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STATISTICAL INFERENCE FOR TIME-VARYING
ARCH PROCESSES1

BY RAINER DAHLHAUS AND SUHASINI SUBBA RAO

Universität Heidelberg

In this paper the class of ARCH(∞) models is generalized to the nonsta-
tionary class of ARCH(∞) models with time-varying coefficients. For fixed
time points, a stationary approximation is given leading to the notation “lo-
cally stationary ARCH(∞) process.” The asymptotic properties of weighted
quasi-likelihood estimators of time-varying ARCH(p) processes (p < ∞)
are studied, including asymptotic normality. In particular, the extra bias due
to nonstationarity of the process is investigated. Moreover, a Taylor expan-
sion of the nonstationary ARCH process in terms of stationary processes is
given and it is proved that the time-varying ARCH process can be written as
a time-varying Volterra series.

1. Introduction. To model volatility in time series, Engle [6] introduced the
ARCH model where the conditional variance is stochastic and dependent on past
observations. The ARCH model and several of its related models have gained
widespread recognition because they model quite well the volatility in financial
markets over relatively short periods of time (cf. [3, 13]). However, underlying all
these models is the assumption of stationarity. Now given the changing pace of
the world’s economy, modeling financial returns over long intervals using station-
ary time series models may be inappropriate. It is quite plausible that structural
changes in financial time series may occur, causing the time series over long in-
tervals to deviate significantly from stationarity. It is therefore plausible that, by
relaxing the assumption of stationarity in an adequate way, we may obtain a bet-
ter fit. In this direction, Drees and Stărică [5] have proposed the simple nonlinear
model Xt = µ+σ(t)Zt , where Zt are independent, identically distributed random
variables and σ(·) is a smooth function, which they estimate using a nonparametric
regression method. Essentially, though it is not mentioned, the authors are treat-
ing σ(t) as if it were of the form σ(t) = σ̃ (t/N), with N being the sample size.
Through this rescaling device it is possible to obtain a framework for a meaning-
ful asymptotic theory. Feng [7] has also studied time inhomogeneous stochastic
volatility, by introducing a multiplicative seasonal and trend component into the
GARCH model.
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In this paper we generalize the class of ARCH(∞) models (cf. [9, 16]) to mod-
els with time-varying parameters:

Xt = σ(t)Zt where σ(t)2 = a0(t) +
∞∑

j=1

aj (t)X
2
t−j ,(1)

and Zt are independent, identically distributed random variables with EZt = 0,
EZ2

t = 1. As in nonparametric regression and in other work on nonparametric sta-
tistics, we use the rescaling device to develop an asymptotic theory around such a
class of models, that is, we rescale the parameters to the unit interval [see (2) be-
low]. The resulting process is called the time-varying ARCH (tvARCH) process.
The same rescaling device has been used, for example, in nonparametric time se-
ries by Robinson [15] and by Dahlhaus [4] in his definition of local stationarity
which was essentially restricted to time-varying linear processes. We shall show
in Section 2 that the tvARCH process can be locally approximated by station-
ary ARCH processes. Therefore, this new class of tvARCH processes can also be
called locally stationary. The stationary ARCH approximation will later be used to
transfer results for stationary ARCH processes to the locally stationary situation.

In Section 3 we study parameter estimation for tvARCH(p) models by weighted
quasi-maximum likelihood methods. The nonstationarity of the process causes the
estimator to be biased. We will show that the bias can be explained in terms of
the derivatives of the tvARCH process. Furthermore, we will prove asymptotic
normality of the estimator.

In Section 4 we also define a special derivative of the tvARCH process and give
a Taylor expansion of the nonstationary tvARCH process in terms of stationary
processes. This derivative enables us to study more precisely the nonstationary
behavior of the process. Moreover, the derivative process turns out to be a solution
of a stochastic differential equation.

In Section 5 time-varying Volterra series are studied. They are used to prove the
existence of a tvARCH(∞) process and to derive the results of Section 4 on its
derivatives. It is worth noting that the results in Section 5 are of independent inter-
est and the methods used here can be generalized to other nonstationary processes.

In the Appendix we prove convergence theorems for ergodic stationary
processes and some specific convergence and approximation results for the like-
lihood process. We also derive mixing properties of several processes, including
derivatives of the likelihood process.

2. The time varying ARCH process. In this section we broaden the class of
ARCH(∞) models, by introducing nonstationary ARCH(∞) models with time-
dependent parameters. In order to obtain a framework for a meaningful asymptotic
theory, we rescale the parameter functions as in nonparametric regression and for
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(linear) locally stationary processes to the unit interval, that is, we assume

Xt,N = σt,NZt

(2)
where σ 2

t,N = a0

(
t

N

)
+

∞∑
j=1

aj

(
t

N

)
X2

t−j,N for t = 1, . . . ,N,

where Zt are independent, identically distributed random variables with EZt = 0,
EZ2

t = 1. We call the sequence of stochastic processes {Xt,N : t = 1, . . . ,N}
which satisfy (2) a time-varying ARCH (tvARCH) process. As shown below,
the tvARCH-process can be locally approximated by stationary ARCH processes.
Therefore, we also call tvARCH processes locally stationary.

We mention that the rescaling technique is mainly introduced for obtaining a
meaningful asymptotic theory, and by this device we can obtain adequate approx-
imations for the nonrescaled case. In particular, the rescaling does not effect the
estimation procedure. Furthermore, classical ARCH models are included as a spe-
cial case (if the parameters are constant in time).

We make the following assumptions.

ASSUMPTION 1. The sequence of stochastic processes {Xt,N : t = 1, . . . ,N}
has a time-varying ARCH representation defined in (2) where the parameters sat-
isfy the following properties: There exist constants 0 < ρ,Q,M < ∞, 0 < ν < 1
and a positive sequence {�(j)} such that infu a0(u) > ρ and

sup
u

aj (u) ≤ Q

�(j)
,(3)

Q

∞∑
j=1

1

�(j)
≤ (1 − ν),(4)

|aj (u) − aj (v)| ≤ M
|u − v|
�(j)

,(5)

where {�(j)} satisfies

∑
j≥1

j

�(j)
< ∞.

An example of such a positive sequence {�(j)} is

�(j) =
{

1, j = 1,
j2 log1+κ j, j > 1,

with some κ > 0 or �(j) = ηj for some η > 1. Condition (4) implies that E(X2
t,N )

is uniformly bounded over t and N .
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PROPOSITION 1. Under Assumption 1, {X2
t,N } defined in (2) has an almost

surely well-defined unique solution in the set of all causal solutions. The solution
has the form of a time-varying Volterra series expansion.

The proof for Proposition 1, as well as all the other proofs of results in this
section can be found in Section 5. We mention that a similar result also holds for
nonrescaled tvARCH(∞) processes.

It is worth noting that throughout this paper we shall be working with X2
t,N

rather than Xt,N , unless stated otherwise. This is because Xt,N can be randomly ei-
ther positive or negative, whereas X2

t,N is always positive, allowing it to be unique.
The smoothness of the parameters {aj (·)} guarantees that the process has (as-

ymptotically) locally a stationary behavior. We now make this notion precise. The
first point of interest is to study the stationary process which locally approximates
the tvARCH-process in some neighborhood of a fixed point t0 (or in rescaled
time u0). For each given u0 ∈ (0,1], the stochastic process {X̃t (u0)} is the sta-
tionary ARCH process associated with the tvARCH(∞) process at time point u0
if it satisfies

X̃t (u0) = σt (u0)Zt ,
(6)

where σt (u0)
2 = a0(u0) +

∞∑
j=1

aj (u0)X̃t−j (u0)
2

for all t ∈ Z. It is worth noting, if the parameters {aj (u0)} satisfy Assumption 1,
then {X̃t (u0)} is a stationary, ergodic ARCH(∞) process (cf. [9]).

Comparing (6) with (2), it seems clear that if t/N is close to u0, then X2
t,N and

X̃t (u0)
2 should be close and the degree of the approximation should depend both

on the rescaling factor N and the deviation |t/N − u0|. This is shown below.

THEOREM 1. Suppose {Xt,N } is a tvARCH process which satisfies Assump-
tion 1 and let X̃t (u0) be defined as in (6). Then there exist a stationary, ergodic,
positive process {Ut } independent of u0 with finite mean and a constant K inde-
pendent of t and N such that

|X2
t,N − X̃t (u0)

2| ≤ K

(∣∣∣∣ t

N
− u0

∣∣∣∣ + 1

N

)
Ut a.s.(7)

We mention that an explicit formula for Ut is given in (48). As a consequence
of (7), we have

X2
t,N = X̃t (u0)

2 + Op

(∣∣∣∣ t

N
− u0

∣∣∣∣ + 1

N

)
.

The bound in (7) allows us to approximate the local average of X2
t,N by an average

of X̃t (u0)
2 (this is of particular interest here, since the local average and weighted
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local average will be used frequently in later sections). For example, suppose |u0 −
t0/N | < 1/N and we average X2

t,N about a neighborhood whose length (2M + 1)

increases as N increases but where the ratio M/N → 0 as N → ∞. Then by
using (7), we have

1

2M + 1

M∑
k=−M

X2
t0+k,N = 1

2M + 1

M∑
k=−M

X̃t0+k(u0)
2 + RN,(8)

where RN is bounded by

|RN | ≤ K
M

N

{
1

2M + 1

M∑
k=−M

Ut0+k

}
P→ 0.

Thus, about the time point t0 the local average of a tvARCH process is asymp-
totically the same as the local average of the stationary ARCH process {X̃t (u0)

2}.
Therefore, by using (7), we can locally approximate the tvARCH process by a
stationary process. The above approximation can be refined by using derivative
processes as defined in Section 4. By using them, we can find, for example, an
expression for the asymptotic bias RN in (8).

3. The segment quasi-likelihood estimate. In this section we consider a ker-
nel type estimator of the parameters of a tvARCH(p) model given the sample
{Xt,N : t = 1, . . . ,N}. The process {Xt,N } is assumed to satisfy the representation

Xt,N = σt,NZt ,

(9)
where σ 2

t,N = a0

(
t

N

)
+

p∑
j=1

aj

(
t

N

)
X2

t−j,N for t = 1 . . . ,N,

where Zt are independent, identically distributed random variables with EZt = 0,
EZ2

t = 1. The order p is assumed known. We study the distributional properties
of the estimator, including asymptotic normality. Furthermore, we will investigate
the bias of the estimator due to nonstationarity of the tvARCH(p) process. We will
use the following assumptions.

ASSUMPTION 2. The sequence of stochastic processes {Xt,N : t = 1, . . . ,N}
has a tvARCH(p) representation defined by (9). Furthermore:

(i) The process satisfies Assumption 1.
(ii) For some δ > 0,

E
(|Zt |4(1+δ)) < ∞.(10)

(iii) Let � be the compact set

� =
{
α = (α0, α1, . . . , αp) :

p∑
j=1

αj ≤ 1, ρ1 ≤ α0 ≤ ρ2, ρ1 ≤ αi for i = 1, . . . , p

}
,
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where 0 < ρ1 ≤ ρ2 < ∞. For each u ∈ (0,1], we assume au ∈ Int(�), where au =
(a0(u), a1(u), . . . , ap(u)).

