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We develop a testing procedure for distinguishing between a long-range
dependent time series and a weakly dependent time series with change-points
in the mean. In the simplest case, under the null hypothesis the time series
is weakly dependent with one change in mean at an unknown point, and
under the alternative it is long-range dependent. We compute the CUSUM
statistic Tn, which allows us to construct an estimator k̂ of a change-point.
We then compute the statistic Tn,1 based on the observations up to time k̂

and the statistic Tn,2 based on the observations after time k̂. The statistic
Mn = max[Tn,1, Tn,2] converges to a well-known distribution under the null,
but diverges to infinity if the observations exhibit long-range dependence.
The theory is illustrated by examples and an application to the returns of the
Dow Jones index.

1. Introduction. The present paper develops a testing procedure for distin-
guishing between a long-range dependent time series and a weakly dependent time
series with change-points in the mean.

Many geophysical time series records have long been known to exhibit long
nonperiodic cycles or persistent deviations from the mean. In the mid-1960s
Mandelbrot and his collaborators proposed the use of self-similar processes, most
notably fractional Brownian motion, to model such records; see, for example, [33].
Over a decade later, Granger and Joyeux [21] and Hosking [25] (see also [1]) in-
troduced fractional ARIMA processes, which are approximately self-similar and
offer a much greater modeling flexibility. If their fractional differencing parame-
ter d satisfies 0 < d < 1/2, these processes are stationary and possess long-range
dependence, or long memory, in the sense that the autocovariance function is not
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absolutely summable (decays like k2d−1, as the lag k → ∞). In the 1980s there
was substantial interest in using long memory processes to model macroeconomic
time series, whereas, in the 1990s, the focus shifted to modeling the volatility of
returns on speculative assets by such processes; an in depth discussion and rele-
vant references are provided in [23]. Following the pioneering work of Leland et
al. [30] and Paxson and Floyd [38], self-similar processes have also increasingly
been used to model certain aspects of computer network traffic; see [36]. There
are many other fields where models exhibiting long-range dependence have been
used; see [14] for a recent extensive review.

Even though modeling certain time series in the aforementioned fields by means
of long-range dependent processes has become quite widespread, especially in
geophysics, it is clear that a series with long periods where the observations are
away from the mean can also naturally be modeled by a nonstationary process
whose mean changes. Bhattacharya, Gupta and Waymire [9] used mathematical
arguments to show that the so-called Hurst effect, which motivated Mandelbrot
and his collaborators to advocate the use of self-similar processes, can also be ex-
plained if the observations Xk are assumed to follow the model Xk = Yk + f (k),
where Yk is a weakly dependent stationary process and f is a deterministic func-
tion. That research was elaborated on by Giraitis, Kokoszka and Leipus [16] who
showed that several statistics akin to the modified R/S statistic of Lo [31] di-
verge to infinity under either long-range dependence or weak dependence with
change-points. In a similar spirit, Diebold and Inoue [13] argued that the appear-
ance of long memory can be explained by some econometric models which in-
volve changes in their defining parameters. Mikosch and Stărică [34, 35] asserted
that what had been seen by many as long memory in the volatility of returns is, in
fact, a manifestation of changes in the parameters of the underlying GARCH-type
models. In the context of network traffic, similar findings are reported in [26]. The
above list of references is not exhaustive, but it emphasizes that it is difficult to
distinguish a truly long-range dependent process from a process with some form
of nonstationarity, including shifts in mean. Standard tools like ACF plots and
periodogram-based spectral estimates behave in a very similar way under these
two alternatives. There are also a number of long memory tests designed to test
the null hypothesis of weak dependence against an alternative of long-range de-
pendence and change-point tests developed to test the same null hypothesis but
against a change-point alternative. Most long memory tests reject in the presence
of change-points and many change-point tests reject in the presence of long mem-
ory.

The answer to the question of which approach to use will often depend on a spe-
cific application at hand. A long-range dependent process may, for example, pro-
vide a parsimonious description of a long, possibly nonstationary, time series. On
the other hand, to construct short term forecasts of a possibly self-similar process,
it might be advisable to fit an ARMA model to the most recent stretch of data after
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the last estimated change-point. In many applications, however, such as, for ex-
ample, constructing long term forecasts, it does matter which model better fits the
data. We refer to [10] and [28] for some relevant financial applications. Formal sta-
tistical tests which would help decide if a particular time series is better described
as a realization of a long-range dependent process or as a realization of a weakly
dependent process with change-points are therefore of value. There has, however,
not been much research in this direction. Künsch [29] proposed a periodogram
based procedure to discriminate between a long-range dependent process and the
process Xk = Yk +f (k) with a monotonic function f and Gaussian weakly depen-
dent Yk . Heyde and Dai [24] showed that procedures for detecting long memory
which are based on a smoothed periodogram are robust in the presence of small
trends. These ideas were recently developed by Sibbertsen and Venetis [42] who
proposed a test based on a difference between the Geweke and Porter-Hudak [15]
estimator of d and its version based on the tapered periodogram.

A main objective of the present paper is to develop the theory underlying a
test procedure for discriminating between long-range dependence and weak de-
pendence with change-points in mean. The proposed test is a simple time domain
procedure based on a CUSUM statistic for the partial sums, which is perhaps the
most extensively used statistic for detecting and estimating change-points in mean.
To describe the idea, suppose that, under the null hypothesis, the time series is
weakly dependent with one change in mean and under the alternative, it is long-
range dependent. Consider the CUSUM statistic Tn defined by (3.1). Using Tn,
we can construct an estimator k̂ of the change-point (no matter if a change-point
exists or not). We then compute the statistic Tn,1 based on the observations up to
time k̂ and the statistic Tn,2 based on the observations after time k̂. The statistic
Mn = max[Tn,1, Tn,2] converges to a well-known distribution under the null (cf.
Corollary 2.1), but diverges to infinity under the alternative.

Our theory uses the almost sure asymptotics for the Bartlett variance estima-
tor s2

n stated in Theorem A.1 which was established in [8]. For a weakly dependent
process, s2

n is an estimator of the variance of the sample mean or of the spectral
density at frequency zero. Estimators of this type have been extensively studied
in the time series literature in the last half century and go back to the work of
Bartlett [5], Grenander and Rosenblatt [22] and Parzen [37]. Andrews [3] provides
a more recent perspective. As far as we know, all consistency results pertaining
to the class of kernel estimators such as s2

n establish convergence in an Lp norm
or in probability. Such results might possibly be applied in our context after some
additional technical work, but we are not aware of any convergence in probability
results which would allow us to establish our main results, Theorems 2.1 and 2.2,
under weaker conditions. Moreover, almost sure convergence offers a convenient

approach based on the observation that if Zn
a.s.→ 0 and kn

P→ ∞, then Zkn

P→ 0
[see, e.g., the argument justifying (B.11)].

