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CHARACTERIZING MARKOV EQUIVALENCE CLASSES
FOR AMP CHAIN GRAPH MODELS1

BY STEEN A. ANDERSSON AND MICHAEL D. PERLMAN

Indiana University and University of Washington

Chain graphs (CG) (= adicyclic graphs) use undirected and directed
edges to represent both structural and associative dependences. Like acyclic
directed graphs (ADGs), the CG associated with a statistical Markov model
may not be unique, so CGs fall into Markov equivalence classes, which may
be superexponentially large, leading to unidentifiability and computational
inefficiency in model search and selection. It is shown here that, under the
Andersson–Madigan–Perlman (AMP) interpretation of a CG, each Markov-
equivalence class can be uniquely represented by a single distinguished CG,
the AMP essential graph, that is itself simultaneously Markov equivalent to
all CGs in the AMP Markov equivalence class. A complete characterization
of AMP essential graphs is obtained. Like the essential graph previously in-
troduced for ADGs, the AMP essential graph will play a fundamental role for
inference and model search and selection for AMP CG models.

1. Introduction. In a graphical Markov model, the nodes of the graph repre-
sent the variables of a multivariate statistical distribution, while the edges repre-
sent possible dependences. Chain graphs (CG), which may have both undirected
and directed edges but no semi-directed cycles, were introduced by Lauritzen and
Wermuth [19] and Frydenberg [15] to represent dependences that may be both as-
sociative and directional. Cox [12] stated that chain graphs represent “a minimal
level of complexity needed to model empirical data.” Also see [2, 8, 9, 13, 15,
17–19, 25, 26, 28, 29].

The LWF Markov property for CGs is an extension of the Markov properties
of both acyclic directed graphs (ADG ≡ DAG) and undirected graphs (UG). Re-
cently, Andersson, Madigan and Perlman [1, 4] proposed an alternative Markov
property (AMP) for CGs that also extends the ADG and UG properties, but that
more closely retains the recursive character of ADG models; see [14, 20]. Further-
more, AMP Markov equivalence of CGs (see below), as for ADGs, is determined
by their triplexes, which have three vertices, while LWF Markov equivalence of
CGs is determined by their complexes, which have arbitrarily many vertices.

Like ADGs, different CGs may be Markov equivalent, that is, may represent
the same set of conditional independences (CI), hence, the same statistical mod-
els. Because Markov equivalence classes can be superexponentially large even for
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ADGs (cf. [3]), for the sake of computational efficiency, CG model search ideally
should be carried out in the space of CG Markov equivalence classes rather than
the space of all CGs.

For any CG G, Frydenberg [15] showed the existence of a unique largest (i.e.,
having the most undirected edges) CG G∞ in the LWF Markov equivalence class
containing G. Studený [23, 24] proposed that G∞ be used as a unique representa-
tive for the LWF equivalence class. Characterizations of G∞ have been obtained
by Volf and Studený [27] and Roverato [22].

The ADG essential graph D∗ that uniquely represents the ADG Markov equiva-
lence class of an ADG D was introduced by Andersson, Madigan and Perlman [3]:
D∗ has the same skeleton as D, and contains an arrow a → b iff this arrow occurs
in every member of the equivalence class, whereas it contains a line a−b iff a → b

and a ← b occur in two different ADGs in the equivalence class. Applications of
the ADG essential graph for ADG model search are presented in [10] and [21].

This paper is devoted to the characterization of a unique representative of the
AMP Markov equivalence class (temporarily denoted by [G]) for a general CG G.
Andersson, Madigan and Perlman [4] suggested the following extension of the
definition of the ADG essential graph: the AMP essential graph, temporarily de-
noted by G∗, has the same skeleton as G and contains an arrow a → b iff this
arrow occurs with the same orientation in at least one G′ ∈ [G], but with the op-
posite orientation in no G′′ ∈ [G]. The arrows in G∗ are called essential arrows.
For example, if G = a → b − c, then [G] consists of G, G′ := a − b ← c, and
G′′ := a → b ← c, so G∗ = G′′.

Because G∞ is defined for LWF Markov equivalence rather than AMP equiva-
lence, it need not agree with G∗, even when G = D, an ADG. For example, if G is
the first CG (an ADG) in Figure 1, then G = G∗, but G∞ replaces one arrow →
by a line −. Similarly, for the second CG G in Figure 1, two arrows are replaced

FIG. 1. Two CGs G for which G = G∗ �= G∞.
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FIG. 2. An undirected CG G whose essential graph G∗ contains a directed edge.

by lines in G∞. In fact, even if G (and therefore G∞) is a fully undirected graph,
G∗ may possess essential arrows—see Figure 2.

