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THE BERNSTEIN–VON MISES THEOREM FOR THE
PROPORTIONAL HAZARD MODEL1

BY YONGDAI KIM

Seoul National University

We study large sample properties of Bayesian analysis of the propor-
tional hazard model with neutral to the right process priors on the baseline
hazard function. We show that the posterior distribution of the baseline cu-
mulative hazard function and regression coefficients centered at the maxi-
mum likelihood estimator is jointly asymptotically equivalent to the sampling
distribution of the maximum likelihood estimator.

1. Introduction. Since Cox [3] proposed the proportional hazard model for
survival time data in the presence of covariates, the proportional hazard model has
enjoyed a wide variety of applications in biomedical data analysis and reliability.
Although it does not require any parametric assumption on the baseline cumula-
tive hazard function (c.h.f.), its computation is almost parametric. By casting the
theoretical framework as a counting process problem, the study of its asymptotic
properties becomes a historical success story in theoretical statistics. These are
some of many reasons for its popularity in applications as well as the theory of
statistics.

The Bayesian analysis of the proportional hazard model has also been stud-
ied by many authors. Kalbfleisch [11] studied its Bayesian analysis with gamma
process priors on the baseline c.h.f. For the Bayesian analysis of the proportional
hazard model with beta process priors, a Markov chain Monte Carlo computation
is proposed by Laud, Damien and Smith [17] and Lee and Kim [18], and the mar-
ginal posterior distribution of the regression coefficients is obtained by Hjort [10].
Kim and Lee [14] obtained the posterior distribution for the proportional hazard
model with neutral to the right process priors [5] when the survival times are un-
der left truncation and right censoring. Most research effort from the Bayesian side
has been devoted to identifying the posterior distribution and its computation, but
asymptotic properties of the proportional hazard model have not been studied.

The asymptotic properties of the posterior are, however, an important theoretical
issue in nonparametric Bayesian models, for there are many unexpected phenom-
ena reported in the literature. For example, Diaconis and Freedman [4] showed
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that nonparametric posteriors could have inconsistency even with reasonable pri-
ors. They argued further that the inconsistency of the posterior in nonparamet-
ric problems is a rule, not an exception. The related work on this issue includes
Ghosal, Ghosh and Ramamoorthi [8] and Barron, Schervish and Wasserman [1].
For right-censored data, Kim and Lee [13] showed that not all neutral to the right
prior processes have consistent posteriors and gave sufficient conditions for con-
sistency.

This unfortunate phenomenon continues to occur in the posterior convergence
rate. See [2, 9, 23, 25]. These examples cast doubt on the Bernstein–von Mises the-
orem in nonparametric models, which states that the posterior distribution centered
at the maximum likelihood estimator is asymptotically equivalent to the sampling
distribution of the maximum likelihood estimator. See also [7]. In contrast, how-
ever, Shen [22] proved that even in semiparametric/nonparametric models, if the
parameter of interest is of finite dimension, one does not need to worry because
the Bernstein–von Mises theorem holds for finite-dimensional parameters.

If the Bernstein–von Mises theorem does not hold, it often implies the Bayesian
credible set has zero efficiency relative to the frequentist confidence interval. The
validity of the Bernstein–von Mises theorem also has an important implication
in practice, because the Bernstein–von Mises theorem warrants use of Bayesian
credible sets as frequentist confidence intervals asymptotically. Kim and Lee [16]
studied the Bernstein–von Mises theorem for right-censored survival data with-
out covariates. They found that for any 0 < α ≤ 1/2 there is a consistent prior
process neutral to the right whose posterior convergence rate is exactly n−α and
also showed that for popular prior processes such as beta, gamma and Dirichlet
processes, indeed the Bernstein–von Mises theorem does hold.

In this paper we prove the Bernstein–von Mises theorem for Bayesian analysis
of the proportional hazard model. The proof consists of the two Bernstein–von
Mises theorems: one for the marginal posterior distribution of the regression
coefficients and the other for the conditional posterior distribution of the base-
line cumulative hazard functions given the regression coefficients. These two
Bernstein–von Mises theorems together yield the Bernstein–von Mises theorem
of the joint posterior distribution of the regression coefficients and the baseline cu-
mulative hazard function. The main idea of the proof of the Bernstein–von Mises
theorem of the marginal posterior distribution of the regression coefficients is to
show that (i) on 1/

√
n neighborhoods of the true value, the posterior density con-

verges to the targeted normal density with respect to the L1 norm and (ii) outside
1/

√
n neighborhoods of the true value, the posterior mass vanishes eventually.

For (i), we approximate the posterior distribution with the product of the partial
likelihood and prior, and show that the product of the partial likelihood and prior
converges to the target normal distribution with respect to the L1 norm. The proof
of (ii) is the harder part since the posterior distribution is not log-concave. For (ii),
we use a sequence of log-concave functions which dominate the posterior distribu-
tion and whose total masses vanish eventually outside 1/

√
n neighborhoods of the
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true value. The proof of the Bernstein–von Mises theorem for the baseline cumula-
tive hazard function given the regression coefficients exploits the functional central
limit theorem for independent increment (II) processes (Theorem 19 of Section V.4
in [20]), for the conditional posterior distribution of the baseline cumulative hazard
function given the regression coefficients is an II process.

The paper is organized as follows. In Section 2 prior processes neutral to the
right are reviewed briefly and the posterior distribution of the regression coeffi-
cients and the baseline hazard function is given. In Section 3 the main results are
stated and examples are given. Section 4 proves the main results with key lemmas,
whose proofs are presented in the Appendix.

