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CONSISTENCY OF BAYES ESTIMATORS OF A BINARY
REGRESSION FUNCTION1

BY MARC CORAM AND STEVEN P. LALLEY

University of Chicago

When do nonparametric Bayesian procedures “overfit”? To shed light on
this question, we consider a binary regression problem in detail and estab-
lish frequentist consistency for a certain class of Bayes procedures based on
hierarchical priors, called uniform mixture priors. These are defined as fol-
lows: let ν be any probability distribution on the nonnegative integers. To
sample a function f from the prior πν , first sample m from ν and then sam-
ple f uniformly from the set of step functions from [0,1] into [0,1] that have
exactly m jumps (i.e., sample all m jump locations and m + 1 function val-
ues independently and uniformly). The main result states that if a data-stream
is generated according to any fixed, measurable binary-regression function
f0 �≡ 1/2, then frequentist consistency obtains: that is, for any ν with infinite
support, the posterior of πν concentrates on any L1 neighborhood of f0. So-
lution of an associated large-deviations problem is central to the consistency
proof.

1. Introduction.

1.1. Consistency of Bayes procedures. It has been known since the work of
Freedman [7] that Bayesian procedures may fail to be consistent in the frequentist
sense: For estimating a probability density on the natural numbers, Freedman ex-
hibited a prior that assigns positive mass to every open set of possible densities, but
for which the posterior is consistent only at a set of the first category. Freedman’s
example is neither pathological nor rare: for other instances, see [4, 8, 10] and the
references therein.

Frequentist consistency of a Bayes procedure here will mean that the posterior
probability of each neighborhood of the true parameter tends to 1. The choice of
topology may be critical: For consistency in the weak topology on measures, it
is generally enough that the prior should place positive mass on every Kullback–
Leibler neighborhood of the true parameter [22], but for consistency in stronger
topologies, more stringent requirements on the prior are needed—see, for exam-
ple, [1, 9, 23]. Roughly, these demand not only that the prior charge Kullback–
Leibler neighborhoods of the true parameter, but also that it not be overly diffuse,
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as this can lead to overfitting. Unfortunately, it appears that in certain nonparamet-
ric function estimation problems, the general formulation of this latter requirement
for consistency in [1] is far too stringent (see the discussion in Section 1.3 below),
as it rules out large classes of useful priors for which the corresponding Bayes
procedures are in fact consistent.

1.2. Binary regression. The purpose of this paper is to examine in detail the
consistency properties of Bayes procedures based on certain hierarchical priors in
a nonparametric regression problem. For mathematical simplicity, we shall work
in the setting of binary regression, with covariates valued in the unit interval [0,1],
and we shall limit consideration to the uniform mixture priors defined below. The
approach we develop can, however, be adapted to a variety of function estimation
problems in one dimension (and perhaps in higher dimensions as well) and to other
classes of hierarchical priors. In Section 1.4 below we provide a brief template of
the approach.

Consistency of Bayes procedures in binary regression has been studied pre-
viously by Diaconis and Freedman [5, 6] for a class of priors—suggested by
de Finetti—that are supported by the set of step functions with discontinuities at
dyadic rationals. The use of such priors may be quite reasonable in circumstances
where the covariate is actually an encoding (via binary expansion) of an infinite
sequence of binary covariates. However, in applications where the numerical value
of the covariate represents a real physical variable, the restriction to step functions
with discontinuities only at dyadics is highly unnatural; and simulations show that
when the regression function is continuous, the concentration of the posterior may
be quite slow.

Coram [3] proposed another class of priors, which we shall call uniform mixture
priors, on step functions. These are at once mathematically natural, allow compu-
tationally efficient simulation of posteriors, and appear to have much more favor-
able concentration properties for data generated by continuous binary regression
functions than do the Diaconis–Freedman priors. In simulation experiments [3] the
posterior mean of a uniform mixture prior had noticeably smaller MSE on aver-
age than CART estimates. Its performance was similar to bagged CART, but with
slightly smaller MSE on average. See Figure 1 for an example.

The uniform mixture priors πν , like those of Diaconis and Freedman, are hi-
erarchical priors parametrized by probability distributions ν on the nonnegative
integers. A random step function with distribution πν can be obtained as follows:
(1) Choose a random integer M with distribution ν. (2) Given that M = m, choose
m points ui at random in [0,1] according to the uniform distribution: these are the
points of discontinuity of the step function. (3) Given M = m and the discontinu-
ities ui , choose the m + 1 step heights wj by sampling again from the uniform
distribution. The uniform sampling in steps (2)–(3) allows for easy and highly
efficient Metropolis–Hastings simulations of posteriors; the uniform distribution



BAYES ESTIMATION OF A REGRESSION FUNCTION 1235

FIG. 1. Simulation example: The data is simulated with 1024 random x-values and Bernoulli y’s
whose success probability is the true binary regression function, the thick gray curve. The thin solid
curve is the posterior mean of the uniform mixture prior with ν chosen to be Geometric( 1

2 ). For
comparison, the dotted line is cross-validated CART and the dash-dotted line is bagged CART. The
white and gray histograms at the bottom show the raw data.

could be replaced by other distributions in either step, at the expense of some ef-
ficiency in posterior simulations (and our main theoretical results could easily be
extended to such priors), but we see no compelling reason to discuss such gener-
alizations in detail.

Let f be a binary regression function on [0,1], that is, a Borel-measurable func-
tion f : [0,1] → [0,1]. We shall assume that under Pf the data (Xi, Yi) are i.i.d.
random vectors, with Xi uniformly distributed on [0,1] and Yi , given Xi = x, is
Bernoulli-f (x). (Our main result would also hold if the covariate distribution were
not uniform but any other distribution giving positive mass to all intervals of posi-
tive length.) Let Qν = ∫

Pf dπν , and denote by Qν(·|Fn) the posterior distribution
on step functions given the first n observations (Xi, Yi) [more precisely, the regu-
lar version of the conditional distribution defined by (17) below]. The main result
of the paper is as follows.

THEOREM 1. Assume that the hierarchy prior ν is not supported by a fi-
nite subset of the integers. Then for every binary regression function f �≡ 1

2 , the
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Qν -Bayes procedure is L1-consistent at f , that is, for every ε > 0,

lim
n→∞Pf

{
Qν({g :‖g − f ‖1 > ε}|Fn) > ε

} = 0.(1)

The restriction f �≡ 1/2 arises for precisely the same reason as in [6], namely,
that this exceptional function is the prior mean of the regression function. See [6]
for further discussion.

Theorem 1 implies that the uniform mixture priors enjoy the same consistency
as do the Diaconis–Freedman priors [6]. This is not exactly unexpected, but neither
should it be considered a priori obvious—as the proof will show, there are sub-
stantial differences between the uniform mixture priors and those of Diaconis and
Freedman: In particular, since the uniform mixture priors allow the step-function
discontinuities to arrange themselves in favorable (but atypical for uniform sam-
ples) configurations vis-a-vis the data, the danger of overfitting would seem, at
least a priori, greater than for the Diaconis–Freedman priors. The bulk of the proof
(Sections 4–5) will be devoted to showing that such overfitting does not occur,
except possibly when f ≡ 1/2.

Theorem 1 asserts only weak convergence (i.e., in Pf -probability). In fact, the
arguments can be extended to establish almost sure convergence, but at the expense
of added complication. This would involve replacing the subadditive WLLN in
Appendix A by a corresponding strong law, and modifying those arguments in
Section 4 used to verify the hypotheses of the subadditive WLLN.

1.3. Relation to other work. There is a substantial literature on the consistency
of Bayes procedures, much of it devoted to establishing sufficient conditions. See,
for a start, [1, 10, 22, 25, 26] and the references therein. Certain of the sufficient
conditions developed in these papers apply, at least in principle, to hierarchical
priors of the type considered here. Unfortunately, these conditions require that the
prior be highly concentrated on low-complexity models. For instance, the main
result of [1] would require for the uniform mixture priors that the hierarchy prior
ν satisfy ∑

k≥m

νk ≤ m−mC

for some C > 0 (see [3]). Recent results of Walker [25] improve those of [1],
but, for a uniform mixture, priors evidently still require that ν have an exponen-
tially decaying tail ([25], Section 6.3). Such restrictions on the tail of the hierarchy
prior certainly prevent the accumulation of posterior mass on models that are over-
fit, but at the possible cost of having the posterior favor models that are underfit.
Preliminary analysis seems to indicate that, when the true regression function is
smooth, more rapid posterior concentration takes place when the hierarchy prior
has a rather long tail. One objective of this paper is to show that, in at least one
model of real statistical interest, the problem of finding the right conditions for
frequentist consistency of Bayesian procedures requires a careful analysis of an
associated large deviations problem.
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1.4. Overfitting and large deviations problems. The possibility of overfitting
is tied up with a certain large deviations problem connected to the model: this is
the most interesting mathematical feature of the paper. (A similar large deviations
problem occurs in [6], but there it reduces easily to the classical Cramér LD theo-
rem for sums of i.i.d. random variables.) Roughly, we will show in Section 4 that,
as the sample size n → ∞, the posterior probability of the set of step functions
with more than αn discontinuities decays like enψ(α), where ψ(α) < 0. Then, in
Section 5, we will show that ψ(α) is uniquely maximized at α → 0; this will im-
ply that, for large sample size n, most of the posterior mass is concentrated on step
functions with a small number of discontinuities relative to n. Concentration of the
posterior in L1-neighborhoods of the true regression function will then follow by
routine arguments—see Section 3.

We expect (and hope to show in a subsequent paper) that in a variety of prob-
lems, for certain classes of hierarchical priors, the critical determinant of the con-
sistency of Bayes procedures will prove to be the rate functions in associated large
deviations problems. The template of the analysis is as follows: Let

π = πν =
∞∑

m=0

νmπm(2)

be a hierarchical prior obtained by mixing priors πm of “complexity” m. Let Q

and Qm be the probability distributions on the space of data sequences gotten by
mixing with respect to π and πm, respectively; and let Q(·|Fn) and Qm(·|Fn) be
the corresponding posterior distributions given the information in the σ -field Fn.
Then by Bayes’ formula,

Q(·|Fn) =
{ ∞∑

m=0

νmZm,nQm(·|Fn)

}/{ ∞∑
m=0

νmZm,n

}
,(3)

where Zm,n are the predictive probabilities for the data in Fn based on the
model Qm (see Section 2.2 for more detail in the binary regression problem).
This formula makes apparent that the relative sizes of the predictive probabili-
ties Zm,n determine where the mass in the posterior Qν(·|Fn) is concentrated.
The large deviations problem is to show that as m,n → ∞ in such a way that
m/n → α,

Z1/n
m,n −→ exp{ψ(α)}(4)

in Pf -probability, for an appropriate nonrandom rate function ψ(α), and to show
that ψ(α) is uniquely maximized at α = 0. This, when true, will imply that most
of the posterior mass will be concentrated on models with small complexity m rel-
ative to the sample size n, where overfitting does not occur.
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1.5. Choice of topology. The use of the L1-metric (equivalently, any Lp-met-
ric, 0 ≤ p < ∞) in measuring posterior concentration, as in (1), although in many
ways natural, may not always be appropriate. Posterior concentration relative to
the L1-metric justifies confidence that, for a new random sample of individuals
with covariates uniformly distributed on [0,1], the responses will be reasonably
well-predicted by regression function samples from the posterior, but it would not
justify similar confidence for a random sample of individuals all with covariate
(say) x = 0.47. For this, posterior concentration in the sup-norm metric would
be required. We do not yet know if consistency holds in the sup-norm metric,
for either the uniform mixture priors or the Diaconis–Freedman priors, even for
smooth f ; but we conjecture that it does.