(iv) The third derivative of aj (·) exists with

sup
u

∣∣∣∣∂
iaj (u)

∂ui

∣∣∣∣ ≤ C

for i = 1,2,3 and j = 0,1, . . . , p, where C is a finite constant independent of i

and j .
(v) The random variable Zt has a positive density on an interval containing

zero.
(vi) [This assumption is only used in Theorem 3(ii)]

{E(Z12
0 )}1/6

p∑
j=1

Q

�(j)
≤ (1 − ν).

REMARK 1. (i) The conditions placed on the parameter space in Assump-
tion 2(iii) can be relaxed to include all vectors α = (α0, α1, . . . , αp), where αi = 0
for any i = 1, . . . , p, in the parameter space. By including these points, a method
for model selection could be derived. However, the cost for relaxing this assump-
tion is that additional moment conditions have to be placed on Xt,N .

(ii) We use Assumption 2(ii) to prove asymptotic normality of the estimator.
Typically for stationary ARCH processes, the result can be proved if E(Z4

t ) < ∞.
However, we require the mildly stronger assumption E(|Z|4+δ

t ) < ∞ to prove a
similar result for sums of martingale arrays as opposed to sums of martingale dif-
ferences used in the stationary situation (cf. [10], Theorem 3.2). Assumption 2(vi)
means that both E(X12

t,N ) and E(X̃t (u)12) are uniformly bounded in t,N and u.
We refer also to the comments on the moment assumptions in Section 6.

(iii) In Section 5 we apply a theorem of Basrak, Davis and Mikosch [1], who
gave conditions under which a GARCH(p, q) process is mixing. Assumption 2(iii)
is sufficient for the Lyapunov exponent of the random recurrence matrix associ-
ated with {X̃t (u)} to be negative. In addition, Assumption 2(iii), (v) is sufficient
to ensure that the ARCH process {X̃t (u)} is α-mixing of rate −∞ (see [1] and
references therein).

We now define the segment (kernel) estimator of a(u0) for each u0 ∈ (0,1). Let
t0 ∈ N such that |u0 − t0/N | < 1/N . The estimator considered in this section is the
minimizer of the weighted conditional likelihood

Lt0,N (α) :=
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
�k,N(α),(11)
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where

�k,N(α) = 1

2

(
logwk,N(α) + X2

k,N

wk,N(α)

)
(12)

with wk,N(α) = α0 +
p∑

j=1

αjX
2
k−j,N

and W : [−1/2,1/2] → R is a kernel function of bounded variation with∫ 1/2
−1/2 W(x)dx = 1 and

∫ 1/2
−1/2 xW(x)dx = 0. That is, we consider

ât0,N = arg min
α∈�

Lt0,N (α).(13)

Obviously �t,N(α) is the conditional likelihood of Xt,N given Xt−1,N , . . . ,Xt−p,N

and the parameters α = (α0, . . . , αp)T , provided the Zt are normally distributed.
All results below also hold if the Zt are not normally distributed but simply satisfy
Assumption 2. For this reason (and the fact that the conditional likelihood is not the
full likelihood), the likelihood is called a quasi-likelihood. For later reference, we
list the derivatives of �k,N(α). Let ∇ = ( ∂

∂α0
, . . . , ∂

∂αp
)T . Since ∇2wk,N(α) = 0,

we have

�k,N(α) = 1

2

{
log(wk,N(α)) + X2

k,N

wk,N(α)

}
,(14)

∇�k,N(α) = 1

2

{∇wk,N(α)

wk,N(α)
− X2

k,N∇wk,N(α)

wk,N(α)2

}
,(15)

∇2�k,N(α) = 1

2

{
−∇wk,N(α)∇wk,N(α)T

wk,N(α)2
(16)

+ 2
X2

k,N∇wk,N(α)∇wk,N(α)T

wk,N(α)3

}
.

ât0,N is regarded as an estimator of at0/N = (a0(t0/N), . . . , ap(t0/N))T or of au0 ,
where |u0 − t0/N | < 1/N .

In the derivation of the asymptotic properties of this estimator we make use
of the local approximation of X2

t,N by the stationary process X̃t (u0)
2 defined in

Section 2. Similarly to the above, we therefore define the weighted likelihood

L̃N(u0,α) :=
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
�̃k(u0,α),(17)

where |u0 − t0/N | < 1/N and

�̃t (u0,α) = 1

2

(
log w̃t (u0,α) + X̃t (u0)

2

w̃t (u0,α)

)
(18)

with w̃t (u0,α) = α0 +
p∑

j=1

αj X̃t−j (u0)
2.
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It is obvious that the same formulas as in (14)–(16) also hold for �̃k(u0,α) with
X2

k,N and wk,N(α) replaced by X̃k(u0)
2 and w̃k(u0,α), respectively.

It is shown below that both Lt0,N (α) and L̃N(u0,α) converge to

L(u0,α) := E
(
�̃0(u0,α)

)
(19)

as N → ∞, b → 0, bN → ∞ and |u0 − t0/N | < 1/N . It is easy to show that
L(u0,α) is minimized by α = au0 .

Furthermore, let

Bt0,N (α) := Lt0,N (α) − L̃N(u0,α)

=
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)(
�k,N(α) − �̃k(u0,α)

)
.

(20)

Since L̃N(u0,α) is the likelihood of the stationary approximation, X̃t (u0)Bt0,N (α)

is a bias caused by the deviation from stationarity. Lemma A.6 implies that
Bt0,N (α) = Op(b). A better rate will be derived by a Taylor expansion in Propo-
sition 3. Let

�(u0) = 1

2
E

{∇w̃0(u0,au0)∇w̃0(u0,au0)
T

w̃0(u0,au0)
2

}
.(21)

Since X̃k(u0)/w̃k(u0,a0) = Z2
k and Z2

k is independent of w̃k(u0,a0), we have

E
(∇2�̃0

(
u0,au0

)) = −�(u0)

and

E
(∇ �̃0

(
u0,au0

)∇ �̃0
(
u0,au0

)T ) = var(Z2
0)

2
�(u0).

If Zt is Gaussian, then var(Z2
0) = 2.

LEMMA 1. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(p) process which sat-
isfies Assumption 2(i), (iii) and let L̃N(u0,α), L(u0,α) and Bt0,N be as defined
by (17), (19) and (20), respectively. Then

sup
α∈�

|L̃N(u0,α) − L(u0,α)| P→ 0,(22)

sup
α∈�

∣∣Bt0,N (α)
∣∣ P→ 0,(23)

sup
α∈�

|∇2L̃N(u0,α) − ∇2L(u0,α)| P→ 0(24)

and

sup
α∈�

∣∣∇2Bt0,N (α)
∣∣ P→ 0,(25)

where b → 0 and bN → ∞ as N → ∞.
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A direct implication of the lemma above is the following corollary.

COROLLARY 1. Let Lt,N (α) be as defined as in (11). Then under the assump-
tions in Lemma 1, we have

sup
α∈�

∣∣Lt0,N (α) − L(u0,α)
∣∣ P→ 0(26)

and

sup
α∈�

∣∣∇2Lt0,N (α) − ∇2L(u0,α)
∣∣ P→ 0,(27)

where b → 0, bN → ∞ as N → ∞.

In the theorem below we show that ât0,N is a consistent estimator of au0 .

THEOREM 2. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(p) process which
satisfies Assumption 2(i), (iii) and the estimator ât0,N is as defined in (13). Then if
|u0 − t0/N | < 1/N , we have

ât0,N
P→ a(u0),

where b → 0 and bN → ∞ as N → ∞.

PROOF. By using (26), we have pointwise convergence Lt0,N (a)
P→ L(u0,a).

Since au0 = arg minα L(u0,α), we have

Lt0,N

(
ât0,N

) ≤ Lt0,N

(
au0

) P→ L
(
u0,au0

) ≤ L
(
u0, ât0,N

)
.

With (26), we now obtain Lt0,N (ât0,N )
P→ L(u0,au0). From the continuity of

L(u0, ·) and the compactness of the parameter space, we can now conclude

ât0,N
P→ au0 , provided L(u0, ·) has a unique solution. Since L(u0, ·) is the same

function as in the stationary case, this follows from Lemma 5.5 of [2]. �

We now prove asymptotic normality of the estimator with the usual Taylor ex-
pansion argument. We have

∇Lt0,N

(
ât0,N

)
i − ∇Lt0,N

(
au0

)
i = {∇2Lt0,N

(
āi
t0,N

)(
ât0,N − au0

)}
i ,(28)

with āi
t0,N

between ât0,N and au0 . Since au0 is in the interior of �, we have√
bN∇Lt0,N (ât0,N )i

P→ 0. Since āi
t0,N

P→ au0 and supα∈� |∇2Lt0,N (α) −
∇2L(u0,α)| P→ 0 [see (27)], then ∇2Lt0,N (āi

t0,N
)

P→ −�(u0). Note that �(u0)

is nonsingular. This follows from Lemma 5.7 of [2] since �(u0) is the same as in
the stationary case.
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Therefore, the distributional properties of ât0,N − au0 are determined by
∇Lt0,N (au0). By using (20), we see that

∇Lt0,N

(
au0

) = ∇L̃N

(
u0,au0

) + ∇Bt0,N

(
au0

)
,(29)

which is essentially a decomposition into a stochastic and a bias part [although
∇Bt0,N (au0) is also random, but its variance is of a lower order—see the details
below]. The bias measures the deviation from stationarity and will disappear for
a suitable choice of bandwidth b (see Proposition 2 and Theorem 3 below). By
substituting (29) into (28), we have

√
bN

((
ât0,N − au0

) + �(u0)
−1∇Bt0,N

(
au0

))
= √

bN�(u0)
−1∇L̃N

(
u0,au0

) + op(1).

Thus, the asymptotic distribution of (ât0,N − au0) is determined by ∇L̃N(u0,au0).
Note that this is the gradient of the likelihood of the stationary process X̃t (u0)

2

however, with kernel weights. Since

∇ �̃k

(
u0,au0

) = 1

2

(1 − Z2
k )∇w̃k(u0,au0)

w̃k(u0,au0)
(30)

is a martingale difference, ∇L̃N(u0,au0) is the weighted sum of martingale dif-
ferences.

PROPOSITION 2. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(p) process
which satisfies Assumption 2(i), (ii), (iii) and L̃N(u0,au0) is as defined in (17).
Then if |u0 − t0/N | < 1/N we have

√
bN∇L̃N

(
u0,au0

) D→ N

(
0,w2

var(Z2
0)

2
�(u0)

)
,(31)

where b → 0, bN → ∞, N → ∞ and w2 = ∫ 1/2
−1/2 W(x)2 dx.

PROOF. Since ∇L̃N(u0,au0) is the weighted sum of martingale differences,
the result follows from the martingale central limit and the Cramér–Wold device. It
is straightforward to check the conditional Lindeberg condition and the conditional
variance condition. We omit the details. �

We now consider the stochastic bias ∇Bt0,N (au0). By using (30) and
Lemma A.6, we immediately get the relation

∇Bt0,N

(
au0

) = Op(b).(32)

This bound together with the Proposition 2 leads to the assertion of Theorem 3(i)
below. As mentioned above, the stochastic bias is a measure for the deviation of
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the process {�t,N (au0)} from stationarity. This deviation depends on the rate of
change of the parameters {aj (u)}. Under stronger moment conditions, we will now
determine this bias. To achieve this, we replace ∇�k,N(au0) by ∇ �̃k(

k
N

,au0):

∇Bt0,N

(
au0

) = ∑
k

1

bN
W

(
t0 − k

bN

)(
∇ �̃k

(
k

N
,au0

)
− ∇ �̃k

(
u0,au0

)) + RN,(33)

where

RN = ∑
k

1

bN
W

(
t0 − k

bN

)(
∇�k,N

(
au0

) − ∇ �̃k

(
k

N
,au0

))
.

