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RISK HULL METHOD AND REGULARIZATION BY PROJECTIONS
OF ILL-POSED INVERSE PROBLEMS

BY L. CAVALIER AND YU. GOLUBEV

Université de Provence (Aix-Marseille 1)

We study a standard method of regularization by projections of the linear
inverse problem Y = Af + ε, where ε is a white Gaussian noise, and A is a
known compact operator with singular values converging to zero with poly-
nomial decay. The unknown function f is recovered by a projection method
using the singular value decomposition of A. The bandwidth choice of this
projection regularization is governed by a data-driven procedure which is
based on the principle of risk hull minimization. We provide nonasymptotic
upper bounds for the mean square risk of this method and we show, in partic-
ular, that in numerical simulations this approach may substantially improve
the classical method of unbiased risk estimation.

1. Introduction and main result. The inverse problem paradigm is related to
the classical linear algebra problem in which we want to find a solution x ∈ R

d of
the linear equation

Ax = y,(1.1)

where A is a known d × d matrix and y is a given vector in R
d . From a mathe-

matical viewpoint, the linear inverse problem can be considered a straightforward
generalization of (1.1). Let H, G be two Hilbert spaces and let A be a continuous
linear operator H → G. Suppose we have at our disposal an element (a function)
defined by

Y = Af + ε,(1.2)

where ε is an unknown function which is small. The goal is to recover f ∈ H.
Numerous applications of inverse problems in medical image processing,

econometrics and astrophysics make this area very attractive for mathematical in-
cursions. The mathematical literature on inverse problems is so vast that it would
be impractical to cite it here. We refer the interested readers to [3, 10, 14], where
interesting applications of inverse problems can be found.

In the last two decades, the stochastic approach, which goes back to [18], has
been very intensively studied in the statistical literature (see, e.g., [5, 7–9, 11, 16,
17, 19, 21]). In this approach, it is usually assumed that ε is a Gaussian white noise
in H (see, for details, [15]).
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The simplest way to understand why the problem (1.2) may be difficult is to
look at the singular value decomposition (SVD) of A. Let A∗ be the adjoint to
A. Suppose A∗A is a compact operator with eigenvalues λk ≥ 0, k = 1, . . . , and
eigenfunctions ϕk, k = 1, . . . . Let ψk = Aϕk/‖Aϕk‖. Then we get the following
equivalent representation of (1.2):

yk = θk + σkξk, k = 1,2, . . . ,(1.3)

where ξk are i.i.d. N (0,1), yk = 〈Y,ψk〉/√λk, θk = 〈f,ϕk〉, σk = ε/
√

λk , and ε is
a known spectral density of Gaussian white noise ε.

Ill-posed inverse problems are characterized by the fundamental property that
σk → ∞ as k → ∞, and the behavior of σk for large k describes the difficulty of
the inverse problem. In this paper we will deal with moderately ill-posed inverse
problems with polynomially increasing (σk 
 kβ,β ≥ 0). Recall that in the statis-
tical literature this type of inverse problem is often associated with estimation of
the derivative of order β of a regression function.

The fact that σk → ∞ immediately entails that the natural inversion

A−1Y = ∑
k : λk>0

λ
−1/2
k 〈Y,ψk〉ϕk(1.4)

cannot be used since the quadratic risk of this method is infinite. A standard way
to overcome this difficulty is based on a regularization technique. Nowadays the
family of regularization methods available for practical applications is very large;
see [10] and [23]. In the present paper, we will focus on regularization by projec-
tions. The idea of this method is very simple. In order to invert A, let us use the
first N terms of the expansion (1.4). In other words, to recover f or equivalently
θk, k = 1, . . . , in the model (1.3), we use the projection method

θ̃k(N) = yk1(k ≤ N).(1.5)

The mean square risk of this inversion method is computed very easily:

R(θ,N) = Eθ‖θ̃ (N) − θ‖2 =
∞∑

k=N+1

θ2
k +

N∑
k=1

σ 2
k .(1.6)

The parameter N here is called the bandwidth and the major statistical problem is
related to the data-driven choice of N . Roughly speaking, the goal of this choice
is to minimize the right-hand side of (1.6) based on the noisy data yk from (1.3).

A classical approach to this minimization problem is based on the principle of
unbiased risk estimation (URE) (see [22]). The idea to use this method for adaptive
bandwidth choice goes back to [1] and [20]. Originally, URE was proposed in the
context of regression estimation σk = ε. Nowadays, it is used as a basic adaptation
tool for many statistical models. For inverse problems, this method was studied
in [5], where precise oracle inequalities for the mean square risk were obtained.
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The heuristic motivation of URE is rather simple. The underlying optimization
problem can be reformulated as minimization of −∑N

k=1 θ2
k +∑N

k=1 σ 2
k [see (1.6)].

Noticing that the unobservable term
∑N

k=1 θ2
k can be estimated by

∑N
k=1(y

2
k −σ 2

k ),
we choose the bandwidth as

Nure(y) = arg min
N≥1

R̄(y,N) where R̄(y,N) =
{
−

N∑
k=1

y2
k +2

N∑
k=1

σ 2
k

}
.(1.7)

Intuitively, since Nure(y) minimizes the estimator of the risk, it means that the risk
of the method Eθ‖θ̃ (Nure)−θ‖2 can be controlled by the risk of the best projection
method infN R(θ,N), which is sometimes called risk of oracle. Following [4], we
measure the quality of the method θ̃ (Nure) by the ratio of its risk to the risk of
oracle,

r(θ) = Eθ‖θ̃ (Nure) − θ‖2

infN R(θ,N)
.(1.8)

When we use URE we hope that r(θ) is bounded from above by a relatively small
constant uniformly over all θ . It is well known that this native hypothesis holds
(see [4]) for direct estimation (σk ≡ ε). However, when we deal with an inverse
problem the situation becomes more difficult.

In order to illustrate the difference between direct and inverse estimation, we
will carry out a very simple numerical experiment. Obviously, we cannot compute
in a numerical experiment r(θ) for all θ ∈ l2. Therefore, let us take θk ≡ 0 and
compute r(0) for two cases, σk ≡ ε and σk = εk. The first case corresponds to
classical regression function estimation (direct estimation), whereas the second is
related to the estimation of the first-order derivative of a regression function. No-
tice that in both cases the risk of the oracle is evidently infN R(0,N) = ε2 since
arg minN R(0,N) = 1. In order to shed some light on the performance of URE, we
generated 2000 independent random vectors yj , j = 1, . . . ,2000, with the compo-
nents defined by (1.3). For each vector we computed Nure(y

j ) and the normalized
error ‖θ̂[Nure(y

j )] − θ‖2/ε2 and plotted these values as a stem diagram. We also
computed the mean empirical bandwidth Nemp and the normalized mean empirical
risk Remp by

Nemp = 1

2000

2000∑
j=1

Nure(y
j ), Remp = 1

2000ε2

2000∑
j=1

‖θ̂ [Nure(y
j )] − θ‖2.

