach to our problem is to use classical or mixed
ANOVA models; see Chapter 6 of [11] for a discussion of the latter for analyz-
ing longitudinal data and [22] for a modified approach based on the former for
use in the microarray context. However, a number of questions are not adequately
addressed by the classical ANOVA methods, or the variants of [22]. As with the
pairwise comparisons, the F -statistic assumes that gene expression measurements
at different times are independent. The classical ANOVA models also assume nor-
mality of the gene expression measurements, which may not be a great concern
when these are on the log scale. More importantly, standard F -statistics in this
context will generally lead to more false positives and false negatives than is desir-
able, due to poorly estimated error variances in the denominator. This issue can be
dealt with using the idea of moderation; see, for example, [2, 14, 20, 24, 33]. Mod-
eration in our longitudinal context means the smoothing of gene-specific sample
variance–covariance matrices toward a common matrix. When we do this, fewer
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genes which are not differentially expressed over time but have very small repli-
cate variances are falsely identified as being differentially expressed, and fewer
genes which are differentially expressed over time but have large replicate vari-
ances (e.g., due to outliers) are missed by the F -statistic.

A moderated gene-specific score based on the Wald statistic for the longitudi-
nal one-sample problem was proposed in [15]. However, their method is only ap-
plicable to the situation when the number of replicates is greater than the number
of time points. In [3] the expression profiles for each gene and each of two bio-
logical conditions were represented by continuous curves fitted using B-splines.
A global difference between the two continuous curves and an ad hoc likelihood-
based p-value was calculated for each gene. B-splines were also used in [17] to
identify genes with different temporal profiles in the two-sample case. Recently,
B-splines were again adopted by [27] to model the population mean, constructing
the F -statistics for both longitudinal and cross-sectional data with one or more
biological conditions. A major feature of this paper was a careful treatment of the
multiple testing issue in this context. A novel HMM approach which incorporates
the dependency in gene expression measurements across times was proposed in
[36] for data with two or more biological conditions. This is one example of us-
ing HMM to identify differentially expressed genes across at least two biological
conditions in this context.

The multivariate empirical Bayes model proposed in this paper was motivated
by the analogous univariate model proposed in [20] for identifying differentially
expressed genes in two-color comparative microarray experiments, and the more
recent extensions by Smyth [24]. The B-statistic in [20] and [24], and the uni-
variate moderates t-statistic t̃g in [24], consider just one parameter or contrast at
a time in the null hypotheses. They are not for null hypotheses with two or more
parameters or contrasts of interest simultaneously. However, a partly-moderated
F -statistic was introduced in [24], which moderates the error variance in the de-
nominator of the ordinary F . This partly-moderated F -statistic is useful for the
simultaneous comparison of multiple uncorrelated contrasts, but as mentioned
above, it is not appropriate for longitudinal experiments. Both the MB-statistics
and the T̃ 2-statistics derived in this paper provide a degree of moderation, while
retaining the temporal correlation structure. They can be used with both single-
and two-channel microarray experiments.

This paper is organized as follows. After briefly introducing our notation, we
formally state the null and alternative hypotheses for the gene ranking problem in
Section 2. In Section 3 we present moderated versions of the standard likelihood-
ratio and Hotelling T 2-statistics. We formally build up our multivariate empirical
Bayes model and derive the MB- and T̃ 2-statistics in Section 4. A brief description
of a case study is presented in Section 5. Section 6 reports results from a simu-
lation study in which we compare the one-sample MB-statistic (the T̃ 2-statistic)
of Section 4.3 with other statistics. We discuss our models and give directions for
future work in Section 7.
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Now we introduce some notation for one-sample problems. For two-sample
problems, the notation is similar and easily conceived. For each gene g,
g = 1, . . . ,G, we have ng independent time series, and we model these as i.i.d.
k × 1 random vectors Xg1, . . . ,Xgng with gene-specific means µg and covariance
matrices �g . Since relative or absolute gene expression measurements are approx-
imately normal on the log scale, we make the multivariate normality assumption
on data Xg1, . . . ,Xgng . Our results are to be judged on their practical usefulness,
not on the precise fit of our data to a multivariate normal distribution. As will be
seen shortly, our final formulae involve the multivariate t distribution. Thus, a mea-
sure of robustness is built in, and our approach will probably be about as effective
for elliptically distributed random vectors. We use the natural conjugate priors for
µg and �g , that is, an inverse Wishart prior for �g and a dependent multivariate
normal prior for µg . To simplify the notation, the subscript g will be dropped for
the rest of this paper. The statistical models presented in the rest of this paper are
for an arbitrary single gene g.

The details in this paper differ in two ways from the standard conjugate priors.
First, we also have an indicator I such that I = 1 when the alternative K is true
and I = 0 when the null H is true, with the priors for µ differing in these two
cases. Second, when the null hypothesis states that a gene’s mean expression level
is constant, in order to get a simple closed form expression for the posterior odds,
we assume that the gene-specific covariance matrix � commutes with the k × k

projection matrix P = k−11k1′
k , that is, P� = �P. In this case the k × k inverse

Wishart prior for � is replaced by a (k − 1) × (k − 1) inverse Wishart prior for a
part of � and an inverse gamma prior for the remainder. These two-part priors are
independent; see Section 4.3 for details.

2. Hypothesis testing. Our gene ranking problem will be formally stated as a
hypothesis testing problem. In this paper we only seek a statistic for ranking genes
in the order of evidence against the null hypothesis; we do not hope to obtain raw
or adjusted p-values as in [27].

Following the notation in [4], the null hypothesis is denoted by H , while the
alternative hypothesis is denoted by K . The null hypothesis corresponding to
a gene’s mean expression level being 0 is H :µ = 0, � > 0; the alternative is
K :µ �= 0, � > 0. An easy extension is H :µ = µ0, � > 0 versus K :µ �= µ0,
� > 0, where µ0 is known. Later we will consider the null hypothesis that a gene’s
expression is constant, against the alternative that it is not: H :µ = µ01, � > 0,
where µ0 is a scalar representing the expected value of the gene’s expression level
at any time point under H , and 1 is the k×1 constant vector of 1s; K :µ �= µ01,
� > 0. Finally, we will consider the null hypothesis that a gene’s mean expres-
sion levels are the same under two different biological conditions, versus the
alternative that they are not: H :µZ = µY , �Z = �Y = � > 0; K :µZ �= µY ,
�Z = �Y = � > 0.
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3. The moderated LR-statistic.