Corollary A.1 now implies∣∣∣∣∇�k,N

(
au0

) − ∇ �̃k

(
k

N
,au0

)∣∣∣∣ ≤ K

N

(
Uk + (1 + Z2

k )

p∑
j=1

Uk−j

)
,

with some constant K uniformly in k. Lemma 1 together with the independence
of Z2

k and Uk−j now imply

E(R2
N)1/2 = O

(
1

N

)
.

Suppose for each j = 0, . . . , p the third derivative of aj (·) exists and is uniformly
bounded. Then by using Corollary 3 and taking a Taylor expansion of ∇ �̃k(u,au0)

about u = u0, we have

∇ �̃k

(
k

N
,au0

)
− ∇ �̃k

(
u0,au0

) =
(

k

N
− u0

)
∂∇ �̃k(u,au0)

∂u

⌋
u=u0

+ (k/N − u0)
2

2

∂2∇ �̃k(u,au0)

∂u2

⌋
u=u0

+ (k/N − u0)
3

3!
∂3∇ �̃k(u,au0)

∂u3

⌋
u=Ũk

,

(34)

where the random variable Ũk ∈ (0,1]. A detailed investigation of the different
terms now leads to the following result on ∇Bt0,N (au0). We mention that, in par-
ticular, the expectation of the first term cancels out.

PROPOSITION 3. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(p) process
which satisfies Assumption 2 and W is a kernel function of bounded variation
with

∫ 1/2
−1/2 W(x)dx = 1 and

∫ 1/2
−1/2 W(x)x dx = 0. Then if |u0 − t0/N | < 1/N , we

have

E
(∇Bt0,N

(
au0

)) = 1

2
b2w(2)

∂2∇L(u,au0)

∂u2

⌋
u=u0

+ O

(
b3 + 1

N

)
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and

var
(∇Bt0,N

(
au0

)) = O

(
b6 + 1

N

)
,

where w(2) = ∫ 1/2
−1/2 W(x)x2 dx.

A detailed proof can be found in Appendix A.4.
Propositions 2 and 3 and (32) give us the distributional properties of the estima-

tor ât0,N , which we summarize in the theorem below.

THEOREM 3. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(p) process which
satisfies Assumption 2(i), (ii), (iii) and W is a kernel function of bounded variation
with

∫ 1/2
−1/2 W(x)dx = 1 and

∫ 1/2
−1/2 W(x)x dx = 0. Then if |u0 − t0/N | < 1/N , we

have the following:

(i) If b3 � N−1, then
√

bNBt0,N (au0)
P→ 0 and

√
bN

(
ât0,N − au0

) D→ N

(
0,w2

var(Z2
0)

2
�(u0)

−1
)
.

(ii) If in addition Assumption 2(iv), (v), (vi) holds and b13 � N−1, then
√

bN�(u0)
−1∇Bt0,N

(
au0

) = √
bNb2µ(u0) + op(1)

and

√
bN

(
ât0,N − au0

) + √
bNb2µ(u0)

D→ N

(
0,w2

var(Z2
0)

2
�(u0)

−1
)
,(35)

where

µ(u0) = 1

2
w(2)�(u0)

−1 ∂2∇L(u,au0)

∂u2

⌋
u=u0

.(36)

REMARK 2. (i) We recall the structure of this result: The asymptotic Gaussian
distribution is the same as for the stationary approximation. In addition, we have
a bias term which comes from the deviation of the true process from the station-
ary approximation on the segment. In particular, this bias term is zero if the true
process is stationary. A simple example is given below. By estimating and mini-
mizing the mean squared error (i.e., by balancing the variance and the bias due to
nonstationarity on the segment), we may find an estimator for the optimal segment
length.

(ii) If EZ4
0 = 3, as in the case of normally distributed Zt , then

√
bN

(
ât0,N − au0

) + √
bNb2µ(u0)

D→ N
(
0,w2�(u0)

−1)
.
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(iii) It is clear from Propositions 2 and 3 that

E
∥∥�(u0)

−1Bt0,N

(
au0

)∥∥2
2 = b4‖µ(u0)‖2

2 + O

(
b6 + 1

N

)

and

E
∥∥�(u0)

−1∇L̃N

(
u0,au0

)∥∥2
2 = w2

var(Z2
0)

2bN
trace(�(u0)

−1) + o

(
1

bN

)
.

Therefore, if b13 � N−1, using the above, we conjecture that

E
∥∥ât0,N − au0

∥∥2
2

= b4‖µ(u0)‖2
2 + w2

var(Z2
0)

2bN
trace(�(u0)

−1) + o

(
b4 + 1

bN

)
.

(37)

However, this is very hard to prove. The b which minimizes the conjectured mean
square error would be the theoretical optimal bandwidth (i.e., the optimal segment
length).

(iv) We illustrate the above results with an example. We first consider the
tvARCH(0) process

Xt,N = σt,NZt , σ 2
t,N = a0

(
t

N

)
,

which Drees and Stărică [5] have also studied. In this case ∂X̃t (u)2

∂u
= a′

0(u)Z2
t and

under Assumption 2, we have

∂2∇L(u,au0)

∂u2

⌋
u=u0

= −1

2

a′′
0 (u0)

a0(u0)2 and �(u0) = 1

2a0(u0)2 ,

that is,

µ(u0) = −1
2w(2)a′′

0 (u0).

This example illustrates well how the bias is linked to the nonstationarity of the
process—if the process were stationary, the derivatives of a0(·) would be zero,
causing the bias also to be zero. Conversely, sudden variations in a0(·) about the
time point u0 would be reflected in a′′

0 (u0) and manifest as a large µ(u0). Straight-
forward minimization of the first two summands in (37) leads to the optimal band-
width, which in this case (and for Gaussian Zt ) takes the form

bopt =
(

2w2

w(2)2

)1/5

N−1/5
[
a0(u0)

a′′
0 (u0)

]2/5

,

leading to a large bandwidth if a′′
0 (u0) is small and vice versa. Thus, the optimal

choice of the bandwidth (of the segment length) depends on the degree of sta-
tionarity of the process. For general tvARCH(p) processes µ(u0) is very hard to
evaluate. Furthermore, it assumes a very complicated form.
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(v) It is of interest to investigate whether the differences in the kernel-QML
at each time point are because the true ARCH parameters are time-varying or are
simply due to random variation in the estimation method. From a practical point of
view, one could evaluate the sum of squared deviations between the kernel-QML
estimator at each time point and the global QML estimator. We conjecture that the
asymptotic distribution under the null hypothesis of stationarity is a chi-square.

4. The derivative process. A key element to the proof of Theorem 3 is the
notion of the derivative of the process X̃t (u)2 with respect to u and the result-
ing Taylor expansion for the nonstationary process X2

t,N in terms of stationary
processes as given in Corollary 2 below. Since these “derivative processes” are
of general interest, we introduce them in this section for general tvARCH(∞)

processes Xt,N as given in (2) and X̃t (u) given in (6). We need the following
stronger regularity conditions on the parameters.

ASSUMPTION 3. The third derivative of {aj (·)} exists. Furthermore,

sup
u

∣∣∣∣∂
iaj (u)

∂ui

∣∣∣∣ ≤ C

�(j)
for i = 1,2,3 and j = 0,1, . . . ,(38)

where �(j) is defined as in Assumption 1 and C is a finite constant independent of
i and j .

THEOREM 4. Suppose Assumptions 1 and 3 hold and let {X̃t (u)} be defined as

in (6). Then the derivatives { ∂X̃t (u)2

∂u
}, { ∂2X̃t (u)2

∂u2 } and { ∂3X̃t (u)2

∂u3 } are almost surely
well defined unique stationary stochastic processes for each u ∈ (0,1). Further-

more, ∂X̃t (u)2

∂u
is almost surely the unique solution of the stochastic differential

equation

∂X̃t (u)2

∂u
=

(
a′

0(u) +
∞∑

j=1

a′
j (u)X̃t−j (u)2 +

∞∑
j=1

aj (u)
∂X̃t−j (u)2

∂u

)
Z2

t ,(39)

where a′
j (u) denotes the derivative of aj (u) with respect to u.

Note that (39) is just the derivative of (6) with σ̃t (u)2 replaced by X̃t (u)2/Z2
t .

An explicit formula for ∂X̃t (u)2

∂u
is given in (51). Similar expressions also hold for

the second and third derivatives. For example, if all the derivatives of aj (·) were
zero also the derivative process would be zero [in this case X2

t,N would be station-

ary and X̃t (u)2 = X2
t,N for all u].

An important consequence of Theorem 4 is that it allows us to make a Taylor
expansion of X̃t (u)2 about u0 (rigourously proved in Section 5), to give

X̃t (u)2 = X̃t (u0)
2 + (u − u0)

∂X̃t (u)2

∂u

⌋
u=u0

+ 1

2
(u − u0)

2 ∂2X̃t (u)2

∂u2

⌋
u=u0

+ Op

(
(u − u0)

3)
.

(40)



STATISTICAL INFERENCE FOR TIME-VARYING ARCH PROCESSES 1089

An interesting feature of the Taylor expansion in (40) is that it does not depend
on the existence of moments of X̃t (u)2, unlike other types of series expansions.
Instead the expansion depends on the smoothness of the parameters aj (·).

The approximation in (7), where X2
t,N = X̃t (

t
N

)2 + Op(1/N), and the Taylor
expansion in (40) lead to the corollary below.

COROLLARY 2. Suppose {Xt,N } is a tvARCH process which satisfies Assump-
tions 1 and 3 and let X̃t (u) be defined as in (6). Then for any u0 ∈ (0,1], we have

X2
t,N = X̃t (u0)

2 +
(

t

N
− u0

)
∂X̃t (u)2

∂u

⌋
u=u0

+ 1

2

(
t

N
− u0

)2 ∂2X̃t (u)2

∂u2

⌋
u=u0

+ Op

((
t

N
− u0

)3

+ 1

N

)
.

(41)

The nice feature of the result of Corollary 2 is that it gives a Taylor expansion of
the nonstationary process X2

t,N around X̃t (u0)
2 in terms of stationary processes.

This is particularly nice since it allows use of well-known results for stationary
processes (such as the ergodic theorem) in describing properties of Xt,N . A sim-
ilar result also holds for higher-order expansions with higher-order derivatives.
However, in this paper only a second-order expansion is needed.

As an example, we now use (41) to derive a tighter bound for the remain-
der RN in (8). The effect is similar as in nonparametric regression: Due to the
anti-symmetry of the kernel weights, the expectation of the first term falls out. By
using (41), we have, for |t0/N − u0| < 1/N ,

RN = 1

2M + 1

M∑
k=−M

k

N

∂X̃t0+k(u)2

∂u

⌋
u=u0

+ 1

2M + 1

M∑
k=−M

1

2

(
k

N

)2 ∂2X̃t0+k(u)2

∂u2

⌋
u=u0

+ Op

((
M

N

)3

+ 1

N

)

= T1 + T2 + Op

((
M

N

)3

+ 1

N

)
.