Let us discuss briefly the numerical results of this experiment shown in Figure 1.
The first display (direct estimation) shows that the URE method works reasonably
well. Almost all bandwidths Nure(y

j ) are relatively small (their mean is 1.98) and
r(0) = 3.72. Even a quick look at the second display shows that the distribution of
Nure(y

j ) changed essentially. Now the mean is 5.95 and there are sufficiently many
bandwidths Nure(y

j ) greater than 20. This results in a catastrophic r(0) ≈ 2000.
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FIG. 1. The method of unbiased risk estimation.

On the other hand, it follows from the oracle inequalities (see [6, 5, 7] or Theorem 4
of the present paper) that in both cases there exist a lot of θ for which r(θ) ≈ 1.
Comparing this fact with the simulations, we can conclude that for ill-posed in-
verse problems, URE does not work properly since very large r(0) undermines its
basic idea.

There exists a more general approach which is very close to URE. This method
is called method of penalized empirical risk, and in the context of our problem it
provides us with the bandwidth choice

N(y) = arg min
N≥1

R̄pen(y,N),

(1.9)

R̄pen(y,N) =
{
−

N∑
k=1

y2
k +

N∑
k=1

σ 2
k + pen(N)

}
,

where pen(N) is a penalty function. The modern literature on this method is vast
and we refer the interested reader to [2] or [4]. The main idea at the heart of this ap-
proach is that severe penalties permit one to improve substantially the performance
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of URE. For instance, it is known that this approach works well for severely ill-
posed problems, where URE completely fails (see, e.g., [12]). However, it should
be mentioned that the principal difficulty of this method is related to the choice of
the penalty function pen(N).

In this paper we propose a more general approach, called risk hull minimization
(RHM), which gives a relatively good strategy for the penalty choice. Our goal is to
present heuristic and mathematical justifications of this method. In the framework
of the empirical risk minimization RHM can be defined as follows. Let the penalty
in (1.9) be

pen(N) = penrhm(N) =
N∑

k=1

σ 2
k + (1 + α)U0(N),(1.10)

where

U0(N) = inf{t > 0 : EηNI (ηN ≥ t) ≤ σ 2
1 } with ηN =

N∑
i=1

σ 2
i (ξ2

i −1).(1.11)

RHM chooses the bandwidth Nrhm(y) = N(y) according to (1.9) with the
penalty function defined by (1.10), (1.11). The following theorem provides an up-
per bound for the mean square risk of this approach. Recall that it assumed that σk

has polynomial growth (σk 
 εkβ ); see, for details, (2.5) and (2.6).

THEOREM 1. There exist constants C∗ > 0 and γ0 > 0 such that for all γ ∈
(0, γ0] and α > 1

E‖θ̃ (Nrhm) − θ‖2 ≤ (1 + γ ) inf
N

Rrhm(θ,N) + C∗σ 2
1

(
1

γ 4β+1 + 1

α − 1

)
,(1.12)

where Rrhm(θ,N) = ∑∞
k=N+1 θ2

k + ∑N
k=1 σ 2

k + (1 + α)U0(N).

The statistical sense of Theorem 1 is rather transparent. The principal term of
this upper bound is infN Rα(θ,N). The residual term

min
γ

{
γ inf

N
Rrhm(θ,N) + C∗σ 2

1

γ 4β+1

}
+ C∗σ 2

1

α − 1

= C∗σ 2
1
[
(4β + 1)1/(4β+2) + (4β + 1)−(4β+1)/(4β+2)]

×
[

infN Rrhm(θ,N)

C∗σ 2
1

](4β+1)/(4β+2)

+ C∗σ 2
1

α − 1

defines how much we should pay for stochastic minimization. Using this theorem
we can get a typical panorama of minimax facts related to moderately ill-posed
problems (see [5]). Moreover, simulations in Section 3 reveal that the constant C∗
is really small. It means, in particular, that in contrast to URE this method is stable.

The present paper is organized as follows. In Section 2, a heuristic motivation
and additional facts related to RHM are presented. Section 3 contains simulation
results. The proofs and technical lemmas are postponed to Section 4.
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2. The RHM method.

2.1. A heuristic motivation. The heuristic motivation of the RHM approach is
based on the oracle ideology. Suppose there is an oracle which provides us with
θk, k = 1, . . . , but we are allowed to use only projection methods. In this case the
optimal bandwidth is evidently given by

Nor = arg min
N

r(y,N) where r(y,N) = ‖θ̃ (N) − θ‖2.

Let us try to mimic this bandwidth choice. At the first glance this problem seems
hopeless since in the decomposition

r(y,N) =
∞∑

k=N+1

θ2
k +

N∑
k=1

σ 2
k ξ2

k ,

neither θ2
k nor ξ2

k is really known. However, suppose for a moment that we know
all the θ2

k , and we try to minimize r(y,N). Since ξ2
k are assumed to be unknown,

we can use a conservative minimization. It means that we minimize the nonrandom
functional

l(θ,N) =
∞∑

k=N+1

θ2
k + V (N),(2.1)

where V (N) bounds from above the stochastic term
∑N

k=1 σ 2
k ξ2

k . It seems natural
to choose this function such that

E sup
N

[
N∑

k=1

σ 2
k ξ2

k − V (N)

]
≤ 0,(2.2)

since then we can easily control the risk of any projection estimator with a data-
driven bandwidth Ñ ,

Eθ‖θ̃ (Ñ) − θ‖2 ≤ Eθ l(θ, Ñ).(2.3)

This motivation leads to the following definition: a nonrandom function (θ,N)

such that Eθ supN [r(y,N) − (θ,N)] ≤ 0 is called a risk hull.
Thus, we can say that l(θ,N) defined by (2.1) and (2.2) is a risk hull. Evidently,

we want to have the upper bound (2.3) as small as possible. So, we are looking for
the minimal hull. Note that this hull strongly depends on σ 2

k and we present in the
sequel a numerical recipe to compute it.

Once V (N) satisfying (2.2) has been chosen, the minimization of l(θ,N) can be
completed in the standard way by using unbiased estimation. Note that our prob-
lem is reduced to minimization of −∑N

k=1 θ2
k + V (N). Replacing the unknown θ2

k
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by their unbiased estimates y2
k −σ 2

k , we arrive at the following method of adaptive
bandwidth choice:

N̄ = arg min
N

[
−

N∑
k=1

y2
k +

N∑
k=1

σ 2
k + V (N)

]
.

A cornerstone idea of this approach is that we can find a function V (N) such
that the data-driven N̄ minimizes the risk hull l(θ,N) without significant losses,
that is,

Eθ l̄(θ, N̄) � min
N

l(θ,N) + small_term.

