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ASSESSING EXTREMA OF EMPIRICAL PRINCIPAL
COMPONENT FUNCTIONS

BY PETER HALL AND CÉLINE VIAL

Australian National University

The difficulties of estimating and representing the distributions of func-
tional data mean that principal component methods play a substantially
greater role in functional data analysis than in more conventional finite-
dimensional settings. Local maxima and minima in principal component
functions are of direct importance; they indicate places in the domain of a
random function where influence on the function value tends to be relatively
strong but of opposite sign. We explore statistical properties of the relation-
ship between extrema of empirical principal component functions, and their
counterparts for the true principal component functions. It is shown that em-
pirical principal component funcions have relatively little trouble capturing
conventional extrema, but can experience difficulty distinguishing a “shoul-
der” in a curve from a small bump. For example, when the true principal
component function has a shoulder, the probability that the empirical prin-
cipal component function has instead a bump is approximately equal to 1

2 .
We suggest and describe the performance of bootstrap methods for assessing
the strength of extrema. It is shown that the subsample bootstrap is more ef-
fective than the standard bootstrap in this regard. A “bootstrap likelihood” is
proposed for measuring extremum strength. Exploratory numerical methods
are suggested.

1. Introduction. The inherent complexity of functional data analysis, as a
distinctly infinite-dimensional and infinite-parameter (or nonparametric) problem,
means that principal-component methods assume greater importance in FDA than
in more traditional, finite-dimensional settings. In particular, there is often no
practical opportunity for estimating, in a meaningful way, the “distribution” of
a random function. Both the representation of such a distribution, and the slow
convergence rates of estimators, throw up obstacles which seem insurmountable
in many cases.

Considerations of this type argue that properties of the principal component
functions in the distribution of a random function are often going to be of greater
importance than properties of the distribution itself. For example, it will be of
greater interest to assess peaks and troughs in a principal component function,
than to look for extrema in the “density” of the distribution.
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The principal component functions appear explicitly in the Karhunen–Loève
representation, or expansion, of X (see Section 2.2), where they are weighted by a
conventional, scalar random variable. Each part of the function receives the same
weight, in terms of the way it contributes to the distribution of X. Therefore, places
where a principal component function is relatively high, versus places where it is
relatively low, have direct interpretation. In particular, local maxima and minima
in principal component functions are of explicit importance; they point to places in
the domain of a random function where the influence on the function value tends to
be relatively strong but of opposite signs. Therefore, identifying extrema in princi-
pal component functions, from evidence furnished by their empirical counterparts,
is an important part of principal component analysis in FDA.

In some respects this problem is not unlike its counterpart in more classical non-
parametric function estimation, where a great deal of effort is often directed toward
assessing the numbers of modes and local minima. See, for example, the literature
on mode testing and assessment (e.g., [9–11, 17, 21, 27, 29, 30, 34, 41, 43]). For
discussion of the mode in nonparametric regression, see, for example, [42, 47, 48].
However, in important respects the two problems are very different. This is re-
flected in the fact that empirical principal component functions are more accurate
estimators of the true principal component functions than conventional nonpara-
metric function estimators are of the true functions. (In particular, they are root-n
consistent.) As a result, extrema of empirical principal component functions are
more inclined to be close to the correct position than in the case of nonparametric
curve estimators.

Moreover, empirical principal component functions are less likely to exhibit
spurious “wiggles” in the neighborhood of a real extremum of a true principal
component function. This property holds true quite generally, even if the extremum
is approached in the manner of a high-degree polynomial. (The extremum of the
function with equation y = x2p , for a large positive integer p, provides an ex-
ample.) In contrast to these properties, however, empirical principal component
functions have considerable difficulty distinguishing a “shoulder” in the true prin-
cipal component function, from a small “bump” there. (We say that a point x0 is a
shoulder point [resp., a bump point] of a continuously differentiable function f if
f ′(x0) = 0 and f ′(x0 + x) is either strictly positive, or strictly negative [resp., if
f ′(x0) = 0 and f ′(x0 + x)f ′(x0 − x) < 0] for all x �= 0 in a neighborhood of 0. In
particular, the origin is a shoulder point of the function x2p+1, and a bump point of
the function x2p .) In such cases the probability that the empirical principal compo-
nent function also has a shoulder, and the chance that it has instead a single bump,
both converge to 1

2 .
In practice, random functions are almost invariably recorded on a discrete grid.

(The only exceptions of which we are aware occur in a small number of problems
where the functions are recorded by analog means, and even there the data are
discretised prior to analysis.) In some contexts the grid is extremely fine; one such
example arises in the increasingly common problem of near-infrared spectroscopy,
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where X(t) denotes the transmission at wavelength t , and several thousand values
of t are treated at regularly spaced points in an interval. At another extreme, the
points at which X is recorded may be rather sparse. For example, in economic
data there may be only a dozen values of X, representing monthly observations of
a process that, in theory at least, operates in the continuum. Particularly in cases
such as this the data are smoothed, often by spline methods, prior to obtaining the
versions of X to which statistical methodology is applied. Therefore the data may
plausibly be supposed to be in the continuum, even if their origin is discrete. In this
paper we work with continuous functions, rather than with the discrete information
from which those functions are derived.

Bootstrap methods can be used to determine the strength of an extremum, or
to assess the possibility that there should be an extremum in a neighborhood of
a point where the empirical principal component function has a shoulder. How-
ever, it is necessary to employ the subsample bootstrap where the resample size
is of smaller order than the sample size (see, e.g., [33]). Using the same size of
resample is not as effective. We shall establish all these properties, and suggest
a “bootstrap likelihood” for assessing extremum strength. Additionally, we shall
develop exploratory numerical methods for addressing the prevalence of extrema
and shoulders.

Early development of methodology and theory for principal component analysis
of functional data included work of Rao [38], and especially Dauxois, Pousse and
Romain [12], who described asymptotic properties of eigenvalues and eigenvec-
tors of sample covariance functions. See also [1, 35, 39, 44, 45]. The technology of
FDA has been surveyed and described by Ramsay and Silverman ([37], Chapter 6).
There, and more particularly in work of Ramsay and Silverman [36], functional
principal component analysis is illustrated by application to real-data exam-
ples. Recent work includes that of Cardot [6], Cardot, Ferraty and Sarda [7, 8],
Girard [18], James, Hastie and Sugar [26], Boente and Fraiman [4], Huang, Wu
and Zhou [23], Mas [28] and He, Müller and Wang [22].

Articles where eigenfunctions play important roles in discrimination and re-
lated problems for functional data include those of Huang [24], who used principal
components analysis in FDA for gait recognition, and Ferraty and Vieu [15, 16],
Glendinning and Herbert [20], Glendinning and Fleet [19] and Biau, Bunea and
Wegkamp [3], who employed principal component functions in different ways for
classification. Of course, the bootstrap has been used widely in the context of func-
tional data analysis; see, for example, [13, 14, 26, 31, 32, 40, 46].

2. Properties of extrema of empirical principal component functions.

2.1. The case of a fixed distribution of random functions. First we define func-
tional principal component functions. Let X1,X2, . . . be random functions on a
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compact interval I, and let X denote a generic Xi , with mean µ = E(X). Put
X̄ = n−1 ∑

i Xi ,

K(u, v) = E[{X(u) − µ(u)}{X(v) − µ(v)}] =
∞∑

j=1

θjψj (u)ψj (v),(2.1)

K̂(u, v) = 1

n

n∑
i=1

{Xi(u) − X̄(u)}{Xi(v) − X̄(v)} =
∞∑

j=1

θ̂j ψ̂j (u)ψ̂j (v).(2.2)

The function K is the covariance function of the random process X. It can also
be interpreted as the kernel of the linear operator that takes a function ψ to∫
I K(·, u)ψ(v) du. Hence the notation K , for kernel, which is common in this set-

ting. The function sequences ψ1,ψ2, . . . and ψ̂1, ψ̂2, . . . each comprise an ortho-
normal basis for the space of square-integrable functions on I. They represent the
sequence of “true” principal component functions, and the sequence of empirical
principal component functions, respectively. Each pair (θj ,ψj ) in (2.1) represents
an (eigenvalue, eigenvector) pair for the linear operator with kernel K .