2. Neutral to the right processes as priors. The postulation of the propor-
tional hazard model is as follows. Let X1, . . . ,Xn be survival times with covariates
Z1, . . . ,Zn, where Zi ∈ Rp , i = 1, . . . , n. Suppose the distribution Fi of Xi with
covariate Zi is given by

1 − Fi(t) = (
1 − F(t)

)exp(βT Zi)

for an unknown regression parameter β ∈ Rp and where F is an unknown distri-
bution of a survival time with covariate being 0. In most applications, the survival
times are subject to right censoring, that is, (T1, δ1,Z1), . . . , (Tn, δn,Zn) are ob-
served, where Ti = min(Ci, Ti), δi = I (Xi ≤ Ci) and C1, . . . ,Cn are independent
random variables with the common distribution function G.

In the proportional hazard model, there are two parameters: the regression coef-
ficients β and the baseline distribution function F . For prior distributions, we take
a process neutral to the right [5] for F and a usual parametric prior distribution
for β . Processes neutral to the right include many popular prior processes such as
Dirichlet processes, gamma processes and beta processes.

We say that a prior process on the c.d.f. F is a process neutral to the right
if the corresponding c.h.f. A is a nondecreasing independent increment (NII)
process such that A(0) = 0, 0 ≤ �A(t) ≤ 1 for all t with probability 1 and ei-
ther �A(t) = 1 for some t > 0 or limt→∞ A(t) = ∞ with probability 1. See [5]
for the original definition of processes neutral to the right and see [10, 12, 13] for
the connection between the definition given here and Doksum’s definition. From
what follows, the term NII process is used for a prior process of the c.h.f. A which
induces a process neutral to the right on F .

The Lévy measure ν of an NII process A is defined by

ν([0, t] × B) = E

( ∑
s∈[0,t]

I
(
�A(s) ∈ B\{0})

)

where t ≥ 0 and B is a Borel subset of [0,1]. Conversely, for any σ -finite measure
ν defined on [0,∞) × [0,1] which satisfies, for all t > 0,

∫ t
0

∫ 1
0 xν(ds, dx) < ∞,
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there exists a unique NII process whose Lévy measure is ν. Hence, any NII process
can be characterized by its Lévy measure.

The mean and variance of an NII process A(t) with Lévy measure ν can be
conveniently calculated by the formulas

E(A(t)) =
∫ t

0

∫ 1

0
xν(ds, dx)(1)

and

Var(A(t)) =
∫ t

0

∫ 1

0
x2ν(ds, dx) − ∑

s≤t

(∫ 1

0
xν({s}, dx)

)2

.(2)

These formulas constitute basic facts for the asymptotic theory of the posterior and
will be used subsequently in this paper.

Let qn be the number of distinct uncensored observations and let t1 <

t2 < · · · < tqn be the ordered distinct uncensored observations. Define two sets
Dn(t) and Rn(t) by

Dn(t) = {i :Ti = t, δi = 1, i = 1, . . . , n}
and

Rn(t) = {i :Ti ≥ t, i = 1, . . . , n}.
Let R+

n (t) = Rn(t) − Dn(t).
A priori, let the baseline c.d.f. F be a process neutral to the right such that the

corresponding c.h.f. A is an NII process with a Lévy measure ν of the form

ν(dt, dx) = ft (x) dx dt(3)

for x ∈ [0,1], and let π(β) be the prior density function for β . Without loss of
generality, we assume that T1 ≤ T1 ≤ · · · ≤ Tn. The next theorem provides the
posterior distribution of β as well as A. The proof is in [14].

THEOREM 2.1. Let Dn = ((T1, δ1,Z1), . . . , (Tn, δn,Zn)).

(i) Conditional on β and Dn, the posterior distribution of F is a process neu-
tral to the right with Lévy measure

ν(dt, dx|β,Dn) = (1 − x)
∑

j∈Rn(t) exp(βT Zj )ft (x) dx dt
(4)

+
qn∑
i=1

dHni(x|β)δti (dt),

where δa is the point measure at a and Hni(·|β) is the probability measure defined
on [0,1] with density

hni(x|β) ∝
[ ∏

j∈Dn(ti )

(
1 − (1 − x)exp(βT Zj ))]

(5)

× (1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )
fti (x).
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(ii) The marginal posterior distribution of β is

π(β|Dn) ∝ e−ρn(β)
qn∏
i=1

∫ 1

0
hni(x|β)dx π(β),(6)

where

ρn(β) =
n∑

i=1

∫ Ti

0

∫ 1

0

(
1 − (1 − x)exp(βT Zi)

)
(1 − x)

∑n
j=i+1 exp(βT Zj )

ft (x) dx dt,

for j = 1, . . . , n and
∑n

j=i+1 exp(βT Zj ) = 0 when i = n.

3. Main result. Let β0 and F0 be the true values of the parameters where
X1, . . . ,Xn are generated and let A0 be the cumulative hazard function of F0. In
this section we present the Bernstein–von Mises theorem of the posterior distrib-
ution of (β,A). That is, we show that asymptotically the posterior distribution of
(β,A) centered at the maximum partial likelihood estimator (MLE) (β̂, Â) is the
same as the asymptotic distribution of the MLE itself.

The following conditions are assumed to hold in the remainder of this section:

(A1) A0 is absolutely continuous.
(A2) For a positive constant τ, F0(τ ) < 1, G(τ−) < 1 and G(τ) = 1.

(A3) Z1, . . . ,Zn are i.i.d. p-dimensional random vectors such that ‖Z1‖ ≤
Mz < ∞ with probability 1 for some constant Mz where

‖Z1‖ =
p∑

i=1

|Z1i |.

(A4) If Pr(c′Z1 = 0) = 1, then c = 0.
(A5) π(β) is continuous at β0 with π(β0) > 0.

Condition (A1) prevents ties. If A0 has a finite number of discontinuity points,
then the proof can be done separately on the continuous part and the discrete part.
Condition (A2) assumes that some patients remain in the study until time τ , which
is necessary to recover the information of A(t) on [0, τ ]. If condition (A2) holds
for all τ , the Bernstein–von Mises theorem for A holds on [0,∞). But, note that
even if τ < ∞, the Bernstein–von Mises theorem for β holds as long as τ > 0.
Condition (A3) is for technical purposes, and condition (A4) is to avoid collinearity
among the covariates. Condition (A5) is a standard assumption for Bernstein–von
Mises type results.