Therefore, combining this with (2.3), we get the inequality

Eθ‖θ̃ (N̄) − θ‖2 � min
N

l(θ,N) + small_term,(2.4)

which represents a heuristic version of an oracle inequality for the RHM method.
Notice that when the risk is measured by the l2-norm, RHM coincides with the

empirical risk minimization approach which is usually used in model selection [4].
The major issue of model selection is the choice of a good penalization. In the
framework of the RHM approach, this problem can be rephrased as follows: to find
the minimal risk hull, which can be minimized based on the data. We do not believe
that there is a good general formula for the optimal risk hull or for the penalty.
What we can really do is to make use of the Monte Carlo method to compute an
approximation of this hull. The goal of the present paper is to demonstrate that this
approach works well for the regularization by projections.

2.2. Statistical model and assumptions. In the sequence space model (1.3), we
supposed that σ 2

k is a polynomially increasing sequence with σ 2
1 > 0. To be more

precise, it is assumed that this sequence satisfies the following hypothesis.

POLYNOMIAL HYPOTHESIS. There exist constants C1,C2,C3 such that for
some β ≥ 0 and for all k > 1

C1

(
1

2k

2k∑
i=1

σ 4
i

)1/2

≤ σ 2
k ≤ C2σ

2
1

(
1

σ 2
1

k−1∑
i=1

σ 2
i

)2β/(2β+1)

.(2.5)

For any integer s > 1

1

σ 2s
1

k∑
i=1

σ 2s
i ≤ Cs

3

(
1

σ 2
1

k∑
i=1

σ 2
i

)(2sβ+1)/(2β+1)

.(2.6)
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Let us comment very briefly on these assumptions. Assumption (2.5) means
that σ 2

k can have only polynomial growth. Indeed, since x1/(2β+1) is a concave
function, we have by (2.5)(

1

σ 2
1

k∑
i=1

σ 2
i

)1/(2β+1)

−
(

1

σ 2
1

k−1∑
i=1

σ 2
i

)1/(2β+1)

≤ C2

2β + 1
,

and summing up these formulas, one can easily check that

1

σ 2
1

N∑
i=1

σ 2
i ≤

(
C2(N − 1)

2β + 1

)2β+1

+ 1,

(2.7)

σ 2
k ≤ C2σ

2
1

(
C2(k − 1)

2β + 1

)2β

+ C2σ
2
1 .

Thus σk can have only polynomial growth of order β , which we will call the degree
of inverse problem.

2.3. A risk hull. The main ingredient of RHM is the function U0(k), k =
1, . . . , defined by (1.11). The simplest way to compute it is to make use of the
Monte Carlo method. It should be mentioned that this method is time consuming
since this function is related to large deviations of ηk . Lemma 1 below gives an
asymptotic approximation for U0(k), but we will see that this approximation is not
good for small k. Therefore we prefer to use the nonasymptotic formula (1.11) in
our approach. It should be mentioned that the performance of RHM is sufficiently
stable with respect to small perturbations of U0(k). Denote for brevity

�N =
N∑

s=1

σ 4
s and u0(N) = U0(N)√

2�N

.

LEMMA 1. There exists an integer N0 ≥ 1 such that for all N ≥ N0

u0(N) ≥ u1(N)
def=

√
log

(
�N/(2πσ 4

1 )
)
.(2.8)

This fact plays a principal role in the proof of the following theorem.

THEOREM 2. There exists a constant C∗ such that for any α > 0

lrhm(θ,N) =
∞∑

k=N+1

θ2
k +

N∑
k=1

σ 2
k + (1 + α)U0(N) + C∗σ 2

1

α
(2.9)

is a risk hull, that is, E supN [r(y,N) − lrhm(θ,N)] ≤ 0.
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This theorem says that uniformly in N , the loss r(y,N) can be bounded by the
risk hull lrhm(θ,N). Thus, for any Ñ data-dependent, we can bound the risk of the
projection regularization method by the expectation of the risk hull [see (2.3)].

We have mentioned that the URE and RHM methods can be viewed as mini-
mizers of the penalized empirical risk [see (1.9)]. While the penalty corresponding
to the URE is given by penure(N) = ∑N

k=1 σ 2
k , the RHM method has the larger

penalty penrhm(N) = ∑N
k=1 σ 2

k + (1 + α)U0(N). Thus, it would be instructive to
look at the ratio penrhm(N)/penure(N). If we suppose for a moment that the dis-
tribution ηk can be approximated by a Gaussian law, then we get from (1.11)

U0(N) ≈ Ũ0(N) =
√

2�N log[�N/(πσ 4
1 )].

Under the polynomial hypothesis [see (2.5), (2.6)] it is easy to check that

U0(N) = o

(
N∑

k=1

σ 2
k

)
, Ũ0(N) = o

(
N∑

k=1

σ 2
k

)
, N → ∞.

Nevertheless it is instructive to look at what is going on when N is small. Therefore
we plotted in Figure 2 the functions

ρ(N) = penrhm(N)

penure(N)
= 1 + (1 + α)U0(N)∑N

k=1 σ 2
k

, ρ̃(N) = 1 + (1 + α)Ũ0(N)∑N
k=1 σ 2

k

,

with α = 0.1. Since we used the Monte Carlo method, the function ρ(N) looks
a little bit wiggly. The first display (direct estimation) shows that (1 + α)U0(N)

is smaller than
∑N

k=1 σ 2
k and this function cannot substantially affect the perfor-

mance of URE. On the other hand, the second plot distinctly demonstrates that
(1 + α)U0(N) dominates

∑N
k=1 σ 2

k when σk = εk. It means that in this case RHM
and URE may work quite differently. Note also that in the case of inverse estima-
tion the difference between U0(N) and its Gaussian approximation Ũ0(N) may be
significant for small N . Certainly, Ũ0(N)/U0(N) → 1 as N → ∞, but very often
numerical performance of RHM strongly depends on the behavior of the penalty
function for small N , and this is why we used U0(N) in our method.

2.4. The risk hull approach and URE. Let us finish this section with a dis-
cussion of the URE method, which can be also viewed as a risk hull method. The
following theorem justifies this idea.

THEOREM 3. There exists a constant Cu such that for any α > 0

lure(θ,N) = (1 + α)

[ ∞∑
k=N+1

θ2
k +

N∑
k=1

σ 2
k

]
+ Cu

α4β+1 σ 2
1

is a risk hull.
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FIG. 2. The functions ρ(N) (solid line) and ρ̃(N) (dashed line) for direct (σk = ε) and inverse
(σk = εk) estimation.

It is clear that the data-driven bandwidth choice Nure defined by (1.7) can be
viewed as the minimization of the risk hull lure(θ,N). The following theorem pro-
vides an upper bound for the risk of this method.