2. Preliminaries.

2.1. Data. A (binary) regression function is a Borel measurable function
f :J → [0,1], where J is an interval. Most often the interval J will be the unit
interval. For each binary regression function f , let Pf be a probability measure
on a measurable space supporting a data stream {(Xn,Yn)}n≥1 such that under Pf

the random variables Xn are i.i.d. Uniform-[0,1] and, conditional on σ({Xn}n≥1),
the random variables Yn are independent Bernoullis with conditional means

Ef

(
Yn|σ({Xm}m≥1)

) = f (Xn).(5)

(In several arguments below it will be necessary to consider alternative distrib-
utions F for the covariates Xn. In such cases we shall adopt the convention of
adding the subscript F to relevant quantities; thus, for instance, Pf,F will denote
a probability distribution under which the covariates Xn are i.i.d. F , and the con-
ditional distribution of the responses Yn is the same as under Pf .) We shall assume
when necessary that probability spaces support additional independent streams of
uniform and exponential r.v.s (and thus also Poisson processes), so that auxiliary
randomization is possible. Generic data sets [values of the first n pairs (xi, yi)]
will be denoted (x,y) or (x,y)n to emphasize the sample size; the corresponding
random vectors will be denoted by the matching upper case letters (X,Y). For
any data set (x,y) and any interval J ⊂ [0,1], the number of successes (yi = 1),
failures (yi = 0) and the total number of data points with covariate xi ∈ J will be
denoted by

NS(J ),NF (J ) and N(J ) = NS(J ) + NF (J ).

In certain comparison arguments, it will be convenient to have data streams for
different regression functions defined on a common probability space (�,F ,P ).
This may be accomplished by the usual device: Let {Xn}n≥1 and {Vn}n≥1 be inde-
pendent, identically distributed Uniform-[0,1] random variables, and set

Yf
n = 1{Vn ≤ f (Xn)}.(6)
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2.2. Priors on regression functions. The prior distributions on regression
functions considered in this paper are probability measures on the set of step func-
tions with finitely many discontinuities. Points of discontinuity, or split points,
of step functions will be denoted by ui , and step heights by wi . Each vector
u = (u1, u2, . . . , um) of split points induces a partition of the unit interval into
m + 1 subintervals (or cells) Ji = Ji(u). [Note: We do not assume that split point
vectors (u1, u2, . . . , um) are ordered.] Denote by πu the probability measure on
step functions with discontinuities ui that makes the step height random variables
Wi [i.e., the values wi on the intervals Ji(u)] independent and uniformly distrib-
uted on [0,1]. For each nonnegative integer m, define πm to be the uniform mixture
of the measures πu over all split point vectors u of length m, that is,

πm =
∫

u∈(0,1)m
πu du.(7)

It is, of course, possible to mix against distributions G other than the uniform,
and in some arguments it will be necessary for us to do so: in such cases (see,
e.g., Section 2.3) we shall use additional subscripts G on various objects to indi-
cate that the split point vectors are gotten by sampling from G instead of from the
uniform distribution U . The priors of primary interest—those considered in Theo-
rem 1 and equation (2)—are mixtures πν = ∑

m νmπm of the measures πm against
hierarchy priors ν on the nonnegative integers N. Unless otherwise stated, assume
throughout that the hierarchy prior ν is not supported by a finite subset of N.

Each of the probability measures πu, πm and πν induces a corresponding prob-
ability measure on the space of data sequences by mixing:

Qu =
∫

Pf dπu(f ),(8)

Qm =
∫

Pf dπm(f )(9)

and

Qν =
∫

Pf dπν(f ).(10)

Observe that Qm is the uniform mixture of the measures Qu over split point vec-
tors u of size m, and Qν is the ν-mixture of the measures Qm.

For any data sample (x,y), the posterior distribution Q(·|(x,y)) under any
of the measures Qu, Qm or Qν is the conditional distribution on the set of
step functions given that (X,Y) = (x,y). The posterior distribution Qu(·|(x,y))

can be explicitly calculated: it is the distribution that makes the step height r.v.s
Wi independent, with Beta-(NS

i ,NF
i ) distributions, where NS

i = NS(Ji(u)) and
NF

i = NF (Ji(u)) are the success/failure counts in the intervals Ji of the parti-
tion induced by u. Thus, the joint density of the step heights (relative to product
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Lebesgue measure on the cube [0,1]m+1) is

qu
(
w|(x,y)

) = Zu(x,y)−1
m∏

i=0

w
NS

i

i (1 − wi)
NF

i ,(11)

where the normalizing constant Zu(x,y), henceforth called the Qu-predictive
probability for the data sample (x,y), is given by

Zu(x,y) =
∫

w∈[0,1]m+1

m∏
i=0

w
NS

i

i (1 − wi)
NF

i dw =
m∏

i=0

B(NS
i ,NF

i )(12)

and

B(m,n) =
{
(m + n + 1)

(
m + n

m

)}−1

.(13)

(This is not the usual convention for the arguments of the beta function, but
will save us from a needless proliferation of +1s.) The posterior distributions
Qm(·|(x,y)) and corresponding predictive probabilities Zm(x,y) are related to
Qu(·|(x,y)) and Zu(x,y) as follows:

Qm

(·|(x,y)
) =

{∫
u∈[0,1]m

Qu
(·|(x,y)

)
Zu(x,y) d(u)

}/
Zm(x,y),(14)

where

Zm(x,y) =
∫

u∈(0,1)m
Zu(x,y) d(u)

(15)

=
∫

u∈(0,1)m

m∏
i=0

B(NS
i ,NF

i ) d(u).

(Note: The dependence of the integrand on u, via the values of the success/failure
counts NS

i ,NF
i , is suppressed.) In general, the last integral cannot be evaluated

in closed form, unlike the integral (12) that defines the Qu-predictive probabili-
ties. This, as we shall see in Sections 4–5, will make the mathematical analysis
of the posteriors considerably more difficult than the corresponding analysis for
Diaconis–Freedman priors.

Note for future reference (Section 5) that the predictive probabilities Zm are
related to likelihood ratios dQm/dPf : In particular, when f ≡ p is constant,

Zm

(
(X,Y)n

) = pNS

(1 − p)N
F
(

dQm

dPp

)
Fn

,(16)

where FN is the σ -algebra generated by the first n data points, and NS,NF are the
numbers of successes and failures in the entire data set (X,Y)n. Finally, observe
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that the posterior distribution Qν(·|(x,y)) is related to the posterior distributions
Qm(·|(x,y)) by Bayes’ formula,

Qν(·|(x,y)
) =

{ ∞∑
m=0

νmZm(x,y)Qm

(·|(x,y)
)}/{ ∞∑

m=0

νmZm(x,y)

}
.(17)

The goal of Sections 4–5 will be to show that, for large samples (X,Y)n, under Pf

the predictive probabilities Zαn((X,Y)n) are of smaller exponential magnitude for
α > 0 than for α = 0. This will imply that the posterior concentrates in the region
m 
 n, where the number of split points is small compared to the number of data
points.

CAUTION. Note that πm and πu have different meanings, as do Zm and Zu,
and Qu and Qm. The reader should have no difficulty discerning the proper mean-
ing by context or careful examination of the fonts.

2.3. Transformations of the covariates. We have assumed that under Pf the
covariates Xn are uniformly distributed on [0,1]; and, in constructing the priors
πm and πν , we have used uniform mixtures on the locations of the split points ui .
This is only for convenience: the covariate space could be relabeled by any home-
omorphism without changing the nature of the estimation problem. Thus, if the
data sample (x,y) were changed to (G−1x,y), where G is a continuous, strictly
increasing c.d.f., and if G-mixtures rather than uniform mixtures were used in
building the priors, then the predictive probabilities would be unchanged:

Zm,G(G−1x,y) = Zm(x,y),(18)

where Zm = Zm,G are the predictive probabilities for the transformed data relative
to priors πν

G built using G-mixtures instead of uniform mixtures. (This follows
directly from the transformation formula for integrals.)

In a number of arguments below it will be necessary to consider data streams
(X,Y) distributed according to Pf,F , where F is a distribution other than the uni-
form distribution on [0,1]. First, if (x,y)n is a data sample of size n, with covari-
ates xi ∈ [0,1], and if G is the c.d.f. of the uniform distribution on the interval
[0, n] (so that G−1 is just multiplication by n), then applying the transforma-
tion G−1 has the effect of standardizing the spacings between data points and
between split points. This will be used in Section 5. Second, if the data stream
{(Xn,Yn)}n≥1 is subjected to thinning—for instance, remove a data point (Xn,Yn)

from the stream with probability ρ(Xn) depending on the value of the covariate
Xn—then the resulting thinned data stream will be distributed according to Pf,F ,
where F has density proportional to 1 − ρ. The comparison arguments in Sec-
tion 4.6 below will rely on this fact.
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2.4. Self-similarity. The key to analyzing the predictive probability (15) is that
the integral in (15) has an approximately self-similar structure: it almost (but not
exactly!) factors as the product of two integrals each of the same form, one over
the data and split points in [0,1/2], the other over (1/2,1]:

Zm(X,Y) ≈ Zm/2,G0(X
′,Y′)Zm/2,G1(X

′′,Y′′).(19)

Here G0,G1 are the uniform distributions on [0,0.5] and [0.5,1], respectively,
and (X′,Y′) and (X′′,Y′′) are the subsets of the data set (X,Y) with covariates
in [0,0.5] and [0.5,1], respectively. Unfortunately, the factorization is not exact,
for two reasons: (i) the split point vectors u in the integral (15) do not necessarily
include a split point at 1/2; and (ii) the number of split points in (0,1/2) is not
exactly m/2. Nevertheless, when m is large, most split point vectors u will include
a split very near 1/2, and will put about m/2 splits in each of (0,1/2) and (1/2,1),
and so it is not unreasonable to expect that (19) should hold approximately.