In Section 3 we show that the AMP essential graph G∗ does in fact uniquely
represent its AMP Markov equivalence class [G]: G∗ is itself a CG (adicyclic)
and G∗ ∈ [G] (Theorem 3.2). Section 4 completely describes the configurations of
arrows in G∗. It is also shown there that if G is itself an ADG D or is AMP Markov
equivalent to D, then G∗ = D∗ (Proposition 4.2), and a characterization of those
directed graphs that can occur as AMP essential graphs is given (Theorem 4.1).
In Section 5 a complete characterization is obtained for AMP essential graphs
(Theorem 5.1). Additional results on the structure of AMP essential graphs may
be found in [5, 6]. Current research, including an algorithm for constructing G∗
from G, is reviewed in Section 6.

2. Graphical terminology. We write G ≡ (V ,E) to indicate a graph G with
vertex set V and edge set E. Definitions of the graphical terminology and notation
used here can be found in [3, 4] and especially [5]. The terms parent, neighbor,
immorality, flag, triplex and biflag are particularly important for our study of chain
graphs.

Let a, b be distinct vertices of G. We write a ⇒ b ∈ G (a ↔ b ∈ G)
(a · · ·b ∈ G) to indicate that either a → b ∈ G or a − b ∈ G (either a ← b ∈ G

or a → b ∈ G) (either a ← b ∈ G, a − b ∈ G, or a → b ∈ G). A path π of length
k ≥ 1 from a to b in G is a sequence of distinct vertices (a ≡ v0, v1, . . . , vk ≡ b)

such that vi−1 ⇒ vi ∈ G for all i = 1, . . . , k. A k-cycle (v0, . . . , vk) (or simply
cycle) in G is a path of length k ≥ 3 with v0 = vk . A path or cycle (v0, . . . , vk)

is undirected if vi−1 − vi ∈ G for all i = 1, . . . , k; it is directed (semi-directed)
if vi−1 → vi ∈ G for all (at least one) i = 1, . . . , k. A chain graph (CG) is an
adicyclic graph, that is, has no semi-directed cycles. An induced subgraph of an
adicyclic graph is adicyclic. The set of chain components of the CG G, denoted by
� ≡ �(G), is the set of connected components obtained by removing all arrows
from G.

A path (cycle) (v0, . . . , vk) in G with k ≥ 2 (k ≥ 4) is chordless if no two non-
consecutive [nonconsecutive (mod k)] vertices are adjacent. A chordless 2-dipath
in G is an induced subgraph of the form a → b → c. An antiflag is an induced
subgraph of the form a − b → c.

An undirected graph G is chordal (≡ decomposable) if it contains no chordless
cycles. The edges of a chordal UG G ≡ (V ,E) can be assigned a perfect orienta-
tion (i.e., acyclic with no immoralities) by the maximum cardinality search (MCS)
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algorithm (cf. [7], Theorem 2.5, [11], Chapter 4.4). MCS begins by assigning the
number 1 to an arbitrary vertex of G, then assigning the numbers 2, . . . , |V | con-
secutively to the remaining vertices, each time selecting the vertex with the most
previously numbered neighbors in G, breaking ties arbitrarily. The edges of G are
then oriented in accordance with this numbering. This numbering is called per-
fect because this orientation can be shown to be perfect. Furthermore, if A ⊆ V is
complete, MCS can begin at any v ∈ A and visit all vertices in A before visiting
any vertex in V \ A. Thus, any edge a − v ∈ G with a ∈ A and v ∈ V \ A can be
oriented by MCS as a → v.

3. The essential graph for an AMP chain graph model. In this paper G0 ≡
(V ,E0) shall denote a fixed but arbitrary chain graph and G its AMP Markov
equivalence class, that is, the collection of all CGs G ≡ (V ,E) such that P (G) =
P (G0), where P (G) is the set of all multivariate probability distributions that
satisfy the AMP Markov property specified by G. AMP Markov equivalence was
characterized by Andersson, Madigan and Perlman [4] as follows.

THEOREM 3.1. Two chain graphs with the same vertex set are Markov equiv-
alent iff they have the same skeleton and the same triplexes.

We shall show that G is uniquely represented by its essential graph G∗, defined
below. To emphasize that the AMP essential graph depends on G, we now denote
it by G∗, rather than by G∗

0 as in Section 1.

DEFINITION 3.1. The AMP essential graph G∗ ≡ (V ,E∗) determined by G
is a graph with the same skeleton as G0. An arrow a → b occurs in G∗ iff a → b

occurs in at least one G ∈ G, but a ← b occurs in no G′ ∈ G. A line a − b occurs
in G∗ iff either a − b ∈ G for every G ∈ G or there exist G,G′ ∈ G such that
a → b ∈ G and a ← b ∈ G′.