THEOREM 4. There exist constants C∗ > 0 and γ0 > 0 such that for all
γ ∈ (0, γ0]

Eθ‖θ̃ (Nure) − θ‖2 ≤ (1 + γ ) inf
N

R(θ,N) + C∗σ 2
1

γ 4β+1 .(2.10)

This result rectifies Theorem 1 in [5]. It shows in particular that there is no log-
arithmic factor in the corresponding oracle inequality. At the first glance it seems
that URE method may work better than RHM. This naive idea is motivated by the
fact that

inf
N

R(θ,N) < inf
N

Rrhm(θ,N).
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Recall that the left-hand side of this display represents the main term of the upper
bound (2.10) while the right-hand side is the principal term of (1.12). But the real
situation is not so trivial. In order to compare the bounds (2.10) and (1.12), we
should take into account the remainder terms defined by constants C∗ and C∗.
Both these constants depend on β but their statistical nature and behavior are quite
different, which follows from inspection of the proofs of Theorems 1 and 4. The
constant C∗ may be very large even for β > 1 whereas C∗ remains moderate. We
shall clearly see this phenomenon in the following section devoted to numerical
simulations, but now let us discuss at the heuristic level the principal difficulties of
URE. The basic idea of this method is that R̄(y,N) = −∑N

k=1 y2
k + 2

∑N
k=1 σ 2

k is
a good estimator for Eθ R̄(y,N) = −∑N

k=1 θ2
k + ∑N

k=1 σ 2
k . In order to see that this

idea may fail, it suffices to look at the variance

Eθ [R̄(y,N) − Eθ R̄(y,N)]2 ≥ 2
N∑

k=1

σ 4
k .

So, R̄(y,N) might be considered a good estimator, if

Eθ R̄(y,N) > 2

(
2

N∑
k=1

σ 4
k

)1/2

.

This entails, in particular, that the following inequality should hold:

N∑
k=1

σ 2
k > 2

(
2

N∑
k=1

σ 4
k

)1/2

,(2.11)

for all N ≥ 1. Notice that the factor 2 in the above inequality is, in some sense,
very optimistic. In fact, it should be replaced by a function which tends to infin-
ity as N → ∞. However, let us suppose that σk = εkβ and look for integers Nβ

for which (2.11) starts to work. For β = 0, we get N0 = 8, for β = 1, N1 = 14
and so on. It is easy to see that URE will always choose a bandwidth of order at
least Nβ . This evidently results in the risk order ε2N

2β+1
β . We would like to draw

attention to the fact that this lower bound does not depend on the risk of the ora-
cle infN R(θ,N). The latter may be small while ε2N

2β+1
β is large. Thus, roughly

speaking, URE works well when

inf
N

R(θ,N) > ε2N
2β+1
β .

Otherwise it fails. Unfortunately, the factor N
2β+1
β is large even for moderate β;

for β = 1 it is of order 103.
The second almost evident fact is that the bandwidth N of the best projection

method is typically small when we deal with ill-posed problems. For instance,
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consider the minimax recovering of vectors θ from the Sobolev ball

Wm(L) =
{
θ :

∞∑
k=1

θ2
k k2m ≤ L

}
.

Then it is easy to see (see, for details, [5]) that N is of order ε−2/(2m+2β+1). Thus,
when β = 1 and m = 1, this term is of order ε−2/5. Therefore even for a very
small noise level ε2 = 10−6, N will not be larger than 20. Combining this with
the previous remark, we see that in this case URE may not work properly. From
an asymptotic viewpoint everything goes smoothly, but unfortunately asymptotic
arguments start to work for very small ε.

3. Simulations. In this section we present some numerical properties of the
RHM approach. Numerical testing of nonparametric statistical methods is a very
difficult and delicate problem. The goal of this section is very modest. We would
like to illustrate graphically Theorems 1 and 4. To do that, we propose to measure
statistical performance of a method Ñ by oracle efficiency defined by

eor(θ, Ñ) = infN Eθ‖θ̃ (N) − θ‖2

Eθ‖θ̃ (Ñ) − θ‖2
.

It should be mentioned that we use the inverse of the ratio r(θ) from (1.8) since
we want to get a good graphical representation of the performance. We have seen
in the Introduction that r(θ) may vary from 1 to 2000 for the URE method. This
results in a degenerate plot of r(θ). Therefore, in order to avoid this effect, we use
eor(θ, Ñ) instead of r(θ).

Since it is evidently impossible to compute the oracle efficiency for all θ ∈ l2,
we choose a sufficiently representative family of vectors θ . In what follows we will
use the linear family

θa
i = aε

1 + (i/W)m
,

where a defines amplitude, W bandwidth and m smoothness.
We shall vary a in a large range and plot ror(θ

a, Ñ) as a function of a which is
directly related to the signal-to-noise ratio in the considered model. The parameters
m = 6 and W = 6 are fixed. In other examples of (W,m) the authors looked at,
simulations showed that the oracle efficiency exhibits similar behavior.

Two methods of data-driven bandwidth choice will be compared: URE and
RHM with α = 1.1. It is easy to see that for these methods ror(θ

a, Ñ) does
not depend on ε. This function was computed by the Monte Carlo method with
40,000 replications. We start with direct estimation where σk ≡ ε. Figure 3
shows the oracle efficiency of URE (left panel) and the oracle efficiency of
RHM (right panel). Comparing these plots, one can say that both methods work
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FIG. 3. Oracle efficiency of URE and of RHM for direct estimation (σk = ε).

reasonably well. However, if we deal with an inverse problem such as deriv-
ative estimation, we can see a significant difference between these methods.
The corresponding oracle efficiencies are plotted on the left and right panels of
Figure 4. For small values of a the performance of URE is very poor, whereas
RHM demonstrates very stable behavior. For very large a = 500 the oracle effi-
ciency of URE is of order 0.16, while RHM always has efficiency greater than 0.4.
Figure 5 deals with the case when the inverse problem becomes really ill-posed
(σk = εk2). In this situation URE fails completely. Its maximal oracle efficiency
is of order 3 ∗ 10−4. Nevertheless, RHM has a good efficiency (greater than 0.3).
In the context of Theorem 1 and Theorem 4 this example shows that the constants
C∗ and C∗ are quite different: while C∗ is small, C∗ is really large. Unfortunately,
it means that the terms which are asymptotically small in Theorem 4 may easily
dominate the oracle risk.

FIG. 4. Oracle efficiency of URE and of RHM for first-order derivative estimation (σk = εk).
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FIG. 5. Oracle efficiency of URE and of RHM for second-order derivative estimation (σk = εk2).

Let us finish this section with a short discussion of the role played by α. In the
previous numerical simulations this parameter was 1.1. What happens if we set this
parameter to 0? The answer depends on β . If β is small, β ≤ 1, everything goes
smoothly. However, even for β = 2 this choice results in an instable procedure. On
the other hand, taking α to be large leads to poor performance of RHM.

4. Proofs.

4.1. Proof of Theorem 2.

PROOF OF LEMMA 1. Denote for brevity

κN = ηN/
√

2�N

and

�N(t) = E exp(itκN).

We begin with an upper bound for the absolute value of �N(t). Recalling the
definition of ηN and using (2.5), we have

|�N(t)| ≤ exp

[
−1

4

N∑
l=1

log
(

1 + 2t2σ 4
l

�N

)]

≤ exp

[
−N

8
log

(
1 + 2t2σ 4

N/2

�N

)]

≤
(

1 + Ct2

N

)−N/8

.
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With this inequality, we have that for all x ≤ √
N/C∫

|t |≥x
|�N(t)|dt ≤

∫
x≤|t |≤√

2N/C
|�N(t)|dt +

∫
|t |≥√

2N/C
|�N(t)|dt

≤
∫
|t |≥x

exp[−Ct2]dt +
∫
|t |≥√

2N/C

(
Ct2

N

)−N/8

dt(4.1)

≤ exp[−Cx2] +
√

N3

8C
2−N/8 ≤ exp[−Cx2].