3.1. One-sample or paired two-sample problem. A likelihood-ratio statistic
can be used directly to test the null hypothesis H against the alternative hypothesis
K when n > k. According to standard multivariate results (e.g., [21]), under the
alternative hypothesis that there are no constraints on µ and �, their maximum
likelihood estimates are

µ̂K = X,

�̂K = n − 1

n
S,

where S = (n − 1)−1 ∑n
i=1(Xi − X)(Xi − X)′ is the sample variance–covariance

matrix. Also as in [21], the maximum likelihood estimate for the unconstrained �

under the null that µ = µ0 is

�̂H = n − 1

n
S + dd′,

where d = µ̂K − µ̂H , the difference between the maximum likelihood estimates
for µ0 (if unknown) under H and K . If µ0 is known, then d = µ̂K − µ0. The
likelihood ratio statistic for testing any such H against the above K is

LR = 2(lmax
K − lmax

H )
(3.1)

= n log
(

1 + n

n − 1
d′S−1d

)
.

If the null hypothesis states that µ0 = 0, then d reduces to X, hence, the likelihood-
ratio statistic is equation (3.1) with d replaced by X. Similarly, if µ0 is known, then
d = X − µ0. On the other hand, if the null hypothesis states that µ0 = µ01, then
the maximum likelihood estimate for µ is

µ̂H =
(

1′S−1X
1′S−11

)
1.

The statistic nd′S−1d is the one-sample Hotelling T 2-statistic, and by Sec-
tion 5.3.1b in [21], it is distributed as a Hotelling T 2(k − 1, n − 1) under H , that
is, ((n − k + 1)nd′S−1d)/((n − 1)(k − 1)) has an F -distribution with degrees of
freedom (k − 1, n − k + 1).

In the microarray time course context, the number of replicates n is typically
smaller than the number of time points k, and so S has less than full rank. Further-
more, as discussed in [29], we wish to moderate the sample variance–covariance
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matrix. Our moderated S will take the form

S̃ = ν� + (n − 1)S
ν + n − 1

,

where ν > 0 controls the degree of moderation, and � > 0 is the common k × k

matrix toward which S is smoothed. In Section 4.1 we give the theoretical reason
for choosing this moderated variance–covariance matrix S̃ and explain how we es-
timate ν and �. Replacing S with S̃ in the LR-statistic, our moderated LR-statistic
is

L̃R = 2(lmax
K − lmax

H ) = n log
(

1 + n

n − 1
d̃′S̃−1d̃

)
.(3.2)

When all the genes have an equal number of replicates n, equation (3.2) is
a monotonic increasing function of nd̃′S̃−1d̃. We define the quadratic form
nd̃′S̃−1d̃ = ‖n1/2S̃−1/2d̃‖2 to be the moderated one-sample Hotelling T 2-statistic.
In the case of the null H :µ = 0,� > 0, this is identical to the T̃ 2-statistic we
derive in Section 4.1. The one-sample moderated LR-statistic and the moderated
Hotelling T 2-statistic are hybrids of likelihood and Bayesian statistics, since S̃ is
estimated using the multivariate empirical Bayes procedure we describe below.

3.2. Unpaired two-sample problem. Similarly, in the unpaired two-sample
case, the moderated LR-statistic can be written as a function of the moderated
two-sample Hotelling T 2-statistic

L̃R = (m + n) log
(

1 + 1

m + n − 2

mn

m + n
d′S̃−1d

)
,

where d = Z − Y is the difference between sample averages and S = (m + n −
2)−1((m − 1)SZ + (n − 1)SY ) is the pooled sample variance–covariance matrix,
and

S̃ = (m + n − 2)S + ν�

m + n − 2 + ν
.

The term (m+n)−1mnd′S̃−1d is our moderated two-sample Hotelling T 2-statistic.
We use the same approach to estimate S̃ here as that for our two-sample multivari-
ate empirical Bayes model described in Section 4.2.

4. The multivariate empirical Bayes model.

4.1. One-sample or paired two-sample problem.

4.1.1. Models and priors. The data X1, . . . ,Xn are multivariate normal with
mean µ and covariance matrix �, denoted by Nk(µ,�). We define an indicator
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random variable I to reflect the status of the gene,

I =
{

1, if K is true,
0, if H is true.

We suppose that I has a Bernoulli distribution with success probability p,
0 < p < 1. Now we build up our multivariate hierarchical Bayesian model by first
assigning independent and identical inverse Wishart priors to the gene-specific co-
variance matrices �:

� ∼ Inv-Wishartν((ν�)−1),(4.1)

where ν > 0 and ν� > 0 are the degrees of freedom and scale matrix, respectively.
Given �, we assign multivariate normal priors for the gene-specific mean µ for
the two cases (I = 1) and (I = 0):

µ|�, I = 1 ∼ Nk(0, η−1�),

µ|�, I = 0 ≡ 0,

where η > 0 is a scale parameter.
The posterior odds are the probability that the expected time course µ does not

stay at 0 (i.e., I = 1) over the probability that µ stays at 0 (i.e., I = 0), given the
data X1, . . . ,Xn. Following [24]’s notation, we write

O = P(I = 1|X1, . . . ,Xn)

P (I = 0|X1, . . . ,Xn)
(4.2)

= p

1 − p

P(X1, . . . ,Xn|I = 1)

P (X1, . . . ,Xn|I = 0)
.

The distribution of the data given I can be written as

P(X1, . . . ,Xn|I ) =
∫

P(X|�, I )P (S|�, I )P (�|I ) d�.(4.3)

4.1.2. Multivariate joint distributions. Once the priors and the models are set,
the joint distributions of the data can be determined given I . We omit the standard
calculations leading to

P(X1, . . . ,Xn|I = 1)

= �k((n + ν)/2)

�k((n − 1)/2)�k(ν/2)
(4.4)

× (n − 1)(1/2)k(n−1)ν−(1/2)knπ−(1/2)k(n−1 + η−1)−(1/2)k

× |�|−(1/2)n|S|(1/2)(n−k−2)

|Ik + ((n−1 + η−1)ν�)−1XX
′ + (ν�/(n − 1))−1S|(1/2)(n+ν)

.