Consider the two factors Z′,Z′′ in the approximation (19). If the sample size
n is large, then each of the subsamples (X′,Y′) and (X′′,Y′′) should contain
about n/2 points. Furthermore, if the true regression function f ≡ p is constant,
then, under Pp each of the subsamples should, after covariate transformation by
x 
→ 2x mod 1, be distributed as a sample of size (about) n/2 under Pp . Therefore,
by (18), the factors in (19) are under Pp independent random variables, each with
the same distribution as Zm/2((X,Y)n/2) under Pp .

Iteration of this factorization exhibits the predictive probability Zm(X,Y) ap-
proximately as a product of a large number of independent, identically distributed
factors. (Note, though, that the errors in these approximations may accumulate
exponentially in the number of iterations; this will be handled by the use of sub-
additivity arguments in Section 4.) In essence, the exponential decay (4) follows
from this approximate product representation.

2.5. Beta function and Beta distributions. Because the posterior distribu-
tions (11) of the step height random variables are Beta distributions, certain
elementary properties of these distributions and the corresponding normalizing
constants B(n,m) will play an important role in the analysis. The behavior of the
Beta function for large arguments is well understood, and easily deduced from
Stirling’s formula. Similarly, the asymptotic behavior of the Beta distributions fol-
lows from the fact that these are the distributions of uniform order statistics:

BETA CONCENTRATION PROPERTY. For each ε > 0, there exists k(ε) < ∞
such that, for all index pairs (m,n) with weight m + n > k(ε), (a) the Beta-(m,n)

distribution puts all but at most ε of its mass within ε of m/(m + n); and (b) the
normalization constant B(m,n) satisfies∣∣∣∣ logB(m,n)

m + n
+ H

(
m

m + n

)∣∣∣∣ < ε,(20)
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where H(x) is the Shannon entropy, defined by

H(x) = −x logx − (1 − x) log(1 − x).(21)

Note that the binomial coefficient in (13) is bounded above by 2m+n, so it fol-
lows that B(m,n) ≥ 4−m−n. Thus, by (15), for any data sample (x,y) of size n,

Zm(x,y) ≥ 4−n.(22)

Some of the arguments in Section 4 will require an estimate of the effect on
the integral (15) of adding another split point. This breaks one of the intervals Ji

into two, leaving all of the others unchanged, and so the effect on the integrand in
(15) is that one of the factors B(NS

i ,NF
i ) is replaced by a product of two factors

B(NS
L,NF

L )B(NS
R,NF

R ), where the cell counts satisfy

NS
L + NS

R = NS
i

and

NF
L + NF

R = NF
i .

The following inequality, which is easily deduced from (13), shows that the multi-
plicative error made in this replacement is bounded by the overall sample size:

B(NS
i ,NF

i )

B(NS
L,NF

L )B(NS
R,NF

R )
≤ NS

i + NF
i .(23)

2.6. The entropy functional. We will show, in Section 3 below, that in the
“Middle Zone,” where the number of split points is large but small compared to the
number n of data points, the predictive probability decays at a precise exponential
rate as n → ∞. The rate is the negative of the entropy functional H(f ), defined
by

H(f ) =
∫ 1

0
H(f (x)) dx,(24)

where H(x) for x ∈ (0,1) is the Shannon entropy defined by (21) above. The
Shannon entropy function H(x) is uniformly continuous and strictly concave on
[0,1], with second derivative bounded away from 0; it is strictly positive except at
the endpoints, 0 and 1; and it attains a maximum value of log 2 at x = 1/2. The
entropy functional H(f ) enjoys similar properties:

ENTROPY CONTINUITY PROPERTY. For each ε > 0, there exists δ > 0 so that

‖f − g‖1 < δ �⇒ |H(f ) − H(g)| < ε.(25)
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ENTROPY CONCAVITY PROPERTY. Let f and g be binary regression func-
tions such that g is an averaged version of f in the following sense: There exist
finitely many pairwise disjoint Borel sets Bi such that {x :g(x) �= f (x)} = ⋃

i Bi ,
and for each i such that |Bi | > 0,

g(x) =
∫
Bi

f (y) dy/|Bi | ∀x ∈ Bi.(26)

Then

H(g) − H(f ) ≥ −
(

max
0<p<1

H ′′(p)

)
‖f − g‖1/2.(27)

Hence, H(g) ≥ H(f ) with strict inequality unless f = g a.e.

PROOF. The Continuity property (25) follows from the uniform continuity of
the Shannon function H(p) by an elementary argument. The Concavity property
follows from the Jensen inequality, and the “uniform” strengthening (27) from
the fact that H ′′(p) is bounded away from zero on [0,1]. To see this, let B =
{x :f (x) �= g(x)}, and let −C < 0 be an upper bound for H ′′(p). The hypothesis
(26) implies that g is constant on Bi , and equal to the average ai of f on this set.
By Taylor’s theorem, on Bi ,

H(f (x)) − H(ai) = H ′(ai)
(
f (x) − ai

) + H ′′(ζ(x))
(
f (x) − ai

)2
/2,

where ζ(x) is intermediate between ai and f (x). Hence,

H(f ) − H(g) =
∫
B

H ′′(ζ(x))
(
f (x) − g(x)

)2
dx/2

≤ −C‖f − g‖2
2/2

≤ −C‖f − g‖1/2,

the last inequality following because 0 ≤ f,g ≤ 1. �

The Continuity and Concavity properties will be used principally to estimate the
entropies of step functions g near f . In particular, they allow entropy comparisons
between a binary regression function f and step functions obtained by averaging
f on the intervals of a partition. Let u be a vector of split points, and let Ji = Ji(u)

be the intervals in the partition of [0,1] induced by u. For each binary regression
function f , definef̄u to be the step function whose value on each interval Ji(u) is
the mean value

∫
Ji

f/|Ji | of f on that interval. Then by the Concavity property,

H(f̄u) ≥ H(f ),(28)

with strict inequality unless f = f̄u a.e. Moreover, the difference is small if and
only if f and f̄u are close in L1. This will be the case if all intervals Ji of the
partition are small:
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LEMMA 1. For each binary regression function f and each ε > 0, there exists
δ > 0 such that if |Ji | < δ for every interval Ji in the partition induced by u, then

‖f − f̄u‖1 < ε.(29)

PROOF. First, observe that the assertion is elementary for continuous regres-
sion functions, since continuity implies uniform continuity on [0,1]. Second, re-
call that continuous functions are dense in L1[0,1] by Lusin’s theorem; thus, for
each regression function f and any η > 0, there exists a continuous function
g : [0,1] → [0,1] such that ‖f − g‖1 < η. It then follows by the elementary in-
equality | ∫ h| ≤ ∫ |h| that, for any vector u of split points,

‖f̄u − ḡu‖1 < η.

Finally, use η = ε/3 and choose δ so that, for the continuous function g and any u
that induces a partition whose intervals are all of length < δ,

‖g − ḡu‖1 < η.

Then by the triangle inequality for L1,

‖f − f̄u‖1 ≤ ‖g − f ‖1 + ‖g − ḡu‖1 + ‖f̄u − ḡu‖1

≤ 3η = ε. �

2.7. Empirical distributions under Pf . Theorem 1 will be proved by show-
ing (A) that, for large n, the posterior mass of the step functions with more than
εn discontinuities is of smaller order of magnitude than that of the step functions
with fewer than εn discontinuities; and (B) that the posterior mass on the latter set
concentrates on those step functions that are L1-close to the true regression func-
tion. Step (B) will rely on a uniform version of the law of large numbers (LLN).

Following is a suitable version of the LLN. Given a data set (X,Y)n of size n

and an interval J , say that J is ε-bad (relative to the data set) if at least one of the
following inequalities holds: ∣∣N(J ) − n|J |∣∣ ≥ εn|J |,(30) ∣∣∣∣NS(J ) − n

∫
J

f (x) dx

∣∣∣∣ ≥ εn|J |(31)

or ∣∣∣∣NF (J ) − n

∫
J

(
1 − f (x)

)
dx

∣∣∣∣ ≥ εn|J |.(32)

Here |J | denotes the Lebesgue measure of J . Given x ∈ [0,1], say that x is
(ε, κ)-bad (relative to the data set) if there is an ε-bad interval J of length
|J | ≥ κ/n that contains x. Let Bn(ε, κ) be the set of (ε, κ)-bad points relative
to (X,Y)n.
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PROPOSITION 2. For any ε > 0, there exist positive constants κ, γ,C such
that, for every sample size n ≥ 1,

Pf {|Bn(ε, κ)| ≥ ε} ≤ Ce−γ n.(33)

The exponential estimates, in conjunction with the Borel–Cantelli lemma, yield
as a consequence a uniform strong law of large numbers. For the proof of Theo-
rem 1, only a weak law is needed; however, it is no more difficult to establish the
exponential bounds (33). The proof of Proposition 2 is deferred to Appendix B.

3. Beginning and middle zones. Following [5], we designate three asymp-
totic “zones” where the predictive probabilities Zm((X,Y)n) decay at different
exponential rates. These are determined by the relative sizes of m, the number of
discontinuities of the step functions, and n, the sample size. The end zone is the set
of pairs (m,n) such that m/n ≥ ε; this zone will be analyzed in Sections 4 and 5,
where we shall prove that the asymptotic decay of Zm((X,Y)n) is faster than in
the middle zone, where K ≤ m ≤ εn for a large constant K . The beginning zone is
the set of pairs (m,n) for which m ≤ K for some large K . A regression function
cannot be arbitrarily well approximated by step functions with a bounded number
of discontinuities unless it is itself a step function, and so, as we will see, the as-
ymptotic decay of Zm((X,Y)n) is generally faster in the beginning zone than in
the middle zone.

In this section we analyze the beginning and middle zones, using the Beta
concentration property, Lemma 1 and Proposition 2. In the beginning and mid-
dle zones, the number m of split points is small compared to the number n of
data points, and so for typical split-point vectors u, most intervals in the partition
induced by u will, with high probability, contain a large number of data points.
Consequently, the law of large numbers applies in these intervals: together with
the Beta concentration property, it ensures that the Qu-posterior is concentrated
in an L1-neighborhood of f̄u, and that the Qu-predictive probability is roughly
exp{−nH(f̄u)}. The next proposition makes this precise.