The paper is organized as follows. In Section 2 we formulate the assumptions,
describe the testing procedure in a simple illustrative situation and state the rel-
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evant theorems. Section 3 discusses the broader applicability of the procedure,
provides some additional background and examples and concludes with an appli-
cation to returns of the Dow Jones index. The appendices contain the proofs.

2. Assumptions and the testing procedure. To focus attention and lighten
the notation, we concentrate in this section on a situation where the observations
can either follow a model with one change in the mean of weakly dependent time
series or are long-range dependent. In Section 3 we explain how the proposed
procedure can be used in a situation when there is an upper bound on the number
of possible changes in the mean.

The observations Xi follow a change-point model if

Xi =
{

µ + Yi, 1 ≤ i ≤ k∗,
µ + � + Yi, k∗ < i ≤ n.

(2.1)

In (2.1) k∗ is the unknown time of a possible change in mean, and the means µ

and µ+� are also unknown. The sequence {Yi} is assumed to have mean zero and
to be weakly stationary in a sense made precise by Assumption 2.1. Recall that,
for a fourth-order stationary sequence {Yk} with mean 0 and γj = Cov(Y0, Yj ), the
fourth-order cumulant is defined by

κ(h, r, s) = E[YkYk+hYk+rYk+s] − (γhγr−s + γrγh−s + γsγh−r ).(2.2)

ASSUMPTION 2.1. The sequence {Yk} is fourth-order stationary with mean 0
and autocovariance function γj = Cov(Y0, Yj ), and the following conditions hold:

n−1/2
∑

1≤j≤nt

Yj
d→ σW(t) in D[0,1](2.3)

for some σ > 0 and ∑
j

|γj | < ∞,(2.4)

sup
h

∑
r,s

|κ(h, r, s)| < ∞.(2.5)

REMARK 2.1. By the Skorokhod–Wichura–Dudley representation (see,
e.g., [41]), condition (2.3) is equivalent to the following condition: There are
Wiener processes Wn(t), t ∈ [0,1], such that

sup
0≤t≤1

∣∣∣∣∣n−1/2
∑

1≤j≤nt

Yj − σWn(t)

∣∣∣∣∣ = oP (1).(2.6)

Condition (2.6) is often more convenient to refer to in the proofs.
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We now make precise the statement that the observations {Xi} are long-range
dependent. In the following WH(t) stands for the fractional Brownian motion with
parameter H , that is, a Gaussian process with mean zero and covariances

E[WH(t)WH(s)] = (t2H + s2H − |t − s|2H)/2.

If 1/2 < H < 1, the increments of the fractional Brownian motion are long-range
dependent. It is convenient to identify the self-similarity parameter H with the
differencing parameter d introduced in Section 1 via the relation H = d + 1/2
because the increments of WH , which form a stationary process, have the same rate
of decay of the autocovariance function as a fractional ARIMA with d = H −1/2;
see, for example, Section 7.13 of [40]. In condition (2.9) of Assumption 2.2 below,
and throughout the paper, aj ∼ bj means that limj→∞ aj/bj = 1.

ASSUMPTION 2.2. The sequence {Xj } is fourth-order stationary with µ =
EXj and γj = Cov(X0,Xj ) and satisfies the following conditions:

1

nH

∑
1≤j≤nt

(Xj − µ)
d→ cHWH(t) in D[0,1](2.7)

for some cH > 0 and

1
2 < H < 1.(2.8)

Moreover,

γj ∼ c0j
2H−2(2.9)

for some c0 > 0, and the cumulants (2.2) satisfy

sup
h

∑
−n≤r,s≤n

|κ(h, r, s)| = O
(
n2H−1)

.(2.10)

The cumulant condition (2.5) is weaker than the traditional condition in which
suph is replaced by

∑
h; see, for example, [2] and [3]. Condition (2.10) is a natural

counterpart of (2.5) and holds for the extensively used fractional ARIMA models.
For these models, the range (2.8) corresponds to 0 < d < 1/2. We do not consider
−1/2 < d < 0 because realizations of such processes do not exhibit apparent shifts
in mean.

We wish to test

H0: The observations X1, . . . ,Xn follow the change point model (2.1) with the Yi

satisfying Assumption 2.1

against

HA: The observations X1, . . . ,Xn are long-range dependent, that is, satisfy As-
sumption 2.2.
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In order to define the test statistic, we first introduce a change-point estimator,

k̂ = min

{
k : max

1≤i≤n

∣∣∣∣∣
∑

1≤j≤i

Xj − i

n

∑
1≤j≤n

Xj

∣∣∣∣∣ =
∣∣∣∣∣

∑
1≤j≤k

Xj − k

n

∑
1≤j≤n

Xj

∣∣∣∣∣
}
.(2.11)

Next we define the statistics

Tn,1 = 1

sn,1
k̂−1/2 max

1≤k≤k̂

∣∣∣∣∣
∑

1≤i≤k

Xi − k

k̂

∑
1≤i≤k̂

Xi

∣∣∣∣∣(2.12)

based on X1, . . . ,Xk̂
and

Tn,2 = 1

sn,2
(n − k̂)

−1/2
max

k̂<k≤n

∣∣∣∣∣
∑

k̂<i≤k

Xi − k − k̂

n − k̂

∑
k̂<i≤n

Xi

∣∣∣∣∣(2.13)

based on X
k̂+1, . . . ,Xn. In (2.12) and (2.13), sn,1 and sn,2 are equal to the Bartlett

estimator computed, respectively, from X1, . . . ,Xk̂
and X

k̂+1, . . . ,Xn. Specifi-
cally, setting

X̄k = 1

k

∑
1≤i≤k

Xi, X̃k = 1

n − k

∑
k<i≤n

Xi

and

ωj(q) = 1 − j

q + 1
,(2.14)

we have

s2
n,1 = 1

k̂

∑
1≤i≤k̂

(Xi − X̄
k̂
)2

(2.15)

+ 2
∑

1≤j≤q(k̂)

ωj (q(k̂))
1

k̂

∑
1≤i≤k̂−j

(Xi − X̄
k̂
)(Xi+j − X̄

k̂
),

s2
n,2 = 1

n − k̂

∑
k̂<i≤n

(Xi − X̃
k̂
)2

(2.16)

+ 2
∑

1≤j≤q(n−k̂)

ωj

(
q(n − k̂)

) 1

n − k̂

∑
k̂<i≤n−j

(Xi − X̃
k̂
)(Xi+j − X̃

k̂
).