Thus, given I = 1, the probability density function of the data is a function of
X and S only, which follows a Student–Siegel distribution [1]. Following [1]’s
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notation, this distribution is denoted by StSik(ν,0, (n−1 + η−1)�, n − 1, (n −
1)−1ν�). For the case of I = 0, we get the same distribution with different pa-
rameters, namely, StSik(ν,0, n−1�, n − 1, (n − 1)−1ν�).

4.1.3. MB-statistic and T̃ 2-statistic. Define our moderated gene-specific sam-
ple variance–covariance matrix S̃ to be the inverse of the posterior mean of �−1

given S,

S̃ = [E(�−1|S)]−1 = (n − 1)S + ν�

n − 1 + ν
.(4.5)

The posterior odds O we defined earlier can be derived using the distributions of
the data given I and is

O = p

1 − p

(
η

n + η

)(1/2)k

(4.6)

×
(

n − 1 + ν + T̃ 2

n − 1 + ν + (η/(n + η))T̃ 2

)(1/2)(n+ν)

,

where T̃ 2 = t̃′t̃ and t̃ is the moderated multivariate t-statistic defined by

t̃ = n1/2S̃−1/2X.(4.7)

Following the tradition in genetics, the log base 10 of O is called the LOD score.
To distinguish it from the LOD score (also called the B-statistic) in the univariate
model of [20] and [24], the multivariate LOD score in this paper is called the
MB-statistic,

MB = log10 O.(4.8)

When all genes have the same number of replicates n, equation (4.8) is a
monotonic increasing function of T̃ 2. This shows that the MB-statistic is equiv-
alent to the T̃ 2-statistic when n is the same across genes, and therefore, one is
encouraged to use the T̃ 2-statistic in this case since it does not require the esti-
mation of η and leads to the same rankings as equation (4.8). We now derive the
distribution for T̃ 2.

By Gupta and Nagar [16], the Jacobian transformation from X to t̃ is J (X →
t̃) = |n−1/2S̃1/2|. Since equation (4.4) is a function of X and S only, it is the joint
probability density function for these two random variables. Substituting for X in
terms of t̃ in equation (4.4), and multiplying the resulting expression by J (X → t̃),
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the joint probability density function for t̃ and S given I = 1 is

P(t̃,S|I = 1)

= π−(1/2)k �((n + ν)/2)

�((n + ν − k)/2)

(
n + η

η

)−(1/2)k

(n − 1 + ν)−(1/2)k

×
(

1 + 1

n − 1 + ν

(
η

n + η

)
t̃′t̃

)−(1/2)(n+ν)

(4.9)

× 1

βk((n − 1)/2, ν/2)

× |S|(1/2)(n−k−2)

|ν�/(n − 1)|(1/2)(n−1)|Ik + (ν�/(n − 1))−1S|(1/2)(n+ν−1)
.

The above expression is factorized into parts involving S only and t̃ only, prov-
ing that t̃ and S are independent. It is apparent that t̃ has a multivariate t dis-
tribution with degrees of freedom n + ν − k, scale parameter n + ν − 1, mean
vector 0 and covariance matrix η−1(n + η)Ik . This distribution is denoted by
t̃|I = 1 ∼ tk(n + ν − k,n + ν − 1,0, η−1(n + η)Ik) [16]. It is straightforward
to see that t̃|I = 0 ∼ tk(n + ν − k,n + ν − 1,0, Ik). Given I = 1, S is distrib-
uted as a generalized type-II beta distribution with parameters (n − 1)/2, ν/2,
scale matrix ν�/(n − 1) and location matrix 0. The distribution is denoted by
GBII

k ((n − 1)/2, ν/2, ν�/(n − 1),0) [16]. The marginal distribution of S does
not depend on I so that P(S|I = 0) = P(S|I = 1). This distributional result is
used to estimate the hyperparameter �. The distribution for T̃ 2 under the null
follows immediately. Under H , k−1T̃ 2 has an F distribution with degrees of free-
dom (k, n + ν − k); equivalently, (n + ν − k)−1(n + ν − 1)T̃ 2 has the Hotelling
T 2-distribution T 2(k, n + ν − 1).

The T̃ 2-statistic is identical to the one-sample moderated Hotelling T 2-statistic
in Section 3.1 with the same null hypothesis.

For the easy extension to the above model, H :µ = µ0,� > 0 and K :µ �=
µ0,� > 0, where µ0 is known, all the results above hold with X replaced by
X − µ0.

4.1.4. Special cases.

1. � = σ 2Ik . By constraining � = σ 2Ik , we ignore the correlations among gene
expression values at different times, and assume the variances at different times
are equal. Suppose that the prior for σ 2 is

σ 2 ∼ inv-gamma
(1

2ν, 1
2νλ2)

.

Define

s2
j = (n − 1)−1

n∑
i=1

(Xij − Xj )
2,
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s̃2
j = (n − 1 + ν)−1(

(n − 1)s2
j + νλ2)

and

t̃j = n1/2Xj s̃
−1
j , j = 1, . . . , k.

In this case, the posterior odds are equivalent to a product of k independent uni-
variate odds,

O = p

1 − p

(
η

n + η

)(1/2)k k∏
j=1

(
n − 1 + ν + t̃j

2

n − 1 + ν + (η/(n + η))t̃j
2

)(1/2)(n+ν)

,(4.10)

and the MB-statistic is equivalent to the sum of k univariate B-statistics.

2. n = 1. When n = 1, that is, when there is no replication at all, each gene
has its own unknown variability. The moderated multivariate t-statistic becomes
t̃ = �−1/2X. The posterior odds are obtained by plugging in n = 1 in equa-
tion (4.6), and are found to be a function of X only. Since there is no replication,
our hyperparameters must be assigned values, for example, from previous experi-
ments.

3. k = 1. When k = 1, that is, when there is only one time point, the alternative
hypothesis states that there is differential expression at this single time point. Our
multivariate model should and does reduce to the univariate model in [20] and [24].

4.1.5. Limiting cases.

1. ν → ∞. In this case, the gene-specific variance–covariance matrices are
totally ignored. The moderated multivariate t-statistic above becomes t̃∞ =
n1/2�−1/2X, and T̃ 2∞ = t̃′∞t̃∞. The posterior odds become

O = p

1 − p

(
η

n + η

)(1/2)k

exp
(

1

2

(
n

n + η

)
T̃ 2∞

)
.

2. ν → 0. In this case, there is no moderation at all. The posterior odds are just
equation (4.6) with ν replaced by 0. If n < k, then S−1/2 should be calculated by a
g-inverse.