PROPOSITION 3. For each δ > 0, there exists ε > 0 such that the following is
true: For all sufficiently large n, the Pf -probability is at least 1 − δ that, for all
m ≤ εn and all split-point vectors u of size m,

Qu
({g :‖g − f̄u‖1 ≥ δ}|(X,Y)n

)
< δ(34)

and ∣∣n−1 logZu
(
(X,Y)n

) + H(f̄u)
∣∣ < δ.(35)

PROOF. Let Ji = Ji(u) be the intervals in the partition induced by u. Fix κ =
κ(δ) as in Proposition 2. If ε is sufficiently small, then for any split-point vector u
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of size m ≤ εn, the union of those Ji of length ≤ κ/n will have Lebesgue measure
< δ: this follows by a trivial counting argument. Let Bu be the union of those Ji

that are either of length ≤ κ/n or are δ-bad [in the sense of inequalities (30)–(32)].
By Proposition 2, the Pf -probability of the event Gc that there exists a split-point
vector u of size m ≤ εn for which the Lebesgue measure of Bu exceeds 2δ is less
than ε, for all large n. But on the complementary event G, inequality (34) must
hold (with possibly different values of δ) by the Beta concentration property.

For the proof of (35), recall that by (12),

n−1 logZu
(
(X,Y)n

) = n−1
m∑

i=0

logB(NS
i ,NF

i ),(36)

where B(k, l) is the Beta function (using our convention for the arguments). By
the Stirling approximation (20), each term of the sum for which Ni is large is well
approximated by −NiH(NS

i /Ni); and for each index i such that Ji �⊂ Bu, this in
turn is well approximated by n|Ji |H(f̄u(Ji)), where f̄u(Ji) is the average of f on
the interval Ji . If Bu were empty, then (35) would follow directly.

By Proposition 2, Pf (Gc) < ε for all sufficiently large n. On the complemen-
tary event G, the Lebesgue measure of the set Bu of “bad” intervals Ji is < 2δ.
Because the intervals Ji not contained in Bu must have approximately the expected
frequency n|Ji | of data points, by (30), the number of data points in Bu cannot ex-
ceed 4δ, on the event G. Since 1 ≥ B(k, l) ≥ 4−k−l , it follows that the summands
in (36) for which Ji ⊂ Bu cannot contribute more than 4δ log 4 to the right-hand
side. Assertion (35) now follows (with a larger value of δ). �

COROLLARY 4. For each δ > 0, there exist ε > 0 and K < ∞ such that
the following is true: If K ≤ m ≤ εn and n is sufficiently large, then with
Pf -probability at least 1 − δ,

Qm

({g :‖g − f ‖1 ≥ δ}|(X,Y)n
)
< δ(37)

and ∣∣n−1 logZm

(
(X,Y)n

) + H(f )
∣∣ < δ.(38)

PROOF. For large m (say, m ≥ K), most split-point vectors u (as measured
by the uniform distribution on [0,1]m) are such that all intervals Ji(u) in the in-
duced partition are short—this follows, for instance, from the Glivenko–Cantelli
theorem—and so, by Lemma 1, ‖f − f̄u‖1 is small. Thus, for any α, ε > 0, there
exists K < ∞ such that if m ≥ K , then the set

Bm(α) := {u ∈ [0,1]m :‖f − f̄u‖1 ≥ α}
has Lebesgue measure < ε. Inequality (34) of Proposition 3 implies that, for each
u in the complementary event Bc

m(α), the Qu-posterior distribution is concentrated
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on a small L1-neighborhood of f , provided α is small. Thus, to prove (37), it must
be shown that the contribution to the Qm-posterior (14) from split-point vectors
u ∈ Bm(α) is negligible. For this, it suffices to show that the predictive probabilities
Zu((X,Y)n) are not larger for u ∈ Bm(α) than for u ∈ Bc

m(α).
By the entropy concavity property, H(f̄u) ≥ H(f ) for all split-point vectors u,

and for u ∈ Bm(α),

H(f̄ ) > H(f ) + Cα,

where 2C = maxH ′′(p) [see (27)]. On the other hand, by the Entropy continuity
property, if ρ > 0 is sufficiently small, then for all u /∈ Bm(ρ),

|H(f ) − H(f̄u)| < Cα/2.

By the second assertion (35) of Proposition 3, for all sufficiently large n there
is Pf -probability at least 1 − δ that n−1 logZu((X,Y)n) is within δ of −H(f̄u)

for all u. Consequently, the primary contribution to the integral (14) must come
from u /∈ Bm(α). This proves (37). Assertion (38) also follows, in view of the
representation (15) for the predictive probability Zm((X,Y)n). �

The exponential decay rate of the predictive probabilities in the beginning zone
depends on whether or not the true regression function f is a step function. If not,
the decay is faster than in the middle zone; if so, the decay matches that in the
middle zone, but the posterior concentrates in a neighborhood of f .

COROLLARY 5. If the regression function f is a step function with k discon-
tinuities in (0,1), then for each m ≥ k and all ε > 0, inequalities (37) and (38)
hold with Pf -probability tending to 1 as the sample size n → ∞. If f is not a step
function with fewer than K + 1 discontinuities, then there exists ε > 0 such that,
with Pf -probability → 1 as n → ∞,

max
m≤K

Zm

(
(X,Y)n

)
< exp{−nH(f ) − nε}.(39)

PROOF. If f is not a step function with fewer than K + 1 discontinuities, then
by the Entropy concavity property there exists ε > 0 so that H(f̄u) is bounded
above by H(f ) + ε for all split-point vectors u of length m ≤ K . Hence, (39)
follows from (35), by the same argument as in the proof of Corollary 4.

Suppose then that f is a step function with k discontinuities, that is, f = f̄u∗
for some split-point vector u∗ of length k. For any other split-point vector u,
the entropy H(f̄u) cannot exceed H(f ) by the Entropy concavity property, and
so (35) implies that, for any m, the exponential decay rate of the predictive prob-
ability Zm((X,Y)n) as n → ∞ cannot exceed −H(f ). But since f is a step
function with k discontinuities, any open L1 neighborhood of f has positive
πm-probability; consequently, by entropy continuity and (35), the exponential de-
cay rate of Zm((X,Yn)) in n must be at least −H(f ). Thus, (38) holds with
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Pf -probability → 1 as n → ∞. Finally, (39) follows by the same argument as
in the proof of Corollary 4. �

Corollaries 5 and 4 imply that, with Pf -probability → 1 as n → ∞, the
Qν-posterior in the beginning and middle zones concentrates near f , and that the
total posterior mass in the beginning and middle zones decays at the exponential
rate H(f ) as n → ∞. Thus, to complete the proof of Theorem 1, it suffices to
show that the posterior mass in the end zone m ≥ δn decays at an exponential rate
> H(f ). This will be the agenda for the remainder of the article: see Proposition 6
below.

4. The end zone. For the Diaconis–Freedman priors, the log-predictive prob-
abilities simplify neatly as sums of independent random variables, and so their
asymptotic behavior drops out easily from the usual WLLN. No such simplifica-
tion is possible in our case: the integral in (15) does not admit further reduction.
Thus, the analysis of the posterior in the end zone will necessarily be somewhat
more roundabout than in the Diaconis–Freedman case. The main objective is the
following.

PROPOSITION 6. For any Borel measurable regression function f �≡ 1/2 and
all ε > 0, there exist constants δ = δ(ε, f ) > 0 such that

lim
n→∞Pf

{
sup

m≥εn
logZm

(
(X,Y)n

) ≥ n
(−H(f ) − δ

)} = 0.(40)

Given this result, the consistency theorem follows.

PROOF OF THEOREM 1. Proposition 6 implies that, for any ε > 0, with high
Pf -probability the posterior mass (un-normalized) in the region m ≥ εn is less
than exp{−nH(f )−nδ}. Corollaries 4 and 5 imply that there exists ε′ > 0 so that,
with Pf -probability tending to one as n → ∞, the posterior mass in the region m ≤
ε′n is at least exp{−nH(f ) − nδ/2}. Consequently, for any ε > 0, the posterior
mass will, for large n, with high Pf -probability be almost entirely concentrated on
step functions with m ≤ εn discontinuities.

Assertion (37) of Corollary 4, together with Corollary 5, implies that for
some ε′′ > 0, most of the posterior mass in the region m ≤ ε′′n will, with high
Pf -probability be concentrated on step functions near f . Since by the preceding
paragraph nearly all of the posterior mass will eventually be concentrated in the
region m ≤ ε′′n, the result (1) follows. �

To prove Proposition 6, we will show in Proposition 11 below that the predictive
probabilities (after suitable “Poissonization”) decay exponentially in n at a precise
rate, depending on α > 0, for m/n → α > 0.
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4.1. Preliminaries: Comparison and Poissonization. Comparison arguments
will be based on the following simple observation.

LEMMA 7. Adding more data points (xi, yi) to the sample (x,y) decreases
the value of Zm(x,y).

PROOF. For each fixed pair u,w ∈ [0,1]m, adding data points to the sample
increases at least some of the cell counts NS

i ,NF
i , and therefore, decreases the

integrand in (12). �

Two Poissonizations will be used, one for the data sample, the other for the
sample of split points. Let �(t) be a standard Poisson counting process of inten-
sity 1, independent of the data stream (X,Y). Replacing the sample (X,Y)n of
fixed size n by a sample (X,Y)�(n) of size �(n) has the effect of making the suc-
cess/failure counts in disjoint intervals independent random variables with Poisson
distributions.

LEMMA 8. For each ε > 0, the probability that

Zm

(
(X,Y)�(n−εn)

) ≤ Zm

(
(X,X)n

) ≤ Zm

(
(X,Y)�(n+εn)

)
(41)

for all m approaches 1 as n → ∞.

PROOF. For any ε > 0, P {�(n − εn) ≤ n ≤ �((1 + ε)n)} → 1 as n → ∞,
by the weak law of large numbers. On this event, inequality (41) must hold by
Lemma 7. �

The second Poissonization, for the split point vector, involves mixing the priors
πm according to a Poisson hyperprior. For any λ > 0, let π∗

λ be the Poisson-λ
mixture of the priors πm, and let Q∗

λ be the corresponding induced measure on
data sequences (equivalently, Q∗

λ is the Poisson-λ mixture of the measures Qm).
Then the Q∗

λ-predictive probability for a data set (x,y) is given by

Z∗
λ(x,y) :=

∞∑
k=0

λke−λ

k! Zk(x,y).(42)

The effect of Poissonization on the number of split points is a bit more subtle
than the effect on data, because there is no simple a priori relation between neigh-
boring predictive probabilities Zm(x,y) and Zm+1(x,y). However, because the
Poisson distribution with mean αn assigns mass at least C/

√
n to the value [αn]

(by the Local CLT), where C = C(α) > 0 is continuous in α, the following is
obviously true.
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LEMMA 9. For each ε > 0, there exists C < ∞ such that, for all α ∈ (ε, ε−1),

Z[αn]
(
(X,Y)�(n)

) ≤ C
√

nZ∗
αn

(
(X,Y)�(n)

)
.(43)

Consequently, to prove Proposition 6 it suffices to prove that (40) holds when
Zm((X,Y)n) is replaced by Z∗

m((X,Y)n).