Thus, the line a − b ∈ G∗ iff either: a − b ∈ G for all G ∈ G, in which case it
is called a strong line and denoted as a s– b, or: a → b ∈ G and a ← b ∈ G′ for
some G,G′ ∈ G, in which case it is called a weak line and denoted as a w– b. In
these two cases, a is a strong (resp., weak) neighbor of b. An arrow a → b ∈ G∗
is called strong and denoted as a

s→ b if it occurs in each G ∈ G; otherwise it is
called weak and denoted as a

w→ b, in which case ∃G,G′ ∈ G such that a → b ∈ G

and a − b ∈ G′, while a ⇒ b ∈ G′′ for all other G′′ ∈ G. In these two cases, a is a
strong (resp., weak) parent of b. The set of strong (weak) parents in G∗ of a subset
B ⊂ V is denoted by spG∗(B) [wpG∗(B)].

In the AMP essential graph a → b ← c, both arrows are weak, while in a −
b − c both lines are weak. Other examples of strong/weak arrows/lines are given
in Figures 3, 4 and 7. (Also see [5, 6].)

The following fact will be used repeatedly. Consider the four statements:



MARKOV EQUIVALENCE FOR AMP CHAIN GRAPHS 943

FIG. 3. Strong/weak arrows/lines in AMP essential graphs (cf. Figure 6).

1. a → b ∈ G∗;
2. a ⇒ b ∈ G for all G ∈ G;
3. a → b ∈ G for some G ∈ G;
4. a ⇒ b ∈ G∗.

Then 1 implies 2 implies 4 and, equivalently, 1 implies 3 implies 4.
This section will culminate with Theorem 3.2, which establishes that G∗ is in

fact adicyclic so is itself a chain graph. Thus, G∗ ∈ G by the following Lemma 3.1
and, therefore, G∗ uniquely represents G: G1 = G2 iff G∗

1 = G∗
2.

LEMMA 3.1. G∗ has the same skeleton and triplexes as each G ∈ G.

PROOF. Clearly, G∗ has the same skeleton as each G ∈ G. Suppose that the
triplex ({a, c}, b) occurs in each G ∈ G, so a ⇒ b ⇐ c occurs as an induced
subgraph in each G ∈ G, hence, also a ⇒ b ⇐ c occurs as an induced subgraph
in G∗. Furthermore, there exists G ∈ G such that either a → b ∈ G, in which case
a → b ∈ G∗, or b ← c ∈ G, in which case b ← c ∈ G∗. In both cases, the triplex
({a, c}, b) occurs in G∗, as required.

Conversely, suppose that the triplex ({a, c}, b) occurs in G∗. If this triplex oc-
curs as the immorality a → b ← c in G∗, then a ⇒ b ⇐ c occurs as an induced
subgraph in each G ∈ G while a → b ∈ G′ for some G′ ∈ G, hence, this triplex
occurs in G′ and thus in all G ∈ G.

If this triplex occurs as the flag a → b − c in G∗, then a ⇒ b ∈ G for every
G ∈ G. If b − c were a weak line in G∗, then there would exist G,G′ ∈ G such that
a ⇒ b → c occurs in G and a ⇒ b ← c occurs in G′, both as induced subgraphs,
contradicting the fact that G and G′ have the same triplexes. Therefore, b− c must
be a strong line in G∗. By a similar argument, a → b must be a strong arrow in G∗
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FIG. 4. Strong/weak arrows/lines in AMP essential graphs (cf. Figure 6).

and, therefore, a → b − c occurs as a flag in each G ∈ G. Thus, again the triplex
({a, c}, b) occurs in each G ∈ G. �

LEMMA 3.2. (a) A flag a → b − c occurs in G∗ iff it occurs in each G ∈ G,
in which case a → b is a strong arrow and b − c is a strong line. Thus, neither
a → b w– c nor a

w→ b s– c can occur as an induced subgraph of G∗.
(b) • If a → b w– c occurs as a subgraph in G∗, then a ⇒ c ∈ G∗.

• If a
w→ b s– c occurs as a subgraph in G∗, then a

w→ c ∈ G∗.
• If a

s→ b
w→ c occurs as a subgraph in G∗, then a

s→ c ∈ G∗.
• If a s– b w– c occurs as a subgraph in G∗, then a w– c ∈ G∗.

PROOF. (a) “Only if” was established in the last paragraph of the proof of
Lemma 3.1, while “if” is immediate.

(b) If a → b w– c occurs in G∗, then by (a) a · · · c ∈ G∗ and, therefore, a · · · c
occurs in all G ∈ G. Choose G ∈ G such that b → c ∈ G. Since necessarily a ⇒
b ∈ G, therefore, a → c ∈ G by adicyclicity, hence a ⇒ c ∈ G∗.