The validity of (2.1) and (2.2) follows from standard results in analysis; see, for
example, [25], Chapter 4. The existence of the infinite expansions there is some-
times referred to as Mercer’s theorem, although that name is occasionally used for
other results. See, for example, [5], Chapter 1. Since K̂ , in (2.2), is almost surely
a finite rank operator, then the spectral decomposition there is in fact truncated, in
the sense that θ̂j vanishes for all sufficiently large j .

The positive-definiteness property of a covariance function implies that each θj

is nonnegative. Therefore, without loss of generality the eigenvalues are ordered
so that θ1 ≥ θ2 ≥ · · · ≥ 0. Likewise, we may assume that θ̂1 ≥ θ̂2 ≥ · · · ≥ 0.
If θ1, . . . , θj+1 are distinct then the functions ψ1, . . . ,ψj are uniquely defined
by (2.1), except that their signs may be reversed. In order to match the sign of ψ̂k

to that of ψk we shall suppose that
∫
I ψkψ̂k ≥ 0 for each 1 ≤ k ≤ j . Using this con-

vention and assuming that E(‖X‖2) < ∞, it is readily proved that ‖ψ̂k −ψk‖ → 0
in probability, and hence that

∫
I ψkψ̂k → 1 in probability as n → ∞; see, for ex-

ample, [5], Chapter 4. [Given a continuous, square-integrable function ψ on I, we
let ‖ψ‖2 = ∫

I ψ2 and ‖ψ‖∞ = supu∈I |ψ(u)|.]
The following assumption asks that the ψk’s have only finite numbers of ex-

trema and horizontal points of inflection (or shoulders), and in particular do not
vanish identically on nondegenerate subintervals of I:

For 1 ≤ k ≤ j , ψk has a Hölder-continuous derivative on I, van-
ishing at at most a finite number of points uk1 < · · · < ukqk

, all of
which are interior points of I; and, for 1 ≤ k ≤ j and 1 ≤ � ≤ qk , the
function K(uk�, ·) has two square-integrable derivatives on I.

(2.3)

[If qk = 0 then (2.3) implies that |ψ ′
k| is bounded away from zero on Ik .] We insist

that each uk� be an interior point, since results for points on the boundary have to be
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framed a little differently. For example, if a local maximum of ψk occurs at a point
u0 which is an endpoint of I, then the probability that ψ̂k has a local maximum in
a neighborhood (within I) of that point does not converge to 1. However, this is
not the case if u0 is in the interior of I.

The next condition asks that ψk behave like a polynomial near its extrema and
shoulders, and that it have two smooth derivatives:

For all 1 ≤ k ≤ j and all 1 ≤ � ≤ qk , ψk has two Hölder-continuous
derivatives in a neighborhood of uk�, and

(∂/∂u)r{ψk(u) − ψk(uk�)}
(2.4) = (∂/∂u)rAk�(u − uk�)

rk� + O(|u − uk�|rk�+η−r )

as u → uk�, where Ak� �= 0, r = 0,1 or 2, rk� ≥ 2 is an integer, and
η > 0.

If rk� is even then, in view of (2.4), uk� gives a local maximum or local minimum
of ψk according as Ak� < 0 or Ak� > 0, respectively. If rk� is odd then uk� is a
shoulder-point of ψk .

A reviewer has reported that in some real-data problems the first eigenfunc-
tion is identically constant, or very nearly so. While we have not encountered this
ourselves, assumptions such as (2.4) would obviously not be appropriate in such
cases.

In Theorem 2.1 below we shall measure the smoothness of the r th derivative of
X in terms of the finiteness of the moment-based Lipschitz criterion

γr(D,η) = E

{
sup

u,v∈I

∣∣X(r)(u) − X(r)(v)
∣∣D|u − v|−Dη

}
,(2.5)

where D,η > 0.
Write I = [a, b], where −∞ < a < b < ∞. In the statement of Theorem 2.1

below, let ε > 0 be any positive number not exceeding half the minimum value,
over 1 ≤ k ≤ j and 1 ≤ � ≤ qk +1, of uk�−uk,�−1, where uk0 = a and uk,qk+1 = b.
An “η-neighborhood” of a point u ∈ I denotes the set of all real numbers that are
distant no more than η from u. In addition to (2.5) we shall impose conditions
which imply that E|X(u)|D < ∞ for each u ∈ I. This in turn entails E‖X‖D < ∞.

The main aspects of Theorem 2.1 are encapsulated in the following statement:
“With probability converging to 1, the extrema of each empirical principal com-
ponent function, ψ̂k , correspond exactly to those of the respective true principal
component function, ψk , except that in the neighborhood of a shoulder of ψk there
may, with probability 1

2 , be exactly two additional extrema. The latter are spuri-
ous extrema, in the sense that they arise through stochastic fluctuations and do not
reflect actual extrema of ψk .”

THEOREM 2.1. Assume the eigenvalues θ1, . . . , θj+1 are distinct, and that
with probability 1, X has a Hölder-continuous second derivative on I, with Hölder
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exponent η > 0. Suppose too that (2.3) and (2.4) hold. Let ε be as in the previous
paragraph, and suppose E|X(s)(a)|D < ∞ for s = 0,1,2, and γ2(D,η) < ∞,
for a sufficiently large value of D > 0. Then, with probability converging to 1 as
n → ∞, and for all 1 ≤ k ≤ j and 1 ≤ � ≤ qk , (a)–(c) below hold: (a) Within
each interval [uk� + ε,uk,�+1 − ε], for 1 ≤ k ≤ j and 1 ≤ � ≤ qk − 1, and within
each interval [a,uk1 − ε] and [uk,qk

− ε, b], for 1 ≤ k ≤ j , the equation ψ̂ ′
k = 0

has no solution. (b) In each ε-neighborhood of a point uk� for which rk� is even,
ψ̂k has exactly one local maximum, or exactly one local minimum, according as
Ak� < 0 or Ak� > 0, respectively, and has no horizontal points of inflection. (c) In
each ε-neighborhood of a point uk� for which rk� is odd, ψ̂k has no more than
two extrema. Furthermore: (d) When rk� is odd, the probability that ψ̂k has no
extremum, and the probability that there are exactly two extrema (a local maximum
or a local minimum, resp.) in an ε-neighborhood of uk�, both converge to 1

2 . (e) If
rk� is even, then the extremum ûk�, say, of ψ̂k in a neighborhood of uk� [see (b)],
satisfies

n1/{2(rk�−1)}(ûk� − uk�) → N1/(rk�−1)

in distribution, where N has a normal N(0, σ 2
k�) distribution and σk� > 0. (f ) If

rk� is odd, then conditional on ψ̂k having two extrema, û+
k� > û−

k� say, in a neigh-
borhood of uk� [see (d)], they satisfy

n1/{2(rk�−1)}(û+
k� − uk�, û

+
k� − uk�) → (|N |1/(rk�−1),−|N |1/(rk�−1))

in distribution, where N is as in (e).

2.2. The case of locally perturbed distributions of random functions. Results
similar to Theorem 2.1 can be obtained in the case of slight alterations to a popula-
tion, thereby giving insight into the way in which an empirical principal component
function ψ̂j responds to small bumps in the true principal component function ψj .
For the sake of brevity we shall only summarize the results below, rather than state
them as formal theorems. We shall refer to the small alterations as “local pertur-
bations,” where the word “local” is used in the sense of the standard terminology
“local hypothesis,” not in the sense in which “local” is interpreted in statistical
smoothing.

In general, the effect of adding a perturbation does not alter the results described
in Section 2.1, if the perturbation is of smaller order than the size, n−1/4, of noise.
On the other hand, the effect of noise on the perturbation is negligible if n−1/4 is
of smaller order than the size of the perturbation. We shall discuss these properties
in detail in a particular case, where the added perturbation is one of the orthogonal
functions themselves. There the theory is particularly simple and transparent.