The test statistic is defined as

Mn = max{Tn,1, Tn,2}.(2.17)
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We first derive the asymptotic distribution of Mn under H0. We need to im-
pose additional assumptions on the change point-model (2.1): both k∗, the time of
change and �, the size of the change, depend on the sample size n such that

k∗ = [nθ ] for some 0 < θ < 1,(2.18)

n�2 → ∞,(2.19)

�2|k̂ − k∗| = OP (1).(2.20)

Condition (2.20) is known to hold if the observations are uncorrelated and was ex-
tended by Bai [4], Proposition 3, to moving averages driven by white noise. It also
holds if the process Yi in the change point model (2.1) is strictly stationary, satis-
fies the approximation condition (2.6), � → 0 and (2.19) holds; see Theorem 4.1.4
in [11]. [There is a misprint in that theorem and γ = 0, which corresponds to our
statistic Tn, should be included in part (i). The tail condition (4.1.9) in [11] is
not needed because it is used only for γ > 0.] Since the squares of ARCH(∞)
processes satisfy (2.6) (see Theorem 2.1 in [16]), (2.20) holds for such processes.

We will also often impose the following condition on the bandwidth q(n):

q(n)�2 = O(1).(2.21)

THEOREM 2.1. Suppose H0 and (2.18)–(2.21) hold. Suppose q(n) is nonde-
creasing and satisfies

sup
k≥0

q(2k+1)

q(2k)
< ∞,(2.22)

q(n) → ∞ and q(n)(logn)4 = O(n).(2.23)

Then

(Tn,1, Tn,2)
d→

(
sup

0≤t≤1

∣∣B(1)(t)
∣∣, sup

0≤t≤1

∣∣B(2)(t)
∣∣),

where B(1) and B(2) are independent Brownian bridges.

Theorem 2.1 is proved in Appendix B.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, we have

Mn
d→ max

{
sup

0≤t≤1

∣∣B(1)(t)
∣∣, sup

0≤t≤1

∣∣B(2)(t)
∣∣}.

Since the distribution function of sup0≤t≤1 |B(t)| is known (cf. Section 1.5
of [12]), the limit distribution in Corollary 2.1 can be computed explicitly.
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In order to describe the asymptotic behavior of the vector (Tn,1, Tn,2) if the
observations Xi are long-range dependent, we define

BH(t) = WH(t) − tWH (1)

and

ξ = inf
{
t ≥ 0 : |BH(t)| = sup

0≤s≤1
|BH(s)|

}
.(2.24)

THEOREM 2.2. Suppose HA holds. Assume q(n) is nondecreasing, satisfies
(2.22) and

q(n) → ∞ and q(n) = O
(
n(logn)−7/(4−4H)).(2.25)

Then, the sequence of random vectors[(
q(k̂)

n

)H−1/2

Tn,1,

(
q(n − k̂)

n

)H−1/2

Tn,2

]

converges in distribution to the random vector[
1√
ξ

sup
0≤t≤ξ

∣∣∣∣WH(t) − t

ξ
WH(ξ)

∣∣∣∣,
1√

1 − ξ
sup

ξ≤t≤1

∣∣∣∣(WH(t) − WH(ξ)
) − t − ξ

1 − ξ

(
WH(1) − WH(ξ)

)∣∣∣∣
]
.

Theorem 2.2 is proved in Appendix C.
Theorem 2.2 implies that Tn,1 and Tn,2 tend to infinity in probability. Conse-

quently, the test statistic Mn tends to infinity in probability under HA.

3. Discussion and examples. One of the most often used statistics for testing
the null hypothesis � = 0 in the change-point model (2.1) is the CUSUM statistic

Tn = 1

n1/2sn
max

1≤k≤n

∣∣∣∣∣
∑

1≤i≤k

Xi − k

n

∑
1≤i≤n

Xi

∣∣∣∣∣,(3.1)

where s2
n is a suitable estimator of the variance of the sample mean of the Xi . If the

Yi in (2.1) are independent identically distributed, s2
n can be taken to be the sample

variance. In this paper we allow the Yi to be dependent and consider the estimator

s2
n = γ̂0 + 2

∑
1≤j≤q(n)

ωj (q(n))γ̂j ,(3.2)

where

γ̂j = 1

n

∑
1≤i≤n−j

(Xi − X̄n)(Xi+j − X̄n)(3.3)
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are the sample autocovariances and ωj(q) are the Bartlett weights defined
by (2.14).

If the observations are weakly dependent (with no change in the mean), the

statistic Tn converges to the supremum of a Brownian bridge. However, Tn
P→ ∞

either if there is a shift in mean or if the observations are long-range dependent.
The latter case is often referred to as a spurious rejection of the null hypothesis of
no change in mean. We formalize these observations in Theorems 3.1, 3.2 and 3.3
which, together with Theorems 2.1 and 2.2, form a theoretical foundation for the
multistage testing procedure described later in this section. In Theorems 3.1, 3.2
and 3.3, it suffices to assume that

q(n) → ∞ and q(n)/n → 0 as n → ∞.(3.4)

THEOREM 3.1. Suppose observations X1, . . . ,Xn follow model (2.1) with
� = 0. If Assumption 2.1 and (3.4) hold, then

Tn
d→ sup

0≤t≤1
|B(t)|,

where {B(t),0 ≤ t ≤ 1} is a Brownian bridge.

PROOF. Theorem 3.1(i) in [18] implies that if the observations Xi satisfy Xi =
µ + Yi with the Yi satisfying Assumption 2.1 and if (3.4) holds, then

sn
P→ σ,(3.5)

where σ is the asymptotic standard deviation appearing in condition (2.3). �

THEOREM 3.2. Suppose the observations X1, . . . ,Xn follow model (2.1). If

Assumption 2.1, (3.4), (2.18)–(2.21) hold, then Tn
P→ ∞. [Assumption (2.19) im-

plies that � 	= 0.]