The expectation of T1 is zero. Under the additional condition E(Z4
0)1/2 ∑

j Q/

�(j) ≤ (1 − ν), { ∂X̃t (u)2

∂u
} is a short memory process in which case var(T1) =

O(M/N2) (see Lemmas A.7 and A.10). Thus, T2 dominates T1 in probability and
we have

RN = 1

2M + 1

M∑
k=−M

1

2

(
k

N

)2 ∂2X̃t0+k(u)2

∂u2

⌋
u=u0

+ Op

((
M

N

)3

+
(√

M

N

))
.

Note that this is a (stochastic) bias of the approximation in (8).
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Theorem 4 and Corollary 2 can easily be generalized to include derivatives of
functions of tvARCH processes. By using the chain and product rules, we have
the generalization below, which we use to study the quasi-likelihood defined in
Section 3.

COROLLARY 3. Suppose Assumptions 1 and 3 hold, let {X̃t (u)} be as defined
in (6) and f : Rd → R, where the first, second and third derivatives of f exist.

(i) Then

∂f (X̃t1(u)2, . . . , X̃td (u)2)

∂u
=

d∑
i=1

∂X̃ti (u)2

∂u

∂f

∂X̃ti (u)2
,

∂2f (X̃t1(u)2, . . . , X̃td (u)2)

∂u2 =
d∑

i=1

∂2X̃ti (u)2

∂u2

∂f

∂X̃ti (u0)2

+
d∑

i,j=1

∂X̃ti (u)2

∂u

∂X̃tj (u)2

∂u

× ∂2f

∂X̃ti (u0)2 ∂X̃tj (u0)2
.

(42)

Furthermore, by using the product and chain rules, similar expressions can be

obtained for ∂3f

∂u3 .

(ii) Suppose f : Rd → R is differentiable with uniformly bounded third deriva-
tive. Then we have

f
(
X2

t+t1,N
, . . . ,X2

t+td ,N

) = f (X̃t (u)2) +
(

t

N
− u0

)
∂f (X̃t (u)2)

∂u

⌋
u=u0

+ (t/N − u0)
2

2

∂2f (X̃t (u)2)

∂u2

⌋
u=u0

+ Op

((
t

N
− u0

)3

+ 1

N

)
,

(43)

where X̃t (u)2 := (X̃t+t1(u)2, . . . , X̃t+td (u)2)T .

5. Volterra expansions of tvARCH processes. In this section we prove the
existence and uniqueness of the process Xt,N and of the derivative process from
Section 4. This is done by means of Volterra expansions. The methods used here
can easily be generalized to include other nonstationary stochastic processes which
have as their solution a Volterra expansion. Therefore, the results and methods in
this section are of independent interest. A treatise of ordinary Volterra expansions
can be found in [14].
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Giraitis, Kokoszka and Leipus [9] have shown that a unique solution of X̃t (u)2,
defined in (6), is almost surely the Volterra series given by

X̃t (u)2 = a0(u)Z2
t + ∑

k≥1

m̃t (u, k),(44)

where

m̃t (u, k) = ∑
j1,...,jk≥1

a0(u)

(
k∏

r=1

ajr (u)

)
k∏

r=0

Z2
t−∑r

s=1 js

= ∑
jk<···<j0:j0=t

g̃u(k, j0, j1, . . . , jk)

k∏
i=0

Z2
ji
,

with

g̃u(k, j0, j1, . . . , jk) = a0(u)

k∏
i=1

a(ji−1−ji )(u).

We now show a similar result is true for X2
t,N . Let aj (u) = 0 for u < 0 and

j ≥ 0. A formal expansion of X2
t,N , defined in (2), gives

X2
t,N = a0

(
t

N

)
Z2

t + ∑
k≥1

mt,N(k),(45)

where

mt,N(k) = ∑
j1,...,jk≥1

a0

(
t − ∑k

s=1 js

N

)(
k∏

r=1

ajr

(
t − ∑r−1

s=1 js

N

))(
k∏

r=0

Z2
t−∑r

s=1 js

)

= ∑
jk<···<j0 : j0=t

gt,N (k, j0, j1, . . . , jk)

k∏
i=0

Z2
ji
,

with

gt,N(k, j0, j1, . . . , jk) = a0

(
jk

N

) k∏
i=1

a(ji−1−ji )

(
ji−1

N

)
.

We stated in Proposition 1 that the tvARCH process has a unique solution. We now
prove this result by showing that (45) is the unique solution. The proof in many
respects is close to the proof of Theorem 2.1 in [9].

PROOF OF PROPOSITION 1. We first show that (45) is well defined. Since (45)
is the sum of positive random variables and the coefficients are also positive, we
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only need to show that the expectation of (45) is finite. By using (3), (4) and the
monotone convergence theorem, a bound for the expectation of (45) is

E(X2
t,N ) ≤ sup

u
a0(u) + sup

u
a0(u)

∞∑
k=1

∑
jk<···<j0 : j0=t

k∏
i=1

Q

�(ji − ji−1)

≤ sup
u

a0(u)

[
1 +

∞∑
k=1

(1 − ν)k

]
< ∞.

(46)

Furthermore, it is not difficult to see that X2
t,N is a well-defined solution of (2).

To show uniqueness of X2
t,N , we must show that any other solution is equal

to X2
t,N with probability one. Suppose Y 2

t,N is a solution of (2). By recursively
applying relation (2) r times to Y 2

t,N , we have

Y 2
t,N = a0

(
t

N

)
+

r−1∑
k=1

mt,N(k)+ ∑
jr<···<j0 : j0=t

gt,N(r, j0, . . . , jr)
Y 2

jr ,N

a0(jr/N)

r−1∏
i=0

Z2
ji
.

Thus, the difference between Y 2
t,N and X2

t,N is

X2
t,N − Y 2

t,N = Ar − Br,

where

Ar =
∞∑

k=r

mt,N(k)

and

Br = ∑
jr<···<j0 : j0=t

gt,N (r, j0, . . . , jr)
Y 2

jr ,N

a0(jr/N)

r−1∏
i=0

Z2
ji
.

We now show, for any ε > 0, that
∑∞

r=1 P(|Ar − Br | > ε) < ∞. By us-
ing (3) and (4), we have E(Ar) ≤ C(1 − ν)r . Furthermore, since Y 2

t,N is

causal, Y 2
jr ,N

and
∏r−1

i=0 Z2
ji

are independent (if i < r , then ji > jr ). Therefore,

E(Y 2
jr ,N

∏r−1
i=0 Z2

ji
) = E(Y 2

jr ,N
) and we have

E(Br) = ∑
jr<···<j0 : j0=t

gt,N(r, j0, . . . , jr)
E(Y 2

jr ,N
)

a0(jr/N)

≤ 1

infu a0(u)
sup
t,N

E(Y 2
t,N )(1 − ν)r .

Now by using the Markov inequality, we have P(Ar > ε) ≤ C1(1 − ν)r/ε and
P(Br > ε) ≤ C1(1 − ν)r/ε for some constant C1. Therefore, P(|Ar − Br | > ε) ≤
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C2(1 − ν)r/ε. Thus,
∑∞

r=1 P(|Ar − Br | > ε) < ∞ and by the Borel–Cantelli
lemma, the event {|Ar − Br | > ε} can occur only finitely often with probability
one. Since this is true for all ε > 0, we have Yt,N

a.s.= Xt,N and therefore the re-
quired result. �

REMARK 3. It is worth noting that mt,N(k) can be obtained by using the re-
cursion

mt,N(k) = Z2
t

∑
j≥1

aj

(
t

N

)
mt−j,N (k − 1) for k ≥ 2,

with the initial condition

mt,N(1) = Z2
t

∑
j≥1

aj

(
t

N

)
Z2

t−j .

Our object now is to prove Theorem 1, that is, to bound the difference between
X2

t,N and X̃t (u0)
2. More precisely, we will prove under Assumption 1 that

|X2
t,N − X̃t (u0)

2| ≤ K

(∣∣∣∣ t

N
− u0

∣∣∣∣ + 1

N

)
Ut,(47)

where

Ut = Z2
t +

∞∑
k=1

Qk−1
∑

jk<···<j0 : j0=t

k|j0 − jk|∏k
i=1 �(ji−1 − ji)

k∏
i=0

Z2
ji

(48)

is a stationary ergodic positive process with finite expectation.

PROOF OF THEOREM 1. To prove (47), we use the triangle inequality to get

|X2
t,N − X̃t (u0)

2| ≤
∣∣∣∣X2

t,N − X̃t

(
t

N

)2∣∣∣∣ +
∣∣∣∣X̃t

(
t

N

)2

− X̃t (u0)
2
∣∣∣∣

and consider bounding |X2
t,N − X̃t (

t
N

)2| and |X̃t (
t
N

)2 − X̃t (u0)
2| separately. By

using (44) and (45), we have
∣∣∣∣X2

t,N − X̃t

(
t

N

)2∣∣∣∣
≤ ∑

k≥1

∑
jk<···<j0 : j0=t

|gt,N(k, j0, j1, . . . , jk)

− g̃t/N(k, j0, j1, . . . , jk)|
k∏

i=0

Z2
ji
.

(49)
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We notice j0/N = t/N . By successively replacing a(ji−1−ji )(
ji−1
N

) by

a(ji−1−ji )(
j0
N

), by using (3), the Lipschitz continuity of the parameters in (5) and
that (j0 − jk) ≥ (j0 − ji) (for i ≤ k) and (j0 − jk) = ∑k

i=1(ji−1 − ji), we have

|gt,N(k, j0, j1, . . . , jk) − g̃t/N(k, j0, j1, . . . , jk)|
≤ KQk−1 k|j0 − jk|

N
∏k

i=1 �(ji − ji−1)
,

(50)

where K is a finite constant. Therefore, by using (49) and (50), we have∣∣∣∣X2
t,N − X̃t

(
t

N

)2∣∣∣∣ ≤ K
1

N
Ut .

Now we bound |X̃t (
t
N

) − X̃t (u0)
2|. By using (44), we have∣∣∣∣X̃t (u0)

2 − X̃t

(
t

N

)2∣∣∣∣
≤

∣∣∣∣a0(u0) − a0

(
t

N

)∣∣∣∣Z2
t

+ ∑
k≥1

∑
jk<···<j0 : j0=t

∣∣g̃u0(k, j0, j1, . . . , jk) − g̃t/N (k, j0, j1, . . . , jk)
∣∣ k∏
i=0

Z2
ji
.

By using similar methods to those given above, we have∣∣∣∣X̃t (u0)
2 − X̃t

(
t

N

)2∣∣∣∣ ≤ K

∣∣∣∣ t

N
− u0

∣∣∣∣Ut .