Let β̂ be the maximum (partial) likelihood estimator which maximizes the par-
tial likelihood

Ln(β) =
qn∏
i=1

∏
j∈Dn(ti )

exp(βT Zj )

n−1 ∑
k∈Rn(ti )

exp(βT Zk)
.
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Let

Â(t) =
∫ t

0

dN·(s)∑
i∈Rn(s) exp(β̂T Zi)

,

where N·(t) = ∑n
i=1 Ni(t) and Ni(t) = I (Ti ≤ t, δi = 1). In fact, Â is Breslow’s

estimator of the baseline hazard function [3]. We introduce the notation

U0(t) =
∫ t

0

dA0(s)

S0(s :β0)
,

e0(t) =
∫ t

0

S1(s :β0) dA0(s)

S0(s :β0)
,

S0(t :β) = E
(
exp(βT Z1)I (T1 ≥ t)

)
,

S1(t :β) = E
(
Z1 exp(βT Z1)I (T1 ≥ t)

)
,

I (β) =
∫ τ

0
V (t :β)S0(t :β)dA0(t),

V (t :β) = S2(t :β)/S0(t :β) − e0(t)
2,

S2(t :β) = E
(
Z1Z

T
1 exp(βT Z1)I (T1 ≥ t)

)
.

Assume that a priori A is an NII process with Lévy measure given by

ν(ds, dx) = gs(x)

x
dx λ(s) ds, s ≥ 0,0 ≤ x ≤ 1,(7)

where
∫ 1

0 gt (x) dx = 1 for all t ∈ [0, τ ] and that λ(t) is bounded and positive
on (0, τ ).

REMARK. Comparing (3) and (7), we can see that∫ t

0
λ(s) ds =

∫ t

0

∫ 1

0
xfs(x) dx ds = E(A(t))

and gt (x) = xft (x)/λ(t) provided λ(t) > 0.

REMARK. Positiveness of λ(t) on t ∈ (0, τ ) is necessary for the Bernstein–
von Mises theorem. Suppose λ(t) = 0 for t ∈ [c, d] where 0 < c < d < τ . Then
both the prior and posterior put mass 1 on the set of c.h.f.’s, A with A(d) = A(c).

For the Bernstein–von Mises theorem, we need the following two conditions:

(C1) There exists a positive number ς such that

sup
t∈[0,τ ],x∈[0,1]

(1 − x)1−ςgt (x) < ∞.
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(C2) There exists a function k(t) defined on [0, τ ] such that for some α > 1/2 and
ε > 0

sup
t∈[0,τ ],h∈[0,ε]

∣∣∣∣gt (h) − k(t)

hα

∣∣∣∣ < ∞

and

0 < inf
t∈[0,τ ] k(t) ≤ sup

t∈[0,τ ]
k(t) < ∞.

Throughout this paper, we let

g∗ = sup
t∈[0,τ ],x∈[0,1]

(1 − x)1−ςgt (x),

k∗ = inft∈[0,τ ] k(t) and k∗ = supt∈[0,τ ] k(t).

Conditions (C1) with ς = 0 and (C2) are used for the Bernstein–von Mises
theorem of the survival function without covariates by Kim and Lee [16]. The
most delicate part of the proof in this paper is to show that the tail probability of
the posterior distribution of β converges to 0 sufficiently fast. The positiveness
of ς plays an important role for this.

The following theorems are the main results of this paper. We first state the
result, an interesting result in its own right, that the marginal posterior density
of β converges to a normal density in the L1 norm. This is stronger than the usual
Bernstein–von Mises theorem, which states that the posterior converges weakly
to a normal distribution in probability, because our result states that the posterior
density converges to a normal density in the L1 norm with probability 1.

THEOREM 3.1. Under conditions (C1) and (C2),

lim
n→∞‖fn − φ‖ = 0(8)

with probability 1, where fn is the posterior density of
√

n(β − β̂), φ is the normal
density with mean 0 and variance I (β0)

−1, and ‖ · ‖ is the L1 norm.

The next theorem states that the conditional distribution of
√

n(A − Â) given β

and data converges to a Gaussian process.

THEOREM 3.2. Under conditions (C1) and (C2),

L
(√

n
(
A(·) − Â(·))|√n(β − β̂) = x,Dn

) d→ W(U0(·)) − xe0(·)
on D[0, τ ] with probability 1, where W is standard Brownian motion. Here,
D[0, τ ] is the space of right-continuous functions on [0, τ ] with left limits existing
on [0, τ ] equipped with the uniform topology.

The proofs of Theorems 3.1 and 3.2 are presented in Section 4. Combining
Theorems 3.1 and 3.2, we can prove the main theorem stated below.
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THEOREM 3.3. Under conditions (C1) and (C2),

L
(√

n
(
A(·) − Â(·), β − β̂

)|Dn

) d→ (
W(U0(·)) − Xe0(·),X)

(9)

as n → ∞ on D[0, τ ] × Rp where X is a multivariate normal random vector with
mean 0 and variance I−1(β0) and W is standard Brownian motion independent
of X.

PROOF. Theorems 3.1 and 3.2 prove the convergence of the marginal poste-
rior distribution of β and the conditional posterior distribution of A given β . To
prove the convergence of the joint posterior distribution of β and A, note that The-
orem 3.1 implies the strong convergence of the marginal posterior distribution of√

n(β − β̂) to the distribution of X. Applying Theorem 2 of [21], we complete the
proof. �

REMARK. It should be noted that the limiting distribution (9) is the same as
that of the maximum likelihood estimators centered at the true values.

REMARK. From (9), we can see that marginally the posterior distributions
of

√
n(β − β̂) and

√
n(A − Â) converge weakly to a normal distribution and a

Gaussian process, respectively.

In the following examples, we show that most popular prior processes such as
beta processes and gamma processes satisfy condition (C1). For condition (C2),
see [16].