Theorem 3.2 is proved in Appendix D.

THEOREM 3.3. Suppose the sequence {Xk} satisfies Assumption 2.2. If
q(n)/n → 0, then(

q(n)

n

)H−1/2

Tn
d→ sup

0≤t≤1
|WH(t) − tWH (1)|.(3.6)

[Convergence (3.6) implies Tn
P→ ∞.]

PROOF. By Theorem 3.1 in [18], if (2.9), (2.10) and (3.4) hold, then

q(n)1−2Hs2
n

P→ c2
H = c0

H(2H − 1)
.(3.7)
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The constants cH and c0 in (3.7) are the same as, respectively, in (2.7) and (2.9).
Theorem 3.3 now follows immediately from (2.7) and (3.7). �

In order to focus on essential arguments, we considered in Section 2 a simple
testing problem. In some applications, however, the presence of more than one
change-point may be suspected. Our test can be extended to a multistage test-
ing procedure which is applicable in situations when there is an upper bound
on the number of possible change-points. The latter assumption is often used in
change-point analysis; see, for example, [44] and references therein. For example,
in time series of daily returns on market indices over a period of ten years, or in
temperature series over periods of 300 years, one suspects at most two or three
change-points; see Section 3 for a data example. For such time series, the maxi-
mum number of change points in mean can typically be readily established by a
visual inspection of a time series plot.

Before describing the procedure, we must introduce additional notation. De-
note by T (l,m) the CUSUM statistic Tn (3.1) computed from the observations
Xl+1, . . . ,Xm and by k̂(l,m) the change-point estimator (2.11) computed from
the same observations. Let B(u), u = 1,2, . . . , be independent Brownian bridges.
Define the critical value c(u) by

P

(
max

{
sup

0≤t≤1

∣∣B(1)(t)
∣∣, . . . , sup

0≤t≤1

∣∣B(u)(t)
∣∣} > c(u)

)
= α.

As mentioned earlier, the distribution of sup0≤t≤1 |B(1)(t)| is known and is tabu-
lated in [27], so c(u) can be found directly from

P

(
sup

0≤t≤1

∣∣B(1)(t)
∣∣ ≤ c(u)

)
= (1 − α)1/u.

The procedure we recommend is based on the binary segmentation method
of [43]. To focus attention, suppose there can be at most two changes in mean,
that is, we want to determine if the observations are weakly dependent with none,
one or two changes in the mean or whether they contain a long-range depen-
dent stretch of data. If Tn = T (0, n) ≤ c(1), the observations are weakly depen-
dent. If Tn > c(1), we compute k̂1 := k̂(0, n) and M̂2 = max[T (0, k̂1), T (k̂1, n)].
If M̂2 ≤ c(2), the observations are weakly dependent with one change-point. If
M̂2 > c(2), we compare T (0, k̂1) and T (k̂1, n). Suppose that T (0, k̂1) < T (k̂1, n).
We then compute k̂2 = k̂(k̂1, n) and

M̂3 = max[T (0, k̂1), T (k̂1, k̂2), T (k̂2, n)].
Extending Theorem 2.1 to the case of exactly two changes, we have

M̂3
d→ max

{
sup

0≤t≤1

∣∣B(1)(t)
∣∣, sup

0≤t≤1

∣∣B(2)(t)
∣∣, sup

0≤t≤1

∣∣B(3)(t)
∣∣}.
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Thus, if M̂3 ≤ c(3), the observations are weakly dependent with two change-
points. If M̂3 > c(3), the observations contain a long-range dependent stretch of
data.

Before concluding this section with a data example, we list several time series
models which satisfy Assumptions 2.1 or 2.2. References to the proofs can be
found in [16].

EXAMPLE 3.1. The linear process

Xk = ∑
j

aj εk−j ,(3.8)

where εj are independent identically distributed random variables with finite
fourth moment and zero mean, satisfies Assumption 2.1 if

∑
j |aj | < ∞. In partic-

ular, ARMA processes whose autoregressive polynomial has no zeros on the unit
circle satisfy Assumption 2.1.

If, on the other hand, aj ∼ cjd−1 for some 0 < d < 1/2, then the Xk (3.8) sat-
isfy Assumption 2.2 with H = d +1/2. In particular, fractional ARIMA processes
whose autoregressive polynomial has no zeros on the unit circle satisfy Assump-
tion 2.2.

EXAMPLE 3.2. Consider the process {ηk} satisfying

ηk = ρkξk, ρk = ∑
j≥1

cjηk−j ,(3.9)

where a > 0, cj ≥ 0 and the ξk are independent identically distributed non-
negative random variables with finite fourth moment. The ηk should be viewed
as the squares of an ARCH process. If

[Eξ4
0 ]1/4

∑
j≥1

cj < 1,(3.10)

then the sequence Yk = ηk − Eηk satisfies Assumption 2.1.
As a more specific example, consider Yk = r2

k − Er2
k , where the rk follow a

GARCH(p,q) model,

rk = σkεk, σ 2
k = ω + ∑

1≤i≤p

αir
2
k−i + ∑

1≤j≤q

βjσ
2
k−j .(3.11)

Then, under regularity conditions derived in [7], the ci are defined by

∑
j≥1

cj z
j =

∑
1≤i≤p αiz

i

1 − ∑
1≤j≤q βj zj

, |z| ≤ 1,

and ρk = σ 2
k , ξk = ε2

k .
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EXAMPLE 3.3. The rk are said to follow a LARCH (Linear ARCH) model if

rk = σkεk, σk = a + ∑
j≥1

bj rk−j ,(3.12)

where a 	= 0, the bj are real coefficients (not necessarily nonnegative) and the εk

are independent identically distributed with zero mean and finite fourth moment.
If bj ∼ cjd−1 for some 0 < d < 1/2 and

L[Eε4
0]1/2

∑
j≥1

b2
j < 1,

where L = 7 if the εk are Gaussian and L = 11 in general, then Yk = r2
k satisfy con-

ditions (2.7) and (2.9) of Assumption 2.2. Conditions for (2.10) to hold have not
been established yet. The LARCH model was studied by Robinson [39], Giraitis
et al. [17, 19, 20] and Berkes and Horváth [6], among others.