Therefore, we have shown (47).
We now show that Ut is a well-defined stochastic process. Since Ut is the sum

of positive random variables, we only need to show that E(Ut ) < ∞. Taking the
expectation of Ut , using (4) and the independence of {Z2

t }, we have

E(Ut ) = 1 +
∞∑

k=1

∑
jk<···<j0 : j0=t

kQk−1 |j0 − jk|∏k
i=1 �(ji − ji−1)

≤ 1 + L

∞∑
k=1

k2(1 − ν)k−1 < ∞,

where L = ∑∞
j=1 j/�(j) [L is finite by definition of �(j)]. Thus, {Ut } is a well-

defined process with finite mean. By using Stout [17], Theorem 3.5.8, we can show
that {Ut } is an ergodic process. Hence, we have the result. �

We now prove Theorem 4 on the existence of the derivatives of X̃t (u)2 with
respect to u. We will show that this is given by sums of the derivatives of the
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m̃t (u, k) terms in (44), that is,

∂X̃t (u)2

∂u
= a′

0(u)Z2
t + a′

0(u)
∑
k≥1

∑
j1,...,jk≥1

(
k∏

r=1

ajr (u)

)
k∏

r=0

Z2
t−∑r

s=1 js

+ a0(u)
∑
k≥1

k∑
n=1

∑
j1,...,jk≥1

a′
jn

(u)

(
k∏

r=1,r �=n

ajr (u)

)
k∏

r=0

Z2
t−∑r

s=1 js
.

(51)

This leads to the Taylor expansions of X̃t (u)2 [as stated in (40)] and finally to the
Taylor-type representation of X2

t,N stated in Corollary 2. The latter two results are

proved below. Throughout the rest of the section X2
t,N (ω), X̃t (u,ω)2, and so on,

denote a specific realization of X2
t,N , X̃t (u)2.

PROOF OF THEOREM 4. From (44), we know that X̃t (u)2 has almost surely
a Volterra series expansion, given by (44), as its unique solution. Therefore, there
exists a subset N1(u) of the event space where P(N1(u)c) = 1 and

X̃t (u,ω)2 = a0(u)Zt(ω)2

+ a0(u)
∑
k≥1

∑
j1,...,jk≥1

(
k∏

r=1

ajr (u)

)
k∏

r=0

Zt−∑r
s=1 js

(ω)2
(52)

∀ω ∈ N1(u)c. Furthermore, since the random process {Ut }, defined in (48), is well
defined (see Theorem 1), there exists a set N2 with P(N c

2 ) = 1 and Ut(ω) finite,
for all ω ∈ N c

2 . For ω ∈ N3(u)c = N1(u)c ∩ N c
2 , we consider realizations of the

right-hand side of (51) and

Vt = sup
u

|a′
0(u)|Z2

t + sup
u

|a′
0(u)| ∑

k≥1

∑
j1,...,jk≥1

(
k∏

r=1

sup
u

ajr (u)

)
k∏

r=0

Z2
t−∑r

s=1 js

+ sup
u

a0(u)
∑
k≥1

k∑
n=1

∑
j1,...,jk≥1

sup
u

∣∣a′
jn

(u)
∣∣( k∏

r=1,r �=n

sup
u

ajr (u)

)
k∏

r=0

Z2
t−∑r

s=1 js
.

We will now use the following result: Suppose f (x) = ∑∞
j=1 gj (x) for x ∈ [0,1],

where f is a deterministic function. It is well known if
∑∞

j=1 g′
j (x) is uniformly

convergent [which is true if
∑∞

j=1 supx |g′
j (x)| < ∞], the derivatives are finite

and
∑∞

j=1 gj (x) converges at least at one point, then f ′(x) = ∑∞
j=1 g′

j (x). We

now use this result to show that the derivative of X̃t (u)2 is well defined. Suppose
ω ∈ N3(u)c. Then by using (52) and (48), we have

X̃t (u,ω)2 ≤ max(1,Q) sup
u

a0(u)Ut(ω) < ∞,
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where the summands in Ut(ω) are absolutely and uniformly summable. Further-
more, under Assumption 3 and (4), we have, for all ω ∈ N3(u)c,

Vt(ω) ≤
(

sup
u

|a′
0(u)| + C

Q
sup
u

|a0(u)|
)
Ut(ω) < ∞.

Therefore, ∂X̃t (u,ω)2

∂u
= Yt (u,ω) is almost surely given by (51). By using [17], The-

orem 3.5.8, it is clear { ∂X̃t (u)2

∂u
} is an ergodic process.

To show that (51) is the unique solution of (39), we can use the same method as
given in the proof of Theorem 1. We omit the details here.

We can use the same method as described above to show that { ∂2X̃t (u)2

∂u2 } and

{ ∂3X̃t (u)2

∂u3 } are uniquely well-defined ergodic processes. Again, we omit the details.
�

At this point it is easy to derive some moment conditions on X̃t (u) and its
derivatives.

LEMMA 2. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(∞) process which
satisfies Assumptions 1 and 3 and, in addition,

E(Z2r
0 )1/r

∑
j

Q

�(j)
< (1 − ν)

for r ≥ 1. Then E|Ut |r < ∞, E| supu X̃t (u)2|r < ∞, E| supu
∂X̃t (u)2

∂u
|r < ∞ and

E| supu
∂2X̃t (u)2

∂u2 |r < ∞ uniformly in t .

PROOF. The result follows by applying the Minkowski inequality to (48),
(44), (51) and the corresponding formula for the second derivative and using argu-
ments similar to those in (46). We omit the details. �

PROOF OF (40) AND COROLLARY 2. We first prove (40). For ω ∈ N3(u)c ∩
N3(u0)

c, with N3 as defined above, the Volterra series expansions (44) give so-
lutions of (6) for X̃t (u)2 and X̃t (u0)

2. The relation (40) now follows from an or-

dinary Taylor expansion of X̃t (u,ω)2 about u0, noting that E( ∂3X̃t (u)3

∂u3 �
u=Ũ

) < ∞
for an arbitrary random variable Ũ .

By using (40) and
∣∣∣∣X2

t,N − X̃t

(
t

N

)2∣∣∣∣ ≤ K

N
Ut,

we obtain Corollary 2. �
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6. Concluding remarks. We have studied the class of nonstationary
ARCH(∞) processes with time-varying coefficients. We have shown that, about
a given time point, the process can be approximated by a stationary process.
Moreover, this approximation has facilitated the Taylor expansion of the tvARCH
process in terms of stationary processes. It is worth mentioning that the existence
of the derivatives of the coefficients determines the existence of the derivatives
of the process and the subsequent Taylor expansion (and not the existence of the
moments). The definition of the derivative process and the Taylor expansion is not
restricted to tvARCH(∞) processes, and with simple modifications can also be
applied to other nonstationary processes.

To estimate the time-varying parameters of a time-varying ARCH(p) (p < ∞)
process, we have used a weighted quasi-likelihood on a segment. Investigation of
the asymptotic properties of the estimator showed an extra bias due to nonstation-
arity on the segment. This expression can be used to find an adaptive choice of
the segment length (by minimizing, e.g., the mean squared error and estimating
the second derivative). The relevance of this model for (say) financial data needs
further investigation. We conjecture that, by using tvARCH models, the often dis-
cussed long range dependence of the squared log returns can be reduced drastically
and even disappear completely (there has been some discussion that the long range
dependence of the squares is in truth only due to some nonstationarity in the data;
see [12]). Furthermore, we conjecture that, for example, the empirical kurtosis of
financial log returns is much smaller with a time-varying model than with a clas-
sical ARCH model.

Typically for stationary ARCH(p) processes, the existence of E(Z4
0) is assumed

in order to show asymptotic normality of the quasi-likelihood estimator. A draw-
back of our approach is that the expression of the bias given in (36) holds only
under the assumption [E(Z12

0 )]1/6 ∑p
j=1

Q
�(j)

≤ (1− ν), that is, under the existence

of the 12th moment. However, if we assume the weaker condition E(Z4+δ
0 ) < ∞,

then the segment quasi-likelihood estimator still has asymptotically a normal dis-
tribution, but the explicit form of the bias cannot be evaluated (see also Remark 1).

We mention that, unlike the case of stationary GARCH(p, q) models, the
time-varying GARCH model is not included in the tvARCH(∞) class. The
investigation of time-varying GARCH(p, q) models is a topic of future research.
However, unlike tvGARCH models, the squares of certain tvARCH(∞) models
have “near” long memory behavior (cf. [9, 11]). This is one justification for study-
ing tvARCH(∞)-models.

An important issue not discussed in this paper are the practical aspects when
the model is applied. In particular, identifiability requires investigation since both
conditional heteroscedasticity and time varying parameters are suitable to model
volatility. Theoretically the model is identifiable and we are convinced this also
holds in practice for large data sets. However, it has to be checked whether this
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leads to satisfactory results for moderate sample sizes. Our idea is that the condi-
tional heteroscedasticity models the short term fluctuations, while the time varying
parameters model the longer term changes. Of course this can be achieved by a
sufficiently large choice of the bandwidth.

APPENDIX

In this appendix we establish the results required in the proofs of Section 3.
Many of the results related to the local quasi-likelihood defined at (11) depend

on the asymptotic limit of the weighted sum of nonstationary random processes.
The general method we use to deal with such sums is to substitute an ergodic
process for the nonstationary process, and to study the limit of a weighted sum of
an ergodic process. In Appendix A.1 we establish results related to the weighted
sums of ergodic processes. These results are used in Appendix A.2, where we study
the difference between the nonstationary tvARCH process and the corresponding
approximating stationary processes. We then use this result to evaluate the limit
of weighted sums of functions of tvARCH(p) processes. In Appendix A.3 we
investigate the mixing properties of the likelihood process and in Appendix A.4
the bias of the segment estimate from Section 3.

A.1. Convergence results for weighted sums of random variables. In this
section we prove ergodic type theorems for weighted sums of ergodic processes.
In the lemma below we show an almost sure convergence result and in Lemma A.2
we prove convergence in probability for certain triangular arrays.

LEMMA A.1. Suppose {Yt } is an ergodic sequence with E|Yt | < ∞ and
W : [−1/2,1/2] → R is a kernel function of bounded variation with∫ 1/2
−1/2 W(x)dx = 1. Then

M∑
k=−M

1

2M + 1
W

(
k

2M + 1

)
Yk

a.s.→ µ as M → ∞,

where µ = E(Y0).

PROOF. Since
M∑

k=−M

1

2M + 1
W

(
k

2M + 1

)
→

∫ 1/2

−1/2
W(x)dx = 1,(A.1)

we can assume without loss of generality that µ = 0. We split the sum into negative
and positive suffixed elements, which gives

SM = 1

2M + 1

0∑
k=−M

W

(
k

2M + 1

)
Yk + 1

2M + 1

M∑
k=1

W

(
k + M

2M + 1

)
Yk

= NM + PM,

(A.2)
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and consider first PM . By using summation by parts, we have, with Sk = ∑k
i=1 Yi ,

PM = 1

2M + 1

M−1∑
k=1

[
W

(
k

2M + 1

)
− W

(
k + 1

2M + 1

)]
Sk

+ 1

2M + 1
W

(
M

2M + 1

)
SM.

Since W is of bounded variation, this yields

|PM | ≤ K

2M + 1
sup
k≤M

|Sk|

with some constant K . Now the ergodic theorem implies Sk(ω)/k → 0 for almost
all ω. It is obvious for these ω that also PM(ω) tends to zero. In the same way we
conclude that NM → 0 a.s., which gives the result. �

For kernel estimates about arbitrary center points, the situation is more difficult
since we basically average over triangular arrays of observations. We therefore
prove in the following lemma only convergence in probability.