Let ψj(u) = A(u−u0)
3, where u0 denotes the midpoint of I, and A �= 0. Thus,

u0 is the site of a shoulder of ψj . We shall add a small bump, of vertical height δ,
at u0. Let ψp , for p �= j , be symmetric about u0, have two continuous derivatives
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on I, and satisfy ψp ≥ 0 and ψ ′′
p < 0 on I, together with ψ ′

p(u0) = 0. The restric-
tions on ψj and ψp ensure that these functions are orthogonal; they are of course
easily rendered orthonormal by rescaling. (Note that we are adding a bump func-
tion, ψp , to a shoulder function, ψj , and in particular are not adding a shoulder
function to a shoulder function.)

Note particularly that under the above conditions, and for all sufficiently small
|δ| > 0, the function

φj ≡ (1 − δ2)1/2ψj + δψp(2.6)

has exactly two extrema, one of them at u0 and the other distant O(|δ|) from u0,
giving either a local maximum or a local minimum. We shall explore the extent
to which the resulting bump in the local perturbation, φj , of ψj is visible in the
empirical principal component function φ̂j .

A random function X whose covariance admits the spectral expansion (2.1) also
has the expansion

X(u) − E{X(u)} =
∞∑

k=1

ξkψk(u),(2.7)

where the random variables ξk = ∫
(X − EX)ψk are uncorrelated and have zero

mean, with E(ξ2
k ) = θk . Result (2.7) is sometimes referred to as the Karhunen–

Loève expansion of X − E(X), although that name is also used for results such as
the expansion at (2.1).

We shall take E(X) = 0 for simplicity, and perturb X to Y , where

Y(u) =
∞∑

k=1

ξkφk(u),

with φk = ψk for k /∈ {j,p}, φj as at (2.6), φp = δψj − (1 − δ2)1/2ψp , 0 < |δ| < 1
and ξk exactly as at (2.7). The corresponding spectral decomposition of the covari-
ance of Y is

L(u, v) = cov{Y(u)Y (v)} =
∞∑

k=1

θkφk(u)φk(v)

= K(u, v) + δ(θj − θp){ψj(u)ψp(v) + ψp(u)ψj (v)} + O(δ2)

as δ → 0, where K(u, v) and θ1, θ2, . . . are as at (2.1).
Let the perturbed random functions Y1, . . . , Yn be independent and identically

distributed as Y , and let δ = δ(n) depend on n, converging to zero as n → ∞.
Taking Ȳ = n−1 ∑

i Yi and

L̂(u, v) = 1

n

n∑
i=1

{Yi(u) − Ȳ (u)}{Yi(v) − Ȳ (v)},(2.8)
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being the analogue of K̂ defined at (2.2) but for the random functions Yi rather
than Xi , we may obtain a spectral decomposition in the usual way:

L̂(u, v) =
∞∑

k=1

θ̃kφ̃k(u)φ̃k(v),(2.9)

where θ̃k and φ̃k may be interpreted as estimators of θk and φk , respectively. The
version of Theorem 2.1 pertaining to the data Yi , rather than Xi , includes, among
other things, the following properties.

THEOREM 2.2. Assume the conditions of Theorem 2.1. If ε > 0 is not greater
than half the length of I, and δ = δ(n) satisfies n1/4δ → ∞, then with proba-
bility tending to 1 as n → ∞, φ̃j has just two extrema, and these occur in an
ε-neighborhood of u0; and if δ(n) = o(n−1/4), then the probability that φ̃j has
just two extrema in the ε-neighborhood, and the chance that it has no extrema
there, both converge to 1

2 . When δ(n) = const.n−1/4, the probability that there are
just two extrema in the ε-neighborhood converges to a number strictly between
0 and 1. For any of these choices of δ, the probability that φ̂j has a horizontal
point of inflection in I equals 0.

Recall that φj has exactly two extrema, for all sufficiently small values of |δ|.
Theorem 2.2 implies that, if |δ| is of strictly larger size than n−1/4, then with
probability tending to 1 as n → ∞, the empirical principal component function φ̂j

has exactly this number of extrema, and so correctly indicates the presence of the
bump in φj . However, if |δ| is of smaller size than n−1/4 then the probability that
the added bump is reflected in φ̂j converges only to 1

2 . Hence, in this case the bump
is not so readily visible. In this sense the “bump” in φj can be detected reliably if
it is of larger order than n−1/4, but not otherwise.

Reflecting these results, it is not difficult to show that no method is capable of
reliably distinguishing between the case where no bump is present (i.e., δ = 0),
and that where a bump of size cn−1/4, for arbitrarily small but positive |c|, has
been added. To better appreciate this point, let us assume that the process X is
Gaussian, or equivalently, that the random variables ξk in (2.7) are independent
and normally distributed, with zero means and respective variances θk satisfying∑

k θk < ∞. Fix a sequence θ1 > θ2 > · · · > 0 with this property, and fix also the
eigenvectors ψ1,ψ2, . . . , choosing ψj and ψp as above. More generally, adopt the
earlier construction of local perturbations, where a single parameter δ is involved.
Consider a set of just two distributions D of Y , the first, D0 say, corresponding to
δ = 0, and the second, Dc, depending on c �= 0, corresponding to δ = cn−1/4. For
a given value of α ∈ (0,1), let Tα denote the class of all decision rules T = T (n)

that are measurable functions of the data Y = {Y1, . . . , Yn}, which can be used to
classify the distribution of Y as either D0 or Dc, and which satisfy

PD0(T classifies D as D0) ≥ α.
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Then,

lim sup
c→0

lim sup
n→∞

sup
T ∈Tα

PDc(T classifies D as Dc) ≤ 1 − α.(2.10)

This result may be paraphrazed by saying that “no test that is capable of accurately
detecting D0, can also accurately detect Dc for arbitrarily small values of |c|.”

3. Bootstrap-based assessment of extrema of empirical principal compo-
nent functions. We begin by describing the m-out-of-n bootstrap in the con-
text of estimating principal component functions. Let m ≤ n, and conditional on
X = {X1, . . . ,Xn}, draw a bootstrap resample, X∗ = {X∗

1, . . . ,X∗
m}, by sampling

randomly, with replacement, from X. Define K̂∗ analogously to K̂ , at (2.2), and
construct its spectral expansion,

K̂∗(u, v) = 1

m

m∑
i=1

{X∗
i (u) − X̄∗(u)}{X∗

i (v) − X̄∗(v)}

=
∞∑

j=1

θ̂∗
j ψ̂∗

j (u)ψ̂∗
j (v).

Of course, ψ̂∗
j is the bootstrap version of ψ̂j . We shall use the stochastic variability

of extrema of ψ̂∗
j to measure the relative “strengths” of extrema of ψj .

The key to our suggested method is the following property. If m is chosen large,
but small relative to n [i.e., in asymptotic terms, if m = m(n) → ∞ but m/n → 0],
then the numbers of modes of ψ̂∗

k , for 1 ≤ k ≤ j , accurately reflect those of ψ̂k

when the latter are viewed in an unconditional sense. That is, with high probability
a “true” extremum in ψk will produce exactly one extremum in ψ̂∗

k ; but a shoulder
point in ψk will (in asymptotic terms) produce either no extrema in ψ̂∗

k , or ex-
actly two extrema there, each of these outcomes occurring approximately 50% of
the time. Therefore, the relative frequencies with which bumps appear at different
places in ψ̂∗

k give a good guide to the “likelihoods” that real bumps are present
in ψk .