EXAMPLE 1 (Beta process). The beta process with mean � and scale para-
meter c is an NII process with Lévy measure ν given by

ν(dt, dx) = c(t)

x
(1 − x)c(t)−1 dx d�(t).

Suppose that �(t) is absolutely continuous with λ(t) = d�(t)/dt . Then gt (x) =
c(t)(1 − x)c(t)−1. If inft∈[0,τ ] c(t) > 0 and supt∈[0,τ ] c(t) < ∞, condition (C1)
holds with ς = inft∈[0,τ ] c(t).

EXAMPLE 2 (Gamma process). A priori, assume that Y(t) = − log(1 − F(t))

is a gamma process with parameters (�(t), c(t)) with �(t) = ∫ t
0 λ(s) dx, where

λ(t) is a positive bounded function on t ∈ (0, τ ). Furthermore, assume that c(t) is
continuous around t = 0 and 0 < inft∈[0,τ ] c(t)(= c∗) ≤ supt∈[0,τ ] c(t)(= c∗) < ∞.
Here, the gamma process with parameters (�(t), c(t)) is defined by

Y(t) =
∫ t

0

1

c(s)
dX(s),
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where X(t) is an NII process whose marginal distribution of X(t) is a gamma
distribution with parameters (

∫ t
0 c(s) d�(s),1). For details of this definition,

see [19]. This prior process was used by Doksum [5], Ferguson and Phadia [6]
and Kalbfleisch [11]. Since

log E(exp(−θY (t))) =
∫ t

0

∫ ∞
0

(e−θx − 1)
c(s)

x
exp(−c(s)x) dx d�(s),

it can be shown that the c.h.f. A of F is an NII process with Lévy measure given
by

ν(ds, dx) = c̃(s)
1

− log(1 − x)
(1 − x)c(s)−1 dx d�̃(s),

where

c̃(t) =
(∫ 1

0

x

− log(1 − x)
(1 − x)c(t)−1 dx

)−1

and

�̃(t) =
∫ t

0

c(s)

c̃(s)
d�(s).

Therefore, we have

gt (x) = c̃(t)
x

− log(1 − x)
(1 − x)c(t)−1, 0 ≤ x ≤ 1.

Now,

gt (x) = c̃(t)
x(1 − x)c∗/2

− log(1 − x)
(1 − x)c(t)−c∗/2−1

≤
(

sup
t∈[0,τ ]

c̃(t)

)
m(1 − x)c(t)−c∗/2−1,

where

m = sup
t∈[0,τ ]

x(1 − x)c∗/2

− log(1 − x)
.

It is easy to show that supt∈[0,τ ] c̃(t) < ∞ and so condition (C1) follows with
ς < c∗/2.

4. Proof of the main results. For a given sequence of random variables Zn,
we write Zn = O(nδ) with probability 1 if there exists a constant M > 0 such
that Zn/nδ ≤ M for all but finitely many n with probability 1. Also, we write
Zn = o(nδ) with probability 1 if Zn/nδ converges to 0 with probability 1. For a
given finite-dimensional array of real numbers C, ‖C‖ is defined as the sum of all
the absolute values of the elements of C.

Let d(i) be the integer such that Td(i) = ti and δd(i) = 1. Note that since we
assume that the true distribution F0 is continuous there is no tie among the uncen-
sored observations and so d(i) is well defined.
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4.1. Proof of Theorem 3.1. Let

hn(β) = −ρn(β) +
qn∑
i=1

log
(
n

∫ 1

0
hni(x|β)dx

)
.

Then we have

π(β|Dn) ∝ exp(hn(β))π(β),

and so the posterior density of
√

n(β − β̂) becomes fn(h) = gn(h)/Cn where

gn(h) = exp
(
hn

(
β̂ + h/

√
n

) − hn(β̂)
)
π

(
β̂ + h/

√
n

)
and Cn = ∫

Rp gn(h) dh. Hence, the proof of Theorem 3.1 will be completed if we
prove that ∫

Rp
|gn(h) − ψ(h)π(β0)|dh → 0(10)

with probability 1, where

ψ(h) = exp
(−hT I (β0)h/2

)
.

Let ln(β) = logLn(β) and define

l̃(β) = βT E
(
Z1I (δ1 = 1)

)
−

∫ τ

0
log

(
E

(
eβT Z1I (T1 ≥ t)

))
E

(
eβT

0 Z1I (T1 ≥ t)
)
dA0(t).

It is not hard to see that l̃(β) is strictly concave with attainment of its maximum
at β0. Hence,

sup
β∈B

|ln(β)/n − l̃(β)| → 0(11)

with probability 1 for any compact subset B of Rp.

We recall the following properties of β̂ and ln(β) from [24] or [15]. First,
β̂ is consistent (i.e., β̂ → β0 with probability 1). Let l

(k)
n (β) be the kth derivative

of ln(β) in β. Then −l
(2)
n (β̂)/n → I (β0) with probability 1. Also,

supβ∈B ‖l(3)
n (β)‖ = O(n) with probability 1 for any compact subset B of Rp.

We need the following two lemmas whose proofs are in the Appendix.

LEMMA 1. For any compact subset B of Rp ,

sup
β∈B

1

n

∥∥h(k)
n (β) − l(k)

n (β)
∥∥ = o(1)

with probability 1 for k = 0,1,2,3.
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LEMMA 2. ∥∥h(1)
n (β̂)

∥∥ = o
(√

n
)

with probability 1.

We decompose (10) by∫
Rp

|gn(h) − ψ(h)π(β0)|dh ≤
∫
|h|≤K

|gn(h) − ψ(h)π(β0)|dh(12)

+
∫
|h|>K

ψ(h)π(β0) dh(13)

+
∫
K<|h|≤√

nδ
gn(h) dh(14)

+
∫
|h|>√

nδ
gn(h) dh.(15)

We will show that for given ε > 0, there exist positive constants K and δ such that
the four terms become smaller than ε for all sufficiently large n.