3. ν → ∞ and � = σ 2Ik . Define t̃∞j = n1/2λ−1Xj , j = 1, . . . , k. The posterior
odds become

O = p

1 − p

(
η

n + η

)(1/2)k

exp

(
1

2

(
n

n + η

) k∑
j=1

t̃2∞j

)
.

4. ν → 0 and � = σ 2Ik . In this case, the posterior odds are just equation (4.10)
with ν replaced with 0.
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4.1.6. Hyperparameter estimation. We have shown that the MB-statistic for
assessing whether or not a time course has mean 0 depends on (k2 + k + 6)/2
hyperparameters: ν, �, η and p. In practice, we need to estimate these hyperpa-
rameters, and plug in our estimates into the formulae for S̃, t̃, O, . . . and so on.
Slightly abusing our notation, we will use the same symbols for these estimates,
relying on context to make it clear whether we are assuming the hyperparameters
to be known or not. In our multivariate model, many more hyperparameters need
to be estimated, compared to the univariate models in [20] and [24], both of which
have four hyperparameters. Closed form estimators for the hyperparameters in the
univariate linear model setting are derived in [24], using the marginal sampling
distributions of the statistic t̃ and the sample variance s2, and are shown to be bet-
ter than the simple estimators in [20]. Following [24], the aim of this section is
to derive estimators for the hyperparameters in our multivariate model. In general,
the hyperparameter η associated with the case I = 1 is estimated based on only
a small subset of genes, while ν and � are estimated using the whole gene set.
Instead of estimating the proportion of differentially expressed genes p, we plug
in a user-defined value, since the choice of p does not affect the rankings of genes
based on the MB-statistic.

EB estimation of ν and �. The hyperparameter ν determines the degree of
smoothing between S and �. The method we use to estimate ν builds on that
used to estimate d0 in Section 6.2 in [24]. However, unlike d0 in [24], ν is associ-
ated with the k × k matrix �. Therefore, a method appropriate to this multivariate
framework is needed. Let ν̂j be the estimated prior degrees of freedom based on the
j th diagonal elements of the gene-specific sample variance–covariance matrices
(i.e., the replicate variances for the j th time point from the whole gene set) using
the method proposed in Section 6.2 in [24]. Our estimation of ν is based on the fol-
lowing two-step strategy. As the first step, set ν as ν̂ = max(mean(ν̂j ), k + 6), j =
1, . . . , k. This estimated ν̂ is used to estimate �. Once � is estimated, ν̂ is reset
to be ν̂ = mean(ν̂j ). In practice, one can even just plug in a user-defined value ν0

which gives the desired amount of smoothing. In such a case, the first step sets
ν̂ = max(ν0, k + 6). This ν̂ is used to estimate �. After � is estimated, ν̂ can be
reset to the user-defined value ν0.

Our estimate of � comes after the first step in the estimation of ν. We showed
that, under our model, S follows the generalized type-II beta distribution with ex-
pectation (ν − k − 1)−1ν�. By the weak law of large numbers, S converges in
probability to (ν − k − 1)−1ν�. We can thus estimate � by ν̂−1(ν̂ − k − 1)S. If
ν̂ → ∞, then � is estimated by S. The above estimates give quite satisfactory re-
sults on real data. A theoretical analysis of the estimation of our hyperparameters
will be given later. For the moment, we content ourselves with obtaining reason-
able estimates.
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EB estimation of η. The hyperparameter η is related to the moderated mul-
tivariate t-statistic t̃ of nonzero genes. The method we use to estimate η builds
on that of estimating v0 in [24], except that we now need to deal with the multi-
variate case. Let t̃j be the j th element of the moderated multivariate t-statistic t̃,
j = 1, . . . , k. As in Section 6.3 in [24], each t̃j gives an estimate of η, call it η̂j ,
based on the top p/2 portion of genes with the largest |t̃j |. We set η̂ to be the mean
of the η̂j .

4.2. Unpaired two-sample problem. Suppose there are two independent bio-
logical conditions Z and Y with sample sizes m and n, respectively. We can also
derive the MB-statistic for testing the null H :µZ = µY ,�Z = �Y > 0. The null
hypothesis turns out to be the same as that in Section 4.1: H :µ = 0,� > 0, if
we write µ = µZ − µY and � = �Z = �Y . That is, we solve this two-sample
problem using the one-sample approach in Section 4.1. We denote the m i.i.d. time
course vectors for biological condition Z by Z1, . . . ,Zm, each from a multivariate
normal distribution with mean µZ and variance–covariance matrix �. Similarly,
those for biological condition Y are denoted by Y1, . . . ,Yn, each with mean µY

and variance–covariance matrix �. Since the null hypothesis here is identical to
that in Section 4.1, the priors for µ and � are exactly the same as those in Sec-
tion 4.1, and we omit the details here. In a later paper we will attack this problem
by assigning independent priors for µY and µZ separately.

All the results follow immediately. The moderated multivariate t-statistic t̃ here
is defined as equation (4.7) with n replaced by (m−1 + n−1)−1 and X replaced by
Z − Y. S̃ here is the same as that defined in Section 3.2. The posterior odds O
against the null hypothesis that the expected time courses are the same are

O = p

1 − p

(
m−1 + n−1

m−1 + n−1 + η−1

)(1/2)k

×
(

m + n − 2 + ν + T̃ 2

m + n − 2 + ν + ((m−1 + n−1)/(m−1 + n−1 + η−1))T̃ 2

)(1/2)(m+n+ν−1)

.

The log base 10 of O is our two-sample MB-statistic. Again, when all genes have
the same sample sizes m and n, the two-sample MB-statistic is equivalent to the
T̃ 2 = t̃′t̃. Under H , k−1T̃ 2 has an F distribution with degrees of freedom (k,m +
n + ν − k − 1); equivalently, (m + n + ν − k − 1)−1(m + n + ν − 2)T̃ 2 has the
Hotelling T 2 distribution T 2(k,m + n + ν − 2).

The MB-statistic described in this section involves hyperparameters ν, �,
η and p. The estimation procedures for these hyperparameters are very similar
to those in Section 4.1, except that we have to use the gene-specific pooled sample
variance–covariance matrices when estimating ν and �, and use the k × 1 moder-
ated multivariate t-statistic t̃ defined here to estimate η. We omit the details here.