If a
w→ b s– c occurs in G∗, then by (a) the triangle a ⇒ b − c · · ·a occurs in all

G ∈ G, hence a ⇒ c ∈ G by adicyclicity. If we now choose G,G′ ∈ G such that
a → b ∈ G and a − b ∈ G′, then a → c ∈ G and a − c ∈ G′ by adicyclicity, hence
a

w→ c ∈ G∗.
If a

s→ b
w→ c occurs in G∗, then a → b ⇒ c occurs in every G ∈ G and

a → b − c occurs in some G′ ∈ G. Since G∗ and G′ have the same triplexes by
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Lemma 3.1, a · · · c ∈ G′, so the triangle a → b ⇒ c · · ·a occurs in every G ∈ G.
Thus, a → c must occur in every G ∈ G by adicyclicity, hence a

s→ c ∈ G∗.
If a s– b w– c occurs in G∗, then there exist G,G′ ∈ G such that a − b → c occurs

in G and a − b ← c occurs in G′. Since G and G′ have the same triplexes, neces-
sarily a · · · c ∈ G,G′, hence a → c ∈ G and a ← c ∈ G′ by adicyclicity. Therefore,
a w– c ∈ G∗. �

LEMMA 3.3. A biflag or chordless undirected cycle occurs in G∗ iff it occurs
in at least one G ∈ G, in which case it occurs in all G ∈ G. Thus, if an arrow occurs
in a biflag in G∗ or some G ∈ G, then it must be strong, while if a line occurs in
some biflag or chordless undirected cycle in G∗ or in some G ∈ G, then it must be
strong.

PROOF. If a biflag [a; c1, . . . , ck] (k ≥ 3) or [a, b; c1, . . . , ck] (k ≥ 2) oc-
curs in G∗, then, because s– w– cannot occur as an induced subgraph in G∗
[Lemma 3.2(b)], either all undirected edges ci − ci+1 (1 ≤ i ≤ k) are strong or all
are weak. Since the flag a

s→ ck−1
s– ck occurs in G∗, therefore all edges ci − ci+1

are strong. Furthermore, if any arrow a → ci or b → ci is weak, then all must be
weak [apply Lemma 3.2(b)], a contradiction. Thus, all arrows and lines occurring
in the biflag are strong, hence the biflag occurs in every G ∈ G.

Conversely, if a biflag [a; c1, . . . , ck] or [a, b; c1, . . . , ck] occurs in some G ∈ G,
then the triplex ({a, ck}, ck−1) occurs in G∗. If this triplex occurs as the flag
a

s→ ck−1
s– ck , then the above argument applies to show that the biflag occurs

in every G ∈ G and in G∗. But the triplex cannot occur in either of the other two
possible configurations: If it did, then ck−1 ← ck ∈ G∗, which would require that
c1 ← c2 ∈ G∗. (If c1 ⇒ c2 ∈ G∗, then at least one triplex would occur in the path
c1 ⇒ c2 · · · ck−1 ← ck in G∗, whereas no such triplex occurs in G, contradicting
Lemma 3.1.) But c1 ← c2 /∈ G∗, since a → c2 − c1 or b → c2 − c1 occurs as a flag
in G, so ({a, c1}, c2) ∈ G∗ or ({b, c1}, c2) ∈ G∗.

Next, suppose that a chordless undirected cycle occurs in G∗ or in some G ∈ G.
Because no triplex occurs in this cycle, none can occur in the corresponding sub-
graph in any G′ ∈ G. Therefore, no arrow can occur in this subgraph in any G′ ∈ G;
otherwise this subgraph would either include at least one triplex or else be a fully
directed cycle, contradicting the adicylicity of G′. Thus, the chordless undirected
cycle occurs in every G′ ∈ G∗ and each of its lines is a strong line. �

The converse to the second statement in Lemma 3.3 is not true: strong arrows
not occurring in biflags appear in Figures 3(1) and 4(1)–(5). Strong lines not in
biflags or chordless cycles may also occur; see [5, 6].
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LEMMA 3.4. (a) Any semi-directed cycle in G∗ has at least one weak line.
(b) If a → b ⇒ d ⇒ a is a semi-directed 3-cycle in G∗, then ∃G,G′ ∈ G such

that a ⇒ b ← d → a occurs in G and a ⇒ b → d ← a occurs in G′. Thus, the
semi-directed 3-cycle must have the form a → b w– d w– a in G∗.

(c) In this case, a → b cannot occur in G∗ in an immorality a → b ← c, in a
flag a → b − c, in a chordless 2-dipath c → a → b or in an antiflag of the form
c s– a → b.

PROOF. (a) Let d0 → d1 ⇒ ·· · ⇒ (dk ≡ d0) (k ≥ 3) be a semi-directed
k-cycle in G∗. Then ∃G ∈ G such that d0 → d1 ∈ G. Since G is adicyclic, di ←
di+1 ∈ G for some 1 ≤ i ≤ k − 1, hence di ⇐ di+1 ∈ G∗. But di ⇒ di+1 ∈ G∗, so
di

w– di+1 ∈ G∗ as required.
(b) By (a), either b w– d ∈ G∗ or d w– a ∈ G∗ (or both). If the former, then ∃G′ ∈ G

such that b → d ∈ G′. Since a ⇒ b ∈ G′, d ← a ∈ G′ by adicyclicity. There-
fore, d ⇐ a ∈ G∗, hence d w– a ∈ G∗ (since d ⇒ a ∈ G∗ and d ← a ∈ G′), so
∃G ∈ G such that d → a ∈ G. Since a ⇒ b ∈ G, b ← d ∈ G by adicyclicity.
If the latter, then ∃G ∈ G such that d → a ∈ G. Since a ⇒ b ∈ G, necessarily
b ← d ∈ G by adicyclicity. Thus, b w– d ∈ G∗ (since b ⇒ d ∈ G∗), so ∃G′ ∈ G such
that b → d ∈ G′. Since a ⇒ b ∈ G′, d ← a ∈ G′ by adicyclicity.