Let us fix an integer M . Then by the Taylor formula we get that for all |t | ≤ √
N/C

�N(t) = exp

{
− t2

2
+

M−1∑
s=3

(−i)s2s/2Rst
s

s
+ O

(
CRM2M/2tM

M

)}
,

where Rs = (�N)−s/2 ∑N
l=1 σ 2s

l .

It follows easily from (2.5) that σ 4
N ≤ Cσ 4

N/2. This gives |Rs | 
 N−s/2+1.

Therefore, expanding �N(t) exp(t2/2) into Taylor series, it is easy to see that there
exist functions QM(s,N), s = 3, . . . ,M , uniformly bounded in N and s such that

�N(t) exp(t2/2) = 1 + N

M−1∑
s=3

QM(s,N)

(
it√
N

)s

+ O

(
N

(
t√
N

)M)
.(4.2)

Define now the following approximation of �N(t):

�M
N (t) = exp(−t2/2)

[
1 + N

M−1∑
s=3

QM(s,N)

(
it√
N

)s
]
.

Now we can approximate the probability P(κN > x) by

P M
N (x) =

∫ ∞
x

pM
N (v) dv with pM

N (v) = 1

2π

∫ ∞
−∞

exp(−itv)�M
N (t) dt.(4.3)

Notice that

P M
N (x) = φ(x) − k√

2π

M−1∑
s=3

(−1)sQM(s,N)k−s/2 ds−1

dxs−1 exp(−x2/2),(4.4)

where

φ(x) = 1√
2π

∫ ∞
x

exp(−u2/2) du.
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Then by the Parseval identity and (4.1), (4.2), we obtain

|P(κN > x) − P M
N (x)|

≤ 1

2π

∫ ∞
−∞

|t |−1|�M
N (t) − �N(t)|dt

(4.5)

=
∫
|t |≤√

N/C

|�M
N (t) − �N(t)|

|t | dt +
∫
|t |≥√

N/C

|�M
N (t) − �N(t)|

|t | dt

≤ C

NM/2 + exp[−CN] ≤ C

NM/2 .

Using (4.3) and (4.5), it is easy to see that

P(κN > x) ≥ P M
N (x) − C

NM/2 .(4.6)

Now we are ready to complete the proof of the lemma. Since the function
F(x) = EκNI (κN ≥ x) is a monotone nondecreasing function in x ≥ 0, we need
to check that for sufficiently large N [see (1.11) and (2.8)]

EκNI
(
κN ≥ u1(N)

) ≥ σ 2
1√

2�N

.

It follows from the above equation and integration by parts that it suffices to show
that

u1(N)P
(
κN ≥ u1(N)

) +
∫ u1(N)+1

u1(N)
P(κN > x)dx ≥ σ 2

1√
2�N

.(4.7)

Using (4.6), we bound the left-hand side as

u1(N)P
(
κN ≥ u1(N)

) +
∫ u1(N)+1

u1(N)
P(κN > x)dx

≥ u1(N)P M
k (u1(N)) +

∫ u1(N)+1

u1(N)
P M

N (x) dx − Cu1(N)

NM/2

(4.8)
= u1(N)φ[u1(N)] +

∫ ∞
u1(N)

φ(x) dx −
∫ ∞
u1(N)+1

φ(x) dx

− (
1 + u1(N)

)
max

u1(N)≤x≤u1(N)+1
|P M

N (x) − φ(x)| − Cu1(N)

NM/2 .

Integrating by parts, we get

u1(N)φ[u1(N)] +
∫ ∞
u1(N)

φ(x) dx = 1√
2π

e−u2
1(N)/2 = 2σ 2

1√
2�N

.(4.9)

Noticing that in view of (2.7)√
log(N/(2π)) ≤ u1(N) ≤ C

√
log(N)(4.10)
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and integrating by parts, we have as N → ∞∫ ∞
u1(N)+1

φ(x) dx ≤ Ce−(u1(N)+1)2/2 ≤ 2σ 2
1√

2�N

e−u1(N) = o

(
σ 2

1√
2�N

)
,(4.11)

and by (4.4) and (4.10),(
1 + u1(N)

)
max

u1(N)≤x≤u1(N)+1
|P M

N (x) − φ(x)|
(4.12)

≤ Cσ 2
1 u3

1(N)√
2N�N

= o

(
σ 2

1√
2�N

)
.

Finally, note that we can choose sufficiently large M such that [see (4.10) and (2.7)]

Cu1(N)

NM/2 = o

(
σ 2

1√
2�N

)
, k → ∞.

Combining this equation with (4.8)–(4.12) we arrive at (4.7), thus finishing the
proof of the lemma. �

LEMMA 2. For some C > 0

P{ηN > x} ≤ exp
(
−Cx2

�N

)
, 0 ≤ x ≤ �N

σ 2
N

.(4.13)

PROOF. Certainly, this fact is well known and we prove it only for the reader’s
convenience. We use the inequality log(y) ≥ y − 1 − (1 − 1/y)2/2, y ∈ (0,1],
which can be checked easily since the first derivative in y of log(y)− y + 1 + (1 −
1/y)2/2 is negative. Therefore, for any positive λ

E exp(ληN) = exp

{
−λ

N∑
i=1

σ 2
i − 1

2

N∑
i=1

log(1 − 2λσ 2
i )+

}

≤ exp

{
λ2

N∑
i=1

σ 4
i

(1 − 2λσ 2
i )2+

}
(4.14)

≤ exp

{
λ2

N∑
i=1

σ 4
i + 4λ3

N∑
i=1

σ 6
i

(1 − 2λσ 2
i )2+

}
.

Then, by the Markov inequality, we have

P{ηN > x} ≤ exp(−λx)E exp(ληN)

≤ exp

{
−λx + λ2

N∑
i=1

σ 4
i

(1 − 2λσ 2
i )2+

}
.

In order to prove (4.13), we take λ = x/(8�N). �
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Define the auxiliary function

U(α) = −1 − 1

2α
log(1 − 2α), α ∈ (0,1/2).

By the Taylor formula U(α) = 2α
∑∞

i=2(2α)i−2/i. This yields immediately that
α ≤ U(α) ≤ α/(1 − 2α) and

α

1 + 2α
≤ U−1(α) ≤ α, α > 0,(4.15)

where U−1(α) denotes the inverse function.

LEMMA 3. Let SN = ∑N
i=1 b2

i (ξ
2
i − 1) − U(α)

∑N
i=1 b4

i where ξi are i.i.d.
N (0,1) and b2

i ≤ 1. Then for any α ∈ (0,1/2)

E sup
N≥1

SN ≤ α−1(4.16)

and

P
(

sup
N≥1

SN > x

)
≤ exp(−αx).(4.17)

The proof follows from the Doob inequality (see, e.g., [13]).