LEMMA A.2. Suppose {Yt } is an ergodic sequence with E|Yt | < ∞ and
W : [−1/2,1/2] → R is a kernel function of bounded variation with∫ 1/2
−1/2 W(x)dx = 1. Then

µ̂N(u0) :=
N∑

k=p+1

1

bN
W

(
u0 − k/N

b

)
Yk

P→ µ for u0 ∈ [0,1],(A.3)

where b → 0, bN → ∞ as N → ∞, and µ = E(Y0).

PROOF. Again we consider only the case µ = 0. Suppose N ≥ N0 with
N0 such that u0 − p/N0 > b0/2 and u0 − 1 < −b0/2, b0 = b(N0) [i.e., the
sum in (A.3) is over the whole domain of W ]. Let k0 = k0(N) be such that
|u0 − k0/N | < 1/N . Since {Yk} is stationary, µ̂N(u0) has the same distribution
as ∑

k

1

bN
W

(
u0 − k/N

b

)
Yk−k0 = ∑

k

1

bN
W

(
u0 − k0/N − k/N

b

)
Yk

= µ̂N

(
u0 − k0

N

)
.

Since W is of bounded variation, this is equal to

∑
k

1

bN
W

(
− k

bN

)
Yk + RN
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with RN ≤ K
bN

sup−bN<k<bN |Yk|. Lemma A.1 implies that the first term converges
to zero almost surely [the proof of Lemma A.1 remains the same with (2M + 1)

replaced by bN ]. Since |Yk| ≤ |Sk|+ |Sk−1|, where Sk = ∑k
i=1 Yi , the second term

also converges to zero almost surely (as in the proof of Lemma A.1). Therefore,

P
(|µ̂N(u0)| ≥ ε

) = P
(|µ̂N(u0 − k0/N)| ≥ ε

) → 0,

which gives the result. �

A.2. Convergence of the local likelihood and its derivatives. In this section
we evaluate the limit of weighted sums of {�t,N(α)}, {∇�t,N(α)}, {∇2�t,N(α)} and
the corresponding stationary approximations. In particular, we prove Lemma 1.
Recall the formulas (14)–(16) and the corresponding formulas for �̃t (u0,α). Let
κ = ρ2+1

ρ1
and

�t,N := �t,N(u0,Ut ,α)

:=
p∑

j=1

αj

{∣∣∣∣ t − j

N
− u0

∣∣∣∣ + 1

N

}
Ut−j ,

(A.4)

with the ergodic process Ut from (48). For a better understanding of the following
result, we note that we have, for |u0 − t0

N
| < 1/N , E(�t0,N (u0,Ut ,α)) = O(N−1)

and therefore,

�t0,N (u0,Ut ,α) = Op(N−1),

uniformly in u0 and α. The same holds for Z2
t0
�t0,N since Z2

t and �t,N are inde-
pendent with E(Z2

t ) = 1.
In the following lemmas we derive upper bounds for the expressions occurring

in (14), (15) and (16) and for the difference between these expressions and the
corresponding expressions in �̃t (u0,α) and its derivatives. Assumption 2(iii) im-
mediately yields

∇wt,N(α)i

wt,N (α)
≤ 1

ρ1
,

∇w̃t (u0,α)i

w̃t (u0,α)
≤ 1

ρ1
(A.5)

uniformly in t , N , u0 and α (i = 1, . . . , p + 1).

LEMMA A.3. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(p) process which
satisfies Assumption 2(i), (iii). Then

X2
t,N

wt,N(α)
≤ κZ2

t and
X̃t (u)2

w̃t (u,α)
≤ κZ2

t .(A.6)
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PROOF. We only prove (A.6) for the tvARCH case; the proof for the stationary
case is similar. Since X2

t,N = Z2
t,Nσ 2

t,N , we have

X2
t,N

wt,N(α)
= Z2

t

(
σ 2

t,N

wt,N(α)

)

= Z2
t

(a0(t/N) + ∑p
j=1 aj (t/N)X2

t−j,N

α0 + ∑p
j=1 αjX

2
t−j,N

)

≤ Z2
t

(
a0(t/N)

α0
+

p∑
j=1

aj (t/N)

αj

)

≤ κZ2
t .

The last line is true because
∑p

j=1 aj (t/N) < 1 and αj > ρ1 for j = 0, . . . , p. �

LEMMA A.4. Under the assumptions of Lemma A.3, we have

X2
t,N

wt,N(α)
= X̃t (u0)

2

w̃t (u0,α)
+ R1,N (u0, t),

(A.7)
where |R1,N (u0, t)| ≤ 1

ρ1

(∣∣∣∣ t

N
− u0

∣∣∣∣
)
Ut + κ

ρ1
Z2

t �t,N (u0,Ut ,α),

∇wt,N(α)i

wt,N (α)
= ∇w̃t (u0,α)i

w̃t (u0,α)
+ R2,N (u0, t) (i = 1, . . . , p + 1),

(A.8)
where |R2,N (u0, t)| ≤ 2

ρ2
1

�t,N(u0,Ut ,α)

and

log(wt,N(α)) = log(w̃t (u0,α)) + R3,N (u0, t),
(A.9)

where |R3,N (u0, t)| ≤ 1

ρ1
�t,N(u0,Ut ,α).

PROOF. We first prove (A.7). We have

|R1,N (u0, t)| ≤
∣∣∣∣ X2

t,N

wt,N(α)
− X̃t (u0)

2

wt,N(α)

∣∣∣∣ +
∣∣∣∣ X̃t (u0)

2

wt,N(α)
− X̃t (u0)

2

w̃t (u0,α)

∣∣∣∣
≤ 1

ρ1
|X2

t,N − X̃t (u0)
2|

+ X̃t (u0)
2

ρ1w̃t (u0,α)
|wt,N(α) − w̃t (u0,α)|.

(A.10)
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From the definitions of wt,N(α) and w̃t (u0,α) and by using (7), we have

|wt,N(α) − w̃t (u0,α)| ≤
p∑

j=1

αj

{∣∣∣∣ t − j

N
− u0

∣∣∣∣ + 1

N

}
Ut−j

≤ �t,N(u0,Ut ,α).

(A.11)

Together with (7) and (A.6), this leads to (A.7). Since ∇wt,N(α)i = X2
t+1−i,N for

i = 2, . . . , p + 1, the proof of (A.8) is almost the same, so we omit the details. The
case i = 1 also follows in the same way.

We now prove (A.9). By differentiating log(wt,N(α)) with respect to X2
t−j,N

and using the mean value theorem, we have

R3,N (u0, t) = 1

α0 + ∑p
j=1 αjYj

p∑
j=1

αj

(
X2

t−j,N − X̃t−j (u0)
2)

,(A.12)

where (Yj : i = 1, . . . , p) are positive random variables [since both X2
t−i,N and

X̃t−i(u0)
2 are positive and Yj lies in between]. Therefore, by using (7), we have

|R3,N (u0, t)| ≤ 1

ρ1

( p∑
j=1

αj

{∣∣∣∣ t − j

N
− u0

∣∣∣∣ + 1

N

}
Ut−j

)
≤ 1

ρ1
�t,N(u0,Ut ,α),

which is the required result. �

COROLLARY A.1. Under the assumptions of Lemma A.3, we have, for n ∈ N,∏n
r=1 ∇wt,N(α)ir

wt,N (α)n
=

∏n
r=1 ∇w̃t (u0,α)ir

w̃t (u0,α)n
+ R4,N (u0, t),

(A.13)
where |R4,N (u0, t)| ≤ 2n

ρn+1
1

�t,N(u0,Ut ,α)

and

X2
t,N

∏n−1
r=1 ∇wt,N(α)ir

wt,N (α)n
= X̃t (u0)

2 ∏n−1
r=1 ∇w̃t (u0,α)ir

w̃t (u0,α)n
+ R5,N (u0, t),

(A.14)
where |R5,N (u0, t)| ≤ 1

ρn
1

(∣∣∣∣ t

N
− u0

∣∣∣∣ + 1

N

)
Ut + 2κn

ρn
1

Z2
t �t,N (u0,Ut ,α),

where 0 < ir ≤ p for r = 1, . . . , n.

PROOF. We can prove (A.13) by successively replacing ∇wt,N(α)ir /wt,N(α)

by ∇w̃t (u0,α)ir /w̃t (u0,α) for r = 1, . . . , n. Then by using (A.8) and the bound
αir > ρ1 for all α ∈ �, we have the result. We can prove (A.14) by using a similar
method as above together with (A.6) and (A.7). We omit the details here. �
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LEMMA A.5. Suppose {Xt,N } is a tvARCH(p) process which satisfies As-
sumption 2(i), (iii) and W is a kernel function of bounded variation with∫ 1/2
−1/2 W(x)dx = 1. Then we have

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
X̃k(u0)

2 ∏n−1
r=1 ∇w̃k(u0,α)ir

w̃k(u0,α)n

P→ E

(
X̃0(u0)

2 ∏n−1
r=1 ∇w̃0(u0,α)ir

w̃0(u0,α)n

)
,

(A.15)

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)∏n
r=1 ∇w̃k(u0,α)ir

w̃k(u0,α)n
P→ E

(∏n
r=1 ∇w̃0(u0,α)ir

w̃0(u0,α)n

)
(A.16)

and
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
log

(
w̃k(u0,α)

) P→ E
(
log

(
w̃0(u0,α)

))
.(A.17)

PROOF. Since ∇w̃t (u0,α)ir
w̃t (u0,α)

≤ 1/ρ1, we have by using (A.6) that

X̃t (u0)
2 ∏n−1

r=1 ∇w̃t (u0,α)ir

w̃t (u0,α)n
≤ κZ2

t

ρn
1

.

By using [17], Theorem 3.5.8, the process { X̃t (u0)
2 ∏n−1

r=1 ∇w̃t (u0,α)ir
w̃t (u0,α)n

}t is ergodic and
by using the bound above has finite mean. By applying Lemma A.2, we have ver-
ified (A.15).

Since logρ1 ≤ log w̃t (u0,α) ≤ (logρ2 + (1/ρ1)
∑p

j=1 αj X̃t−j (u0)
2),

log w̃t (u0,α) has a finite mean. (A.16) and (A.17) follow similarly. �

LEMMA A.6. Under the assumptions of Lemma A.5 and |t0/N − u0| < 1/N

with u0 ∈ (0,1), we have, for all n ∈ N,

sup
α∈�

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)∣∣∣∣X
2
k,N

∏n−1
r=1 ∇wk,N(α)ir

wk,N(α)n

(A.18)

− X̃k(u0)
2 ∏n−1

r=1 ∇w̃k(u0,α)ir

w̃k(u0,α)n

∣∣∣∣ = Op(b),

sup
α∈�

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)∣∣∣∣
∏n

r=1 ∇wk,N(α)ir

wk,N(α)n

(A.19)

−
∏n

r=1 ∇w̃k(u0,α)ir

w̃k(u0,α)n

∣∣∣∣ = Op(b)
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and

sup
α∈�

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)∣∣log
(
wk,N(α)

) − log
(
w̃k(u0,α)

)∣∣ = Op(b).(A.20)

PROOF. Let

RN = sup
α∈�

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)∣∣∣∣X
2
k,N

∏n−1
r=1 ∇wk,N(α)ir

wk,N(α)n

− X̃k(u0)
2 ∏n−1

r=1 ∇w̃k(u0,α)ir

w̃k(u0,α)n

∣∣∣∣.
We note first that if α ∈ �, then αi ≤ max(1, ρ2), where αi is the ith element of
the (p + 1)-dimensional vector α. By using (A.14) and | k−j

N
− u0| ≤ | k−j

N
− p|

when k lies in the support of W(
t0−k
bN

), we have the bound

|RN | ≤ C

(
b + p + 1

N

) N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
Vk = C

(
b + p + 1

N

)
LN,

where Vk =
{
Uk + Z2

k

p∑
j=1

Uk−j

}

and C is a finite constant. Since Ut−j (by Theorem 1) and Z2
t have finite mean and

are independent when j ≥ 1, {Vt } has a finite mean. Therefore, by using (A.3), we

have that LN
P→ E(V0) and |RN | = Op(b). Thus, we have proved (A.18).

