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ADDENDUM TO THE DISCUSSION OF
“BREAKDOWN AND GROUPS”1

BY P. LAURIE DAVIES AND URSULA GATHER

University of Duisburg–Essen and Technical University Eindhoven,
and University of Dortmund

In his discussion of Davies and Gather [Ann. Statist. 33 (2005) 977–1035]
Tyler pointed out that the theory developed there could not be applied to the
case of directional data. He related the breakdown of directional function-
als to the problem of definability. In this addendum we provide a concept of
breakdown defined in terms of definability and not in terms of bias. If a group
of finite order k acts on the sample space we show that the breakdown point
can be bounded above by (k − 1)/k. In the case of directional data there is a
group of order k = 2 giving an upper bound of 1/2.

1. Introduction. It has been argued that breakdown occurs in directional
data (see [4]) when contamination causes the direction to change by 180◦ (see,
e.g., [2, 3]). More formally this definition of breakdown point of a directional func-
tional T at a distribution P may be written as

ε∗(T ,P, d)
(1)

= inf{ε > 0 : |T (P ) − T (Q)| = π for some Q with d(P,Q) < ε}.
Similarly in the case of linear spaces breakdown can be said to occur when the
linear space derived from the contaminated data is orthogonal to that derived from
the uncontaminated data. As noted by Tyler in the discussion this definition of
breakdown cannot be formulated within the theory of Davies and Gather [1], which
requires unbounded metrics deriving from certain banned or forbidden parameter
values such as 0 and ∞ in the scale case. In this context breakdown is said to
occur when the realized parameter values tend to or take on a banned value. For
directional data there will, in general, be no banned direction so there can be no
concept of breakdown based on banned values. Nevertheless if the data is such that
small changes can result in a change of direction of 180◦ the directional functional
is highly nonstable. As pointed out by Tyler in the discussion this behavior is
related to the problem of definability of the functional. Tyler writes “This implies
that breakdown occurs when a ‘well-defined’ vector becomes ‘undefined’ ”. We
take up this idea and use it to define what we call the “definability breakdown
point”.
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2. Breakdown and invariant distributions.

2.1. Definition of breakdown. From Theorem 3 of [3] and Theorem 4.1 of [2]
it follows that the breakdown point (1) of the circular mean at a distribution P is at
most 1/2 and can be arbitrarily small. He and Simpson [2] write “the breakdown
point must go to 0 as the data become more dispersed over the sphere” and “it
is possible to have a breakdown point of near 1/2 if the data are concentrated.”
We give a definition of breakdown point which makes no use of bias but helps to
understand why, for rotation equivariant functionals, a high breakdown point can
be attained at concentrated distributions but only low ones are possible at disperse
distributions. Furthermore it explains why 1/2 is the largest possible breakdown
point for such functionals.

We use the notation of Davies and Gather [1]. A functional T :PT → �,
PT ⊂ P is called equivariant if the following hold:

(a) PT is closed under all g ∈ G,
(b) T (P g) = hg(T (P )) for all P ∈ PT and g ∈ G,
(c) T is well defined on PT .

This leads to the following definition of the definability breakdown point:

ε∗(T ,P, d) = inf{ε > 0 :d(P,Q) < ε for some Q /∈ PT },(2)

with of course ε∗(T ,P, d) = 0 if P /∈ PT .

2.2. Invariant measures. We call a measure P invariant if P g = P for some g

with hg �= hι. We denote the set of all such distributions by Pinv. If T is equivari-
ant and P ∈ Pinv we have T (P ) = T (P g) = hg(T (P )), which is not possible as
hg �= hι. This implies

Pinv ⊂ P \ PT(3)

for every equivariant functional T and hence

ε∗(T ,P, d) ≤ inf{ε > 0 :d(P,Q) < ε for some Q ∈ Pinv}.(4)

In the case of directional data the uniform distribution U belongs to P \ PT for
any equivariant functional T and hence we have the upper bound

ε∗(T ,P, d) ≤ d(P,U).(5)

This implies that the breakdown point is low at very disperse distributions, that is,
those close to the uniform distribution.

2.3. Finite sub-groups. Suppose G contains a finite sub-group Gk of order
k ≥ 2 so that gk = ι for all g ∈ Gk . For any distribution P we set

Pk = 1

k

k−1∑

j=0

P gj

.(6)
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Then P
g
k = Pk so that Pk ∈ Pinv and hence

ε∗(T ,P, d) ≤ d(P,Pk).

If the metric d satisfies (2.1) and (2.2) of [1] we have

d(P,Pk) ≤ k − 1

k
,

where

P̃k = 1

k − 1

k−1∑

j=1

P gj

.

Examples of sample spaces and groups G with subgroups of order k = 2 are the
unit circle and the unit sphere in any dimension. In all cases the maximum defin-
ability breakdown point of any direction functional at a measure P is at most 1/2
and may be much smaller as implied by (5).

2.4. Total variation and finite sample breakdown points. Although the above
results can be extended to finite sample breakdown points this may not always
make sense. In particular if P is an empirical measure then the breakdown point
measured using the total variation metric d = dtv may be reduced from 1/2 to 1/n

by the smallest of alterations in the values of the data. The same applies to the
finite sample breakdown points. This is the only example we know where the use
of a metric which allows for minor alterations in the values of the data points leads
to a completely different breakdown point.
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