It should be noted that the MB-statistic derived in this section has a slightly dif-
ferent definition: instead of using all the data we observe, we only use the differ-
ence in sample averages and the pooled sample variance–covariance matrix. The
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T̃ 2-statistic here is identical to the moderated two-sample Hotelling T 2-statistic in
Section 3.2.

4.3. One-sample problem of constancy. In this section we derive the posterior
odds against the null that a gene’s mean expression level stays constant over time.
We obtain a closed form solution similar to that in the preceding sections, but only
under a constraint on the variance–covariance matrix �.

4.3.1. Transformation. For each gene, let I be the indicator variable defined in
Section 4.1. Let P = k−11k1′

k be the k × k projection matrix onto the rank 1 space
of constant vectors, where 1′

k = (1, . . . ,1) is a k × 1 vector of 1s. Let Pc = Ik − P
be the projection onto the orthogonal complement of R(P). We can write any vec-
tor µ ∈ Rk as µ = Pµ+Pcµ, and in the case I = 0, the second term Pcµ vanishes.
As in Section 4.1, we build up our multivariate model by first assigning indepen-
dent inverse Wishart priors to the gene-specific covariance matrices �; see equa-
tion (4.1). Given �, we next assign multivariate normal priors to the gene-specific
mean parameters µ for the case of nonconstant (I = 1) and constant genes (I = 0),
respectively: {

µ|�, I = 1 ∼ N(0, τ−1P�P + κ−1Pc�Pc),

µ|�, I = 0 ∼ N(0, τ−1P�P).
(4.11)

Given � and I = 0, the covariance matrix P�P guarantees that µ is a constant vec-
tor, while when I = 1, the extra component Pc�Pc adds further variance to µ so
that it becomes a nonconstant vector. Again, in order to obtain the full expression
for the posterior odds O, we need to derive P(X1, . . . ,Xn|I ) using equation (4.3).
To get a closed-form expression for the posterior odds, we find it necessary to make
an additional assumption, namely, that P� = �P. With this assumption, given �
and I = 0, X is a multivariate normal distribution with mean 0 and covariance ma-
trix (n−1� + τ−1�P). Similarly, given � and I = 1, X is a multivariate normal
distribution with mean 0 and the covariance matrix (n−1� + τ−1�P + κ−1�Pc).

For the rest of this section, unless stated otherwise, we assume P� = �P, and
we make use of the following lemma, whose proof is omitted.

LEMMA 4.1. Suppose T is any k × k nonsingular matrix whose first row is
constant c and the remaining rows have row sums equal to 0. Write T = (T′

0,T′
1)

′,
where T0 is the first row of T, and T1 is the remainder. Then, for any � > 0
satisfying P� = �P, T�T′ = �̃ is a k × k block diagonal matrix with the scalar
σ̃ 2 > 0 as the first block and (k − 1) × (k − 1) matrix �̃1 > 0 as the second block:
that is,

T�T′ = �̃ =
(

σ̃ 2 0

0 �̃1

)
.
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As the first example, let T be the Helmert matrix, where the jith element of T
is defined as

tj i = 1/
√

k, for j = 1, i = 1, . . . , k,

tj i = 1/
√

j (j − 1), for 2 ≤ j ≤ k,1 ≤ i ≤ j − 1,

tj i = −(j − 1)/
√

j (j − 1), for 2 ≤ j ≤ k, i = j ,

tj i = 0, for 2 ≤ j ≤ k − 1, j + 1 ≤ i ≤ k.

T can also be the following matrix, where the jith element of T is defined as
tj i = 1, for j = 1, i = 1, . . . , k,

tj i = 1, for 2 ≤ j ≤ k, i = j − 1,

tj i = −1, for 2 ≤ j ≤ k, i = j ,

tj i = 0, otherwise.

For our multivariate empirical Bayes model in this section, we use the Helmert
matrix T to proceed with our calculations. The results can be applied to other T
immediately.

4.3.2. Models and priors. Here T is partitioned into its first row T0 (1 × k)
and its last k − 1 rows T1 ((k − 1) × k). Since X1, . . . ,Xn are i.i.d. Nk(µ,�),
the transformed random vectors TXi are also multivariate normally distributed
with mean Tµ and covariance matrix �̃. By Lemma 4.1, the matrix �̃ is a block
diagonal matrix with σ̃ 2 as the first block, and �̃1 as the second block. Defining
x̄i = k−1 ∑k

j=1 Xij , then
√

kx̄i and the random vectors T1Xi are independent and
normally distributed, with distributions

√
kx̄i |T0µ, σ̃ 2 ∼ N(T0µ, σ̃ 2),

T1Xi |T1µ, �̃1 ∼ N(T1µ, �̃1).

This transformation allows us to separate the gene expression changes into con-
stant and nonconstant changes.

As we have seen in Section 4.1, the joint distributions of data given I can
be fully described using the sufficient statistics ¯̄x, T1X, s2 and S1, where ¯̄x =
n−1 ∑n

i=1 x̄i , T1X = n−1 ∑n
i=1 T1Xi , s2 = (n − 1)−1 ∑n

i=1(x̄i − ¯̄x)2 and S1 =
(n − 1)−1 ∑n

i=1(T1Xi − T1X)(T1Xi − T1X)′. The prior for �̃ is first set through
the independent priors for σ̃ 2 and �̃1. We suppose that σ̃ 2 and �̃1 are indepen-
dently distributed, with an inverse gamma distribution with shape parameter ξ/2
and scale parameter ξλ2/2, and an inverse Wishart distribution with degrees of
freedom ν and scale matrix ν�1, respectively, that is,{

σ̃ 2 ∼ inv-gamma
(1

2ξ, 1
2ξλ2)

,

�̃1 ∼ inv-Wishartν((ν�1)
−1).

(4.12)
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The prior for Tµ has four parts. We assign independent priors to T0µ and T1µ
separately for the cases I = 1 and I = 0. For the case I = 1, priors are{

T0µ|σ̃ 2, I = 1 ∼ N(θ, κ−1σ̃ 2),

T1µ|�̃1, I = 1 ∼ N(0, η−1�̃1),
(4.13)

where θ ≥ 0 is the mean, and κ > 0 and η > 0 are scale parameters. When I = 0,
T1µ = 0 with probability 1. Thus, the priors in this case are{

T0µ|σ̃ 2, I = 0 ∼ N(θ, κ−1σ̃ 2),

T1µ|�̃1, I = 0 ≡ 0.
(4.14)

It is reasonable to assume P(T0µ|σ̃ 2, I = 0) = P(T0µ|σ̃ 2, I = 1) for large
genome-wide arrays since there is no obvious reason why the expected grand mean
of the expression levels for nonconstant genes should differ from that of constant
genes. For two-color comparative microarray experiments, it is also reasonable to
assume θ = 0.