By using (A.13) and (A.9), we can obtain (A.19) and (A.20) similarly. �

PROOF OF LEMMA 1. We first show (22). To prove uniform convergence, it
is sufficient to show both pointwise convergence and equicontinuity in probability
of L̃N(u0,α) (since � is compact). By using (A.15) and (A.17), for every α ∈ �,
we have

L̃N(u0,α) = 1

2

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)

×
(

log
(
w̃k(u0,α)

) + X̃k(u0)
2

w̃k(u0,α)

)

P→ L(u0,α),

where b → 0, bN → ∞ as N → ∞. We now show equicontinuity in probabil-
ity of L̃N(u0,α). By the mean value theorem, for every α1,α2 ∈ �, there exists
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an ᾱ ∈ � such that

|L̃N(u0,α1) − L̃N(u0,α2)|2
‖α1 − α2‖2

2

≤ ‖∇L̃N(u0, ᾱ)‖2
2

≤ 1

2

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)∥∥∥∥
(∇w̃k(u0, ᾱ)

w̃k(u0, ᾱ)
− X̃k(u0)

2∇w̃k(u0, ᾱ)

w̃k(u0, ᾱ)2

)∥∥∥∥
2

2
.

By using (A.5), we have

‖∇L̃N(u0, ᾱ)‖2
2 ≤

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
1

2ρ1

(
1 + X̃k(u0)

2

ρ1

)

P→ 1

2ρ1
E

(
1 + X̃k(u0)

2

ρ1

)
< ∞.

Therefore, we have that L̃N(u0, ·) is equicontinuous in probability. Now by point-
wise convergence of L̃N(u0,α), equicontinuity of L̃N(u0,α) and the compactness
of �, we have uniform convergence of the kernel quasi-likelihood.

By using (A.18) and (A.20), it is straightforward to verify (23). (24) and (25)
can be proved by using the same method as above. �

A.3. Mixing properties of the likelihood process. We now investigate the
mixing properties of X̃t (u)2 and later {∇ �̃t (u,au0)} and their derivatives with re-
spect to u. Our object is to show that the sums of the absolute values of the co-
variances of the process {∇ �̃t (u,au0)} and its derivatives are finite under suitable
regularity conditions. To achieve this, we use a well-known theorem of Gallant
and White [8] which states that

∑
k | cov(Yt , Yt+k)| < ∞ if {Yt } is a L2-Near

Epoch Dependent (L2-NED) process of size −∞ on the mixing process {Xt } of
size −∞ (see Lemma A.10 below). To use this result, we need an appropriate mix-
ing process {Xt }. To this end, we use a result of Basrak, Davis and Mikosch [1],
who have shown that a stationary ARCH(p) process is α-mixing with a geomet-
ric rate (thus having size −∞) if Assumption 2(iii), (v) is satisfied. Therefore, the
stationary ARCH(p) process {X̃t (u)2}, under Assumption 2(v), (vi), is α-mixing
with size −∞. We will use this fact in the following lemmas, where we will show

that both the processes { ∂∇�̃t (u,au0 )

∂u
}t and { ∂2∇�̃t (u,au0 )

∂u2 }t are L2-NED on {X̃t (u)2}t .
Let F t+m

t−m = σ(X̃t−m(u)2, . . . , X̃t+m(u)2) and E
t+m
t−m(Y ) = E(Y |F t+m

t−m ).

LEMMA A.7. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(p) process which
satisfies Assumption 2(i), (iii)–(v).
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(i) If E(Z4
0)1/2 ∑

j
Q

�(j)
< (1 − ν), then { ∂X̃t−i (u)2

∂u
}t and { ∂2X̃t−i (u)2

∂u2 }t are

L2-NED of size −∞ on {X̃t (u)2}t (i = 0, . . . , p).

(ii) If E(Z8
0)1/4 ∑

j
Q

�(j)
< (1 − ν), then { ∂X̃t−i (u)2

∂u

∂X̃t−j (u)2

∂u
}t is L2-NED of

size −∞ on {X̃t (u)2}t (i, j = 0, . . . , p).

Furthermore, {X̃t (u)2} is α-mixing of size −∞.

PROOF. That {X̃t (u)2} is α-mixing of size −∞ follows from [1]. We first
prove (i) for i = 0:

E

(
∂X̃t (u)2

∂u
− E

t+m
t−m

(
∂X̃t (u)2

∂u

))2

≤ αm,(A.21)

where αm has a geometric rate of decay [thus the derivative process is L2-NED of

size −∞ on {X̃t (u)2}]. Since under the quadratic norm E
t+m
t−m(∂X̃t (u)2

∂u2 ) is the best

projection of ∂X̃t (u)2

∂u2 onto the sigma algebra F t+m
t−m , then

E

(
∂X̃t (u)2

∂u
− E

t+m
t−m

(
∂X̃t (u)2

∂u

))2

≤ E

(
∂X̃t (u)2

∂u
− S

)2

(A.22)

for all S ∈ F t+m
t−m . We assume from now on that m > 2p. Inspired by (51), we now

choose

Sm
t = a′

0(u)Z2
t +

m−p∑
k=1

k+1∑
r=1

∑
t (m)≤jk<···<j0=t

jk+1=jk

a′
jr−1−jr

(u)

(
k+1∏

i=1,i �=r

aji−1−ji
(u)

)
k∏

i=0

Z2
ji
,

where t (m) = t − m + p [the index jk+1 is introduced to avoid special treatment
of a0(u)]. It is clear that Z2

t , . . . ,Z
2
t−m+p ∈ F t+m

t−m , therefore Sm
t ∈ F t+m

t−m . It is
straightforward to show that the following difference can be partitioned as below:

∂X̃t (u)2

∂u
− Sm

t = Am + Bm,(A.23)

where

Am =
∞∑

k=m+1−p

k+1∑
r=1

∑
jk<···<j0=t

jk+1=jk

a′
jr−1−jr

(u)

(
k+1∏

i=1,i �=r

aji−1−ji
(u)

)
k∏

i=0

Z2
ji

and

Bm =
m−p∑
k=1

k+1∑
r=1

∑
jk<···<j0=t

jk<t(m),jk+1=jk

a′
jr−1−jr

(u)

(
k+1∏

i=1,i �=r

aji−1−ji
(u)

)
k∏

i=0

Z2
ji
.
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We have ∥∥∥∥∂X̃t (u)2

∂u
− Sm

t

∥∥∥∥
2
≤ ‖Am‖2 + ‖Bm‖2.(A.24)

Our object is to show that the mean square error of (A.24) has a geometric rate of
decay, which, by the inequality in (A.22), implies (A.21). We now bound ‖Am‖2
and ‖Bm‖2. Under Assumption 2(iv), there exists a C∗ such that supu |a′

j (u)| <

C∗Q/�(j) for j = 1, . . . , p. Therefore, by using the Minkowski inequality, (3)
and (4), we have

‖Am‖2 ≤ sup
u1,u2

(
C∗a0(u1) + |a′

0(u2)|)

×
∞∑

k=m+1−p

k∑
r=1

∑
jk<···<j0=t

k∏
i=1

Q

�(ji−1 − ji)
E(Z4

0)(k+1)/2

≤ sup
u1,u2

(
C∗a0(u1) + |a′

0(u2)|) ∞∑
k=m+1−p

k(1 − ν)k

= K(1 − ν)m−p,

(A.25)

where K is a finite constant. Now we bound ‖Bm‖2. Since aj (u) = 0 for j > p,
all ji−1 − ji have to be ≤ p in order to have a nonzero contribution in Bm. Since
for jk < t − m + p,

k∑
i=1

(ji−1 − ji) = j0 − jk ≥ m − p,

this can only be true for k ≥ (m − p)/p. Therefore,

|Bm| ≤
m−p∑

k=[(m−p)/p]

k+1∑
r=1

∑
jk<···<j0=t

jk+1=jk

∣∣a′
jr−1−jr

(u)
∣∣( k+1∏

i=1,i �=r

aji−1−ji
(u)

)
k∏

i=0

Z2
ji
,

which gives

‖Bm‖2 ≤ sup
u1,u2

(
C∗a0(u1) + |a′

0(u2)|)

×
m−p∑

k=[(m−p)/p]

k∑
r=1

∑
jk<···<j0=t

(
k∏

i=1

Q

�(ji−1 − ji)

)
E(Z4

0)(k+1)/2

≤ sup
u1,u2

(
C∗a0(u1) + |a′

0(u2)|) ∞∑
k=[(m−p)/p]

k(1 − ν)k

= K(1 − ν)(m−p)/p,

(A.26)
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where K is a finite constant. Therefore, by using (A.25) and (A.26), we have∥∥∥∥∂X̃t (u)2

∂u
− E

t+m
t−m

(
∂X̃t (u)2

∂u

)∥∥∥∥
2
≤

∥∥∥∥∂X̃t (u)2

∂u2 − Sm
t

∥∥∥∥
2

≤ 2K((1 − ν)1/p)m−p,

(A.27)

thus giving a geometric rate for (A.21) and the required result.

For { ∂X̃t−i (u)2

∂u
}, the result below follows in the same way by using Sm−i

t−i instead

of Sm
t . For { ∂X̃t−i (u)2

∂u

∂X̃t−j (u)2

∂u
}, we use the product Sm−i

t−i S
m−j
t−j instead of Sm

t . Since

∥∥∥∥∂X̃t−i(u)2

∂u

∂X̃t−j (u)2

∂u
− Sm−i

t−i S
m−j
t−j

∥∥∥∥
2

≤
∥∥∥∥∂X̃t−i(u)2

∂u

∥∥∥∥
4

∥∥∥∥∂X̃t−j (u)2

∂u
− S

m−j
t−j

∥∥∥∥
4

+ ‖Sm−j
t−j ‖4

∥∥∥∥∂X̃t−i(u)2

∂u
− Sm−i

t−i

∥∥∥∥
4

and ‖Am−i‖4 and ‖Bm−i‖4 also have a geometric rate of decay, we also obtain

L2-NED of size −∞ in this case. The L2-NED property for ∂2X̃t−i (u)2

∂u2 is proved
in a similar way. We omit the details. �

In Lemma A.9 we generalize the above result to derivatives of {∇ �̃t (u,au0)}
with respect to u, which we use in Corollary A.2. We will also need the lemma

below, which gives conditions under which moments of
∂s∇�̃t (u,au0 )i

∂us exist.