For (12), we will exploit the standard techniques used for the proof of the
Bernstein–von Mises theorem for parametric models. First, using Taylor expan-
sion, we write

log(gn(h)) = hT

√
n
h(1)

n (β̂) − 1

2
hT

(
−1

n
h(2)

n (β̂)

)
h + Rn(h)

(16)
+ log

(
π

(
β̂ + h/

√
n

))
,

where h
(k)
n is the kth derivative of hn in β. Lemma 2 implies, for all h,

h√
n
h(1)

n (β̂) → 0.(17)

Lemma 1 with the properties of ln(β) yields, for all h,

−1

2
hT

(
−1

n
h(2)

n (β̂)

)
h → −1

2
hT I (β0)h,(18)

|Rn(h)| → 0.(19)

Also, we have

log
(
π

(
β̂ + h/

√
n

)) → π(β0)(20)

uniformly on {|h| ≤ K} with probability 1 for any K > 0. Now,

|gn(h) − ψ(h)π(β0)|
≤ ∣∣gn(h) − ψ(h)π

(
β̂ + h/

√
n

)∣∣ + ∣∣ψ(h)π
(
β̂ + h/

√
n

) − ψ(h)π(β0)
∣∣
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≤ ψ(h)π
(
β̂ + h/

√
n

)

×
∣∣∣∣ exp

(
hT h

(1)
n (β̂)√

n
− 1

2
hT

(
−1

n
h(2)

n (β̂) − I (β0)

)
h + Rn(h)

)
− 1

∣∣∣∣
+ ψ(h)π(β0)

∣∣∣∣π(β̂ + h/
√

n )

π(β0)
− 1

∣∣∣∣.
By (17)–(20), we get, for any K > 0,

sup
|h|≤K

|gn(h) − ψ(h)π(β0)| → 0

with probability 1, and thus∫
|h|≤K

|gn(h) − ψ(h)π(β0)|dh → 0

with probability 1.
We can make (13) as small as possible by choosing K sufficiently large.
As for (14), note that by Lemma 1 with the property of ln(β), there exists a

constant M such that sup|β|≤K ‖h(3)
n (β)/n‖ ≤ M for sufficiently large n. Hence,

we can write

Rn(h) ≤
p∑

i,j,k=1

|hi ||hj ||hk|
6
√

n

(∥∥∥∥1

n
h(3)

n (β̃)

∥∥∥∥
)

(21)

≤ p2δ

6
MhT h,

for some β̃ in between β0 and β̂. Let η > 0 be the smallest eigenvalue of I (β0).

Since −h
(2)
n (β̂)/n → I (β0) with probability 1, we have

hT (−h(2)
n (β̂)/n

)
h ≥ (

η − o(1)
)
hT h.(22)

Also, when |h| > 1,

hT h
(1)
n (β̂)√

n
≤ |h|

∥∥∥∥h
(1)
n (β̂)√

n

∥∥∥∥ = |h|2 o(1)

|h| ≤ o(1)hT h(23)

with probability 1. Now, combining (21), (22) and (23), we have

hn

(
β̂ + h/

√
n

) − hn(β̂) ≤ −hT h
(
η/2 − p2δM/6 + o(1)

)
when |h| > 1 for all sufficiently large n with probability 1. Set δ sufficiently small
that η/2 − p2δM/6(= κ) > 0 and sup|β−β0|≤2δ π(β)(= �) < ∞. Then∫

K≤|h|√nδ
gn(h) dh ≤

∫
K≤|h|≤√

nδ
exp

(−|h|2(
κ + o(1)

))
π

(
β̂ + h/

√
n

)
dh

≤ �

∫
K≤|h|≤√

nδ
exp(−|h|2κ/2) dh
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for all sufficiently large n with probability 1. Hence, we can make (14) as small as
possible by choosing a sufficiently large K.

For (15), let ψ(x) = ∫ 1
0 (1 − (1 − y)x−1)/y dy. Then it can be shown that

supς≤x<∞ xψ ′(x) = ψ∗ < ∞ where ψ ′(x) = dψ(x)/dx. Note that

hn(β) ≤
qn∑
i=1

log
(
n

∫ 1

0

1 − (1 − x)exp(βT Zd(i))

x

× (1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )
gti (x) dx

)

≤
qn∑
i=1

log
(
g∗n

∫ 1

0

1 − (1 − x)exp(βT Zd(i))

x

× (1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )+ς−1
dx

)

≤
qn∑
i=1

log

[
g∗n

(
ψ

( ∑
j∈Rn(ti )

exp(βT Zj ) + ς

)

− ψ

( ∑
j∈R+

n (ti )

exp(βT Zj ) + ς

))]

≤
qn∑
i=1

log
(
g∗ψ∗n exp(βT Zd(i))∑

j∈R+
n (ti )

exp(βT Zj ) + ς

)
(24)

≤ Cqn +
qn∑
i=1

log
(
n

exp(βT Zd(i))∑
j∈R+

n (ti )
exp(βT Zj )

)
,(25)

where C = log(g∗ψ∗). Here the inequality in (24) follows from

ψ

( ∑
j∈Rn(ti )

exp(βT Zj ) + ς

)
− ψ

( ∑
j∈R+

n (ti )

exp(βT Zj ) + ς

)

= exp
(
βT Zd(i)

)
ψ ′(a)

= exp(βT Zd(i))

a
aψ ′(a)

≤ exp(βT Zd(i))∑
j∈R+

n (ti )
exp(βT Zj ) + ς

ψ∗,

where a is a positive number between
∑

j∈R+
n (ti )

exp(βT Zj ) + ς and∑
j∈Rn(ti )

exp(βT Zj ) + ς.
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Let

l+n (β) =
qn∑
i=1

log
(
n

exp(βT Zd(i))∑
j∈R+

n (ti )
exp(βT Zj )

)
.