One can construct an informal definition of the likelihood attached to an ex-
tremum being in a particular region, as follows. Taking the estimator of ψ̂k as a
guide, first determine a subinterval, J say, of I where a single extremum might
lie; replicate the function ψ̂∗

k and count the proportion, p̂, of times (for a given
dataset X) that ψ̂∗

k has at least one extremum in J; and take

π̂ = max
{
0,2

(
p̂ − 1

2

)}
(3.1)

to be a measure of the likelihood that there is an extremum of ψk in J. Theo-
rem 3.1 asserts that if there is just one point in the interior of J, and no point on
the boundary of J where ψ ′

k vanishes, then π̂ → 0 or 1 according as that point is
a shoulder point, or a proper extremum, respectively.
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However, the results are rather different if m = n, or more generally if m/n does
not converge to zero. There, while it remains true that (with probability close to 1)
a “true” extremum in ψk will produce exactly one extremum in ψ̂∗

k , it does not hold
that a shoulder point in ψk will produce extrema in ψ̂∗

k approximately half the time.
Indeed, if m/n does not converge to zero then the proportion of times, p̂, that (in
the vicinity of a shoulder point of ψk) there is at least one extremum of ψ̂∗

k , does
not converge in probability to a limit. In this sense, the standard, n-out-of-n boot-
strap is not consistent. Nevertheless, p̂ does converge in distribution, to a random
variable supported on [0,1] and distributed symmetrically about 1

2 . Intuitively, the
reason for this property is that if m/n does not converge to zero then the differ-
ence between ψ̂∗

k and ψ̂k , which is of size m−1/2, is not of strictly larger order
than the difference between ψ̂k and ψk , which is of size n−1/2. As a result, the lat-
ter difference plays a significant role in determining asymptotic properties of the
conditional distribution of extrema of ψ̂∗

k .
In the theorem below, given an interval J ⊆ I, and keeping the sample X fixed,

let p̂
(ν)
k (J) denote the proportion of the resamples X∗ for which there are exactly ν

solutions, in J, of the equation (ψ̂∗
k )′ = 0. Let ε > 0 be as defined in the paragraph

immediately prior to Theorem 2.1, and recall that Ak� denotes the constant appear-
ing in (2.4).

THEOREM 3.1. Assume the conditions of Theorem 2.1, and also that n ≥
m = m(n) ≥ nc, for some c ∈ (0,1), and that 1 ≤ k ≤ j . Assume initially that
m/n → 0. Then: (a) If J denotes either [uk� + ε,uk,�+1 − ε], for 1 ≤ k ≤ j and
1 ≤ � ≤ qk − 1, or [a,uk1 − ε] or [uk,qk

− ε, b], for 1 ≤ k ≤ j , then p̂
(0)
k (J) → 1

in probability as n → ∞. (b) If J denotes an ε-neighborhood of a point uk� for
which rk� is even, then p̂

(1)
k (J) → 1 in probability, and in fact the proportion of

the solutions of (ψ̂∗
k )′ = 0 that give a local maximum converges to 1, or to 0, ac-

cording as Ak� < 0 or Ak� > 0, respectively. (c) If J denotes an ε-neighborhood
of a point uk� for which rk� is odd, then p̂

(ν)
k (J) → 1

2 in probability for ν = 0,2.
Next assume that m/n → ρ, where 0 < ρ ≤ 1. Then (a) and (b) above continue to
hold, but (c) should be changed to: (c)′ If J denotes an ε-neighborhood of a point
uk� for which rk� is odd, then(

p̂
(0)
k (J), p̂

(2)
k (J)

) → (
�(ρ1/2N),1 − �(ρ1/2N)

)
in distribution, where � denotes the standard normal distribution function and the
random variable N has the N(0,1) distribution.

Of course, if ρ = 1 then �(ρ1/2N) has the uniform distribution on [0,1].
Set up the local perturbation problem as in Section 2.2. In particular, ψj denotes

a function with a shoulder at u0 (the midpoint of I), and ψp is a concave bump,
of which a small multiple, δ = δ(n), is added to ψj to form the locally perturbed
version, φj , of ψj ; see (2.6). As in Section 2, the principal component function
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φj is estimated by φ̃j , obtained from the spectral decomposition (2.9) of L̂, the
latter defined at (2.8) in terms of the dataset Y = {Y1, . . . , Yn}. Let L̂∗ denote the
bootstrap version of L̂, obtained by computing L̂ not from the original dataset Y
but from a bootstrap resample Y∗ = {Y ∗

1 , . . . , Y ∗
m} drawn by sampling randomly

with replacement from Y. Assume that m = m(n) ≥ nc for some c ∈ (0,1), and
that m/n → 0 as n → ∞. Let J denote an ε-neighborhood of u0, where ε is
any positive number not greater than half the length of I; and define p̂

(ν)
j (J) to

equal the proportion of times, conditional on Y, that the equation (φ̂∗
j )′ = 0 has

exactly ν solutions in the interval J. Assume the conditions of Theorem 2.1. Then
the following analogue of a portion of Theorem 2.2 holds:

If δ = δ(n) satisfies m1/4δ → ∞ then p̂
(2)
j (J) → 1 in probability,

whereas if δ(n) = o(m−1/4) then p̂
(ν)
j (J) → 1

2 in probability for ν =
0,2. For either choice of δ, the probability that φ̂∗

j has a horizontal
point of inflection in I equals 0.

(3.2)

Expressed another way, (3.2) states that if m1/4δ → ∞ then the “bootstrap like-
lihood” π̂ , at (3.1), will converge to 1 when applied to the interval J and to the
j th principal component function. That is, the bootstrap likelihood will correctly
signal that a bump, in the form of the function ψp , has been added to the shoulder
at u0 in ψj . On the other hand, if δ(n) = o(m−1/4) then the bootstrap likelihood
will converge to zero, indicating that the added bump has been missed. Therefore,
the bump may not be detected if m is too small.

In some respects it might be satisfying to have a purely empirical rule for choos-
ing m. However, the results above argue that this is neither practical nor, in the
main, actually desirable. We know from (2.10) that no empirical rule can distin-
guish the case where there is no added bump, from that where a bump of size n−1/4

is added; and the results above show that a bootstrap-based test can, in asymptotic
terms, distinguish a bump of any order, δ(n) say, that is strictly greater than n−1/4.
Indeed, we should choose m so that m/n → 0 but δ4m → ∞. However, in order
to achieve this level of sensitivity in a purely empirical way, without an external
source of information about bump size, we need to do in advance essentially that
which are trying to do now—we need to use empirical evidence to approximate δ

so we can choose m in order to determine empirically whether a bump, of size δ,
is present.

The circularity of this argument, and the fact that [in view of (2.10)] it is vir-
tually impossible to accurately estimate δ when the bumps are small but barely
detectable, means that empirical choice of m is not a practical option. Instead,
the problem should be addressed from an exploratory angle, for example, starting
with m = n and gradually decreasing this quantity. We expect that as m decreases
the stochastic fluctuations inherent in the bootstrap will play an increasing role,
generally giving rise to more extrema in the functions ψ̂∗

k . In consequence, if an
extremum is not genuine, π̂ will tend to increase with decreasing m.
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4. Numerical properties.

4.1. Application to real data on gait cycle. This example concerns child
gait data, studied by Olshen, Biden, Wyatt and Sutherland [31] and Rice and
Silverman [39]. These data consist of records of the angle of the knee and the
hip during a gait cycle, recorded at 20 equally spaced time points, for 39 children
aged approximately five years. We shall focus on the hip data.

Figure 1 illustrates the first and second empirical principal component functions
for one cycle. (To provide a good view of the extrema we represent the data in the
interval [−4,15].) These two eigenfunctions correspond to 82% of total variability,
and can be interpreted as follows: The first eigenfunction represents an overall shift
with respect to the mean curve, and the second corresponds to an increased angle
for the first part of the cycle (in the interval [0,8]), and a delay in the second part.

The first and second empirical principal component functions each have four
extrema, at −1.5, 0.5, 2.5 and 10.5, and 0.5, 2.5, 4.5 and 12.5, respectively. Table 1
summarizes the values of π̂ obtained using 500 bootstrap iterations, and bootstrap
sample size m varying among 10,15,20,25,30,35,39. The value of ε equals half
the length of the interval J.

The tabulated results suggest that the points −0.5 and 11.5, and 1.5 and 13.5,
correspond to genuine extrema for the first and second empirical principal compo-
nent functions, respectively. The other extrema are spurious. In each instance the
largest value of π̂ among all of the spurious extrema is less than the smallest value
of π̂ among all the genuine extrema.