We conclude this section with an illustration of how our procedure can be ap-
plied in practice. Figure 1 shows daily returns of the Dow Jones Industrial Aver-

FIG. 1. Daily returns of the Dow Jones Industrial Average and a simulated LARCH process with
H = 0.85 together with the autocorrelation functions and smoothed periodograms at low frequencies
of the squared observations.
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age from January 1, 1992 to December 31, 1999 and a simulated LARCH process
with H = 0.85 of the same length (n = 2021). The corresponding columns show
the sample autocorrelation functions and smoothed periodograms of the squares
of the two series in the top row. The volatility (variance) of the Dow Jones series
appears to have a change point somewhere in the middle of series, but given that
we observe only a finite realization, this change-point might be spurious and the
observed change in variance might be explained as a persistent increase in volatil-
ity characteristic of a long memory process. That this might well be the case is
reinforced by the examination of the plot of the simulated LARCH series which
exhibits markedly higher variability in the first 1/3 of the realization, even though
the plot shows a realization of a strictly and fourth-order stationary process. The
left column in Figure 1 shows that the autocorrelation function of the squared Dow
Jones returns does not decay to zero in a fashion typical of a short memory process
and the smoothed periodogram (on a log–log scale) exhibits a clear positive slope.
In fact, a periodogram-based semiparametric estimate of H based on the auto-
matic bandwith selection procedure proposed by Lobato and Robinson [32] yields
the estimate Ĥ = 0.842991.

For the Dow Jones returns, we therefore wish to test the null hypothesis of ex-
actly one change in the variance of the observations against the alternative that
the squared observations are a realization of a long-range dependent process. As-
suming that the mean of the returns is zero (we subtracted the sample mean of
0.05829482 before conducting further analysis), this testing problem is thus iden-
tical with the basic testing problem formulated in Section 2, with the Xi being
equal to the squared returns.

In order to perform the test, we need to choose the bandwidth function q(·). We
performed our calculations in Splus and used the function acf to obtain sam-
ple autocovariances. By default, this function returns the first 10 log10(n) sample
autocovariances for a time series of length n. We found, however, that, for the non-
linear return data, more autocovariances must be used to capture the dependence
structure, so we increased the maximum lag up to which the autocovariances are
computed by 50%. Thus, in the following, we report the results based on

q(n) = 15 log10(n).

The value of Mn is 1.341153, which lies below the 10% asymptotic critical
value of 1.36 (the 5% and 1% critical values are, resp., 1.48 and 1.72). We are thus
unable to reject the null hypothesis of a change-point in the level of the squared
returns.

To validate the above conclusion, we need to assess the empirical size and power
of the test. To assess the size, we divided the data into two parts: before and after
the estimated change point k̂ = 1061 and fitted the GARCH(1, 1) model to each
stretch of data. We obtained the following parameters [see (3.11)]:
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ω α1 β1

Before k̂ 0.02461474 0.06404848 0.87864088
After k̂ 0.09540076 0.09734341 0.83945713

Using Er2
k = ω/(1 −α1 −β1), the implied change in the variance (level of the r2

k )
is 1.080022. In fact, variances implied by the GARCH(1, 1) models before and
after k̂ are very close to the corresponding sample variances whose difference
is 1.040886.

We simulated one thousand replications of the above change point model and
on each of them we computed the value of Mn. Table 1 reports the percentage
of rejections of the null hypothesis. At the nominal confidence level of 10%, the
percentage of rejections is slightly over 10%, suggesting that accepting the null
hypothesis based on the value of Mn = 1.34115 was not due to type II error.

To assess the power, we simulated one thousand replications of the LARCH
process (3.12) with d = 0.35 and the bj computed according to the recursion
bj = [bj−1(j + d)]/(j + 1), with b0 = 0.25 and a = 0.03. These parameter values
ensure that the process is fourth-order stationary and were chosen by experimen-
tation to make the realizations similar to the Dow Jones returns, with a typical
realization shown in Figure 1. Table 1 shows that the test is able to detect the alter-
native at the nominal 10% level with probability of over 30%. For this particular
alternative, the power is not very high. This can be explained by the fact that the
realizations of a LARCH process with the parameters chosen above and for the
sample size of n = 2021 often exhibit two periods of different variability which
can by separated by the change-point estimator k̂. The intensity of long-range de-
pendence in each of the two subsamples is “underestimated,” yielding small values
of Mn. However, even though the alternative is “very close” to the null, the test has
nontrivial power.

The above illustration is not meant as a guide for practitioners, but merely points
out the potential of the test.

APPENDIX A

Almost sure convergence of the Bartlett estimator. For ease of reference,
we present here the result on the almost sure asymptotics for the estimator s2

n ,

TABLE 1
Empirical size and power of the asymptotic test based

on the statistic Mn

Nominal level (in %) 10.0 5.0 1.0

Empirical size 13.4 6.5 0.8
Empirical power 32.5 20.0 5.0
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which we appeal to in the folllowing. Its proof is given in [8].

THEOREM A.1. Suppose {Yk} is a fourth-order stationary sequence with
EYi = 0 and γj = Cov(Y0, Yj ). Consider the variance estimator

s2
n = γ̂0 + 2

∑
1≤j≤q(n)

ωj (q(n))γ̂j ,(A.1)

where γ̂j are the sample autocovariances and ωj(q) are the Bartlett weights de-
fined respectively by (3.3) and (2.14).

Suppose the sequence q(n) is nondecreasing and

sup
k≥0

q(2k+1)

q(2k)
< ∞.(A.2)

(i) Suppose, in addition, that conditions (2.4) and (2.5) hold and

q(n) → ∞ and q(n)(logn)4 = O(n).(A.3)

Then

s2
n → σ 2 :=

∞∑
j=−∞

γj a.s.(A.4)

(ii) Assume

1
2 < H < 1(A.5)

and

γk ∼ c0k
2H−2(A.6)

for some c0 > 0. Assume also that

q(n) → ∞ and q(n) = O
(
n(logn)−7/(4−4H))(A.7)

and

sup
|h|≤q(n)

∑
−n≤r,s≤n

|κ(h, r, s)| = O(n2H−1).(A.8)

Then

q(n)1−2Hs2
n → c2

H = c0

H(2H − 1)
a.s.(A.9)

REMARK A.1. By the fourth-order stationarity of the Xi , all bounds in the
proof of Theorem A.1 remain valid if the random variables X1, . . . ,Xn are re-
placed by Xk+1, . . . ,Xn, n is replaced by n − k and q(n) is replaced by q(n − k).
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Therefore, on denoting X̃k = 1
n−k

∑
k<i≤n Xi and

s2
k,n = 1

n − k

∑
k<i≤n

(Xi − X̃k)
2

(A.10)

+ 2
∑

1≤j≤q(n−k)

ωj

(
q(n − k)

) 1

n − k

∑
k<i≤n

(Xi − X̃k)(Xi+j − X̃k),

under the assumptions of part (i) of Theorem A.1,

s2
k,n

a.s.→ σ 2 as n − k → ∞,(A.11)

and under the assumptions of part (ii) of Theorem A.1,

[q(n − k)]1−2Hs2
k,n

a.s.→ c2
H as n − k → ∞.(A.12)

Relations (A.11) and (A.12) are used, respectively, in the proofs of Lemmas
B.3 and C.2.