4.3.3. Multivariate joint distributions. The joint distributions can be de-
rived quite readily using a previously established formula, and so we omit
the details. Given I = 1, T1X and S1 follow the Student–Siegel distribution
StSik−1(ν,0, (n−1 + η−1)�1, n − 1, (n − 1)−1ν�1). Similarly, the joint distri-
bution of T1X and S1 given I = 0 is StSik−1(ν,0, n−1�1, n − 1, (n − 1)−1ν�1).

4.3.4. MB-statistic and T̃ 2-statistic. The posterior odds against the null that a
gene’s mean expression level stays constant over time are equation (4.6) in Sec-
tion 4.1 with k replaced by k − 1, t̃ expressed by equation (4.7) with S̃ replaced
by S̃1 and X replaced by T1X. S̃1 is just equation (4.5) with S replaced by S1 and
� replaced by �1. As in Section 4.1, the MB-statistic is a monotonic increasing
function of T̃ 2 = t̃′t̃ when all genes have the same sample size n.

Under H , (k − 1)−1T̃ 2 has an F distribution with degrees of freedom (k −
1, n+ ν − k + 1), or, equivalently, (n+ ν − k + 1)−1(n+ ν − 1)T̃ 2 has a Hotelling
T 2-distribution T 2(k − 1, n + ν − 1). The hyperparameter estimation procedures
here are similar to those described in Section 4.1, except that all the estimations
are performed based on transformed data.

5. Case study. In this section we illustrate our results with a paired two-
sample problem, using the Arabidopsis thaliana dataset in [35]. Here we only give
a very brief description of the data and the results. We refer the reader to [35] and
to Chapter 5 of [28] for more thorough discussions.

A. thaliana wildtype (Columbia) and ics1-2 null mutant plants were evenly po-
sitioned, intermixed and grown in growth chambers under controlled conditions.
When the plants were four weeks old, they were infected with a moderately heavy
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innoculum of the powdery mildew G. orontii. Each pair of mRNA samples from
wildtype and mutant plants was harvested and collected at six time points post-
infection. Plants could not be resampled, so mRNA samples at one time point
were from different plants than those of any other time point. We report here on
the analysis of three replicate experiments under similar environmental conditions
which contribute four biological replicates: one from the first and third experi-
ments (1–3, 3–1) and two from the second experiment (2–1, 2–2). These mRNA
samples were hybridized onto Affymetrix Arabidopsis ATH1 GeneChips, yield-
ing 22,810 probesets and 48 arrays in our analysis. The array preprocessing were
done using the Robust Multi-array Analysis (RMA) algorithm described in [18, 5]
which is implemented in the Bioconductor package affy.

This study is longitudinal if we treat experiments as units, while it is cross-
sectional if we treat plants as units. We believe it is worthwhile to treat it as a paired
longitudinal study, since samples within the same experiment are more similar than
those from different experiments. We thus have a paired two-sample problem, with
the genes of interest being those whose wildtype and mutant temporal profiles are
different. We subtracted the log2 intensities of the wildtype from those of the paired
mutant at each time within each replicate, yielding the log2 ratios of mutant relative
to wildtype. Since the number of time course replicates is the same (n = 4) across
genes for this dataset, we used the T̃ 2-statistic instead of the MB-statistic to rank
genes, so that we did not have to estimate the hyperparameter η.

For comparison purposes, we fitted a linear model to the log ratios for each
gene, with time and replicate effects, and calculated the F -statistic for the time
effect.

5.1. Results. The extent of moderation from ν̂ = 5 was 63%. The left panel
of Figure 1 presents three genes falling into different ranges of ranks (rank = 1,
175, 859) by T̃ 2, while the ones on the right panel have the same ranks by F .
The gene ranked most highly by T̃ 2 exhibits much greater differences between the
wildtype and mutant temporal profiles than the one ranked most highly by F . The
magnitude of the difference, as measured by T̃ 2, decreases as the rank goes down.
The gene ranked 1 by T̃ 2 is well known: pathogenesis-related protein 1 (PR1).
Other known pathogenesis-related genes also ranked highly by T̃ 2 and were less
highly ranked by the F -statistic, as detailed in [35].

To investigate the effect of the amount of moderation on gene ranking, we kept
� fixed, and re-calculated the T̃ 2-statistic with several different ν values. We then
computed the Spearman rank correlation between the different sets of T̃ 2-statistics
for all genes and for the top 859 genes only. Table 1 gives the results. The corre-
lations are lower in the two extremes. All of these sets have the same number one
gene. This comparison shows that the gene ranks are reasonably stable when the
extent of moderation varies within a certain window, and that moderation seems to
have more effect on the top genes relative to the whole gene set.
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FIG. 1. Genes of ranks 1, 175, 859 by the paired two-sample T̃ 2-statistic in Section 4.1 (left panel)
and the F -statistic (right panel). The temporal difference between wildtype and mutant decreases
as the rank by T̃ 2 goes down. The genes on the left panel all show larger differences between the
wildtype and mutant than the corresponding ones on the right panel.
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TABLE 1
Spearman rank correlations between T̃ 2 with different ν and

the estimated ν for all and the top 859 genes. The percent
moderation is defined by (ν + n − 1)−1ν × 100

% moderation Correlation (all) Correlation (top 859)

97 (ν = 100) 0.97 0.90
80 (ν = 12) 0.99 0.98
40 (ν = 2) 0.99 0.98
25 (ν = 1) 0.98 0.96
0 (ν = 0.01) 0.93 0.90

6. Simulation study.

6.1. Method. In this section we report on a small simulation study for the null
hypothesis H :µ = µ01, � > 0 based on an actual example we have met. We simu-
late 100 data sets, each with 20,000 genes. The genes are simulated independently,
which we regard as an assumption that makes sense to compare methods, but it
should be kept in mind that gene expression measures in real data can be quite
dependent. In each simulated data set, 400 out of the 20,000 genes are assigned to
be nonconstant. That is, p = 0.02. Each gene is simulated with three independent
replicates (n = 3) and eight time points (k = 8). The other hyperparameters are
the following: ν = 13, ξ = 3, λ2 = 0.3, θ = 0 (two-color experiments), κ = 0.02,
η = 0.08, and

� =



14.69 0.57 0.99 0.40 0.55 0.51 −0.23

0.57 15.36 1.22 0.84 1.19 0.91 0.86

0.99 1.22 14.41 2.47 1.81 1.51 1.07

0.40 0.84 2.47 17.05 2.40 2.32 1.33

0.55 1.19 1.81 2.40 15.63 3.31 2.75

0.51 0.91 1.51 2.32 3.31 13.38 3.15

−0.23 0.86 1.07 1.33 2.75 3.15 12.90


× 10−3.