(c) Assume that a → b ⇐ c occurs as an immorality or flag in G∗. Let G,G′
be as specified in (b). Since a·� ·· c, necessarily c �= d . Because G∗,G,G′ have the
same triplexes (Lemma 3.1), b ⇐ c ∈ G,G′. Necessarily d · · · c, for otherwise the
triplex ({d, c}, b) would occur as the induced subgraph d → b ← c in G but this
triplex could not occur in G′. Thus, by adicyclicity, d ← c ∈ G′, so the triplex
({a, c}, d) occurs as the immorality a → d ← c in G′, but this triplex cannot occur
in G, a contradiction.

Next, assume that either (i) the chordless 2-dipath c → a → b or (ii) the antiflag
c s– a → b occurs in G∗. Let G,G′ be as specified in (b); again, necessarily c �= d .
For both (i) and (ii), necessarily c ⇒ a ∈ G,G′. Therefore, c · · ·d , for otherwise
the triplex ({c, d}, a) would occur as the induced subgraph c ⇒ a ← d in G, but
this triplex could not occur in G′. Thus, by adicyclicity, c → d ∈ G′, so the triplex
({c, b}, d) occurs as the immorality c → d ← b in G′, but this triplex cannot occur
in G, a contradiction. �

For any graph H ≡ (W,F ), define H ◦ ≡ (W,F ◦) to be the smallest chain graph
larger than H , that is, H ◦ is obtained from H by converting any arrow that occurs
in a semi-directed cycle in H into a line. Note that this can be done in a single
step: if, after converting an arrow that occurs in a semi-directed cycle in H into a
line, a second arrow now becomes part of a semi-directed cycle, then this second
arrow already must have occurred in a semi-directed cycle in H . Clearly, H ◦ has
the same skeleton as H , H ⊆ H ◦, and H is adicyclic iff H ◦ = H .
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LEMMA 3.5. (a) G∗ and (G∗)◦ have the same immoralities.
(b) G∗ and (G∗)◦ have the same flags.
(c) If an antiflag of the form a s– b → c occurs G∗, it also occurs in (G∗)◦.

PROOF. (a) Since G∗ ⊆ (G∗)◦ with the same skeletons, if a → b ← c occurs
as an immorality in (G∗)◦, then it must occur in G∗. Conversely, suppose that a →
b ← c occurs as an immorality in G∗ but not in (G∗)◦. This can happen only if at
least one of the two arrows is converted to a line in (G∗)◦, hence occurs in some
semi-directed cycle in G∗. Choose the immorality a → b ← c that is associated
with a semi-directed cycle of minimum length k [i.e., minimal with respect to all
immoralities a′ → b′ ← c′ in G∗ that do not occur in (G∗)◦] and assume without
loss of generality that this minimum-length semi-directed cycle contains a → b.
This cycle thus has the form a → (b ≡ d1) ⇒ d2 ⇒ ·· · ⇒ (dk ≡ a) in G∗. By
Lemma 3.4(c), k ≥ 4.

It is conceivable that di = c for some (at most one) i = 3, . . . , k − 2. In that
case, however, (di ≡ c) → b occurs in a shorter semi-directed cycle c → (b ≡
d1) ⇒ ·· · ⇒ (di ≡ c) in G∗, contradicting the minimality of k. Therefore, di �= c

for each i.
By Lemma 3.4(a), the minimum-length semi-directed cycle has at least one

weak line dj
w– dj+1 ∈ G∗ (1 ≤ j ≤ k − 1). Consider the least such j .

Suppose first that j ≥ 2. In this case the minimality of j implies that either
dj−1 → dj

w– dj+1 or dj−1
s– dj

w– dj+1 occurs in G∗, hence dj−1 ⇒ dj+1 ∈ G∗ by

Lemma 3.2(b). Thus, a
s→ (b ≡ d1) ⇒ ·· · ⇒ dj−1 ⇒ dj+1 ⇒ ·· · ⇒ (dk ≡ a) is a

shorter semi-directed cycle in G∗, contradicting the minimality of k.
Suppose now that j = 1, so (b ≡ d1)

w– d2 ∈ G∗. Therefore, a → b w– d2 and
d2

w– b ← c occur as subgraphs in G∗, so by Lemma 3.2(b), a ⇒ d2 ⇐ c occurs as
a subgraph of G∗. If a − d2 ∈ G∗, then a → b occurs in the semi-directed 3-cycle
a → b − d2 − a in G∗, contradicting Lemma 3.4(c), hence a → d2 ∈ G∗. Similarly,
d2 ← c ∈ G∗, hence a → d2 ← c occurs as an immorality in G∗. But then a → d2
occurs in the shorter semi-directed cycle a → d2 ⇒ ·· · ⇒ (dk ≡ a) in G∗, contra-
dicting the minimality of k. We conclude that every immorality in G∗ also occurs
in (G∗)◦.