APPENDIX B

Proof of Theorem 2.1. Theorem 2.1 will follow immediately from Lemmas
B.1, B.2 and B.3 which are stated and proved below.

In this section we assume that the observations follow the change-point
model (2.1) and that (2.18) holds.

We will extensively use the relation∣∣∣∣ k̂n − θ

∣∣∣∣ = oP (1),(B.1)

which follows from assumptions (2.19) and (2.20).

LEMMA B.1. If (2.19) and (2.20) hold, then

n−1/2 max
1≤k≤k̂

∣∣∣∣∣
∑

1≤i≤k

Xi − k

k̂

∑
1≤i≤k̂

Xi

∣∣∣∣∣
(B.2)

= n−1/2 max
1≤k≤k̂

∣∣∣∣∣
∑

1≤i≤k

Yi − k

k̂

∑
1≤i≤k̂

Yi

∣∣∣∣∣ + oP (1)

and

n−1/2 max
k̂<k≤n

∣∣∣∣∣
∑

k̂<i≤k

Xi − k − k̂

n − k̂

∑
k̂<i≤n

Xi

∣∣∣∣∣
(B.3)

= n−1/2 max
k̂<k≤n

∣∣∣∣∣
∑

k̂<i≤k

Yi − k − k̂

n − k̂

∑
k̂<i≤n

Yi

∣∣∣∣∣ + oP (1).
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PROOF. We can assume that µ = 0. Since the verification of (B.3) is very
similar to that of (B.2), we present only the proof of (B.2).

If k̂ ≤ k∗,

∑
1≤i≤k

Xi − k

k̂

∑
1≤i≤k̂

Xi = ∑
1≤i≤k

Yi − k

k̂

∑
1≤i≤k̂

Yi

for all 1 ≤ k ≤ k̂, so (B.2) holds trivially. If k∗ < k̂, then

k

k̂

∑
1≤i≤k̂

Xi = k

k̂

∑
1≤i≤k̂

Yi + �
k

k̂
(k̂ − k∗)

and

∑
1≤i≤k

Xi =




∑
1≤i≤k

Yi, if 1 ≤ k ≤ k∗,

∑
1≤i≤k

Yi + (k − k∗)�, if k∗ < k ≤ k̂.

Hence,∣∣∣∣∣n−1/2 max
1≤k≤k̂

∣∣∣∣∣
∑

1≤i≤k

Xi − k

k̂

∑
1≤i≤k̂

Xi

∣∣∣∣∣ − n−1/2 max
1≤k≤k̂

∣∣∣∣∣
∑

1≤i≤k

Yi − k

k̂

∑
1≤i≤k̂

Yi

∣∣∣∣∣
∣∣∣∣∣

≤ 2n−1/2�|k̂ − k∗| = 2�2|k̂ − k∗|
�n1/2 ,

so (B.2) follows from assumptions (2.20) and (2.19). �

LEMMA B.2. If (2.3) and (B.1) hold, then the sequence of random vectors(
k̂−1/2 max

1≤k≤k̂

∣∣∣∣∣
∑

1≤i≤k

Yi − k

k̂

∑
1≤i≤k̂

Yi

∣∣∣∣∣,

(n − k̂)−1/2 max
k̂<k≤n

∣∣∣∣∣
∑

k̂<i≤k

Yi − k − k̂

n − k̂

∑
k̂<i≤n

Yi

∣∣∣∣∣
)

converges in distribution to the random vector(
sup

0≤t≤1

∣∣B(1)(t)
∣∣, sup

0≤t≤1

∣∣B(2)(t)
∣∣),

where B(1) and B(2) are independent Brownian bridges.
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PROOF. By (2.6),

max
1≤k≤k̂

∣∣∣∣∣
[ ∑

1≤i≤k

Yi − k

k̂

∑
1≤i≤k̂

Yi

]
− σn1/2

[
Wn

(
k

n

)
− k

k̂
Wn

(
k̂

n

)]∣∣∣∣∣
(B.4)

= oP (n1/2).

Using (B.1) and the continuity of the Wiener process, we get

|Wn(k̂/n) − Wn(θ)| = oP (1).(B.5)

Hence,

max
1≤k≤k̂

∣∣∣∣Wn

(
k

n

)
− k

k̂
Wn

(
k̂

n

)∣∣∣∣ = sup
0≤t≤θ

∣∣∣∣Wn(t) − t

θ
Wn(θ)

∣∣∣∣ + oP (1),(B.6)

and consequently, by (B.4),

k̂−1/2 max
1≤k≤k̂

∣∣∣∣∣
∑

1≤i≤k

Yi − k

k̂

∑
1≤i≤k̂

Yi

∣∣∣∣∣
(B.7)

= σ

θ1/2 sup
0≤t≤θ

∣∣∣∣Wn(t) − t

θ
Wn(θ)

∣∣∣∣ + oP (1).

Similar arguments give

(n − k̂)
−1/2

max
k̂<k≤n

∣∣∣∣∣
∑

k̂<i≤k

Yi − k − k̂

n − k̂

∑
k̂<i≤n

Yi

∣∣∣∣∣
= σ

(1 − θ)1/2 sup
θ≤t≤1

∣∣∣∣(Wn(t) − Wn(θ)
)

(B.8)

− t − θ

1 − θ

(
Wn(1) − Wn(θ)

)∣∣∣∣ + oP (1).