PROOF OF THEOREM 2. Define the exponential grid

ns = ⌊(
1 + p

√
α

)s⌋
,(4.18)

where p is a sufficiently small constant which will be chosen later on. By Lemma 1
and a simple algebra we have

E sup
N

{ηN − (1 + α)U0(N)}

≤
∞∑

s=1

E max
ns≤N<ns+1

[ηN − (1 + α)U0(N)]+
(4.19)

≤
∞∑

s=1

E max
ns≤N<ns+1

[
ηN − (1 + α)

√
2�k log

(
C�ns/σ

4
1

)]
+

≤
∞∑

s=1

E
[
ηns − (1 + α)

√
2�ns log

(
C�ns/σ

4
1

) + εs

]
+,

where

εs = max
ns<N<ns+1

{
N∑

i=ns+1

σ 2
i (ξ2

i − 1) − (1 + α)

√
2 log(C�ns/σ

4
1 )

2
√

�ns+1

[
�N − �ns

]}
.
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Denote for brevity

�s = (1 + α)

√
2 log(C�ns/σ

4
1 )

2
√

�ns+1

and As = (1 + α)

√
log

(
C�ns/σ

4
1

)
.

Then by (4.15) and (4.17) we obtain

P{εs ≥ x}

= P

{
max

ns<N<ns+1

[
N∑

i=ns+1

σ 2
i (ξ2

i − 1) − �s

N∑
i=ns+1

σ 4
i

]
≥ x

}

= P

{
max

ns<N<ns+1

[
N∑

i=ns+1

σ 2
i

σ 2
ns+1

(ξ2
i − 1) − �sσ

2
ns+1

N∑
i=ns+1

σ 4
i

σ 4
ns+1

]
≥ x

σ 2
ns+1

}

≤ exp
[−U−1(

�sσ
2
ns+1

)
x/σ 2

ns+1

] ≤ exp
[−�s

(
1 − 2�sσ

2
ns+1

)
x
]
,

or equivalently

P
{

εs√
2�ns

≥ x

}
≤ exp

[−As

(
�ns/�ns+1

)1/2(
1 − 2�sσ

2
ns+1

)
x
]
.(4.20)

Notice that 1 − 2�sσ
2
ns+1

≥ 0 for sufficiently large s. Using (4.20) and integrating
by parts, we get

E
[
ηns − (1 + α)

√
2�ns log

(
C�ns/σ

4
1

) + εs

]
+

=
√

2�ns E
[

ηns√
2�ns

+ εs√
2�ns

− As

]
+

=
√

2�ns

∫ ∞
As

P
{

ηns√
2�ns

+ εs√
2�ns

≥ x

}
dx

(4.21)

≤
√

2�ns

∫ ∞
As

E exp
{
−As

√
�ns

�ns+1

(
1 − 2�sσ

2
ns+1

)(
x − ηns√

2�ns

)}
dx

=
√

2�ns+1

As

exp
{−A2

s

(
�ns/�ns+1

)1/2(
1 − 2�sσ

2
ns+1

)}
× E exp

{
As

(
1 − 2�sσ

2
ns+1

) ηns√
2�ns+1

}
.

In order to bound from above the last term in this inequality, we have by (4.14)
that for any positive λ

E exp
{
ληns

} ≤ exp

{
λ2

ns∑
i=1

σ 4
i + 4λ3

ns∑
i=1

σ 6
i

(1 − 2λσ 2
i )2+

}
.
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Using this inequality with λ = As(1 − 2�sσ
2
ns+1

)/
√

2�ns+1 and noticing that by

virtue of the polynomial hypothesis λ3 ∑ns

i=1 σ 6
i (1 − 2λσ 2

i )−2+ ≤ C, we immedi-
ately get

E exp
{
As

ηns√
2�ns+1

(
1 − 2�sσ

2
ns+1

)} ≤ C exp
{

A2
s�ns

2�ns+1

(
1 − 2�sσ

2
ns+1

)}
.

Therefore, combining this with (4.21), we obtain

E
[
ηns − (1 + α)

√
2�ns log

(
C�ns/σ

4
1

) + εs

]
+

≤ C

√
2�ns+1

As

exp
{
−A2

s

2

(
1 − 2�sσ

2
ns+1

)(
2

√
�ns

�ns+1

− �ns

�ns+1

)}
(4.22)

≤ C

√
2�ns+1

As

exp
{
−A2

s

2

(
1 − 2�sσ

2
ns+1

)[
1 − 1

4

(
�ns − �ns+1

�ns+1

)2]}
.

Let us choose now the parameter p of the exponential grid. Note that by (2.5)(
�ns − �ns+1

�ns+1

)2

≤ Cσ 8
ns+1

(ns+1 − ns)
2

σ 8
ns+1

n2
s+1

≤ Cp2α

(1 − p
√

α )2 .

Thus it is clear that we can always choose a sufficiently small p such that(
�ns − �ns+1

�ns+1

)2

≤ 4α.

Hence from (4.22) we get

E
[
ηns − (1 + α)

√
2�ns log

(
C�ns/σ

4
1

) + εs

]
+

≤ CA−1
s

√
�ns+1 exp

[−(1 + α − 2α2)
(
1 − 2�sσ

2
ns+1

)
log

(√
C�ns/σ

4
1

)]
(4.23)

≤ Cσ 2
1 A−1

s exp
[−α(1 − 2α) log

(√
C�ns/σ

4
1

)]
≤ Cσ 2

1 s−1/2α−1/4 exp(−Cpα3/2s).

In the above inequality we used the fact that As ≥ (1 + α)
√

log(ns) and that
�sσ

2
ns+1

log(C�ns/σ
4
1 ) is uniformly bounded in s. Finally, substituting (4.23)

in (4.19), we have

E sup
N

{ηN − (1 + α)U0(N)} ≤ Cσ 2
1

4
√

α

∞∑
s=1

exp(−Cpα3/2s)√
s

≤ Cσ 2
1

α
√

p
,(4.24)

thus proving the theorem. �
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4.2. Proofs of Theorems 1, 3 and 4. We start with two technical lemmas. Their
proofs can be found in [13].

LEMMA 4. Let κ ≥ 1 be an integer random variable. Then for any N =
1,2, . . .

E
∞∑

i=κ

σiθiξi ≥ −
{

3σ 2
NE

∞∑
i=κ

θ2
i + 3Eσ 2

κ

∞∑
i=N

θ2
i

}1/2

.