Whereas it is difficult to compare neighboring predictive probabilities Zm(x,y)

and Zm+1(x,y), it is quite easy to compare Poissonized predictive probabilities
Z∗

λ(x,y) and Z∗
µ(x,y) for neighboring intensities µ,λ.

LEMMA 10. For each ε > 0 and A < ∞, there exists δ > 0 such that if µ,
λ ≤ A and |µ − λ| ≤ δ, then for all n ≥ 1 and all data sets (x,y) of size n,

Z∗
µn(x,y)

Z∗
λn(x,y)

≤ enε.(44)

PROOF. Inequality (22) implies that Z∗
m(x,y) ≥ 4−n. Chernoff’s large devia-

tion inequality implies that if M has the Poisson distribution with mean λ ≤ An,
then

P {M ≥ κn} ≤ e−γ n,

where γ → ∞ as κ → ∞. Since Zk(x,y) ≤ 1, it follows that the contribution to
the sum (42) from terms indexed by k ≥ κn is of smaller exponential order of
magnitude than that from terms indexed by k < κn, provided γ > log 4.

Consider the Poisson distributions with means µn,λn ≤ κn: these are mutually
absolutely continuous, and the likelihood ratio at the integer value k is

(µ/λ)kenλ−nµ.

If k ≤ κn and |µ−λ| is sufficiently small, then this likelihood ratio is less than enε .
By the result of the preceding paragraph, only values of k ≤ κn contribute substan-
tially to the expectations; thus, the assertion follows. �

In some of the arguments to follow, an alternative representation of these Pois-
sonized predictive probabilities as a conditional expectation will be useful. Assume
that on the underlying probability space (�,F ,Pf ) are defined i.i.d. uniform-
[0,1] r.v.s Un and independent Poisson processes �,M , all jointly independent of
the data stream. Then

Z∗
λ

(
(X,Yf)�(n)

) = Ef

(
β|(X,Y)�(n)

)
,(45)

where

β = β
(
UM(λ); (X,Yf)�(n)

) :=
M(λ)∏
i=0

B(NS
i ,NF

i )(46)

and NS
i ,NF

i are the success/failure cell counts for the data (X,Y)�(n) relative to
the partition induced by the split point sample UM(λ).
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4.2. Exponential decay. The asymptotic behavior of the doubly Poissonized
predictive probabilities is spelled out in the following proposition, whose proof
will be the goal of Sections 4.4–4.6 and Section 5 below.

PROPOSITION 11. For each Borel measurable regression function f and each
α > 0, there exists a constant ψf (α) such that, as n → ∞,

n−1 logZ∗
αn

((
(X,Y)�(n)

)) Pf−→ ψf (α).(47)

The function ψf (α) satisfies

ψf (α) =
∫ 1

0
ψ

(
f (x),α

)
dx,(48)

where ψ(p,α) = ψp(α) is the corresponding limit for the constant regression
function f ≡ p. The function ψ(p,α) is jointly continuous in p,α and satisfies

lim
α→∞ max

p∈[0,1] |ψp(α) + log 2| = 0(49)

and

ψp(α) < −H(p).(50)

Note that the entropy inequality (50) extends to all regression functions f : that
is, p may be replaced by f on both sides of (50). This follows from the integral
formulas that define ψf (α) and H(f ). The fact that this inequality is strict is cru-
cially important to the consistency theorem. It will also require a rather elaborate
argument: see Section 5 below.

The case f ≡ p, where the regression function is constant, will prove to be the
crucial one. In this case, the existence of the limit (47) is somewhat reminiscent of
the existence of “thermodynamic limits” in formal statistical mechanics (see [21],
Chapter 3). Unfortunately, Proposition 11 cannot be reduced to the results of [21],
as follows: (i) the data sequence enters conditionally (thus functioning as a “ran-
dom environment”); and, more importantly, (ii) the hypothesis of “tempered inter-
action” needed in [21] cannot be verified here. The limit (47) is also related to the
“conditional LDP” of Chi [2], but again cannot be deduced from the results of that
paper, because the log-predictive probability cannot be expressed as a continuous
functional of the empirical distribution of split point/data point pairs.

4.3. Proof of Proposition 6. Before proceeding with the somewhat arduous
proof of Proposition 11, we show how to complete the proof of Proposition 6. In
the process, we shall establish the asymptotic behavior (49) of the rate function.

LEMMA 12. For every δ > 0, there exists αδ < ∞ such that

lim
n→∞P

{
sup
α≥αδ

sup
y

Z∗
αn

(
(X,y)�(n)

) ≥ 2−n+nδ

}
= 0(51)
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and

lim
n→∞P

{
inf

α≥αδ

inf
y

Z∗
αn

(
(X,y)�(n)

) ≤ 2−n−nδ

}
= 0.(52)

Here supy and infy are taken over all assignments of 0s and 1s to the response
variables y1, y2, . . . , y�(n). Similarly,

lim
n→∞P

{
sup

m≥αδn
sup

y
Zm

(
(X,y)n

) ≥ 2−n+nδ

}
= 0(53)

and

lim
n→∞P

{
inf

m≥αδn
inf
y

Zm

(
(X,y)n

) ≤ 2−n−nδ

}
= 0.(54)

Given the convergence (47), the following is now immediate from (51)–(52).

COROLLARY 13. For every regression function f ,

lim
α→∞ψf (α) = − log 2.(55)

PROOF OF LEMMA 12. We shall prove only (51)–(52); the other two asser-
tions may be proved by similar arguments. Let ξ1, ξ2, . . . , ξ�(n)+1 be the spacings
between successive order statistics of the covariates X1,X2, . . . ,X�(n). For each
pair of positive reals ε, δ > 0, let G = Gδ,ε be the event that at least (1− δ)n of the
spacings ξj are larger than ε/n. Call these spacings “fat.” Since the spacings are
independent exponentials with mean 1/n, the Glivenko–Cantelli theorem implies
that there exist δ = δ(ε) → 0 as ε → 0 such that

lim
n→∞P

(
Gδ,ε ∩ {|�(n) − n| < εn}) = 1.

By elementary large deviations estimates for the Poisson process, given G, the
probability that a random sample of M(αn) split points is such that more than
(1 − 2δ)n of the fat spacings contain no split points is less than exp{−nγ }, where
γ = γ (α, ε, δ) → ∞ as α → ∞. But on the complement of this event, at least
(1 − 4δ)n of the intervals induced by the split points have exactly one data point.
Thus, on the event G ∩ {|�(n) − n| < εn},

2−n+4nδ4−4δn−εn ≤ ∏
i

B(NS
i ,NF

i ) ≤ 2−n+4δn.

Observe that these inequalities hold regardless of the assignment y of values to
the response variables. Thus, taking conditional expectations (45) given the data
(X,Y)�(n), we obtain

(1 − e−nγ )2−n−4nδ−2δn ≤ Z∗
αn

(
X�(n),Y�(n)

) ≤ 2−n+4δn + e−nγ .(56)

Since γ can be made arbitrarily large by making α large, assertions (51) and (52)
follow. �
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PROOF OF PROPOSITION 6. Since H(f ) < log 2 for every regression func-
tion f �≡ 1/2, Lemma 12 implies that, to prove (40), it suffices to replace the supre-
mum over m ≥ εn by the supremum over m ∈ [εn, ε−1n]. Now for m in this range,
the bound (43) is available; since logn is negligible compared to n, (43) implies
that

sup
εn≤m≤ε−1n

logZm

(
(X,Y)n

)

may be replaced by

sup
ε≤α≤ε−1

logZ∗
αn

(
(X,Y)�(n)

)

in (40). Lemma 10 implies that this last supremum may be replaced by a max-
imum over a finite set of values α, and now (40) follows from assertions (47),
(48) and (50) of Proposition 11. �

4.4. Constant regression functions. The simplest route to the convergence
(47) is via subadditivity (more precisely, approximate subadditivity) arguments.
Assume that f ≡ p is constant, and that the constant p �= 0,1. Recall (Section 2.4)
that, in this case, the integral (15) defining the predictive probability almost fac-
tors perfectly into the product of two integrals, one over the data and split points
in [0,1/2], the other over (1/2,1], of the same form [but on a different scale—
see (18)]. Unfortunately, this factorization is not exact, as the partition of the unit
interval induced by the split points ui includes an interval that straddles the demar-
cation point 1/2. However, the error can be controlled, and so the convergence (47)
can be deduced from a subadditive WLLN (Proposition A.1 of the Appendix A).
The next lemma shows that the hypotheses of Proposition A.1 are met.

LEMMA 14. Fix α > 0, and write ζn = logZ∗
αn(((X,Y)�(n))). For each pair

m,n ∈ N of positive integers, there exist random variables ζ ′
m,m+n, ζ ′′

n,m+n and
Rm,n such that:

(a) ζ ′
m,m+n, ζ

′′
n,m+n are independent;

(b) ζm and ζ ′
m,m+n have the same law;

(c) ζn and ζ ′′
n,m+n have the same law;

(d) the random variables {Rm,n}m,n≥1 are identically distributed;
(e) E|R1,1| < ∞; and
(f) for all integers m,n ≥ 1,

ζm+n ≥ ζ ′
m,m+n + ζ ′′

n,m+n + Rm,n.(57)

Proposition A.1 of the Appendix A now implies the following.
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COROLLARY 15. For some constant ψp(α),

n−1ζn
L1−→ ψp(α).(58)

PROOF OF LEMMA 14. The construction requires auxiliary randomization,
and so we assume that independent copies of the data sequence and the various
Poisson processes are available. Consider the expectation (45) that defines the
Poissonized predictive probability exp{ζm+n}. This expectation extends over all
samples of split points of size M(αm + αn). Since the integrand is positive, the
expectation exceeds its restriction to the event G that there are split points in both
of the intervals [b− (m+n)−1, b] and (b, b+ (m+n)−1], where b := m/(m+n).
Note that this event has probability

δ = δ(α) := (1 − e−α)2.