Note that R+
n (ti) are nonempty sets and so l+n (β) is well defined for all sufficiently

large n with probability 1. Also, by direct calculation we can see that l+n (β) is a
strictly concave function. Since supβ∈B |ln(β) − l+n (β)| = O(1) for any compact

subset B of Rp, we have supβ∈B |l+n (β)/n − l̃(β)| → 0. Now, choose m such that

sup
β:|β−β0|=m

(
l̃(β) − l̃(β0)

) ≤ −qC − η

for some η > 0 where q = Pr{T1 ≤ τ, δ1 = 1}. Then

sup
β:|β−β0|≥m

l+n (β)

n
≤ sup

β:|β−β0|=m

l+n (β)

n
= sup

β:|β−β0|=m

l̃(β) + o(1).

Since qn/n → q and hn(β̂)/n → l̃(β0) with probability 1 by Lemma 1, we have

sup
β:|β−β0|≥δ/2

l+n (β)/n − hn(β̂)/n

≤ sup
β:δ/2≤|β−β0|≤m

(
l+n (β)/n − hn(β̂)/n

)

+ sup
β:|β−β0|≥m

(
l+n (β)/n − hn(β̂)/n

)
= −qC − η + o(1).

Finally,∫
|h|≥√

nδ
gn(h) dh = np/2

∫
|β−β̂|≥δ

ehn(β)−hn(β̂)π(β) dβ

≤ np/2 sup
β:|β−β̂|≥δ

ehn(β)−hn(β̂)

= np/2 exp
[
n

(
qnC/n + sup

β:|β−β0|≥δ/2
l+n (β)/n − hn(β̂)/n

)]

≤ np/2 exp
[
n
(−η + o(1)

)]
≤ np/2e−nη/2 → 0

for all sufficiently large n with probability 1 and the proof is done.
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4.2. Proof of Theorem 3.2. Let θn = (
√

n(β − β̂) = h,Dn) be given. We de-
compose

√
n(A(·) − Â(·)) by√

n
(
A(·) − Â(·)) = √

n
(
A(·) − AJ (·))(26)

+ √
n
(
AJ (·) − Ã(·))(27)

+ √
n
(
Ã(·) − Âh(·))(28)

+ √
n
(
Âh(·) − Â(·)),(29)

where

AJ (t) =
qn∑
i=1

�A(ti)I (ti ≤ t),

Ã(t) = E(AJ (t)|θn)

and

Âh(t) =
∫ t

0

dN·(u)∑
j∈Rn(u) exp(β̂T

h Zj )

with β̂h = β̂ + h/
√

n and N·(t) = ∑n
i=1 I (Ti ≤ t, δi = 1). Then we will prove

that when θn is given, with probability 1, (26) and (28) converge to 0 weakly,
(27) converges to W(U0(·)) weakly, and (29) converges to he0(·) on D[0, τ ] with
probability 1. Then Slutsky’s theorem completes the proof.

For (26), let β̂h = β̂ + h/
√

n and Yn(t) = A(t) − AJ (t). Then Theorem 2.1
yields that conditional on θn, Yn(t) is an NII process with Lévy measure νYn given
by

νYn(dt, dx) = (1 − x)
∑

j∈Rn(t) exp(β̂T
h Zj ) gt (x)

x
dx λ(t) dt.

Since Yn is nondecreasing, supt∈[0,τ ] |
√

nYn(t)| = √
nYn(τ ) and so it suffices

to show that L(
√

nYn(τ )|θn)
d→ 0 with probability 1, which is equivalent to

Pr{|√nYn(τ )| ≥ ε|θn} → 0 with probability 1 for any ε > 0. By the Chebyshev
inequality, we have

Pr
{∣∣√nYn(τ )

∣∣ ≥ ε|θn

} ≤ 1

ε2

((√
nE(Yn(τ )|θn)

)2 + nVar(Yn(τ )|θn)
)
.

Let

φk = nk/2
∫ τ

0

∫ 1

0
xk−1(1 − x)

∑
j∈Rn(s) exp(β̂T

h Zj )gs(x) dx λ(s) ds.

Then

φk ≤ nk/2g∗
∫ τ

0

∫ 1

0
xk−1(1 − x)

∑
j∈Rn(τ) exp(β̂T

h Zj )+ς−1 dx λ(s) ds

= nk/2g∗
∫ τ

0
λ(s) dsO(n−k) = O(n−k/2).
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Since
√

nE(Yn(τ )|θn) = φ1 and nVar(Yn(τ )|θn) = φ2, (26) converges to 0 on
D[0, τ ] with probability 1.

For (27)–(29), we need the following lemma, whose proof is in the Appendix.

LEMMA 3. For any compact subset B of Rp and any positive integer k,

sup
β∈B,1≤i≤qn

∣∣∣∣E(�Ak(ti)|β,Dn) − k!�(
∑

j∈R(ti )
exp(βT Zj ) + 1)

�(
∑

j∈R(ti )
exp(βT Zj ) + k + 1)

∣∣∣∣
= o

(
n−(k+1/2))

with probability 1.

For (27), since conditional on θn the process
√

n(AJ − Ã) is an indepen-
dent increment process, we utilize Theorem 19 of Section V.4 in [20]. Let Yn =√

n(AJ − Ã). We first prove the convergence of the finite-dimensional distribution
by showing Lyapounov’s condition. Suppose 0 ≤ s < t ≤ τ are given. Note that

Yn(t) − Yn(s) = ∑
s<ti≤t

√
n
(
�A(ti) − �Ã(ti)

)
.