LEMMA 5. For any Q ∈ (1/2, (2β + 1)/(4β + 1)] there exist constants
C(Q) > 0 and α(Q) > 0 such that for all α ∈ (0, α(Q)) the following inequal-
ity holds:

E sup
N≥1

{
ηN

σ 2
1

− α

(
�N

σ 4
1

)Q}
≤ C(Q)α−1/(2Q−1).(4.25)

PROOF OF THEOREM 1. In view of Theorem 2, for any µ > 0

lµ(θ,N) =
∞∑

i=N+1

θ2
i +

N∑
i=1

σ 2
i + (1 + µ)U0(N) + Cσ 2

1

µ

is a risk hull, and therefore

Eθ‖θ̃ (Nrhm) − θ‖2 ≤ Eθ lµ(θ,Nrhm).(4.26)

On the other hand, since Nrhm minimizes R̄pen(y,N) [see (1.9)], we have for any
integer N

Eθ R̄pen(y,Nrhm) ≤ Eθ R̄pen(y,N) = Rrhm(θ,N) + ‖θ‖2.(4.27)

In order to combine the inequalities (4.26) and (4.27), we rewrite lµ(θ,Nrhm) in
terms of R̄pen(y,Nrhm),

R̄pen(y,Nrhm) + ‖θ‖2 + Cσ 2
1

µ

= lµ(θ,Nrhm) − 2
Nrhm∑
i=1

σiθiξi −
Nrhm∑
i=1

σ 2
i (ξ2

i − 1) + (α − µ)U0(Nrhm).

Therefore, using this equation and (4.26), (4.27), we obtain that for any integer N

Eθ‖θ̃ (Nrhm) − θ‖2 ≤ Rrhm(θ,N) + Cσ 2
1

µ
+ 2Eθ

Nrhm∑
i=1

σiθiξi

(4.28)

+ Eθ

[
Nrhm∑
i=1

σ 2
i (ξ2

i − 1) − (α − µ)U0(Nrhm)

]
.
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Our next step is to control the last two terms in the above equation. By Lemma 4
we have that for any driven bandwidth Ñ

Eθ

Ñ∑
i=1

σiθiξi = −Eθ

∞∑
i=Ñ+1

σiθiξi

(4.29)

≤ 2|σN |
(

Eθ

∞∑
i=Ñ+1

θ2
i

)1/2

+ 2

( ∞∑
i=N+1

θ2
i

)1/2√
Eθσ

2
Ñ

.

Noticing that by (2.5) σ 2
k ≤ Cσ 2

1 (σ−2
1

∑k
i=1 σ 2

i )2β/(2β+1) and using the Young in-
equality,

xyr ≤ ry + (1 − r)x1/(1−r), r ∈ (0,1),(4.30)

with r = 1/2 and (4.29), we get that for any γ > 0

Eθ

Ñ∑
i=1

σiθiξi

≤ C|σ1|
(

1

σ 2
1

N∑
i=1

σ 2
k

)β/(2β+1)(
Eθ

∞∑
i=Ñ+1

θ2
i

)1/2

+ C|σ1|
(

Eθ

1

σ 2
1

Ñ∑
i=1

σ 2
k

)β/(2β+1)( ∞∑
i=N+1

θ2
i

)1/2

≤ γ

∞∑
i=N+1

θ2
i + γ Eθ

∞∑
i=Ñ+1

θ2
i

+ Cσ
2/(2β+1)
1

γ (4β+1)/(2β+1)

[(
γ

N∑
i=1

σ 2
k

)2β/(2β+1)

+
(
γ Eθ

Ñ∑
i=1

σ 2
k

)2β/(2β+1)]
.

Once again using (4.30) with r = 2β/(2β + 1), we continue the above inequality
as follows:

Eθ

Ñ∑
i=1

σiθiξi

≤ γ

( ∞∑
i=N+1

θ2
i +

N∑
i=1

σ 2
k

)
+ γ Eθ

( ∞∑
i=Ñ+1

θ2
i +

Ñ∑
i=1

σ 2
k

)
+ Cσ 2

1

γ 4β+1(4.31)

≤ γR(θ,N) + γ Eθ‖θ̃ (Ñ) − θ‖2 − γ Eθ

Ñ∑
i=1

σ 2
k (ξ2

i − 1) + Cσ 2
1

γ 4β+1 .
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Therefore, substituting (4.31) in (4.28) and then using (4.24), we obtain

(1 − γ )Eθ‖θ̃ (Nrhm) − θ‖2

≤ (1 + γ )Rrhm(θ,N) + Cσ 2
1

µ
+ Cσ 2

1

γ 4β+1

+ (1 − γ )Eθ

[
Nrhm∑
i=1

σ 2
i (ξ2

i − 1) − α − µ

1 − γ
U0(Nrhm)

]

≤ (1 + γ )Rrhm(θ,N) + Cσ 2
1

µ
+ Cσ 2

1

γ 4β+1 + (1 − γ )2Cσ 2
1

(α − µ + γ − 1)+
.

Finally, choosing µ = γ , completes the proof. �

PROOF OF THEOREM 3. This suffices to show that for any sufficiently small
α > 0

E sup
k

[
ηk − α

k∑
i=1

σ 4
i

]
≤ Cu

α4β+1 σ 2
1 .

In view of (2.6) the proof follows immediately from Lemma 5 with Q = (2β +
1)/(4β + 1). �

PROOF OF THEOREM 4. This follows the main lines of the proof of Theorem
1. By Theorem 3 we have

Eθ‖θ̃ (Nure) − θ‖2 ≤ Eθ lure(θ,Nure) = (1 + α)EθR(θ,Nure) + Cu

α4β+1 σ 2
1 .(4.32)

Since Nure minimizes −∑N
i=1 y2

i + 2
∑N

i=1 σ 2
i , we get for any integer N

−
Nure∑
i=1

y2
i + 2

Nure∑
i=1

σ 2
i ≤ −

N∑
i=1

y2
i + 2

N∑
i=1

σ 2
i .(4.33)

Note also that

‖θ‖2 −
Nure∑
i=1

θ2
i +

Nure∑
i=1

σ 2
i = ‖θ‖2 −

Nure∑
i=1

y2
i + 2

Nure∑
i=1

σ 2
i

+ 2
Nure∑
i=1

θiσiξi +
Nure∑
i=1

σ 2
i (ξ2

i − 1).

Therefore, combining this display and (4.33), we see that for any N ≥ 1

EθR(θ,Nure) ≤ R(θ,N) + 2Eθ

Nure∑
i=1

θiσiξi + Eθ

Nure∑
i=1

σ 2
i (ξ2

i − 1).(4.34)
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In order to control the interference term E
∑Nure

i=1 θiσiξi , we use (4.31) with
Ñ = Nure. This yields

Eθ

Nure∑
i=1

θiσiξi ≤ αR(θ,N) + αEθ‖θ̃ (Nure) − θ‖2 − αEθ

Nure∑
i=1

σ 2
i (ξ2

i − 1) + Cσ 2
1

α4β+1 .

Substituting this in (4.34), we have

EθR(θ,Nure) ≤ (1 + 2α)R(θ,N) + 2αEθ‖θ̃ (Nrhm) − θ‖2

(4.35)

+ (1 − 2α)Eθ

Nure∑
i=1

σ 2
i (ξ2

i − 1) + Cσ 2
1

α4β+1 .