The correlation matrix of � is

1 0.04 0.07 0.03 0.04 0.04 −0.02

0.04 1 0.08 0.05 0.08 0.06 0.06

0.07 0.08 1 0.16 0.12 0.11 0.08

0.03 0.05 0.16 1 0.15 0.15 0.09

0.04 0.08 0.12 0.15 1 0.23 0.20

0.04 0.06 0.11 0.15 0.23 1 0.24

−0.02 0.06 0.08 0.09 0.19 0.24 1


,
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and we see clear evidence of serial correlation. Note that, in the real world, al-
though often the case, the correlation does not always decrease with time lag. The
statistics compared in our study are the following:

(1) MB-statistic, or equivalently, the T̃ 2-statistic;
(2) MB-statistic using first differences: take the differences in gene expression

values at consecutive time points within replicates, and use them to test the null
hypothesis H : µ = 0,� > 0 (Section 4.1), where µ is the mean of the differences;

(3) MB-statistic in the special case � = σ 2Ik ;
(4) MB-statistic in the limiting case ν → ∞;
(5) MB-statistic in the limiting case ν → 0;
(6) ordinary F -statistic from an ANOVA model with time and replicate effects;
(7) partly-moderated F -statistic proposed in [24] from an ANOVA model with

time and replicate effects;
(8) one-sample moderated Hotelling T 2-statistic ‖n1/2S̃−1/2d̃‖2 derived in

Section 3, equivalently, the moderated LR-statistic, where the degree of moder-
ation and the common matrix toward which each sample covariance matrix moves
is estimated by the method given in Section 4.1;

(9) the variance across time course replicates (nk−1)−1 ∑n
i=1

∑k
j=1(Xij − ¯̄x)2.

Here each of the nine statistics incorporates either none (e.g., variance) or one
(ordinary F -statistic) or more of the following: moderation, correlation structure
and replicate variances, and thus can be used to show the importance of the above
properties. It is not appropriate to set the prior degrees of freedom ν to be a very
small number, since we have the constraint that ν ≥ k − 1. We choose ν to be
k + 5 = 13 because it simulates more stable �’s across genes.

6.2. Results. Table 2 compares the means and standard deviations of the hy-
perparameter estimates of the diagonal elements of �1 (λ2

j ), j = 1, . . . , k − 1,
with their true values. The mean estimate of �1 is very close to the true �1, and
the standard deviations are very small. The hyperparameter η is always under-
estimated (mean = 0.026, SD = 0.002), which agrees with Section 8 in [24],
where v0 was usually over-estimated. The hyperparameter ν is also always under-
estimated (mean = 7.0, SD = 0.2). In Section 5 we observed that the amount of
moderation ν does not greatly affect gene ranking except at the two extremes. One
can even choose a user-defined ν which gives reasonable results. Although not
well estimated, η only affects the rankings when the number of replicates is dif-
ferent across genes. However, this does not happen often in the real world. Even
when that happens, the effect is very small. To investigate the effects of η on gene
rankings, we tried a couple of η values from different ranges, while keeping the
remaining hyperparameters fixed, and calculated the MB-statistics. The rank cor-
relations between rankings of the MB-statistics with the user-defined η’s and the
estimated η for one set of simulated data are the following: 0.91, 0.94, 0.99, 0.99,
0.99 for η =2, 1, 0.08 (true value), 0.05, 0.001, respectively.
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TABLE 2
The means and standard deviations (SD) of the diagonal elements

of the estimated �1

Hyperparameters True value ×103 Mean ×103 SD ×103

λ2
1 14.69 14.71 0.16

λ2
2 15.36 15.37 0.17

λ2
3 14.41 14.43 0.15

λ2
4 17.05 17.04 0.19

λ2
5 15.63 15.63 0.15

λ2
6 13.38 13.40 0.15

λ2
7 12.90 12.92 0.17

To examine the relationship between the T̃ 2-statistic and the true deviation from
constancy, the log10 transformed T̃ 2-statistic from one simulated dataset is plotted
against the Mahalanobis distance between the expected time course vector µ and
its projection onto the rank 1 constant space µ̄ = Pµ (Figure 2). The squared Ma-
halanobis distance is defined by d(µ, µ̄)2 = (µ− µ̄)′�−1(µ− µ̄). Figure 2 clearly

FIG. 2. The log10 T̃ 2 statistic versus the true deviation from constancy d(µ, µ̄) for one simulated
dataset. Here 1 denotes nonconstant, and o constant genes.
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FIG. 3. Average number of false positives versus number of false negatives of all the nine statistics.
The subplot presents the curves for the best seven statistics.

shows that log10 T̃ 2 is positively correlated with d(µ, µ̄), and most of the 400 true
nonconstant genes achieve higher T̃ 2-statistics than the constant genes.