Since θ−1/2Wn(θt),0 ≤ t ≤ 1, is a Wiener process,

1

θ1/2 sup
0≤t≤θ

∣∣∣∣Wn(t) − t

θ
Wn(θ)

∣∣∣∣ d= sup
0≤t≤1

∣∣B(1)(t)
∣∣,(B.9)

where B(1) is a Brownian bridge. Similarly, there is a Wiener process W(t),0 ≤
t ≤ 1, such that

1

(1 − θ)1/2 sup
θ≤t≤1

∣∣∣∣(Wn(t) − Wn(θ)
) − t − θ

1 − θ

(
Wn(1) − Wn(θ)

)∣∣∣∣
d= t − θ

1 − θ
sup

θ≤t≤1

∣∣∣∣W(t − θ) − t − θ

1 − θ
W(1 − θ)

∣∣∣∣(B.10)

= t − θ

1 − θ
sup

0≤t≤1−θ

∣∣∣∣W(t) − t

1 − θ
W(1 − θ)

∣∣∣∣ d= sup
0≤t≤1

∣∣B(2)(t)
∣∣,
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where B(2) is another Brownian bridge. The claim thus follows by combin-
ing (B.7), (B.8) and (B.9), (B.10) and using the independence of the increments of
a Wiener process. �

LEMMA B.3. Suppose Assumption 2.1, (2.19), (2.21), (2.22), (2.23) and
(B.1) hold. Then

sn,1
P→ σ and sn,2

P→ σ.

PROOF. Following the proof of Proposition D.1, we get

s2
n,1 = ∑

1≤m≤5

[
γ̂0m,1 + 2

∑
1≤j≤q(k̂)

ωj (q(k̂))γ̂jm,1

]
=: ∑

1≤m≤5

s2
nm,1,

where

γ̂j1,1 = 1

k̂

∑
1≤i≤k̂−j

(Yi − Ȳ
k̂
)(Yi+j − Ȳ

k̂
),

γ̂j2,1 = 1

k̂

[
(k∗ − j)

(
k̂ − k∗

n
�

)2

− j
k̂ − k∗

k̂

k∗

n
�2 + (k̂ − j − k∗)

(
k∗

k̂
�

)2]
,

γ̂j3,1 = −1

k̂

∑
1≤i≤k∗−j

[(Yi − Ȳ
k̂
) + (Yi+j − Ȳ

k̂
)]n − k∗

n
�,

γ̂j4,1 = 1

k̂

∑
k∗−j<i≤k∗

[
(Yi − Ȳ

k̂
)
k∗

k̂
− (Yi+j − Ȳ

k̂
)
k̂ − k∗

k̂

]
�

and

γ̂j5,1 = 1

k̂

∑
k∗<i≤k̂−j

[(Yi − Ȳ
k̂
) + (Yi+j − Ȳ

k̂
)]k

∗

k̂
�.

Since s2
n → σ 2 a.s. by part (i) of Theorem A.1 and k̂

P→ ∞ by (B.1), Theo-
rem 7.1.1(c) on page 252 of [12] yields that

s2
n1,1

P→ σ 2.(B.11)

Next we show that

s2
nm,1 = oP (1) for m = 2,3,4,5.(B.12)

As we have seen in the proof of Proposition D.1,

s2
nm,1 = OP (k̂−1/2q(k̂)�) = OP

(
q(k̂)�2

k̂1/2�

)
= OP

((
n

k̂

)1/2 q(k̂)�2

n1/2�

)
= oP (1),
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proving (B.12).

To prove s2
n2

P→ σ 2, we can apply the same argument, upon observing that by
Remark A.1, for all 0 < r < 1, we have

max
rn≤k≤n

|s2
k,n − σ 2| → 0 a.s.,

where s2
k,n is defined in (A.10). �

APPENDIX C

Proof of Theorem 2.2. Theorem 2.2 will follow directly from Lemmas
C.1 and C.2 below. We can assume that µ = 0.

Let

Zn1(t) = 1

nH
max

1≤k≤nt

∣∣∣∣∣
∑

1≤i≤k

Xi − k

nt

∑
1≤i≤nt

Xi

∣∣∣∣∣
and

Zn2(t) = 1

nH
max

nt<k≤n

∣∣∣∣∣
∑

nt≤i≤k

Xi − k − nt

n − nt

∑
nt<i≤n

Xi

∣∣∣∣∣.
Similarly, let

Z1(t) = cH sup
0≤s≤t

∣∣∣∣WH(s) − s

t
WH (t)

∣∣∣∣
and

Z2(t) = cH sup
t<s≤1

∣∣∣∣(WH(s) − WH(t)
) − s − t

1 − t

(
WH(1) − WH(t)

)∣∣∣∣,
where WH is defined in Assumption 2.2.

LEMMA C.1. Suppose that (2.7) and (2.8) hold. Then

(
k̂/n,Zn1(t),Zn2(t)

) d→ (
ξ,Z1(t),Z2(t)

)
,(C.1)

where ξ is defined by (2.24). The vectors in (C.1) take values in (0,1) × D[0,1] ×
D[0,1].

PROOF. The vector (k̂/n,Zn1(t),Zn2(t)) is a continuous mapping of {n−H ×∑
1≤k≤nt Xk,0 ≤ t ≤ 1}. The same mapping transforms WH(t) into (ξ,Z1(t),

Z2(t)). Hence, the statement of the lemma follows from the continuous mapping
theorem. �
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LEMMA C.2. We assume that the conditions of Theorem 2.2 are satisfied.
Then

[q(k̂)]1−2Hs2
n,1

P→ c2
H(C.2)

and

[q(n − k̂)]1−2Hs2
n,2

P→ c2
H .(C.3)

PROOF. We first verify (C.2). By part (ii) of Theorem A.1, for any 0 < r < 1,

sup
k≥rn

|[q(k)]1−2Hs2
k − c2

H | a.s.→ 0.

For any 0 < r < 1 which is a continuity point of the distribution function of ξ we
have

lim sup
n→∞

P
[|[q(k̂)]1−2Hs2

k̂
− c2

H | > ε
]

≤ lim sup
n→∞

P [k̂/n ≤ r] + lim sup
n→∞

P

[
sup
k≥rn

|[q(k)]1−2H s2
k − c2

H | > ε

]

= P(ξ ≤ r).

Since P(ξ ≤ r) → 0 as r → 0, (C.2) follows.
To prove (C.3), note that by (A.12),

sup
k≤(1−r)n

|[q(n − k)]1−2Hs2
k,n − c2

H | a.s.→ 0.