The last term in the above inequality can be controlled by Lemma 5, which
gives that for any sufficiently small α > 0 and Q ∈ (1/2, (2β + 1)/(4β + 1)],

Eθ

Nure∑
i=1

σ 2
i (ξ2

i − 1) ≤ ασ 2
1 Eθ

(
Nure∑
i=1

σ 4
i

σ 4
1

)Q

+ Cσ 2
1

α1/(2Q−1)
.

Let Q = (2β + 1)/(4β + 1). Then by (2.6)(
Nure∑
i=1

σ 4
i

)Q

≤ Cσ
4Q−2
1

Nure∑
i=1

σ 2
i ,

and thus we obtain

Eθ

Nure∑
i=1

σ 2
i (ξ2

i − 1) ≤ CµEθ

Nure∑
i=1

σ 2
i + Cσ 2

1

µ4β+1 .(4.36)

Finally, combining the above equation with (4.35), (4.36) and (4.32), we complete
the proof. �

Acknowledgments. We would like to thank two anonymous referees, an As-
sociate Editor and Co-Editor Jianqing Fan, whose constructive comments helped
to improve the presentation of the paper.

REFERENCES

[1] AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle.
In Second International Symposium on Information Theory (B. N. Petrov and F. Csáki,
eds.) 267–281. Akadémiai Kiadó, Budapest. MR0483125

[2] BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via pe-
nalization. Probab. Theory Related Fields 113 301–413. MR1679028

[3] BERTERO, M. and BOCCACCI, P. (1998). Introduction to Inverse Problems in Imaging. Insti-
tute of Physics Publishing, Bristol. MR1640759

[4] BIRGÉ, L. and MASSART, P. (2001). Gaussian model selection. J. Eur. Math. Soc. 3 203–268.
MR1848946

http://www.ams.org/mathscinet-getitem?mr=0483125
http://www.ams.org/mathscinet-getitem?mr=1679028
http://www.ams.org/mathscinet-getitem?mr=1640759
http://www.ams.org/mathscinet-getitem?mr=1848946


RISK HULL METHOD FOR INVERSE PROBLEMS 1677

[5] CAVALIER, L., GOLUBEV, G. K., PICARD, D. and TSYBAKOV, A. B. (2002). Oracle inequal-
ities for inverse problems. Ann. Statist. 30 843–874. MR1922543

[6] CAVALIER, L., GOLUBEV, YU., LEPSKI, O. and TSYBAKOV, A. (2003). Block threshold-
ing and sharp adaptive estimation in severely ill-posed inverse problems. Theory Probab.
Appl. 48 426–446. MR2141349

[7] CAVALIER, L. and TSYBAKOV, A. B. (2002). Sharp adaptation for inverse problems with
random noise. Probab. Theory Related Fields 123 323–354. MR1918537

[8] DONOHO, D. L. (1995). Nonlinear solutions of linear inverse problems by wavelet–vaguelette
decomposition. Appl. Comput. Harmon. Anal. 2 101–126. MR1325535

[9] EFROMOVICH, S. (1997). Robust and efficient recovery of a signal passed through a filter and
then contaminated by non-Gaussian noise. IEEE Trans. Inform. Theory 43 1184–1191.
MR1454946

[10] ENGL, H. W., HANKE, M. and NEUBAUER, A. (1996). Regularization of Inverse Problems.
Kluwer, Dordrecht. MR1408680

[11] FAN, J. (1991). On the optimal rates of convergence for nonparametric deconvolution prob-
lems. Ann. Statist. 19 1257–1272. MR1126324

[12] GOLUBEV, YU. (2004). The principle of penalized empirical risk in severely ill-posed prob-
lems. Probab. Theory Related Fields 130 18–38. MR2092871

[13] GOLUBEV, YU. and LEVIT, B. (2004). An oracle approach to adaptive estimation of linear
functionals in a Gaussian model. Math. Methods Statist. 13 392–408. MR2126747

[14] HACKBUSCH, W. (1995). Integral Equations. Theory and Numerical Treatment. Birkhäuser,
Basel. MR1350296

[15] HIDA, T. (1980). Brownian Motion. Springer, New York. MR0562914
[16] JOHNSTONE, I. M. (1999). Wavelet shrinkage for correlated data and inverse problems: Adap-

tivity results. Statist. Sinica 9 51–83. MR1678881
[17] JOHNSTONE, I. M. and SILVERMAN, B. W. (1990). Speed of estimation in positron emission

tomography and related inverse problems. Ann. Statist. 18 251–280. MR1041393
[18] LAVRENTIEV, M. M. (1967). Some Improperly Posed Problems of Mathematical Physics.

Springer, Berlin.
[19] MAIR, B. and RUYMGAART, F. H. (1996). Statistical inverse estimation in Hilbert scales.

SIAM J. Appl. Math. 56 1424–1444. MR1409127
[20] MALLOWS, C. L. (1973). Some comments on Cp . Technometrics 15 661–675.
[21] O’SULLIVAN, F. (1986). A statistical perspective on ill-posed inverse problems. Statist. Sci. 1

502–527. MR0874480
[22] STEIN, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist.

9 1135–1151. MR0630098
[23] TIKHONOV, A. N. and ARSENIN, V. Y. (1977). Solutions of Ill-Posed Problems. Winston,

Washington.

CMI
39 RUE F. JOLIOT-CURIE

13453 MARSEILLE

CEDEX 13
FRANCE

E-MAIL: cavalier@cmi.univ-mrs.fr
golubev@cmi.univ-mrs.fr

http://www.ams.org/mathscinet-getitem?mr=1922543
http://www.ams.org/mathscinet-getitem?mr=2141349
http://www.ams.org/mathscinet-getitem?mr=1918537
http://www.ams.org/mathscinet-getitem?mr=1325535
http://www.ams.org/mathscinet-getitem?mr=1454946
http://www.ams.org/mathscinet-getitem?mr=1408680
http://www.ams.org/mathscinet-getitem?mr=1126324
http://www.ams.org/mathscinet-getitem?mr=2092871
http://www.ams.org/mathscinet-getitem?mr=2126747
http://www.ams.org/mathscinet-getitem?mr=1350296
http://www.ams.org/mathscinet-getitem?mr=0562914
http://www.ams.org/mathscinet-getitem?mr=1678881
http://www.ams.org/mathscinet-getitem?mr=1041393
http://www.ams.org/mathscinet-getitem?mr=1409127
http://www.ams.org/mathscinet-getitem?mr=0874480
http://www.ams.org/mathscinet-getitem?mr=0630098
mailto:cavalier@cmi.univ-mrs.fr
mailto:golubev@cmi.univ-mrs.fr

	Introduction and main result
	The RHM method
	A heuristic motivation
	Statistical model and assumptions
	A risk hull
	The risk hull approach and URE

	Simulations
	Proofs
	Proof of Theorem 2
	Proofs of Theorems 1, 3 and 4

	Acknowledgments
	References
	Author's Addresses