(b) If a flag occurs in G∗, it has the form a
s→ b s– c by Lemma 3.2(a). Because

G∗ ⊆ (G∗)◦ and they have the same skeletons, if a → b− c does not occur as a flag
in (G∗)◦, then a −b−c must occur in (G∗)◦ with a·� ··c in both graphs. This implies
that a

s→ b occurs in a semi-directed cycle a
s→ (b ≡ d1) ⇒ d2 ⇒ ·· · ⇒ (dk ≡ a)

in G∗. Choose this cycle to minimize k; by Lemma 3.4(c), k ≥ 4.
It is conceivable that di = c for some (at most one) i = 2, . . . , k − 2. If such

i exists and i ≥ 3, then a
s→ (b ≡ d1)

s– di ⇒ ·· · ⇒ (dk ≡ a) is a shorter semi-
directed cycle in G∗, contradicting the minimality of k. Thus, either i = 2 or no
such i exists.
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By Lemma 3.4(a), the minimum-length semi-directed cycle must have at least
one weak line dj

w– dj+1 ∈ G∗ (1 ≤ j ≤ k − 1). Consider the least such j . If j ≥ 2,
then the minimality of k is contradicted exactly as in (a). Suppose, therefore, that
j = 1, so (b ≡ d1)

w– d2 ∈ G∗. (Also, i does not exist and d2 �= c.) Since now a
s→

b w– d2 and d2
w– b s– c occur in G∗, a ⇒ d2 ∈ G∗ and d2

w– c ∈ G∗ by Lemma 3.2(b).
However, a → d2 cannot occur in G∗ [otherwise a → d2

w– c would be a flag in G∗,
contradicting Lemma 3.2(a)], so a − d2 ∈ G∗. Thus, a → b − d2 − a is a semi-
directed 3-cycle in G∗, contrary to Lemma 3.4.

Conversely, assume that a → b − c occurs as a flag in (G∗)◦, so a → b · · · c oc-
curs in G∗. If b−c ∈ G∗, then the flag also occurs in G∗, as asserted. If b ← c ∈ G∗,
then a → b ← c occurs as an immorality in G∗, hence by part (a) also occurs as an
immorality in (G∗)◦, contrary to assumption.

Thus, assume that a → b → c occurs as a chordless 2-dipath in G∗. Then b → c

must occur in a semi-directed cycle b → (c ≡ d1) ⇒ d2 ⇒ ·· · ⇒ (dk ≡ b) in G∗.
[Note that di �= a for each i; otherwise a → b would be included in a semi-directed
cycle and would thus be converted to a − b in (G∗)◦, contradicting the original
assumption.] Choose the chordless 2-dipath a → b → c in G∗ that is associated
with a semi-directed cycle having minimal length k with respect to all chordless
2-dipaths a′ → b′ → c′ in G∗ that occur as a′ → b′−c in (G∗)◦. By Lemma 3.4(c),
k ≥ 4.

By Lemma 3.4(a), the minimum-length semi-directed cycle must have at least
one weak line dj

w– dj+1 ∈ G∗ (1 ≤ j ≤ k − 1); consider the least such j . If j ≥ 2,
then the minimality of k is again contradicted exactly as in (a). Thus, assume that
j = 1, so b → (c ≡ d1)

w– d2 occurs in G∗. By Lemma 3.2(b), b ⇒ d2 ∈ G∗. If
b − d2 ∈ G∗, then b → c occurs in a semi-directed 3-cycle b → c w– d2 − b in G∗,
contradicting Lemma 3.4(c), so b → d2 ∈ G∗.

If a·� · · d2 in G∗, then the chordless 2-dipath a → b → d2 is associated with
a shorter semi-directed cycle b → d2 ⇒ ·· · ⇒ (dk ≡ b) in G∗, contradicting the
minimality of k, hence a · · ·d2 ∈ G∗. If a ⇐ d2 ∈ G∗, then a → b → c w– d2 ⇒ a

is a semi-directed cycle in G∗, so α → β would be converted to a line in (G∗)◦,
contrary to assumption; thus, a → d2 ∈ G∗. But then a → d2

w– c is a flag in G∗,
contradicting Lemma 3.2(a). Thus, a → b − c also occurs as a flag in G∗.