This information is helpful in choosing the level of smoothing when graphically
presenting the principal component curves—the level of smoothing should be suf-
ficiently great to remove the spurious extrema. That is readily achieved, and pro-
duces eigenfunction and covariance estimates that reflect the knowledge acquired
above.

FIG. 1. Graphs of the first two empirical principal component functions for the hip-movement
portion of the child gait data. Solid and dashed lines show the first and second empirical principal
component functions, respectively.
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TABLE 1
Values of π̂ for each extremum of the first two principal component functions (PCFs) for the
hip-movement component of the child gait data, obtained using 500 bootstrap iterations and

different bootstrap sample sizes m. The interval J for each extremum ukl was [ukl − ε,ukl + ε]

1st empirical PCF 2nd empirical PCF

Extrema −1.5 0.5 2.5 10.5 0.5 2.5 4.5 12.5

ε 1 1 1 4 1 1 1 4

m = 10 0.764 0.144 0.008 0.976 0.476 0 0 0.82
m = 15 0.784 0.244 0.108 0.972 0.528 0 0 0.78
m = 20 0.808 0.432 0.084 0.972 0.628 0.028 0 0.808
m = 25 0.804 0.428 0.136 0.992 0.66 0.06 0 0.796
m = 30 0.82 0.484 0.152 0.984 0.72 0.14 0 0.796
m = 35 0.828 0.492 0.18 0.988 0.74 0.156 0 0.832
m = 39 0.848 0.62 0.196 0.992 0.764 0.164 0 0.828

4.2. Application to simulated data. For most of the examples discussed be-
low, synthetic data, representing random functions on the interval I = [0,1], were
generated as follows. The first principal component function was taken to belong
to the family

ψ1(x) = ψ1λ(x) = cλ(2λx3 − 3λx2 + 1.5x), −∞ < λ < ∞,(4.1)

where cλ > 0 was chosen to ensure that
∫
I ψ2

1 = 1. If λ < 1 then ψ1λ has no
extrema or shoulder points on I; if λ = 1, ψ1λ has no extrema and just one shoulder
point; if λ > 1, ψ1λ has just two extrema, at the points [λ ± {λ(λ − 1)}1/2]/(2λ),
and no shoulder point.

This “evolution” of ψ1λ takes place smoothly as λ is increased, as indicated
by the graphs in panel (a) of Figure 2. The other principal component functions,
ψk = ψkλ for k ≥ 2, were constructed by orthonormalization from the functions
{ψ1(x) : sin[2π(k − 1)x], k ≥ 2}. In our numerical work we used a discrete ortho-
normalization procedure based on 250 equally-spaced points in I. Then, to build
the random function X, we multiplied each ψkλ by the square roots of the eigen-
values θk = k−2, for 1 ≤ k ≤ 5 (we set θk = 0 for k ≥ 6), and also by the kth
member of an uncorrelated Gaussian random sequence η1, η2, . . . with zero means
and unit variances. In this way we constructed X = ∑

k ξkψkλ [cf. (2.8)], where
ξk = θ

1/2
k ηk . In particular, X is a Gaussian process with zero mean.

For this process, numerical results illustrating Theorem 2.1 are readily obtained.
They show that the shapes of estimated principal component functions converge
to those of true principal component functions, as measured by criteria such as
number of extrema and the locations of those points. However, for the sake of
brevity we shall not give details of those results.
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FIG. 2. Illustration of Theorem 3.1(i). In panel (a) the function ψ1(x) = ψ1λ(x), defined at (4.1),
is graphed against x for λ = 0.85, 1 and 1.2. Panel (b) shows plots of the probability density of π̂ ,
the latter defined at (3.1), computed for the first empirical principal component function in the cases
of the respective values of λ. We chose also J = [0.4,0.6] (resp. J = [0.6,0.8]) when λ = 0.85 or
λ = 1 (resp., λ = 1.2). The process X was Gaussian, and was constructed as described in the first
two paragraphs of this section. The plots in panel (b) are for n = 300, when m is the integer part
of 2n0.6.

Panel (b) of Figure 2 graphs, for one value of m, the probability density of π̂ for
the principal component functions ψ1 shown in panel (a), respectively. In the case
of the solid lines in the figure, the function ψ1 has no extrema and, as predicted by
Theorem 3.1, the distribution of π̂ there is concentrated at relatively low values,
that is, toward zero. Considering the dotted lines of the figure, the function ψ1
can be deduced to have two extrema, one a minimum and one a maximum, and,
again as suggested by Theorem 3.1, the distribution of π̂ is concentrated toward the
upper end of the unit interval. The dashed lines in Figure 2 show an intermediate
case, where ψ1 has a shoulder point and the distribution of π̂ is concentrated more
toward the centre of the unit interval. Here, and in all the numerical work in this
section, sample size was n = 300, all results represent averages over 200 synthetic
samples of that size, and we used 300 bootstrap iterations for computing π̂ .

The graphs of the density of π̂ in Figure 2 were constructed using kernel meth-
ods, in which the kernel was taken to be the standard normal density, and the band-
width was chosen equal to 0.02, a value suggested by cross-validation. In panel (b)
the subinterval J was centred at 0.5 for the cases λ = 0.85 and 1. When λ = 1.2
it was centred at 0.70, close to the local minimum of ψ in I. In each instance, J
was of length 0.2.

Results very similar to those in Figure 2 were obtained in the non-Gaussian case
where the variables ηk used to construct X, four paragraphs above, were taken to
have the distribution of a centred value of the absolute value of a standard normal
random variable, instead of being standard normal themselves. The probability
densities of π̂ in the three cases (λ = 0.85, 1 and 1.2) were almost as well separated
as before.
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FIG. 3. Illustration of Theorem 3.1(ii). Panel (a) graphs the function ψ1(x) = (x−0.8)3 (x−0.2)3,
being the first principal component function of a new Gaussian process X. Panel (b) shows three
curves, representing the densities of π̂ , computed for the first empirical principal component function
in different settings. Sample size was n = 300 and m is the integer part of 2n0.6.

Next we return to the Gaussian case, but alter the definition of X by taking
ψ1(x) = ψ(x) = (x − 0.8)3(x − 0.2)3, all other aspects of the construction re-
maining the same. The function ψ is illustrated in the left-hand panel of Figure 3;
it has one local minimum, at 0.5, and two shoulder points, at 0.2 and 0.8. The
right-hand panel of the figure shows graphs of the density of π̂ . For each of those
graphs, J is of width 0.2. The density of π̂ has much of its mass toward 0 when J
straddles a shoulder point, but is concentrated close to 1 when J is centred at the
local minimum, reflecting the claims made in Theorem 3.1.

Next we construct the process X truncated to 15, rather than 5, nonnull eigen-
values. That is, we take λk = k−2 for k = 1, . . . ,15, and λk = 0 for k ≥ 16. In this
setting, panel (a) of Figure 4 graphs the proportion of variability for each eigen-
value, and suggests that the fifth principal component function is the last one that
is likely to be of empirical interest. Panel (b) of Figure 4 graphs the probability
density of π̂ when ψ5 contains either one shoulder point or two extrema. The two
curves were obtained using kernel methods with bandwidths 0.02 and 0.01, re-
spectively, and the interval J was chosen of length 0.05 and centred at 0.5 for the
shoulder point, and at 0.7 in the case of the extrema. As expected, the function
represented by the solid line is concentrated close to the value 1, but the function
represented by the dashed line is supported on a longer interval. This reflects the
fact that, in the case of a shoulder point, the empirical evidence for an extremum
is very weak.

Next we summarize simulations addressing the local perturbation theory in Sec-
tion 2.2. We shall use the notation of that section. To address the result (2.10) we
constructed the functions φj and φp , and the process Y , as explained in Section 2.2,
with j = 1, p = 2,

ψj(x) = 8
√

7(x − 0.5)3, ψp(x) = −4
√

5(x − 0.5)2.
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FIG. 4. Illustration of Theorem 3.1(iii). Panel (a) graphs the amount of total variation accounted
for by each eigenvalue. Panel (b) shows two curves, representing the densities of π̂ , computed for
the fifth empirical principal component function where it possesses a shoulder point (when λ = 1),
or an extremum (when λ = 1.2). The interval J was [0.45,0.55] in the case of a shoulder point, and
[0.65,0.75] in the case of an extremum.

