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DISCUSSION: CONDITIONAL GROWTH CHARTS

BY RAYMOND J. CARROLL1 AND DAVID RUPPERT2

Texas A&M University and Cornell University

1. Overview. Wei and He are to be congratulated on an innovative and im-
portant article. The conditional approach to growth charts described in their article
is important in a practical sense, and the use of quantile regression is both nat-
ural and well motivated. We look forward to further application of their idea to
actual practice, because the concept of “falling behind” in one’s growth cycle has
two meanings: the usual standard growth chart, and the conditional growth chart
described here. We have described the Wei and He approach to pediatricians, and
they all grasped the essential clever idea immediately and were enthusiastic about
the idea.

Our commentary will focus on three aspects of the approach used by the au-
thors, specifically (a) the use of unpenalized B-splines as described by the authors;
(b) conditional versus marginal semiparametric modeling of longitudinal data; and
(c) some alternative modeling approaches to “catch-up” that may get at the issue
more directly and flexibly.

2. B-splines should be penalized. One purpose of discussions, of course, is
to make things a little lively, and here is our contribution. In our view, one should
have some skepticism of how nonparametric unpenalized B-splines and unpenal-
ized regression splines really are in the context of nonparametric regression. More
precisely, and less inflammatory, the connection between asymptotic theory for un-
penalized splines and actually attempting to be at least reasonably nonparametric
is not at all clear.

There is obviously a need to balance practical behavior and ease of implemen-
tation with theory. Kernel methods (see below) are one means of doing this. In the
spline context, there are four approaches: smoothing splines, penalized regression
splines, unpenalized regression splines and free-knot splines; see [18] for a recent
review. As authors, we have observed the following.

• Smoothing splines are basically penalized regression splines that place a knot at
every value of the covariate. We have no idea how to do asymptotic theory for
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smoothing splines in the Wei and He context, and we would be interested to see
if such a theory is even possible, for example, along the lines of [13].

• Lower-order knots penalized regression splines are rapidly becoming a practical
method of choice. However, every time we write a paper about this technique,
we have been reviewed by a smoothing spline person who asks the ques-
tions: “how many knots” and “where do you place the knots.” In response,
Ruppert [16] did an extensive numerical study and showed that, in effect, pe-
nalized regression splines with data-adaptive penalties and 40 knots will work
quite well in many practical settings. Ruppert and Carroll [17] and Ruppert,
Wand and Carroll [18], Chapters 5 and 17, describe strategies for selecting the
number of knots. There is little in the way of asymptotic theory for penalized
regression splines, unfortunately, presumably for the same reason that penalized
smoothing splines are difficult to analyze; this point is also brought up in every
review. For some theory, see [3].

• Unpenalized regression splines with 40 knots are generally ridiculously non-
smooth, which is of course why penalties are used. For example, in Figure 1,
we generated data according to the regression model Y = sin(2X)+ ε, where X

is equally spaced on the unit interval, n = 400 and ε = Normal(0,1). We used
40 knots and fit penalized and unpenalized cubic B-splines, using the Matlab
software available from Brian Marx at www.stat.lsu.edu/faculty/marx/.

• There is a substantial literature on unpenalized B-splines that achieve their
smoothness via knot selection, the so-called free-knot spline methodology.
Much of this literature is Bayesian, being based on model averaging; see, for
example, [2, 4, 19]. With such complex methods, theoretical results are nat-
urally generally lacking, although see [12] and [20] for recent non-Bayesian
approaches with impressive (asymptotic) theoretical treatment.

In summary, the nonparametric spline literature generally uses a fairly large
number of knots, realizes that penalties must be imposed in one way or another to
obtain smoothness, and achieves this smoothness either by direct penalties, or by
some version of knot selection. Often for these methods asymptotic theory is not
available.

In contrast, unpenalized regression spline methods do have a beautiful asymp-
totic theory, as exemplified here and in a series of important papers by Jianhua
Huang and colleagues [5–9]. Plots, such as in Wei and He, are often pleasantly
smooth, in contrast to Figure 1. The obvious question is: what is going on?

To get such smoothness in an unpenalized regression spline, one necessarily
must insist that the number of knots be small. Indeed, Wei and He use cubic
B-splines with three knots in their examples. This is no fluke: if one fixes the knots,
and does no penalization or knot selection, there is no getting around phenomena
such as in Figure 1. Indeed, the basic point is actually one of the conditions of their
Theorem 3.1. Note that the essential condition for a function of bounded second
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FIG. 1. Fits to the regression model Y = sin(2X)+ε, where X is equally spaced on the unit interval
and ε = Normal(0,1). The dotted line is the true function. The solid line is a penalized cubic B-spline
fit with 40 knots. The dashed line uses the same basis, but lacks a penalty.

derivative is that the number of knots be proportional to k ∝ n1/5, or equivalently,
that the sample size n ∝ k5. Since 35 = 243, 45 = 1024, 55 = 3125 and 65 = 7776,
we see that the asymptotics essentially require that for any practical problem, the
number of knots should be no more than six. This is hardly nonparametric regres-
sion! Of course, these calculations are deliberately shocking and totally slanted in
order to add some controversy, because we have not mentioned constants of pro-
portionality, but once one does get into estimating the number of knots and where
they should be placed, then it is not clear what the theory would be.