Denote by U ′,U ′′ the split points nearest the demarcation point b to its left
and right, respectively. The product β = ∏

B(NS
i ,NF

i ) may be factored into
three parts, consisting of terms indexed by intervals Ji contained in [0,U ′], in-
tervals contained in (U ′′,1] and the single interval J∗ = (U ′,U ′′] that straddles
the point b. Conditional on the values of U ′,U ′′, the three products are indepen-
dent: by the scaling relation (18), the first two have the same distributions as the
products β occurring as integrands in the expectations defining

exp
{
ζU ′(m+n)

}
and exp

{
ζ(1−U ′′)(m+n)

}
,

respectively; and the third is just

B(NS∗ ,NF∗ ) ≥ 2−N∗/(N∗ + 1) ≥ 4−N∗,

where NS∗ and NF∗ are the numbers of successes and failures in the interval J∗,
and N∗ = NS∗ + NF∗ . Note that on G the random variable N∗ is dominated by
a Poisson random variable N∗∗ with mean 2, since the length of J∗ is less than
2/(m + n) (this requires auxiliary randomization). Now extend each of the first
two products in the following manner: throw new, independent data samples and
split points into the intervals (U ′, b] and (b,U ′′); remove the split points U ′,U ′′
and place a split at b; then recompute the partitions and replace the affected terms
B(NS

i ,NF
i ) by the new values. Note that this cannot increase the value of either

product; moreover, the products remain conditionally independent given U ′,U ′′.
Most importantly, the conditional expectations of these products (given the data
and the values of U ′,U ′′) have the same distributions as exp{ζm} and exp{ζn},
respectively. Thus,

exp{ζm+n} ≥ δ exp{ζ ′
m} exp{ζ ′′

n }4−N∗∗,

where ζ ′
m and ζ ′′

n are independent, with the same distributions as ζm and ζn, re-
spectively, and N∗∗ is Poisson with mean 2. �
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REMARK. There is a similar (and in some respects simpler) approximate
subaddivitivity relation among the distributions of the random variables ζn: For
each pair m,n ≥ 1 of positive integers, there exist independent random variables
ξ ′
m,m+n, ξ

′′
n,m+n whose distributions are the same as those of ζm, ζn, respectively,

such that

ζm+n ≤ ξ ′
m,m+n + ξ ′′

n,m+n + log�(m + n).(59)

Corollary 15 can also be deduced from (59), but this requires a more sophisti-
cated subadditive LLN than is proved in Appendix A, because the remainders
log�(m + n) are not uniformly L1 bounded, as they are in (57). This approach
has the advantage that it leads to a proof that the convergence (58) holds almost
surely.

PROOF OF (59). Consider the effect on the integral (15) of adding a split point
at b = m/(m + n): This breaks one of intervals Ji into two, leaving all of the oth-
ers unchanged, and so the effect on the integrand in (15) is that one of the factors
B(NS

i ,NF
i ) is replaced by a product of two factors B(NS

L,NF
L )B(NS

R,NF
R ). By

(23), the multiplicative error in this replacement is bounded above by �(m + n).
After the replacement, the factors in the integrand β = ∏

B(NS
i ,BF

i ) may be parti-
tioned neatly into those indexed by intervals left of b and those indexed by intervals
right of b: thus,

β = β ′β ′′,
where β,β ′′ are independent and have the same distributions as the products β oc-
curring as integrands in the expectations defining exp{ζm} and exp{ζn}, respec-
tively. Thus,

exp{ζm+n} ≤ exp{ξm} exp{ξ ′′
n }�(m + n),

where ξ ′
m = ξ ′

m,m+n and ξ ′′
n = ξ ′′

n,m+n are independent and distributed as ζm and ζn,
respectively. �

4.5. Piecewise constant regression functions. The next step is to extend the
convergence (47) to piecewise constant regression functions f . For ease of ex-
position, we shall restrict attention to step functions with a single discontinuity
in (0,1); the general case involves no new ideas. Thus, assume that

f (x) = pL for x ≤ b,

f (x) = pR for x > b,

and

pL �= pR.

Fix α > 0, and set

Z∗
n := Z∗

αn

(
(X,Y)�(n)

)
.(60)
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LEMMA 16. With Pf -probability approaching one as n → ∞,

Z∗
n ≥ Z′

nZ
′′
n/n2(61)

and

Z∗
n ≤ 2nZ′

nZ
′′
n,(62)

where, for each n, the random variables Z′
n,Z

′′
n are independent, with the same

distributions as

Z′
n

L= Z∗
αnb

(
(X,Y)�(bn)

)
under PpL

;
(63)

Z′′
n

L= Z∗
αn−αnb

(
(X,Y)�(n−nb)

)
under PpR

.

PROOF. Consider the effect on Z∗
n of placing an additional split point at b: this

would divide the interval straddling b into two nonoverlapping intervals L,R (for
“left” and “right”), and so in the integrand β := ∏

B(NS
i ,NF

i ) the single factor
B(NS∗ ,NF∗ ) representing the interval straddling b would be replaced by a product
of two factors B(NS

L,NF
L ) and B(NS

R,NF
R ). As in the proof of the subadditivity

inequality (59) in Section 4.4, the factors of this modified product separate into
those indexed by subintervals of [0, b] and those indexed by subintervals of [b,1];
thus, the modified product has the form β ′β ′′, where β ′ and β ′′ are the products of
the factors indexed by intervals to the left and right, respectively, of b. Denote by
Z′

n and Z′′
n the conditional expectations of β ′ and β ′′ (given the data). These are

independent random variables, and by the scaling relation (18), their distributions
satisfy (63). By inequality (23), the multiplicative error in making the replacement
is at most �(n); since the event �(n) ≥ 2n has probability tending to 0 as n → ∞,
inequality (62) follows.

The reverse inequality (61) follows by a related argument. Let G be the event
that the data sample (X,Y)�(n) contains no points with covariate Xi ∈ [b, b + n−2].
Since the covariates are generated by a Poisson point process with intensity n, the
probability of Gc is approximately n−1. Consider the integral (over all samples of
split points) that defines Z∗

n: this integral exceeds its restriction to the event A that
there is a split point in [b, b + n−2]. The conditional probability of A (given the
data) is approximately αn−1, and thus larger than n−2 for large n. On the event
G ∩ A,

β = β ′β ′′

holds exactly, as the split point in [b, b + n−2] produces exactly the same bins as
if the split point were placed at b. Moreover, conditioning on the event A does not
affect the joint distribution (conditional on the data) of β ′, β ′′ when G holds. Thus,
the conditional expectation of the product, given A and the data, equals Z′

nZ
′′
n on

the event G. �

Taking nth roots on each side of (61) and appealing to Corollary 15 now yields
the following.



1258 M. CORAM AND S. P. LALLEY

COROLLARY 17. If the regression function is piecewise constant, with only
finitely many discontinuities, then the convergence (47) holds.

4.6. Thinning. Extension of the preceding corollary to arbitrary Borel mea-
surable regression functions will be based on thinning arguments. Recall that if
points of a Poisson point process of intensity λ(x) are randomly removed with
location-dependent probability �(x), then the resulting “thinned” point process is
again Poisson, with intensity λ(x) − �(x)λ(x). This principle may be applied to
both the success (y = 1) and failure (y = 0) point processes in a Poissonized data
sample. Because thinning at location-dependent rates may change the distribution
of the covariates, it will be necessary to deal with data sequences with nonuni-
form covariate distribution. Thus, let (X,Y) be a data sample of random size with
Poisson-λ distribution under the measure Pf,F (here f is the regression function,
F is the distribution of the covariate sequence Xj ). If successes (x, y = 1) are re-
moved from the sample with probability �1(x) and failures (x, y = 0) are removed
with probability �0(x), then the resulting sample will be a data sample of random
size with the Poisson-µ distribution from Pg,G, where the mean µ, the regression
function g and the covariate distribution G satisfy

µg(x)G(dx) = (
1 − �1(x)

)
λf (x)F (dx) and

(64)
µ

(
1 − g(x)

)
G(dx) = (

1 − �0(x)
)
λ
(
1 − f (x)

)
F(dx).

By the monotonicity principle (Lemma 7), the predictive probability of the thinned
sample will be no smaller than that of the original sample. Thus, thinning allows
comparison of predictive probabilities for data generated by two different mea-
sures Pf,F and Pg,G. The first and easiest consequence is the continuity of the rate
function.

LEMMA 18. The rate function ψp(α) is jointly continuous in p,α.

PROOF. Corollary 15 and Lemma 10 imply that the functions α 
→ ψp(α) are
uniformly continuous in α. Continuity in p and joint continuity in p,α are now ob-
tained by thinning. Let (X,Y) be a random sample of size �(n) ∼ Poisson-n from
a data stream distributed according to Pp (i.e., f ≡ p and F is the uniform-[0,1]
distribution). Let (X,Y)′ be the sample obtained by randomly removing failures
from the sample (X,Y), with probability ε. Then (X,Y)′ has the same distribution
as a random sample of size �(n − εqn) (here q = 1 − p) from a data stream dis-
tributed according to Pp′ , where p′ = p/(1 − εq). By the monotonicity principle
(Lemma 7),

Z∗
αn

(
(X,Y)

) ≤ Z∗
αn

(
(X,Y)′

)
.

Taking nth roots and appealing to Corollary 15 shows that

ψ(p,α) ≤ (1 − εq)−1ψ
(
p/(1 − εq),α/(1 − εq)

)
.
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A similar inequality in the opposite direction can be obtained by reversing the
roles of p and p/(1 − εq). The continuity in p of ψ(p,α) now follows from the
continuity in α, and the joint continuity follows from the uniform continuity in α.

�

PROPOSITION 19. The convergence (47) holds for every Borel measurable
regression function f .

PROOF. By Corollary 17 above, the convergence holds for all piecewise con-
stant regression functions with only finitely many discontinuities. The general case
will be deduced from this by another thinning argument.

If f : 0,1 → [0,1] is measurable, then for each ε > 0, there exists a piecewise
constant g : [0,1] → [0,1] (with only finitely many discontinuities) such that ‖f −
g‖1 < ε. If ε is small, then |f − g| must be small except on a set B of small
Lebesgue measure; moreover, g may be chosen so that g = 1 wherever f is near 1,
and g = 0 wherever f is near 0 (except on B). For such choices of ε and g, there
will exist removal rate functions �0(x) and �1(x) so that equation (64) holds with
F = the uniform distribution on [0,1], G = the uniform distribution on [0,1]−B ,
and ∣∣∣∣ λµ − 1

∣∣∣∣ < δ(ε)

for some constants δ(ε) → 0 as ε → 0. (Note: Requiring G to be the uniform
distribution on [0,1] − B forces complete thinning in B , i.e., �0 = �1 = 1 in B .)
Thus, a Poissonized data sample distributed according to Pf may be thinned so as
to yield a Poissonized data sample distributed according to Pg,G in such a way that
the overall thinning rate is arbitrarily small. It follows, by the monotonicity princi-
ple, that the Poissonized predictive probabilities for data distributed according to
Pf are majorized by those for data distributed according to Pg,G, with a slightly
smaller rate.