In particular,
∫
I ψ2

j = ∫
I ψ2

p = 1 and
∫
I ψjψp = 0. The random sequence ξk , used

for the construction of the process Y , is defined exactly as described in the second
paragraph of this section.

Figure 5 illustrates the three cases arising in Theorem 2.2. The results there lend
support to the theoretical results in Section 2.2. Indeed, convergence toward 1,
or 1

2 , or to a value strictly between 0 and 1, is illustrated by the solid, the dashed
and the dashed-dotted curves, respectively. In the last of these three curves the
value is close to 0.6 rather than 1

2 .

FIG. 5. Illustration of Theorem 2.2. The three curves represent the probabilities that φ̃j has two

extrema, and no extrema, respectively. The cases δ = n−0.1, δ = n−0.25 and δ = n−0.8 repre-
sent instances where n1/4δ → ∞, n1/4δ is neither particularly large nor particularly small, and
n1/4δ → 0, respectively.
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5. Theoretical arguments.

5.1. Proof of Theorem 2.1. The following result, which states large-deviation
properties in the case of random functions, may be derived using relatively stan-
dard arguments. We shall therefore give only an outline proof. Here and be-
low, C,C1,C2, . . . denote constants that may be taken arbitrarily large. We use
1/C,1/C1,1/C2, . . . to indicate constants whose values can be taken arbitrarily
small. Note too that, in results such as (5.1) below, if the result can be proved for
any given value of C (say, C = C0), then it also holds for all C < C0. This means
that we could equivalently state (5.1) with 1/C and C, on the left- and right-hand
sides, respectively, replaced by ε, and assert that (5.1) holds for all C,ε > 0.

LEMMA 5.1. Assume the eigenvalues θ1, . . . , θj+1 are distinct, and that with
probability 1, X has r ≥ 0 Hölder-continuous derivatives on I, with Hölder ex-
ponent η > 0. If C > 0 is given, and if E|X(s)(a)|D < ∞ for s = 0, . . . , r and
γr(D,η) < ∞ for a sufficiently large value of D = D(C) > 0, then

P

{
sup
u∈I

∣∣ψ̂(r)
k (u) − ψ

(r)
k (u)

∣∣ > n(1/C)−(1/2) for 1 ≤ k ≤ j

}
= O(n−C).(5.1)

Furthermore, if u0 ∈ I and η′ ∈ (0, η), and if γr(D,η) < ∞ for sufficiently large
D = D(C,η′) > 0, then

P

{
sup
u∈I

∣∣ψ̂(r)
k (u) − ψ̂

(r)
k (u0) − {

ψ
(r)
k (u) − ψ

(r)
k (u0)

}∣∣
(5.2)

> n(1/C)−(1/2)|u − u0|η′
for 1 ≤ k ≤ j

}
= O(n−C).

OUTLINE PROOF OF LEMMA 5.1. If L is a function on I2, put |||L|||2 =∫
I2 L2, ‖L(u, ·)‖2 = ∫

I L(u, v)2 dv, ‖L‖sup = supu∈I ‖L(u, ·)‖ and L(r)(u, v) =
(∂/∂u)rL(u, v). It may be proved that

θ̂j

{
ψ̂

(r)
j (u) − ψ

(r)
j (u)

}
=

∫
I
K(r)(u, v){ψ̂j (v) − ψj(v)}dv(5.3)

+
∫
I

{
K̂(r)(u, v) − K(r)(u, v)

}
ψ̂j (v) dv − (θ̂j − θj )ψ

(r)
j (u),

which entails

max(0, θj − |θ̂j − θj |)
∣∣ψ̂(r)

j (u) − ψ
(r)
j (u)

∣∣
≤ ∥∥K(r)(u, ·)∥∥‖ψ̂j − ψj‖(5.4)

+ ∥∥K̂(r)(u, ·) − K(r)(u, ·)∥∥ + |θ̂j − θj |
∣∣ψ(r)

j (u)
∣∣.
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Put δj = infk≤j (θk − θk+1) and � = |||K̂ − K|||. It may be proved from results
of Bhatia, Davis and McIntosh [2] that supj≥1 |θ̂j − θj | ≤ �, and that if � ≤ 1

2δj

then ‖ψ̂j −ψj‖ ≤ 4�/δj . On the other hand, if � > 1
2δj then 4�/δj > 2 ≥ ‖ψ̂j −

ψj‖, since ‖ψj‖ = ‖ψ̂j‖ = 1. Therefore, ‖ψ̂j − ψj‖ ≤ 4�/δj in all cases. When
combined with (5.4), these results imply that

max(0, θj − �)
∥∥ψ̂(r)

j − ψ
(r)
j

∥∥∞
(5.5)

≤ �
{
4
∥∥K(r)

∥∥
supδ

−1
j + ∥∥ψ(r)

j

∥∥∞
} + ∥∥K̂(r) − K(r)

∥∥
sup.

The assumptions in Lemma 5.1 imply that θj , δj > 0 and ‖K(r)‖sup,

‖ψ(r)
j ‖∞ < ∞. We shall show that if γr(D,η) < ∞ for sufficiently large D =

D(C) > 0, then

P
{∥∥K̂(r) − K(r)

∥∥
sup > n(1/C)−(1/2)} = O(n−C).(5.6)

A similar but simpler argument shows that the same bound applies if ‖K̂(r) −
K(r)‖sup is replaced by �. These results and (5.5) imply the bound (5.1) in the
case k = j . Other values of k may be treated similarly.

Note that K̂ = �1 − �2, where

�1(u, v) = 1

n

n∑
i=1

{Xi(u) − µ(u)}{Xi(v) − µ(v)},

�2(u, v) = {X̄(u) − µ(u)}{X̄(v) − µ(v)}.
Therefore it suffices to prove the version of (5.6) that arises if we replace K̂(r) −
K(r) there by either �

(r)
3 ≡ �

(r)
1 − K(r) or �

(r)
2 . We shall treat only the first of

these cases; the second is simpler. That is, we shall prove that

P

{
sup
u∈I

∥∥�(r)
3 (u, ·)∥∥ > n(1/C)−(1/2)

}
= O(n−C).(5.7)

First we derive the version of this result when the supremum is taken only over
u ∈ I(C1), denoting the set of nC1 equally-spaced points in I, where C1 > 0 can be
arbitrarily large. See (5.9) below. Noting that �

(r)
3 (u, v) equals the mean of a sum

of independent and identically distributed random variables, and using Rosenthal’s
and Markov’s inequalities, we may prove that if C2,C3 > 0 are given, and if

sup
u∈I

E
{∣∣X(r)(u)

∣∣D}
< ∞,(5.8)

then

sup
u∈I

E
{∥∥n1/2�

(r)
3 (u, ·)∥∥D}

< ∞.
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Therefore, by Markov’s inequality,

sup
u∈I

P
{∥∥�(r)

3 (u, ·)∥∥ > n(1/C2)−(1/2)} = O(n−D/C2).

It follows that if C2,C3 > 0 are given, and if D = D(C2,C3) > 0 is sufficiently
large, then

sup
u∈I

P
{∥∥�(r)

3 (u, ·)∥∥ > n(1/C2)−(1/2)} = O(n−C3).