Figure 3 plots the average number of false positives against average number
of false negatives at different cutoffs. By different cutoffs, we mean choosing the
top x genes and calculating the numbers of false positives and false negatives,
where x varies across the integers from 400 to 800. The lines in Figure 3 from left
to right represent the following: MB-statistic (T̃ 2), MB-statistic with first differ-
ences (indistinguishable from the MB-statistic), one-sample moderated Hotelling
T 2-statistic (indistinguishable from the MB-statistic), MB-statistic with � = σ 2Ik ,
MB-statistic with ν → ∞, partly-moderated F -statistic [24], ordinary F -statistic,
MB-statistic with ν → 0 and variance. The MB-statistic (T̃ 2) attains almost the
same numbers of false positives and false negatives as MB with first differences
and the one-sample moderated Hotelling T 2-statistic. The effectiveness of moder-
ation is demonstrated by comparing the lines for the MB-statistic, the MB-statistic
in the limiting case ν → ∞ and the MB-statistic in the limiting case that ν → 0.
Both of these limiting cases lead to higher aggregate false positives and false neg-
atives. This result supports the view stated in [29] that moderation is useful. In
particular, the case ν → 0 (no moderation at all) produces much higher numbers
of false positives and false negatives. This is likely due to the poor estimation
of sample variance–covariance matrices with a small number of replicates. In-
deed, the ordinary unmoderated F -statistic which ignores the correlation structure
achieves smaller numbers of false positives and false negatives than the unmod-
erated MB-statistic. A similar situation also arises in the microarray discrimina-
tion context; see Section 7 of [12]. The partly-moderated F -statistic [24] which
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ignores the dependence among times behaves like the MB-statistic in the special
case � = σ 2Ik . Moreover, it achieves fewer false positives and false negatives
than the ordinary F -statistic. Figure 3 also demonstrates the importance of incor-
porating the correlation structure among time points. The MB-statistic (T̃ 2) and
the one-sample moderated Hotelling T 2-statistic perform better than the partly-
moderated F -statistic in [24] and the ordinary F -statistic; the former incorporates
the correlation structure among time points, whereas the latter does not. How-
ever, we observe that the amount of moderation given by the partly-moderated
F -statistic in [24] is usually much less than that given by the MB-statistic. When
there are a large number of residual degrees of freedom from the linear model, the
partly-moderated F -statistic [24] behaves very much like the ordinary F -statistic.
This suggests that the lower number of false positives and number of false neg-
atives from the MB-statistic than the partly-moderated F -statistic in [24] involve
both the incorporation of correlation structures and the amounts of moderation.
As expected, the simple variance statistic across replicates, which totally ignores
the replicate variances, performs the worst. This demonstrates the importance of
incorporating the replicate variances into any statistic.

7. Discussion. In this paper we introduced the MB- and T̃ 2-statistics for one-
and two-sample longitudinal replicated developmental microarray time course ex-
periments. Our main focus was the one-sample or paired two-sample problem with
the null hypothesis H :µ = 0, � > 0. This MB-statistic can be used when there are
two biological conditions and the samples are paired across conditions, and it is
shown to perform better than the classical F -statistic on a problem briefly de-
scribed in Section 5. In addition, we also derive the MB-statistics and T̃ 2-statistics
for the two-sample problem with the null H :µZ = µY ,�Z = �Y = � > 0, and
the one-sample problem with the null H :µ = µ01, � > 0 using similar ap-
proaches. The latter situation requires a slight assumption on � in order to get
a simple closed-form solution for the posterior odds against the null. All the
MB-statistics and T̃ 2-statistics incorporate the correlation structure, replication
and moderation. The moderated versions of some standard likelihood-ratio test
statistics are also described. When all genes have the same sample size(s), our
T̃ 2-statistics are not only equivalent to the MB-statistics, but also are identical to
their corresponding moderated Hotelling T 2-statistics, apart from the one-sample
problem with the null H :µ = µ01, � > 0, where there is an additional con-
straint on �. In this case the T̃ 2-statistic performed as well as the moderated
Hotelling T 2-statistic in our simulation study, and also on several real datasets
we have encountered. We have shown in the simulation study that, with this null,
the MB-statistic (T̃ 2), the MB-statistic using first differences and the one-sample
moderated Hotelling T 2-statistic perform best among all the nine statistics com-
pared. This is not entirely surprising given that we simulated data under our model,
but the comparisons are still informative. In practice, we regard the MB-statistic,
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the MB-statistic with first differences and the moderated LR-statistic as perform-
ing equally well, giving very similar (or identical) results. However, to use the
LR-statistic (the moderated Hotelling T 2-statistic), we still need to insert moder-
ated sample variance–covariance matrices, and these come from our multivariate
empirical Bayes framework. In other words, our models provide a natural way to
estimate the gene-specific moderated variance–covariance matrices (Sections 4.1–
4.3), while the likelihood-based approach alone does not.

The assumption of P� = �P with the null H :µ = µ01,� > 0 allows the math-
ematical calculations in Section 4.3, and leads to a closed-form formula for the
MB-statistic. One question which naturally arises to be the impact of this con-
straint on the rankings of genes. From the practical point of view, the impact of
this constraint on gene rankings is very slight. The rank correlations between
the one-sample MB-statistic with the commuting assumption and the moderated
LR-statistic from likelihood-based approach without the constraint, from the ac-
tual examples we have met, are typically very high (over 0.99). The rank corre-
lations from our simulated data are also over 0.99. On the other hand, using the
MB-statistic with first differences produces very similar or even identical results
to the MB-statistic in Section 4.3. Indeed, instead of using the Helmert matrix, if
we choose T to be the second transformation matrix of Section 4.3, we get iden-
tical results. Even so, we do not consider the first differences approach to be the
solution to this commuting constraint, since the inference drawn is based on re-
duced, not the original data. In other words, the null hypotheses are not equivalent.
The likelihood-based approach with moderation and the first differences approach
support the fact that this constraint does not have much effect on the results. In
addition, the former is a good way to avoid this assumption, since it performs as
well as our MB-statistic in Section 4.3.

The statistics proposed in this paper are for one- and two-sample longitudinal
data. We should be aware that many experiments in the real world exhibit some
features from both longitudinal and cross-sectional experiments (e.g., Section 5).

One thing we plan to investigate in the future is the effect of assuming the same
variance–covariance matrix � for both I = 1 and I = 0. Another issue which inter-
ests us is the effect of assuming the same � across biological conditions in the un-
paired two-sample model in Section 4.2. The proposed methods may be extended
in several ways, for example, identifying genes of some specific pattern, rather than
any pattern. The statistics for a longitudinal multi-sample problem when there are
at least three biological conditions and genes of interest are those with different
temporal profiles across conditions derived in [30]. The corresponding statistics
for cross-sectional data are also presented in [31].

The proposed methods focus on gene ranking, but not assessing the significance
using p-values. However, if desired, we believe that generating p-values from a
bootstrap analysis should be successful in this context.

We constructed our models using conjugate priors for the multivariate normal
likelihoods, so that we got simple closed-form solutions for the posteriors odds.
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Finding a closed-form statistic when the priors on µ and � are independent seems
to be an open and probably hard problem; that problem probably needs to be dealt
with using MCMC.
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