Lemma 3 implies

sup
i=1,...,qn

E
[(√

n
(
�A(ti) − �Ã(ti)

))4|θn

] = O(n−2)

with probability 1. Hence

∑
s<ti≤t

E
[(√

n
(
�A(ti) − �Ã(ti)

))4|θn

] =
∫ t

s
O(n−2) dN·(u) → 0(30)

with probability 1. Similarly, we have that

Var
(
Yn(t) − Yn(s)|θn

)
= ∑

s<ti≤t

E
{[√

n
(
�A(ti) − �Ã(ti)

)]2|θn

}
(31)

=
∫ t

s

n∑
j∈Rn(u) exp(β̂T

h Zj )

(
1 + o(n−1/2)

) dN·(u)∑
j∈Rn(u) exp(β̂T

h Zj )

with probability 1. Hence, Lemma A2 in [24] yields

Var
(
Yn(t) − Yn(s)|θn

) → U0(t) − U0(s)(32)

with probability 1. Now (30) and (32) imply the finite-dimensional distributions
of Yn converge to those of W(U0) weakly. Finally, note that

Pr{|Yn(t) − Yn(s)| ≥ ε|θn} ≤ 1

ε2 Var
(
Yn(t) − Yn(s)|θn

)
.
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By (32), we have

Var
(
Yn(t) − Yn(s)|θn

) = U0(t) − U0(s) + o(1)

with probability 1. Since U0(t) is continuous, with probability 1 we can make
Pr{|Yn(t)−Yn(s)| ≥ ε|θn} as small as possible for all sufficiently large n by choos-
ing t and s sufficiently close. Hence Theorem 19 of Section V.4 in [20] allows us to
conclude that L(Yn|θn) converges weakly to W(U0) on D[0, τ ] with probability 1.

For (28), Lemma 3 yields that

�Ã(ti) = 1∑
j∈Rn(ti )

exp(β̂T
h Zj ) + 1

+ o(n−3/2).

Therefore

sup
t∈[0,τ ]

∣∣√n
(
Ã(t) − Âh(t)

)∣∣

=
∫ τ

0

√
n

∣∣∣∣∣
∑

j∈Rn(u) exp(β̂T
h Zj )∑

j∈Rn(u) exp(β̂T
h Zj ) + 1

− 1 +
( ∑

j∈Rn(u)

exp(β̂T
h Zj )

)
o(n−3/2)

∣∣∣∣∣ dN·(u)∑
j∈Rn(u) exp(β̂T

h Zj )

=
∫ τ

0
o(1)

dNn(u)∑
j∈Rn(u) exp(β̂T

h Zj )
→ 0

with probability 1 by Lemma A.2 of [24].
Finally, the proof of (29) converging to 0 can be found in the proof of Theorem 3

in [15].

APPENDIX: PROOF OF LEMMAS IN SECTION 4

LEMMA A.1. Let

ηi(x,β) = (1 − (1 − x)exp(βT Zd(i)))gti (x)(1 − x)

k(ti)x
(33)

− exp
(
βT Zd(i)

)
(1 − x)exp(βT Zd(i))

and let η
(k)
i (x, β) be the kth derivative of ηi(x,β) in β . Let α′ = min{1, α} where

α is in condition (C2). Then for any compact subset B of Rp , there exist constants
Mk , k = 0,1,2,3, such that

sup
β∈B,x∈(0,1),1≤i≤qn

∥∥∥∥η
(k)
i (x, β)

xα′

∥∥∥∥ < Mk(34)

with probability 1.
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PROOF. Write

ηi(x,β) = [
φ

(
x,β,Zd(i)

) − exp
(
βT Zd(i)

)]gti (x)(1 − x)

k(ti)
(35)

+ (1 − x) exp(βT Zd(i))

k(ti)

(
gti (x) − k(ti)

)
(36)

+ exp
(
βT Zd(i)

)[
(1 − x) − (1 − x)exp(βT Zd(i))

]
,(37)

where

φ(x,β,Z) = 1 − (1 − x)exp(βT Z)

x
.

For (35), let h(x :β,Z) = φ(x,β,Z) − exp(βT Z). Then direct calculation
yields that

m1 = sup
β∈B,x∈(0,1/2),‖Z‖≤Mz

|h′(x :β,Z)| < ∞

where h′(x :β,Z) = dh(x :β,Z)/dx. Now, since h(0 : β,Z) = 0, the mean value
theorem implies that

sup
β∈B,x∈(0,1/2),‖Z‖≤Mz

∣∣∣∣h(x :β,Z)

xα′

∣∣∣∣
= sup

β∈B,x∈(0,1/2),‖Z‖≤Mz

∣∣∣∣h(x :β,Z) − h(0 :β,Z)

x

∣∣∣∣x1−α′
(38)

= sup
β∈B,x∈(0,1/2),‖Z‖≤Mz

|h′(x :β,Z)|.

Hence

sup
β∈B,x∈(0,1/2)

∥∥∥∥(35)

xα′

∥∥∥∥ ≤ g∗

k∗
m1.

Also, it is easy to see that

sup
β∈B,x∈[1/2,1)

∥∥∥∥(35)

xα′

∥∥∥∥ ≤ D

for some constant D, since the numerator as well as the denominator is finite.
For (36), conditions (C1) and (C2) imply that

m2 = sup
β∈B,x∈(0,1),t∈[0,τ ]

∣∣∣∣(1 − x)(gt (x) − k(t))

xα′

∣∣∣∣ < ∞.

So

sup
β∈B,x∈(0,1)

∥∥∥∥(36)

xα′

∥∥∥∥ ≤ CB

k∗
m2
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where CB = supβ∈B,‖Z‖≤Mz
exp(βT Z).

For (37), let k(x :β,Z) = (1 − x) − (1 − x)exp(βT Z) and let k′(x : β,Z) be the
first derivative of k in x. Direct calculation yields

sup
β∈B,x∈(0,1/2],‖Z‖≤Mz

|k′(x : β,Z)| < ∞.

So we can use a method similar to (38) to show

m3 = sup
β∈B,x∈(0,1/2],‖Z‖≤Mz

∣∣∣∣k(x :β,Z)

xα′

∣∣∣∣ < ∞.

Also, it is true that

m4 = sup
β∈B,x∈(1/2,1],‖Z‖≤Mz

∣∣∣∣k(x :β,Z)

xα′

∣∣∣∣ < ∞.