Hence, if C1 > 0 is any other constant, and if (5.8) holds for sufficiently large
D = D(C2,C3,C1) > 0, then

P

{
sup

u∈I(C1)

∥∥�(r)
3 (u, ·)∥∥ > n(1/C2)−(1/2)

}
= O(n−C3).(5.9)

If C4 > 0 is given, if C1 > 0 is sufficiently large, and if γr(D,η) < ∞ for
sufficiently large D, then

E

{
sup
u∈I

∥∥�(r)
3 (u, ·) − �

(r)
3 (u′, ·)∥∥}

= O(n−C4),

where u′ denotes the nearest point in I(C1) to u ∈ I. From this bound
and Markov’s inequality, it follows that if C2,C3 > 0 are given, and C1 =
C1(C2,C3) > 0 is chosen sufficiently large,

P

{
sup
u∈I

∥∥�(r)
3 (u, ·) − �

(r)
3 (u′, ·)∥∥ > n(1/C2)−(1/2)

}
= O(n−C3).(5.10)

The desired result (5.7) follows from (5.9) and (5.10), on taking C2 = C3 > C.
To derive (5.2) we start from (5.3), which implies that

θ̂j

[
ψ̂

(r)
j (u) − ψ̂

(r)
j (u0) − {

ψ
(r)
j (u) − ψ

(r)
j (u0)

}]
=

∫
I

{
K(r)(u, v) − K(r)(u0, v)

}{ψ̂j (v) − ψj(v)}dv

+
∫
I

[
K̂(r)(u, v) − K(r)(u, v)(5.11)

− {
K̂(r)(u0, v) − K(r)(u0, v)

}]
ψ̂j (v) dv

− (θ̂j − θj )
{
ψ

(r)
j (u) − ψ

(r)
j (u0)

}
.

The conditions of the lemma imply that ψ
(r)
j is Hölder-continuous with any expo-

nent η′ < η. This property, (5.11) and the arguments leading to Lemma 5.1 then
give (5.2). �

PROOF OF THEOREM 2.1. For given η > 0, statements made below hold pro-
vided γ2(D,η) < ∞ for sufficiently large D > 0. We shall, however, omit that
qualification.
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Since the function |ψ ′
j | is bounded away from zero uniformly on each of

the intervals mentioned in part (a) of the theorem, then part (a) follows di-
rectly from (5.1). Let Mk� denote the ε-neighborhood of uk�, mentioned in parts
(b) and (c) of the theorem. Using first (5.2) and then (2.4) it may be proved that,
for r = 1,2,

ψ̂
(r)
k (u) = ψ̂

(r)
k (uk�) + ψ

(r)
k (u) − ψ

(r)
k (uk�) + Op

(
n(1/C)−(1/2)|u − uk�|η′)

= ψ̂
(r)
k (uk�) − ψ

(r)
k (uk�)

(5.12)
+ (∂/∂u)rAk�(u − uk�)

rk� + O(|u − uk�|rk�+η−r )

+ Op

(
n(1/C)−(1/2)|u − uk�|η′)

,

uniformly in u ∈ Mk�. Therefore, if Ŝk� denotes the set of all solutions, u = ûk�,
of the equation ψ̂ ′

k(u) = 0 in Mk�, then, taking r = 1 in (5.12) and noting that
ψ ′

k(uk�) = 0, we deduce first that for each δ1 > 0, with probability converging to 1
as n → ∞, all elements of Ŝk� lie within n−[1/{2(rk�−1)}]+δ1 of uk�; and then, that
for some δ2 > 0,

ûk� − uk� = {−(Ak�rk�)
−1ψ̂ ′

k(uk�)}1/(rk�−1) + Op

(
n−[1/{2(rk�−1)}]−δ2

)
,(5.13)

uniformly in ûk� ∈ Ŝk�.
Substituting the expansion at (5.13) into the version of (5.12) for r = 2 and

u = ûk�, and writing φ̂k� for ψ̂
(2)
k (uk�) − ψ

(2)
k (uk�), we deduce that for some

δ3 > 0,

ψ̂
(2)
k (ûk�) = φ̂k� + rk�(rk� − 1)Ak�(ûk� − uk�)

rk�−2

+ Op

(|ûk� − uk�|rk�+η−2 + n(1/C)−(1/2)|ûk� − uk�|η′)
(5.14)

= φ̂k� + rk�(rk� − 1)Ak�{−(Ak�rk�)
−1ψ̂ ′

k(uk�)}(rk�−2)/(rk�−1)

+ Op

(
n−[(rk�−2)/{2(rk�−1)}]−δ3

)
,

uniformly in ûk� ∈ Ŝk�, where (here and below) we interpret x(rk�−2)/(rk�−1) as the
(rk� − 2)nd power of x1/(rk�−1); it is undefined if rk� is odd and x < 0. Of course,
when rk� = 2 we interpret x(rk�−2)/(rk�−1) as 1.

Next we derive the limiting distribution of (ψ̂ ′
k(uk�), φ̂k�). Observe from (5.3)

that

θ̂k

{
ψ̂

(r)
k (uk�) − ψ

(r)
k (uk�)

}
=

∫
I
K(r)(uk�, v)

{
ψ̂k(v) − ψk(v)

}
dv

+
∫
I

{
K̂(r)(uk�, v) − K(r)(uk�, v)

}
ψ̂k(v) dv − (θ̂k − θk)ψ

(r)
k (uk�).
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(We shall need only r = 1,2.) Using arguments of Dauxois, Pousse and
Romain [12], it may be proved that

θ̂k − θk = Uk + op(n−1/2),∫
I

{
K̂(r)(uk�, v) − K(r)(uk�, v)

}
ψ̂k(v) dv = V

(r)
k� + op(n−1/2),

∫
I
K(r)(uk�, v){ψ̂k(v) − ψk(v)}dv =

ν∑
p=1

θpWkpψ(r)
p (uk�) + n−1/2Rk�1(r, ν),

where

Uk =
∫ ∫

I2
{K̂(u, v) − K(u, v)}ψk(u)ψk(v) dudv,

V
(r)
k� =

∫
I

{
K̂(r)(uk�, v) − K(r)(uk�, v)

}
ψk(v) dv,

Wkp = (θk − θp)−1
∫ ∫

I2
{K̂(u, v) − K(u, v)}ψk(u)ψp(v) dudv

and, for each ζ > 0 and for m = 1,

lim
ν→∞ lim sup

n→∞
P {|Rk�m(r, ν)| > ζ } = 0.(5.15)

The results in the previous paragraph imply that

θk

{
ψ̂

(r)
k (uk�) − ψ

(r)
k (uk�)

}
=

ν∑
p=1

θpWkpψ(r)
p (uk�) + V

(r)
k� − Ukψ

(r)
k� (uk�) + n−1/2Rk�2(r, ν)

= 1

n

n∑
i=1

Bi(r, ν) + n−1/2Rk�3(r, ν),

where

Bi(r, ν) =
ν∑

p=1

θpψ(r)
p (uk�)(θk − θp)−1

×
∫ ∫

I2
{Xi(u)Xi(v) − EXi(u)Xi(v)}ψk(u)ψp(v) dudv

+
∫
I

{
X

(r)
i (uk�)Xi(v) − EX

(r)
i (uk�)Xi(v)

}
ψk(v) dv

− ψ
(r)
k (uk�)

∫ ∫
I2

{Xi(u)Xi(v) − EXi(u)Xi(v)}ψk(u)ψk(v) dudv

+ n−1/2Rk�(r, ν)
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and Rk�2(r, ν) and Rk�2(r, ν) satisfy (5.15). [In the definition of Bi(r, ν) we have,
in a slight abuse of notation, used Xi for Xi −E(Xi); there is no loss of generality
in assuming that E(Xi) = 0.] Taking r = 1, in which case ψ

(r)
k (uk�) = 0 and r = 2,

for which φ̂k� = ψ̂
(r)
k (uk�) − ψ

(r)
k (uk�), we deduce that

θk

(
ψ̂ ′

k(uk�), φ̂k�

) = 1

n

n∑
i=1

(
Bi(1, ν),Bi(1, ν)

) + n−1/2Rk�(ν),(5.16)

where

lim
ν→∞ lim sup

n→∞
P {|Rk�(ν)| > ζ } = 0,(5.17)

and on this occasion | · | denotes the Euclidean norm.
The random two-vectors (Bi(1, ν),Bi(2, ν)) are independent and identically

distributed with zero means and finite variances. Therefore conventional arguments
show that n−1/2 ∑

i (Bi(1, ν),Bi(2, ν)), and hence also n1/2(ψ̂ ′
k(uk�), φ̂k�) has an

asymptotic bivariate normal distribution with finite variance.
Return to (5.14); multiply throughout by n(rk�−2)/{2(rk�−1)}; substitute