Relation (C.3) is then established using a lim sup argument as above and the fact
that P(ξ > r) → 0 as r → 1. �

APPENDIX D

Proof of Theorem 3.2. Observe that by Assumption 2.1 and (2.18),

1

n1/2 max
1≤k≤n

∣∣∣∣∣
∑

1≤i≤k

Xi − k

n

∑
1≤i≤n

Xi

∣∣∣∣∣
≥ 1

n1/2

∣∣∣∣∣
∑

1≤i≤k∗
Xi − k∗

n

∑
1≤i≤n

Xi

∣∣∣∣∣
= 1

n1/2

∣∣∣∣∣
∑

1≤i≤k∗
Yi − k∗

n

∑
1≤i≤n

Yi − k∗(n − k∗)
n

�

∣∣∣∣∣
≥ 1

2
n1/2θ(1 − θ)|�| − OP (1),



LONG-RANGE DEPENDENCE AND CHANGES IN MEAN 1161

as n → ∞. Hence, it suffices to show that

n1/2|�|
sn

P→ ∞,

which, in view of (2.19), will follow if we show that sn = OP (1), which is verified
in the following proposition.

PROPOSITION D.1. Suppose model (2.1) is valid. Consider the estimator s2
n

defined by (3.2). Suppose Assumption 2.1 and (3.4), (2.18)–(2.21) hold. Then

s2
n = OP (1).(D.1)

PROOF. Denoting Vi,j = (Xi − X̄n)(Xi+j − X̄n), observe that

Vi,j = (Yi − Ȳn)(Yi+j − Ȳn) − (Yi − Ȳn)
n − k∗

n
�

− (Yi+j − Ȳn)
n − k∗

n
� +

(
n − k∗

n
�

)2

if 1 ≤ i ≤ i + j ≤ k∗,

Vi,j = (Yi − Ȳn)(Yi+j − Ȳn) + (Yi − Ȳn)
k∗

n
�

+ (Yi+j − Ȳn)
n − k∗

n
� − n − k∗

n
�

k∗

n
� if 1 ≤ i ≤ k∗ < i + j,

Vi,j = (Yi − Ȳn)(Yi+j − Ȳn) + (Yi − Ȳn)
k∗

n
�

+ (Yi+j − Ȳn)
k∗

n
� +

(
k∗

n
�

)2

if k∗ < i ≤ i + j.

Therefore, for any 0 ≤ j ≤ q ,

γ̂j = ∑
1≤m≤5

γ̂jm,

where

γ̂j1 = 1

n

∑
1≤i≤n−j

(Yi − Ȳn)(Yi+j − Ȳn),

γ̂j2 = 1

n

[
(k∗ − j)

(
n − k∗

n
�

)2

− j
n − k∗

n

k∗

n
�2 + (n − j − k∗)

(
k∗

n
�

)2]
,

γ̂j3 = −1

n

∑
1≤i≤k∗−j

[(Yi − Ȳn) + (Yi+j − Ȳn)]n − k∗

n
�,

γ̂j4 = 1

n

∑
k∗−j<i≤k∗

[
(Yi − Ȳn)

k∗

n
− (Yi+j − Ȳn)

n − k∗

n

]
�
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and

γ̂j5 = 1

n

∑
k∗<i≤n−j

[(Yi − Ȳn) + (Yi+j − Ȳn)]k
∗

n
�.

Consequently,

s2
n = ∑

1≤m≤5

[
γ̂0m + 2

∑
1≤j≤q

ωj (q)γ̂jm

]
=: ∑

1≤m≤5

s2
nm.

By (3.5),

s2
n1

P→ σ 2.(D.2)

Hence, (D.1) will follow if we verify that

s2
nm = OP (1) for m = 2,3,4,5.(D.3)

In order to verify (D.3), we will often appeal to the two elementary relations

2
∑

1≤j≤q

ωj (q) ∼ q(D.4)

and

2
∑

1≤j≤q

jωj (q) ∼ 1
3q2.(D.5)

Relation (D.3) is easy to verify for m = 3,4,5. By (2.6) and (D.4),

s2
nm = OP (n−1/2q�) = OP

(
q�2

n1/2�

)
= oP (1)

on account of (2.19) and (2.21). It thus remains to establish (D.4) for m = 2. Since
there are three terms in the definition of γ̂j2, we may write

s2
n21

q�2 = 1

q

[
k∗

n

(
n − k∗

n

)2

+ 2
∑

1≤j≤q

ωj (q)

(
k∗ − j

n

)(
n − k∗

n

)2
]

∼ 1

q

[
θ(1 − θ)2 + 2

∑
1≤j≤q

ωj (q)θ(1 − θ)2

(D.6)

− 2

n

∑
1≤j≤q

jωj (q)(1 − θ)2

]

∼ 1

q

[
(1 + q)θ(1 − θ)2 − 1

3

q2

n
(1 − θ)2

]
→ θ(1 − θ)2.
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Similarly,

s2
n22

q�2 = −1

q

n − k∗

n

k∗

n

2

n

∑
1≤j≤q

jωj (q) ∼ −(1 − θ)θ
q

3n
→ 0(D.7)

and

s2
n23

q�2 = 1

q

[
n − k∗

n

(
k∗

n

)2

+ 2
∑

1≤j≤q

ωj (q)
n − k∗ − j

n

(
k∗

n

)2
]

∼ 1

q

[
(1 − θ)θ2 + 2

∑
1≤j≤q

ωj (q)(1 − θ)θ2 − 2

n

∑
1≤j≤q

jωj (q)θ2

]
(D.8)

∼ 1

q

[
(1 + q)(1 − θ)θ2 − θ2

3

q2

n

]
→ (1 − θ)θ2.

Putting together relations (D.6), (D.7) and (D.8), we obtain (D.3) for m = 2. This
completes the proof of Proposition D.1. �

REMARK D.1. Proposition D.1 and, therefore Theorem 3.2, remain valid
if the Bartlett weights (2.14) are replaced by any weights satisfying (D.4) and∑

1≤j≤q jωj (q) = O(q2) in addition to the following conditions which are needed
for (D.2) to hold: ωj (q) = 0 for |j | > q , 0 ≤ ωj (q) ≤ 1, and

lim
q→∞ωj (q) = 1 for each j ;(D.9)

see Remark 1.2 in [8].
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[34] MIKOSCH, T. and STĂRICĂ, C. (1999). Change of structure in financial time series, long range

dependence and the GARCH model. Technical report, Univ. Groningen.
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