LEMMA A.8. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH(p) process which
satisfies Assumption 2(i), (iii)–(v) and, in addition,

(E(Z2rs
0 ))1/rs

∑
j

Q

�(j)
≤ (1 − ν)(A.28)

for r ≥ 1 and s ∈ N. Then

E sup
u

∣∣∣∣∂
s∇ �̃t (u,au0)i

∂us

∣∣∣∣
r

< ∞ for i = 1, . . . , p + 1,

and the expectation is uniformly bounded in u.

PROOF. We first consider ∇ �̃t (u,au0). It is worth noting

∇ �̃t

(
u,au0

)
1 = ∂�̃t (u, a(u0))

∂a0(u)
= 1

wt(u,au0)
− X̃t (u)2

wt(u,au0)
2(A.29)
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and

∇ �̃t

(
u,au0

)
i = ∂�̃t (u, a(u0))

∂ai−1(u)

= X̃t−i+1(u)2

wt(u,au0)
− X̃t (u)2X̃t−i+1(u)2

wt(u,au0)
2

(A.30)

for i = 2, . . . , p + 1. We first prove the result for the case s = 1. By using Corol-
lary 3(i), we have

∂∇ �̃t (u,au0)i

∂u
=

p∑
j=0

∂X̃t−j (u)2

∂u

∂∇ �̃t (u,au0)i

∂X̃t−j (u)2
.(A.31)

By using (A.29) and (A.30), if au0 ∈ �, we have

∣∣∣∣∂∇ �̃t (u,au0)i

∂X̃t (u)2

∣∣∣∣ ≤ K and
∣∣∣∣∂∇ �̃t (u,au0)i

∂X̃t−j (u)2

∣∣∣∣ ≤ K(1 + Z2
t )

(A.32)
for j = 1, . . . , p,

where K is a finite constant. By using (A.31), (A.32) and the independence of Z2
t

and ∂X̃t−j (u)

∂u
, we obtain

∣∣∣∣∂∇ �̃t (u,au0)i

∂u

∣∣∣∣ ≤
∣∣∣∣∂X̃t (u)2

∂u

∣∣∣∣ + K

p∑
j=1

(1 + Z2
t )

∣∣∣∣∂X̃t−j (u)2

∂u

∣∣∣∣,
thus, ∥∥∥∥∂∇ �̃t (u,au0)i

∂u

∥∥∥∥
r

≤
∥∥∥∥∂X̃t (u)2

∂u

∥∥∥∥
r

+ K

p∑
j=1

∥∥∥∥(1 + Z2
t )

∂X̃t−j (u)2

∂u

∥∥∥∥
r

(A.33)

≤
∥∥∥∥∂X̃t (u)2

∂u

∥∥∥∥
r

+ K

p∑
j=1

‖1 + Z2
t ‖r

∥∥∥∥∂X̃t−j (u)2

∂u

∥∥∥∥
r

.

(A.28) and Lemma 2 now imply the result.
To prove the similar result for the higher order derivatives (s > 1), we use the

same method as above. But in this case we require stronger conditions on the mo-
ments of X̃t (u)2 [see (A.28)]. The proof is straightforward and we omit the details
here. �

We now use the result above to show that { ∂∇�̃t (u,au0 )i

∂u
} is L2-NED on {X̃t (u)2}.

LEMMA A.9. Suppose {Xt,N } is a tvARCH(p) process which satisfies As-
sumption 2(i), (iii)–(v).
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(i) If (E(Z4
0))1/2 ∑

j
Q

�̃(j)
≤ (1 − ν), then the process

{
∂∇ �̃t (u,au0)i

∂u

}
t

is L2-NED of size −∞ on {X̃t (u)2}.
(ii) If (E(Z8

0))1/4 ∑
j

Q
�(j)

≤ (1 − ν), then the process

{
∂2∇ �̃t (u,au0)i

∂u2

}
t

is L2-NED of size −∞ on {X̃t (u)2}.

PROOF. We first prove (i). Let m > 2p. By using (A.32), we have

∥∥∥∥∂∇ �̃t (u,au0)i

∂u
− E

t+m
t−m

(
∂∇ �̃t (u,au0)i

∂u

)∥∥∥∥
2

≤
p∑

j=0

∥∥∥∥∂∇ �̃t (u,au0)i

∂X̃t−j (u)2

{
∂X̃t−j (u)2

∂u
− E

t+m
t−m

(
∂X̃t−j (u)2

∂u

)}∥∥∥∥
2

≤ K

[∥∥∥∥∂X̃t (u)2

∂u
− E

t+m
t−m

(
∂X̃t (u)2

∂u

)∥∥∥∥
2

+ ‖(1 + Z2
t )‖2

p∑
j=1

∥∥∥∥
{
∂X̃t−j (u)2

∂u
− E

t+m
t−m

(
∂X̃t−j (u)2

∂u

)}∥∥∥∥
2

]
.

Lemma A.7 now implies that { ∂∇�̃t (u,au0 )i

∂u
}t is L2-NED of size −∞ on {X̃t (u)2}t .

The proof for the second derivative process is similar, but requires the stronger
moment condition given in (ii). We omit the details of the proof. �

We now state a theorem of Gallant and White [8] which we use in Corollary A.2.

LEMMA A.10. Suppose the stationary process {Yt } is L2-NED of size −∞
on {Xt }, which is an α-mixing process of size −∞, and we have E(Y 2+δ

0 ) < ∞ for
some δ > 0. Then

∞∑
s=0

| cov(Yt , Yt+s)| < ∞.

COROLLARY A.2. Suppose {Xt,N : t = 1, . . . ,N} is a tvARCH process which
satisfies Assumption 2(i), (ii), (iv) and (v) and, in addition, for some δ > 0:



STATISTICAL INFERENCE FOR TIME-VARYING ARCH PROCESSES 1111

(i) If (E(Z
2(2+δ)
0 ))1/(2+δ) ∑

j
Q

�(j)
≤ (1 − ν), then we have

∞∑
s=0

∣∣∣∣cov
(

∂∇ �̃t (u,au0)i

∂u
,
∂∇ �̃t+s(u,au0)i

∂u

)∣∣∣∣ < ∞.(A.34)

(ii) If (E(Z
2(4+δ)
0 ))1/(4+δ) ∑

j
Q

�(j)
≤ (1ν), then we have

∞∑
s=0

∣∣∣∣cov
(

∂2∇ �̃t (u,au0)i

∂u2 ,
∂2∇ �̃t+s(u,au0)i

∂u2

)∣∣∣∣ < ∞.(A.35)

PROOF. The condition (E(Z
2(2+δ)
0 ))1/(2+δ) ∑

j
Q

�(j)
≤ (1 − ν) implies

(E(Z4
0))1/2 ∑

j
Q

�(j)
≤ (1 − ν) by Hölder’s inequality. Now by Lemma A.9(i),

we have under this assumption that {∇�̃t (u,au0 )i

∂u
}t is L2-NED of size −∞ on the

α-mixing process {X̃t (u0)
2}t . Therefore, all the conditions in Lemma A.10 are

satisfied and (i) follows. The proof of (ii) is the same, but the stronger condition
given in (ii) is required. �

A.4. The bias of the segment quasi-likelihood estimate.

PROOF OF PROPOSITION 3. Substituting (34) into (33) gives

∇Bt0,N

(
au0

) = ÃN

(
t0

N

)
+ 1

2
B̃N

(
t0

N

)
+ 1

3! C̃N

(
t0

N

)
+ RN,

where

ÃN

(
t0

N

)
= ∑

k

1

bN
W

(
t0 − k

bN

)(
k

N
− u0

)
∂∇ �̃k(u,au0)

∂u

⌋
u=u0

,

B̃N

(
t0

N

)
= ∑

k

1

bN
W

(
t0 − k

bN

)(
k

N
− u0

)2 ∂2∇ �̃k(u,au0)

∂u2

⌋
u=u0

,

C̃N

(
t0

N

)
= ∑

k

1

bN
W

(
t0 − k

bN

)(
k

N
− u0

)3 ∂3∇ �̃k(u,au0)

∂u3

⌋
u=Ũk

.

We now consider the expectation of ÃN(u0). We have

E(ÃN(u0)) = E

(
∂∇ �̃k(u,au0)

∂u

⌋
u=u0

)∑
k

1

bN
W

(
t0 − k

bN

)(
k

N
− u0

)

= E

(
∂∇ �̃k(u,au0)

∂u

⌋
u=u0

)∫ 1/2

−1/2

1

b
W

(
x

b

)
x dx + O

(
1

N

)

= O

(
1

N

)
.
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Furthermore, we have

var(ÃN(u0)) = 1

(bN)2

∑
k1

∑
k2

W

(
t0 − k1

bN

)

× W

(
t0 − k2

bN

)(
k1

N
− u0

)(
k2

N
− u0

)

× cov
(

∂∇ �̃k1(u0,au0)

∂u

⌋
u=u0

,
∂∇ �̃k2(u,au0)

∂u

⌋
u=u0

)

≤ b2

(bN)2

∑
k

W

(
t0 − k

bN

)∑
s

W

(
t0 − k − s

bN

)

×
∣∣∣∣ cov

(
∂∇ �̃k(u,au0)

∂u

⌋
u=u0

,
∂∇ �̃k+s(u,au0)

∂u

⌋
u=u0

)∣∣∣∣
≤ b2‖W‖∞

(bN)2

∑
k

W

(
t0 − k

bN

)

× ∑
s

∣∣∣∣cov
(

∂∇ �̃k(u,au0)

∂u

⌋
u=u0

,
∂∇ �̃k+s(u,au0)

∂u

⌋
u=u0

)∣∣∣∣,
where ‖W‖∞ = supx W(x). By using Corollary A.2, we have that the sum of the
absolute values of the covariances is finite. This gives

var(ÃN(u0)) ≤ b2‖W‖2∞
bN

× ∑
s

∣∣∣∣cov
(

∂∇ �̃k(u,au0)

∂u

⌋
u0

,
∂∇ �̃k+s(u,au0)

∂u

⌋
u0

)∣∣∣∣
= O

(
b2

bN

)
= O

(
1

N

)
.

In the same way we obtain

E

(
B̃N

(
t0

N

))
= b2w(2)

∂2∇L(u,au0)

∂u2

⌋
u=u0

+ O

(
1

N

)

and

var
(
B̃N

(
t0

N

))
= O

(
b4

bN

)
= O

(
1

N

)
.

We now evaluate a bound for E(C̃N(u0)
2), which will help us to bound both
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E(C̃N(u0)) and var(C̃N(u0)). By using Lemma A.8, we have

E(C̃N(u0)
2) = 1

(bN)2

∑
k1

∑
k2

W

(
t0 − k1

bN

)
W

(
t0 − k2

bN

)(
k1

N
− u0

)3(
k2

N
− u0

)3

× E

(
∂3∇ �̃k1(u,au0)

∂u3

⌋
u=Ũk1

∂3∇ �̃k2(u,au0)

∂u3

⌋
u=Ũk2

)

≤ b6

(bN)2 E

(
sup
u

(
∂3∇ �̃k(u,au0)

∂u3

)2)

× ∑
k1

∑
k2

W

(
t0 − k1

bN

)
W

(
t0 − k2

bN

)

≤ b6‖W‖2∞E

(
sup
u

(
∂3∇ �̃k(u,au0)

∂u3

)2)
= O(b6),

leading to the result. �
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