Hence ∥∥∥∥(37)

xα′

∥∥∥∥ ≤ CB(m3 + m4).

Now the proof of (34) for k = 0 is done by letting

M0 = m1g
∗/k∗ + D + m2CB/k∗ + CB(m3 + m4).

The results for k = 1,2,3 follow from similar arguments. �

PROOF OF LEMMA 1. We can write

hn(β) = −ρn(β) + ln(β) +
qn∑
i=1

log
(
1 + ζi(β)/χi(β)

)
,

where

χi(β) = exp(βT Zd(i))∑
j∈R(ti )

exp(βT Zj )

and

ζi(β) =
∫ 1

0

1 − (1 − x)exp(βT Zd(i))

x
(1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj ) gti (x)

k(ti)
dx

− exp(βT Zd(i))∑
j∈Rn(ti )

exp(βT Zj )
.

For ρn(β), using conditions (A2) and (C1), we have

sup
β∈B

ρn(β) ≤ M

n∑
i=1

∫ Ti

0

∫ 1

0
(1 − x)(n−i)c+ς−1 dx λ(t) dt = O(logn)(39)
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with probability 1 for some positive constants M and c. Similarly, we can show
that supβ∈B ‖ρn(β)(k)‖ = O(logn) with probability 1 for k = 1,2,3.

Let

ξi(β) = ζi(β)/χi(β).(40)

The proof will be complete if we show that supβ∈B,i=1,...,qn
‖ξ (k)

i (β)‖ = o(1)

for k = 0,1,2,3. However, we will show supβ∈B,i=1,...,qn
‖ξ (k)

i (β)‖ = o(n−1/2)

to use it in the proof of Lemma 2. Since supβ∈B,i=1,...,qn
‖χ(k)

i (β)‖ = O(n−1)

for k = 0,1,2,3, it suffices to show supβ∈B,i=1,...,qn
‖ζ (k)

i (β)‖ = o(n−3/2) for
k = 0,1,2,3.

For k = 0, let α′ = min{α,1} where α is in condition (C2). Since

exp(βT Zd(i))∑
j∈Rn(ti )

exp(βT Zj )
=

∫ 1

0
(1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )−1

× exp
(
βT Zd(i)

)
(1 − x)exp(βT Zd(i)) dx,

we can write

ζi(β) =
∫ 1

0
(1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )−1
ηi(x,β) dx

where η is defined in (33). Then Lemma A.1 yields

sup
β∈B,1≤i≤qn

‖ζi(β)‖ ≤
∫ 1

0
(1 − x)

∑
j∈R

+
n (τ)

exp(βT Zj )−1
xα′

M0 dx

(41)
= O

(
n−(α′+1)) = o(n−3/2),

where the last equality is due to the fact that α′ > 1/2 by condition (C2). Similarly,
we can get supβ∈B,i=1,...,qn

‖ζ (k)
i (β)‖ = o(n−3/2) for k = 1,2,3. �

PROOF OF LEMMA 2. We have

∥∥h(1)
n (β̂)

∥∥ ≤ ∥∥ρ(1)
n (β̂)

∥∥ + ∥∥l(1)
n (β̂)

∥∥ +
qn∑
i=1

∥∥∥∥ ξ
(1)
i (β̂)

1 + ξi(β̂)

∥∥∥∥(42)

where ξi(β) is defined in (40). We have shown in the proof of Lemma 1 that
‖ρ(1)

n (β̂)‖ = O(logn) and

qn∑
i=1

∥∥∥∥ ξ
(1)
i (β̂)

1 + ξi(β̂)

∥∥∥∥ = o
(√

n
)

with probability 1. Since l
(1)
n (β̂) = 0, the proof is done. �
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PROOF OF LEMMA 3. Let θn = (β,Dn). Let

ek
i (β) =

∫ 1

0
xk 1 − (1 − x)exp(βT Zd(i))

x
(1 − x)

∑
j∈R+(ti )

exp(βT Zj )
gti (x) dx

and

ẽk
i (β) = k(ti) exp

(
βT Zd(i)

)�(
∑

j∈R(ti )
exp(βT Zj ))�(k + 1)

�(
∑

j∈R(ti )
exp(βT Zj ) + k + 1)

.

Since

ẽk
i (β) = k(ti)

∫ 1

0
xk exp

(
βT Zd(i)

)
(1 − x)

∑
j∈Rn(ti )

exp(βT Zj )−1
dx,

using Lemma A.1, we have

sup
β∈B

|ek
i (β) − ẽk

i (β)|

≤ k∗ sup
β∈B

∣∣∣∣
∫ 1

0
xk(1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )−1
ηi(x,β) dx

∣∣∣∣
≤ k∗M0

∣∣∣∣
∫ 1

0
xk+α′

(1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )−1
dx

∣∣∣∣
= O

(
n−(k+α′+1)) = o

(
n−(k+3/2))

with probability 1.
Now, we can write

sup
β∈B

∣∣∣∣E(�Ak(ti)|θn) − k!�(
∑

j∈R(ti )
exp(βT Zj ) + 1)

�(
∑

j∈R(ti )
exp(βT Zj ) + k + 1)

∣∣∣∣
= sup

β∈B

∣∣∣∣e
k
i (β)

e0
i (β)

− ẽk
i (β)

ẽ0
i (β)

∣∣∣∣(43)

≤ sup
β∈B

∣∣∣∣e
k
i (β) − ẽk

i (β)

e0
i (β)

∣∣∣∣ + sup
β∈B

∣∣∣∣ ẽ
k
i (β)(e0

i (β) − ẽ0
i (β))

e0
i (β)ẽ0

i (β)

∣∣∣∣.
Note that ẽk

i (β) = O(n−(k+1)) and hence ek
i (β) = O(n−(k+1)). Therefore,

(43) = o(n−(k+3/2))

O(n−1)
+ O(n−(k+1))o(n−3/2)

O(n−2)
= o

(
n−(k+1/2))

with probability 1, and the proof is done. �
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