We note that Wei and He’s criterion function (2.2) could have been analyzed by
kernel methods, using local-likelihood ideas. Theorem 3.1 would then have been
easy to analyze using either profiling or backfitting; see, for example, [1] for the
computationally far easier backfitting and [21] for the more complex profiling. We
conjecture, of course, that the same limiting result as in Theorem 3.1 would have
been obtained, since one way to interpret the work of Newey [15] is that different
implementations of the same criterion function should not lead to different limiting
results for parametric components. It would be interesting to know whether this
conjecture is correct.
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3. Marginal versus conditional longitudinal models. Wei and He deal with
longitudinal semiparametric models, using a conditional approach that is ideally
suited to their main idea.

The usual approach to this problem is via a marginal model, for example, in a
slightly altered notation,

Yij = m(Xij , β) + θ(Zij ) + εij ;
(1)

cov(εi1 . . .) = �i(τ),

where m(·) is a known function. Wang, Carroll and Lin [22] describe the semi-
parametric efficient solution to this problem if the εij are Gaussian using kernels,
although the work of Lin et al. [11] essentially shows the same result for smoothing
splines. There is considerable controversy about this problem. Early solutions (and
many later ones) simply ignored the correlation structure, with a notable exception
being Zeger and Diggle [23]. The semiparametric efficient solution for Gaussian
data is explicit, that is, not iterative, but it still takes some work to implement.

Wei and He’s conditional model approach, in contrast, neatly avoids all these
issues, because their model is

Yij = m(Yi,k,Xij , β
∗) + θ(Zij ) + ε∗

ij ,(2)

where k < j and the ε∗
ij are independent. Here even the kernel approach is simple

to implement.
We would be interested in Wei and He’s thoughts on how to use model (2) to

help understand marginal models such as (1), in the context of their innovative
quantile regression modeling. Since they (quite properly) do not work in a mean-
based model, the marginal interpretation of their model, if any, is unclear to us. If
there were a marginal interpretation, then perhaps this could be used in the more
standard unconditional growth chart arena.

On a theoretical note, if one starts from a conditional model and then turns it
into a marginal model, it is not clear whether the methods of estimation are semi-
parametric efficient in the marginal model. Recent work by Lin and Carroll [10]
can be used to answer this question.

4. Other literature. Much work on nonparametric estimation of marginal
curves has been done in the past using kernel methods; see [14] and the refer-
ences therein. We are uncertain how extensively these methods have been adopted
by practitioners, but since they are not mentioned in this paper it seems that they
are at least somewhat neglected. Perhaps Professors Wei and He can comment. In
Müller’s book there is an emphasis on estimating the first two derivatives, that is,
growth velocity and acceleration. Müller mentions growth spurts during adoles-
cence and perhaps these might be missed by a three-knot cubic spline. Therefore,
we wonder whether the methods in this paper can be applied to long time spans
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that include adolescence or, instead, whether a methodology with a smoothing pa-
rameter would be needed.

In (5.1), it seems more appropriate to use H 3
i,j instead of Hi,j as a covariate,

since weight should be roughly proportional to the cube of a linear dimension.
Perhaps the increase in cτ with τ seen in Table 2 and mentioned by the authors
is due to using Hi,j instead of its cube. Similarly, the authors discuss a boy who
jumped from the 0.25th quantile to the median level at age 0.61 year and concluded
“that he might be overweight given his prior path and current height.” This is an
interesting and potentially important conclusion, but one must be certain that the
effect of height is being modeled correctly before making it.

5. Alternative models with catch-up. In their Introduction, Professors Wei
and He mention “catch-up” growth where subjects on the upper (or lower) centiles
move toward the median at a faster rate than others. Model (2.1) is very general
and should include the possibility of catch-up growth, but it would be helpful to
practitioners if the mechanism in the model for catch-up growth was explicit. Con-
sider (5.1) of the paper with k = 1, that is,

Wi,j = gτ (ti,j ) + (aτ + bτDi,j )Wi,j−1 + cτHi,j + ei,j .

There is no apparent mechanism for catch-up growth here, since, with aτ and bτ

both positive as in Table 2, Wi,j is an increasing function of Wi,j−1. Of course,
it might be that Hi,j catches up and forces Wi,j to catch up as well. This raises
the question of whether Hi,j should be a covariate or a second response. Perhaps
height and BMI should be modeled jointly as a bivariate dynamic process.

We have thought about other models where catch-up growth might be more
explicit. One model, which we realize may be too simple but could be a good
starting point, is

Wi,j = Wi,j−1 + {gτ (ti,j ) − gτ (ti,j−1)}
+ bDi,j {Wi,j−1 − gτ (ti,j−1)} + Di,j ei,j(3)

= Wi,j−1 + average change in the population + subject-specific change.

If b < 0, then there is catch-up growth, because subjects with Wi,j−1 − gτ (ti,j−1)

positive (negative) tend to grow less (more) than average. One feature of (3) is that
Wi,j → Wi,j−1 as ti,j → ti,j−1 (so that Di,j → 0). Anything else, of course, would
not be realistic. Besides the parameters in gτ , (3) has only a single parameter b.
However, b probably should depend on time since Professors Wei and He mention
that catch-up tends to be time-specific. One might replace b by b{(ti,j + ti,j−1)/2}
where b(·) is a spline.

Let W ∗
i,j = Wi,j − gτ (ti,j ). Then (3) with b a spline can be written as

W ∗
i,j = [1 − b{(ti,j + ti,j−1)/2}Di,j ]W ∗

i,j−1 + Di,j ei,j ,

which is similar to an AR(1) process.
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6. Concluding comments. Notwithstanding our comments about general sta-
tistical methodology, and our comments about practical details, Wei and He have
written an important paper, and we look forward to reading about further devel-
opments of their innovative ideas. We have rarely read such a thought-provoking
paper that has the potential to be extremely important in practice.
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