(c) Suppose that a s– b → c occurs as an antiflag in G∗ but not in (G∗)◦. Then
b → c must occur in a semi-directed cycle b → (c ≡ d1) ⇒ d2 ⇒ ·· · ⇒ (dk ≡ b)

in G∗. Choose the antiflag a s– b → c in G∗ that is associated with a semi-directed
cycle having minimum length k with respect to all antiflags a′ s– b′ → c′ in G∗ that
occur as a′ − b′ − c in (G∗)◦. By Lemma 3.4(c), k ≥ 4.

It is conceivable that di = a for some (at most one) i = 3, . . . , k − 1. If such
i exists and i ≤ k − 2, then b → (c ≡ d1) ⇒ ·· · ⇒ di

s– (dk ≡ b) is a shorter semi-
directed cycle in G∗, contradicting the minimality of k. Thus, either i = k − 1 or
no such i exists.

By Lemma 3.4(a), the minimum-length semi-directed cycle must have at least
one weak line dj

w– dj+1 ∈ G∗ (1 ≤ j ≤ k − 1); consider the least such j . If j ≥ 2,
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then the minimality of k is again contradicted exactly as in (a). Thus, assume that
j = 1, so b → (c ≡ d1)

w– d2 occurs in G∗. By Lemma 3.2(b), b ⇒ d2 ∈ G∗. If
b − d2 ∈ G∗, then b → c occurs in a semi-directed 3-cycle b → c w– d2 − b in G∗,
contradicting Lemma 3.4(c), so b → d2 ∈ G∗.

If a·� · · d2 in G∗, then the antiflag a
s→ b → d2 is associated with a shorter

semi-directed cycle b → d2 ⇒ ·· · ⇒ (dk ≡ b) in G∗, contradicting the minimality
of k; hence a · · ·d2 ∈ G∗. If a ⇐ d2 ∈ G∗, then b → d2 ⇒ a s– b is a semi-directed
3-cycle in G∗, contradicting Lemma 3.4(b), so a → d2 ∈ G∗. But then a → d2

w– c

occurs as a flag in G∗, contradicting Lemma 3.2(a). �

Two vertices a, a′ ∈ V are strongly equivalent (with respect to G) if a = a′ or
there is a path between them in G∗ consisting solely of strong lines. Let � ≡ �(G)

denote the set of strong equivalence classes in G∗, providing the decomposition
V = ⋃̇

(σ |σ ∈ �). If a · · ·a′ ∈ G∗
σ , then a − a′ ∈ Gσ ∀G ∈ G by the adicyclicity

of G, so a s– a′ ∈ G∗
σ . Therefore, G∗

σ = ((G∗)◦)σ = Gσ is a connected UG (possibly
a singleton), each of whose lines is strong. For a ∈ V , the unique strong equiva-
lence class containing a is denoted by σ(a).

LEMMA 3.6. Suppose that a ∈ α and b ∈ β for distinct α,β ∈ � ≡ �(G).

(a) If a → b ∈ G (resp., a − b ∈ G) for some G ∈ G and a′ · · ·b′ ∈ G for a
pair a′ ∈ α, b′ ∈ β , then a′ → b′ ∈ G (resp., a′ − b′ ∈ G).

(b) If a
w→ b ∈ G∗ (resp., a

s→ b ∈ G∗) and a′ · · ·b′ ∈ G∗ for a pair a′ ∈ α,
b′ ∈ β , then a′ w→ b′ ∈ G∗ (resp., a′ s→ b′ ∈ G∗).

(c) If a
w→ b ∈ G∗, then a

w→ b′ ∈ G∗ for every b′ ∈ β . Furthermore, G∗
α∩wpG∗ (β)

is complete.
(d) If a w– b ∈ G∗, then a′ w– b′ ∈ G∗ for every pair a′ ∈ α, b′ ∈ β . Furthermore,

G∗
α and G∗

β are complete.

PROOF. (a) is immediate by the adicyclicity of G and the connectedness of
the subgraphs Gα and Gβ .

(b) If a
w→ b ∈ G, then a → b ∈ G1 and a − b ∈ G2 for some G1,G2 ∈ G,

while a ⇒ b ∈ G3 for all other G3 ∈ G. Therefore, by (a), a′ → b′ ∈ G1, a′ −
b′ ∈ G2, and a′ ⇒ b′ ∈ G3, hence a′ w→ b′ ∈ G∗. Similarly, if a

s→ b ∈ G∗, then
a′ s→ b′ ∈ G∗.

(c) By Lemma 3.2(b), a
w→ b′′ ∈ G∗ for all strong neighbors b′′ of b in G∗, so

by the connectedness of G∗
β , a

w→ b′ ∈ G∗ for every b′ ∈ β . Next, suppose that

a′, a′′ ∈ α ∩ wpG∗(β). It follows from the preceding that a′ w→ b ∈ G∗ and a′′ w→
b ∈ G∗. By (a), therefore, ∃G1,G2 ∈ G such that a′ → b ∈ G1 and a′′ → b ∈ G1,
but a′ − b ∈ G2 and a′′ − b ∈ G2. Thus, a′ · · ·a′′ ∈ G∗, for otherwise the triplex
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({a′, a′′}, b) would occur as the immorality a′ → b ← a′′ in G1, but this triplex
would not occur in G2.