Now consider data (X,Y) distributed according to Pg,G: Since g is piecewise
constant and G is a uniform distribution, the transformed data (GX,Y) will be dis-
tributed as Ph, where h is again piecewise constant. Moreover, since the removed
set B has small Lebesgue measure, the function h is close to the function g in the
Skorohod topology, and so by Lemma 18, ψh ≈ ψg ≈ ψf . Because the conver-
gence (47) has been established for piecewise constant regression functions h, it
now follows from the monotonicity principle that

Pf

{
n−1 logZ∗

αn

((
(X,Y)�(n)

))
> ψf (α) + δ

} −→ 0

for every δ > 0. This proves the upper (and for us, the more important) half of (47).
The lower half may be proved by a similar thinning argument in the reverse direc-
tion. �
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5. Proof of the entropy inequality (50). This requires a change of perspec-
tive. Up to now, we have taken the point of view that the covariates Xj and the split
points Ui are generated by Poisson point processes in the unit interval of intensities
n and αn, respectively. However, the transformation formula (18) implies that the
predictive probabilities and hence also their Poissonized versions, are unchanged if
the covariates and the split points are rescaled by a common factor n. The rescaled
covariates X̂j := Xj/n and split points Ûi := Ui/n are then generated by Pois-
son point processes of intensities 1 and α on the interval [0, n]. Consequently,
versions of all the random variables Z∗[αn]((X,Y)�(n)) may be constructed from
two independent Poisson processes of intensities 1 and α on the whole real line.
The advantage of this new point of view is the possibility of deducing the large-n
asymptotics from the Ergodic theorem.

5.1. Reformulation of the inequality. To avoid cluttered notation, we shall
henceforth drop the hats from the rescaled covariates and split points. Thus, as-
sume that under both P = Pp and Q,

· · · < X−1 < X0 < 0 < X1 < · · ·
and

· · · < U−1 < U0 < 0 < U1 < · · ·
are the points of independent Poisson point processes X and U of intensities
1 and α, respectively, and let {Wi}i∈Z be a stream of uniform-[0,1] random vari-
ables independent of the point processes X,U. Denote by N(t) the number of
occurrences in the Poisson point process X during the interval [0, t], and set
Ji = (Ui,Ui+1]. Let {Yi}i∈Z be Bernoulli r.v.s distributed according to the fol-
lowing laws:

(A) Under P , the random variables Yj are i.i.d. Bernoulli-p, jointly indepen-
dent of the Poisson point processes U,X.

(B) Under Q, the random variables Yj are conditionally independent, given
X,U,W, with conditional distributions Yj ∼ Bernoulli-Wi , where i is the index of
the interval Ji containing Xj .

Under Q, the sequence {Yn}n∈Z is an ergodic, stationary sequence; for reasons that
we shall explain below, we shall refer to this process as the rechargeable Pólya
urn. The distribution of (X,Y) ∩ [0, t] under Q is, after rescaling of the covariates
by the factor t , the same as that of a data sample of random size �(t) under the
Poisson mixture Q∗

αt defined in Section 4.1 above.
For (extended) integers −∞ ≤ m ≤ n, define σ -algebras

F X,Y
m,n = σ({Xj,Yj }m≤j≤n) and F Y

m,n = σ({Yj }m≤j≤n).
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If m,n are both finite, then the restrictions of the measures P,Q to F X,Y
m,n (and

therefore also to F Y
m,n) are mutually absolutely continuous. The Radon–Nikodym

derivative on the smaller σ -algebra F Y
1,n is just

(
dQ

dP

)
F Y

1,n

= q(Y1, Y2, . . . , Yn)

p(Y1, Y2, . . . , Yn)
,(65)

where

q(y1, y2, . . . , yn) := Q{Yj = yj ∀1 ≤ j ≤ n}
and

p(y1, y2, . . . , yn) := P {Yj = yj ∀1 ≤ j ≤ n}
= p

∑n
j=1 yy (1 − p)

n−∑n
j=1 yj .

The Radon–Nikodym derivative on the larger σ -algebra F X,Y
1,n cannot be so sim-

ply expressed, but is closely related to the Poissonized predictive probability
Z∗

αn((X,Y)n) defined by (42). Define

Ẑn := p(Y1, Y2, . . . , Yn)

(
dQ

dP

)
F X,Y

1,n

;(66)

then by (16) the random variable ẐN(n) has the same distribution under P as does
the Poissonized predictive probability (42) under Pf , for any f . Hence, the con-
vergence (47) must also hold for the random variables Ẑn:

COROLLARY 20. Under P , as n → ∞,

n−1 log Ẑn
L1−→ ψp(α).(67)

Therefore, to prove the entropy inequality (50), it suffices to prove that

lim
n→∞n−1EP log

(
dQ

dP

)
F Y

1,n

< 0.(68)

PROOF. The first assertion follows directly from (47) of Proposition 11. Thus,
to prove the entropy inequality ψp(α) < −H(p), it suffices, in view of (66), to
prove that (68) holds when the σ -algebra F Y

1,n is replaced by F X,Y
1,n . But the former

is a sub-σ -algebra of the latter; since log is a concave function, Jensen’s inequality
implies that

EP log
(

dQ

dP

)
F X,Y

1,n

≤ EP log
(

dQ

dP

)
F Y

1,n

.
�
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5.2. Digression: The relative SMB theorem. The existence of the limit (67) is
closely related to the relative Shannon–McMillan–Breiman theorem studied by
several authors [14, 15, 18, 19]. The sequence Y1, Y2, . . . is, under either measure
P or Q, an ergodic stationary sequence of Bernoulli random variables. Thus, by
the usual Shannon–MacMillan–Breiman theorem [27], as n → ∞,

n−1 logq(Y1, Y2, . . . , Yn)
a.s. Q−→ −hQ

and

n−1 logp(Y1, Y2, . . . , Yn)
a.s. P−→ −H(p),

where hQ is the Kolmogorov–Sinai entropy of the sequence Yj under Q. In gen-
eral, of course, the almost sure convergence holds only for the probability measure
indicated—see, for instance, [14] for an example where the first convergence fails
under the alternative measure P . The relative Shannon–MacMillan–Breiman the-
orem of [19] gives conditions under which the difference of the two averages

n−1 log
q(Y1, Y2, . . . , Yn)

p(Y1, Y2, . . . , Yn)
= n−1 log

(
dQ

dP

)
F Y

1,n

converges under P . In the case at hand, unfortunately, these conditions are not of
much use: they essentially require the user to verify that

n−1q(Y1, Y2, . . . , Yn)
a.s. P−→ C

for some constant C. Thus, it appears that [19] does not provide a shortcut to the
convergence (47).

5.3. The rechargeable Pólya urn. In the ordinary Pólya urn scheme, balls are
drawn at random from an urn, one at a time; after each draw, the ball drawn is
returned to the urn along with another of the same color. If initially the urn contains
one red and one blue ball, then the limiting fraction � of red balls is uniformly
distributed on the unit interval. The Pólya urn is connected with Bayesian statistics
in the following way: the conditional distribution of the sequence of draws given
the value of � is that of i.i.d. Bernoulli-� random variables.

The rechargeable Pólya urn is a simple variant of the scheme described above,
differing only in that, before each draw, with probability r > 0, the urn is emptied
and then reseeded with one red and one blue ball. Unlike the usual Pólya urn, the
rechargeable Pólya urn is recurrent, that is, if Vn := (Rn,Bn) denotes the compo-
sition of the urn after n draws, then Vn is a positive recurrent Markov chain on the
state space N × N. Consequently, {Vn} may be extended to n ∈ Z in such a way
that the resulting process is stationary. Let Yn denote the binary sequence recording
the results of the successive draws (1 = BLUE, 0 = RED). Clearly, this sequence
has the same law as does the sequence Y1, Y2, . . . under the probability measure Q

[with r = α/(1 + α)].
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LEMMA 21. For any ε > 0, there exists m such that the following is
true: For any finite sequence y−k, y−k−1, . . . , y0, the conditional distribution
of Ym+1, Ym+2, . . . , Y2m given that Yi = yi for all −k ≤ i ≤ 0 differs from the
Q-unconditional distribution by less than ε in total variation norm.

PROOF. It is enough to show that the conditional distribution of Ym+1, . . . , Y2m

given the composition V0 of the urn before the first draw differs from the uncon-
ditional distribution by less than ε. Let T be the time of the first regeneration
(emptying of the urn) after time 0; then conditional on T = n, for any n ≤ m, and
on V0, the distribution of Ym+1, . . . , Y2m does not depend on the value of V0. Thus,
if m is sufficiently large that the probability of having at least one regeneration
event between the first and mth draws exceeds 1 − ε, then the conditional distri-
bution given V0 differs from the unconditional distribution by less than ε in total
variation norm. �

The construction of the sequence Y = Y1, Y2, . . . using the rechargeable Pólya
urn shows that this sequence behaves as a “factor” of a denumerable-state Markov
chain (in terminology more familiar to statisticians, the sequence Y follows a “hid-
den Markov model”). Note that the original specification of the measure Q, in
Section 5.1 above, exhibits Y as a factor of the Harris-recurrent Markov chain ob-
tained by adjoining to the state variable the current value of W. It does not appear
that Yn can be represented as a function of a finite-state Markov chain; if it could,
then results of Kaijser [12] would imply the existence of the limit

lim
n→∞n−1 logq(Y1, Y2, . . . , Yn)

almost surely under P , and exhibit it as the top Lyapunov exponent of a sequence
of random matrix products. Unfortunately, little is known about the asymptotic
behavior of random operator products (see [13] and references therein for the state
of the art), and so it does not appear that (65) can be obtained by an infinite-state
extension of Kaijser’s result.