1

nθk

n∑
i=1

(
Bi(1, ν),Bi(2, ν)

)
for (ψ̂ ′

k(uk�), φ̂k�) when a factor of the latter appears on the right-hand side
of (5.14); and note (5.16) and (5.17), obtaining

n(rk�−2)/{2(rk�−1)}ψ̂(2)
k (ûk�)

= n−rk�/{2(rk�−1)}θ−1
k

n∑
i=1

Bi(2, ν)

+ rk�(rk� − 1)Ak�

{
−(Ak�rk�)

−1 1

n1/2

n∑
i=1

Bi(1, ν)

}(rk�−2)/(rk�−1)

+ op(1),

uniformly in ûk� ∈ Ŝk�. The series
∑

i Bi(2, ν) equals Op(n1/2), which, when mul-
tiplied by n−rk�/{2(rk�−1)}, equals op(1). Therefore,

n(rk�−2)/{2(rk�−1)}ψ̂(2)
k (ûk�)

= rk�(rk� − 1)Ak�

{
−(Ak�rk�)

−1 1

n1/2

n∑
i=1

Bi(1, ν)

}(rk�−2)/(rk�−1)

+ op(1)

= rk�(rk� − 1)Ak�Nk�(n)(rk�−2)/(rk�−1) + op(1),

uniformly in ûk� ∈ Ŝk�, where the random variable Nk�(n) converges in distribu-
tion to a random variable Nk� with the N(0, σ 2

k�) distribution.
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When rk� ≥ 2 is even, the sign of rk�(rk� − 1)Ak�N
(rk�−2)/(rk�−1)
k� is always

the same as the sign of Ak�. [Recall the interpretation, just below (5.14), of
x(rk�−2)/(rk�−1).] Therefore, when rk� ≥ 2, all the solutions of ψ̂ ′

k = 0 that lie in
the vicinity of uk� give, with probability converging to 1 as n → ∞, local maxima
if Ak� < 0 or local minima if Ak� > 0. It follows that, if rk� ≥ 2 is even, with prob-
ability converging to 1 as n → ∞, ψ̂k has just one extremum in the neighborhood
of uk�, with the same parity as the extremum of ψk at uk�. This proves part (b) of
the theorem.

On the other hand, when rk� ≥ 3 is odd, the random variable N
1/(rk�−1)
k� is well-

defined if and only if Nk� > 0, in which case it takes either of two values, that
is plus or minus the (rk� − 1)st root of Nk�. Correspondingly, the probability that
Ŝk� is empty converges to P(Nk� < 0) = 1

2 , and the probability that Ŝk� contains

just two elements converges to P(Nk� > 0). The signs of N
(rk�−2)/(rk�−1)
k� that cor-

respond to the two values of N
1/(rk�−1)
k� are positive and negative, respectively.

Correspondingly, the signs of Nk�(n)(rk�−2)/(rk�−1) are positive and negative, and
so when Ŝk� contains two elements, one of them must give a local maximum and
the other a local minimum. This proves parts (c) and (d) of the theorem.

When rk� is even, that is when uk� gives a local extremum of ψk , the first term on
the right-hand side of (5.13) is always well defined, since x1/(rk�−1) is well defined
for all real x. In particular, part (e) of Theorem 2.1 follows directly from (5.13),
since n1/2ψ̂ ′

k(uk�) is asymptotically normally distributed.
When rk� is odd, that is when uk� gives a point of inflection of ψk , the first term

on the right-hand side of (5.13) is well defined only when −(Ak�rk�)
−1ψ̂ ′

k(uk�) ≥ 0.
The results discussed two paragraphs above now imply that, conditional on ψ̂ hav-
ing two extrema given generically by ûk�, they satisfy

n1/{2(rk�−1)}(ûk� − uk�) = Nk�(n)1/(rk�−1) + op(1),

where Nk� is conditioned to be positive and the two solutions correspond to the
positive and negative roots on the right-hand side. This gives part (f ) of Theo-
rem 2.1. �

5.2. Proof of Theorem 3.1. The proof closely parallels that of Theorem 2.1,
being based on the following bootstrap version of Lemma 5.1.

LEMMA 5.2. Assume the conditions of Lemma 5.1. If C > 0 is given, and if
γr(D,η) < ∞ for a sufficiently large value of D = D(C) > 0, then there exists
a set R of realisations of X, with probability P(R) = 1 − O(n−C), such that
whenever X ∈ R,

P

{
sup
u∈I

∣∣(ψ̂∗
k )(r)(u) − ψ̂

(r)
k (u)

∣∣ > m(1/C)−(1/2) for 1 ≤ k ≤ j

∣∣∣∣X}
≤ const.m−C,
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where, here and below, “const.” is nonrandom. Furthermore, if u0 ∈ I and η′ ∈
(0, η), and if γr(D,η) < ∞ for sufficiently large D = D(C,η′) > 0, then whenever
X ∈ R,

P

{
sup
u∈I

∣∣(ψ̂∗
k )(r)(u) − (ψ̂∗

k )(r)(u0) − {
ψ̂

(r)
j (u) − ψ̂

(r)
j (u0)

}∣∣
> m(1/C)−(1/2)|u − u0|η′

for 1 ≤ k ≤ j |X
}

≤ const.m−C.

Let Mk� be as in the proof of Theorem 2.1, and write Ŝ∗
k� for the set of all

solutions, u = û∗
k�, of the equation (ψ̂∗

k )′(u) = 0 in Mk�. Parallelling arguments in
Section 5.1 we may prove the following analogues of (5.13) and (5.14): for some
δ > 0,

û∗
k� − uk� = [(Ak�rk�)

−1{(ψ̂∗
k )′(uk�) − ψ ′

k(uk�)}]1/(rk�−1)

(5.18) + m−[1/{2(rk�−1)}]R∗
1(û∗

k�),

(ψ̂∗
k )(2)(û∗

k�) = rk�(rk� − 1)Ak�

× [(Ak�rk�)
−1{(ψ̂∗

k )′(uk�) − ψ ′
k(uk�)}](rk�−2)/(rk�−1)(5.19)

+ m−[(rk�−2)/{2(rk�−1)}]R∗
2(û∗

k�),

where, on a set R(C1) of realizations of X that satisfies P(R) = 1 − O(n−C),

P

{
sup

û∗
k�∈Ŝ∗

k�

|R∗
2(û∗

k�)| > n−δ|X
}

≤ n−C

for all X ∈ R.
Write

(ψ̂∗
k )′(uk�) − ψ ′

k(uk�) = (ψ̂∗
k )′(uk�) − ψ̂ ′

k(uk�) + ψ̂ ′
k(uk�) − ψ ′

k(uk�)

in each of (5.18) and (5.19), and note that the variables

Z = n1/2{ψ̂ ′
k(uk�) − ψ ′

k(uk�)}, Z∗ = m1/2{(ψ̂∗
k )′(uk�) − ψ̂ ′

k(uk�)}
are each asymptotically normal distributed as N(0, τ 2) say, with Z∗ having this
weak limit conditional on X (and hence also conditional on Z). Theorem 3.1
follows from these properties, on doing little more than retracing the arguments
leading to Theorem 2.1.

For example, to obtain the last part of (c)′ in the case where rk� is odd, use Kol-
mogorov’s extension theorem to write Z = Z1 + op(1) and Z∗ = Z2 + op(1),
where Z1 and Z2 have exactly N(0, τ 2) distributions, Z1 is measurable in the
sigma-field generated by X, and Z2 is N(0, τ 2) conditional on X. Assume, with-
out loss of generality, that Ak� > 0; the case Ak� < 0 may be treated similarly.
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Then, in view of (5.18), the probability, conditional on X, that Ŝ∗
k� is nonempty

(and contains exactly one element) equals

P(ρ1/2Z1 + Z2 > 0|Z1) + op(1),(5.20)

where ρ = lim(m/n). If ρ = 0 then the quantity at (5.20) converges in probability
to 1

2 ; and if 0 < ρ ≤ 1 then it equals �(ρ1/2Z3) + op(1), where Z3 = Z1/τ and
has a N(0,1) distribution.
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