5.4. Proof of (68). Since it is not necessary to establish the convergence of
the integrands on the left-hand side of (68), we shall not attempt to do so. Instead,
we will proceed from the identity

n−1EP log
q(Y1, Y2, . . . , Yn)

p(Y1, Y2, . . . , Yn)
= n−1

n−1∑
k=0

EP log
q(Yk+1|Y1, Y2, . . . , Yk)

p(Yk+1|Y1, Y2, . . . , Yk)
.(69)

Because the random variables Yi are i.i.d. Bernoulli-p under P , the conditional
probabilities p(yk+1|y1, y2, . . . , yk) must coincide with the unconditional proba-
bilities p(yk+1). Thus, the usual information inequality (Jensen’s inequality), in
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the form Ef log(g(X)/f (X)) < 0 for distinct probability densities f,g, implies
that, for each k,

EP log
q(Yk+1|Y1, Y2, . . . , Yk)

p(Yk+1)
≤ 0,(70)

with the inequality strict unless the Q-conditional distribution of Yk+1 given the
past coincides with the Bernoulli-p distribution. Moreover, the left-hand side
of (70) will remain bounded away from 0 as long as the conditional distribution re-
mains bounded away from the Bernoulli-p distribution (in any reasonable metric,
e.g., the total variation distance). Thus, to complete the proof of (68), it suffices to
establish the following lemma.

LEMMA 22. There is no sequence of integers kn → ∞ along which∥∥q(·|Y1, Y2, . . . , Ykn

) − p(·)∥∥TV −→ 0(71)

in P -probability.

PROOF. This is based on the fact that the sequence of draws Y1, Y2, . . . pro-
duced by the rechargeable Pólya urn is not a Bernoulli sequence, that is, the
Q- and P -distributions of the sequence Y1, Y2, . . . are distinct. Denote by qk the
Q-conditional probability that Yk+1 = 1 given the values Y1, Y2, . . . , Yk . Suppose
that qkn → p in P -probability; then by summing over successive values of the last
l variables, it follows that qkn−l → p in P -probability for each fixed l ∈ N. We
will show that this leads to a contradiction.

Consider the following method of generating binary random variables
Y1, Y2, . . . , Y2m: first generate i.i.d. Bernoulli-p random variables Yj for −k ≤
j ≤ 0; then, conditional on their values, generate Y1 according to qk+1; then, con-
ditional on Y1, generate Y2 according to qk+2; and so on. By the hypothesis of
the preceding paragraph, there is a sequence kn → ∞ such that, for any fixed m,
the joint distribution of Y1, Y2, . . . , Y2m converges to the product-Bernoulli-p dis-
tribution. But this contradicts the mixing property of the rechargeable Pólya urn
asserted by Lemma 21 above. �

APPENDIX A: AN ALMOST SUBADDITIVE WLLN

The purpose of this appendix is to prove the simple variant of the subadditive
ergodic theorem required in Section 4. For the original subadditive ergodic theo-
rem of Kingman, see [16], and for another variant that is useful in applications to
percolation theory, see [17]. There are two novelties in our version: (a) the sub-
additivity relation is only approximate, with a random error; and (b) there is no
measure-preserving transformation related to the sequence Sn.

PROPOSITION A.1. Let Sn be real random variables. Suppose that, for each
pair m,n ≥ 1 of positive integers, there exist random variables S′

m,m+n, S′′
n,m+n

and a nonnegative random variable Rm,n such that:
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(a) S′
m,m+n and S′′

n,m+n are independent;
(b) S′

m,m+n has the same distribution as Sm;
(c) S′′

m,m+n has the same distribution as Sn;
(d) the random variables {Rm,n}m,n≥1 are identically distributed;
(e) ER1,1 < ∞ and {Sn/n}n≥1 are uniformly integrable; and
(f) for all m,n ≥ 1,

Sm+n ≤ S′
m,m+n + S′′

n,m+n + Rm,n.(A.1)

Then
Sn

n

L1−→ γ := lim inf
n→∞

ESn

n
.(A.2)

NOTE. The random variables {Sn/n} considered in Corollary 15 are uniformly
bounded, and so the uniform integrability hypothesis (e) holds trivially.

PROOF OF PROPOSITION A.1. Since the random variables S′
m,m+n and

S′′
n,m+n are independent, with the same distributions as Sm and Sn, respectively,

Carathéodory’s theorem on extension of measures implies that the probability
space may be enlarged so as to support additional random variables permitting
recursion on the inequality (A.1). Here the simplest recursive strategy works: from
a starting value n = km + r , reduce by m at each step. This leads to an inequality
of the form

Skm+r ≤ S0
r +

k∑
j=1

Sj
m +

k∑
j=1

Rj ,(A.3)

where the random variables {Sj
m}j≥1 are i.i.d., each with the same distribution

as Sm, and the random variables Rj are identically distributed (but not necessarily
independent), each with the law of R1,1 := R.

The weak law (A.2) is easily deduced from the inequality (A.3). Note first that
the special case of (A.1) with m = 1, together with hypothesis (d), implies that
ESn ≤ nER+nES1 < ∞ for every n ≥ 1, and so γ < ∞. Assume for definiteness
that γ > −∞; the case γ = −∞ may be treated by a similar argument. Divide each
side of (A.3) by km; as k → ∞,

S0
r

km

P−→ 0 and
1

km

k∑
j=1

Sj
m

P−→ ESm

m
,

the latter by the usual WLLN. The WLLN need not apply to the sum
∑

Rj , since
the terms are not necessarily independent; however, since all of the terms are non-
negative and have the same expectation ER < ∞, Markov’s inequality implies
that, for any ε > 0,

P

{
1

km

k∑
j=1

Rj ≥ ε

}
≤ ER

mε
.
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Thus, letting m → ∞ through a subsequence along which ESm/m → γ , we find
that, for any ε > 0,

lim
n→∞P {Sn ≥ nγ + nε} = 0.

Since the r.v.s Sn/n are uniformly integrable, this implies that

lim
n→∞P {Sn ≤ nγ − nε} = 0,

because otherwise lim infESn/n < −γ . This proves that Sn/n → γ in probabil-
ity; in view of the uniform integrability of the sequence Sn/n, convergence in L1

follows. �

REMARK. Numerous variants of this proposition are true, and may be estab-
lished by more careful recursions. Among these are SLLNs for random variables
satisfying hypotheses such as those given in (59) above, where the remainders
log�(m + n) are not identically distributed, but whose growth is sublinear in
m + n. For hints as to how such results may be approached, see [11].

APPENDIX B: PROOF OF PROPOSITION 2

Recall that an interval J is ε-bad if any one of the inequalities (30), (31) or (32)
holds. For each of these inequalities, there are two possibilities: the relevant count
N(J ),NS(J ),NF (J ) may be unusually large or unusually small. Thus, there are
six distinct ways that J may be ε-bad, and hence six ways that a point x may be
(ε, κ)-bad. To prove (33), we will partition the set B = Bn(ε, κ) into six subsets,
one for each possibility, and show that (33) holds for each of the six subsets. In fact,
since the six inequalities (30)–(32) are coupled [in particular, if NS(J ) is unusually
small, then either N(J ) is also unusually small or NF (J ) is unusually large], it
suffices to consider only four possibilities: those where N(J ) is either unusually
large or small, and those where NS(J ) or NF (J ) is unusually large. These may all
be handled in a similar fashion, so we shall consider only the possibilities involving
large discrepancies of N(J ). Thus, set

B+ =
{
x : sup

J : x∈J ;|J |≥κ/n

N(J )/|J | ≥ (1 + ε)n

}
,

B− =
{
x : sup

J : x∈J ;|J |≥κ/n

N(J )/|J | ≤ (1 − ε)n

}
.

We will show that, for any ε > 0, there are positive constants κ, γ,C such that

Pf {|B±| ≥ ε} ≤ Ce−γ n.(B.1)

The proof of (B.1) is of a familiar type in the theory of empirical processes:
see, for instance, [20], Chapter 3 for related arguments. The strategy is to bracket
each of the bad sets B± by nearby sets in finite σ -algebras whose cardinalities are
small compared to en. To carry out this bracketing, we will call on a weak form of
the Vitali covering lemma (see [24], Chapter 1, Lemma 1.6):
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COVERING LEMMA. Let F be a measurable subset of [0,1] that is covered by
a collection V of subintervals of [0,1]. Then there exist pairwise disjoint intervals
I1, I2, . . . in V such that ∑

j

|Ij | ≥ 1
5 |F |.(B.2)

For definiteness, consider the set B+. This set is, by definition, the union of
intervals J of lengths ≥ κ/n (not necessarily pairwise disjoint!), each satisfying

N(J ) ≥ (1 + ε)n|J |.(B.3)

By the Covering lemma, there is a collection J of pairwise disjoint intervals Ji

among these whose lengths sum to at least |B+|/5. Because the lengths of these
intervals are bounded below by κ/n, there are at most n/κ intervals in J.

Let m = mn be the smallest integer such that m > 8n/(εκ). For each interval
Ji ∈ J, let J ′

i be the minimal interval containing Ji with endpoints of the form
j/m, where j ∈ Z. Observe that the intervals J ′

i need not be pairwise disjoint,
but keep in mind that the intervals Ji are. Moreover, |Ji | ≤ |J ′

i | ≤ |Ji | + 2/m, so
by (B.3),

N(Ji) ≥ (1 + ε)n(|J ′
i | − 2/m)

(B.4)
≥ (1 + ε′)n|J ′

i |,
where ε′ = ε/2. Define B∗ to be the union of the intervals J ′

i . By construction,
B∗ is a union of intervals [j/m, (j + 1)/m] and contains

⋃
J Ji ; thus, by (B.4),

since the intervals Ji ∈ J are pairwise disjoint,

N(B∗) ≥ ∑
J

N(Ji) ≥ (1 + ε′)n|B∗|.(B.5)

Now recall that the collection J was chosen so that
∑

J |Ji | ≥ |B+|/5. Since
B∗ contains

⋃
J Ji , it follows that, on the event {|B+| ≥ ε},

|B∗| ≥ ε/5.(B.6)

Hence, to bound the probability (B.1), it suffices to bound the probability that
inequality (B.6) obtains. Observe that there are precisely 2m possibilities for the
set B∗. Let B be such a possibility, and suppose that |B| ≥ ε/5. Under Pf , the
count N(B) has the Binomial distribution with parameters n, |B|. By a standard
concentration inequality for the Binomial distribution (e.g., Hoeffding’s inequal-
ity), there exist constants C > 0 and ρ = ρ(ε, ε′) > 0 such that

Pf {N(B) ≥ (1 + ε′)n|B|} ≤ Ce−ρn.

Therefore,

Pf {|B∗| ≥ ε} ≤ C2me−ρn.



1268 M. CORAM AND S. P. LALLEY

Finally, recall that m = �8n/(εκ)�. Thus, if εκ is sufficiently large, then

2me−ρn ≤ e−γ n

for some γ > 0, and so (B.1) follows for B+. A similar argument (with bracketing
from the inside rather than from the outside) applies for B−.
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