(d) By Lemma 3.2(b), a w– b′′ ∈ G∗ for all strong neighbors b′′ of b in G∗, so
by the connectedness of Gβ , a w– b′ ∈ G∗ for every b′ ∈ β . Similarly, a′ w– b′ ∈ G∗
for all a′ ∈ α. Next, for any a′, a′′ ∈ G∗

α , the preceding shows that a′ w– b ∈ G∗
and a′′ w– b ∈ G∗. By (a), ∃G1,G2 ∈ G such that a′ → b ∈ G1 and a′′ → b ∈ G1,
but a′ ← b ∈ G2 and a′′ ← b ∈ G2. Thus, a′ · · ·a′′ ∈ G∗, for otherwise the triplex
({a′, a′′}, b) would occur as the immorality a′ → b ← a′′ in G1, but this triplex
would not occur in G2, hence G∗

α is complete. Similarly, G∗
β is complete. �

DEFINITION 3.2. For each G ≡ (V ,E) ∈ G, define the reduced graph G ≡
(� ≡ �(G),E) as follows: α → β ∈ G (resp., α − β ∈ G) iff a → b ∈ G (resp.,
a − b ∈ G) for at least one pair a ∈ α, b ∈ β . The reduced graph G∗ ≡ (�,E∗) is
defined similarly.

By Lemma 3.6(a), G is well defined. Since G and G are adicyclic, G◦ = G =
(G)◦. Clearly, G∗ has the same skeleton as G for each G ∈ G, and α · · ·β ∈ G∗
iff a · · ·b ∈ G∗ for some pair a ∈ α, b ∈ β . The arrow α → β ∈ G∗ is called weak
(resp., strong) if a

w→ b ∈ G∗ (resp., a
s→ b ∈ G∗). All lines α − β ∈ G∗ are called

weak because each line a − b ∈ G∗ (a ∈ α, b ∈ β) must be weak.
The following fact will be used repeatedly. Consider the following four state-

ments:

1. α → β ∈ G∗;
2. α ⇒ β ∈ G for all G ∈ G;
3. α → β ∈ G for some G ∈ G;
4. α ⇒ β ∈ G∗.

Then 1 ⇐⇒ 2 �⇒ 3 ⇐⇒ 4.

LEMMA 3.7. (a) If G ∈ G, then G has no chordless undirected cycles.
(b) If α → β ← γ occurs as an immorality in G for some G ∈ G, then the

triplex ({α,γ }, β) occurs in G′ for every G′ ∈ G.

PROOF. (a) If (σ0, σ1, . . . , σk ≡ σ0) comprises a chordless undirected k-cycle
in G, then, by the definition of G and the connectedness of each Gσi

, there exist
{sij |1 ≤ j ≤ ni} ⊆ σi , i = 1, . . . , k, such that (s11, . . . , s1n1, . . . , sk1, . . . , sknk

≡
s11) is an undirected l-cycle in G (l ≥ k). If we choose the l-cycle of this form that
minimizes l, this cycle must be chordless. By Lemma 3.3, each line sini

− s(i+1)1
must be strong in G∗, but also must be weak in G∗ since sini

∈ σi and s(i+1)1 ∈ σi+1,
a contradiction.

(b) Because α → β ← γ occurs as an immorality in G, α ⇒ β ⇐ γ occurs
in G∗ with α·� · · γ . If α

w→ β , α w– β , β
w← γ , or β w– γ occurs in G∗, then, by
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Lemma 3.6(a), (b), (c), (d), ∃a ∈ α, b ∈ β , and c ∈ γ such that a → b ← c oc-
curs as an immorality in G. In this case ({a, c}, b) must occur as a triplex in each
G′ ∈ G, hence ({α,γ }, β) must occur as a triplex in G′ for each G′ ∈ G.

In the remaining case, α
s→ β

s← γ occurs in G∗. By the connectedness of G∗
β ,

∃a ∈ α, b0, . . . , bn ∈ β (n ≥ 0), and c ∈ γ such that a
s→ b0

s– · · · s– bn
s← c occurs

as a subgraph of G∗ and thus as a subgraph of each G′ ∈ G. Therefore, α → β ← γ

occurs as an immorality (a triplex) in G′ for each G′ ∈ G. �

LEMMA 3.8. (a) Let α,β ∈ � ≡ �(G) be distinct strong equivalence classes.
An arrow α → β ∈ G∗ is contained in some semi-directed cycle in G∗ if and only
if there exist a ∈ α and b ∈ β such that a → b ∈ G∗ is contained in some semi-
directed cycle in G∗. In this case, every arrow a′ → b′ ∈ G∗ between α and β is
contained in some semi-directed cycle in G∗.

(b) G∗ is adicyclic iff G∗ is adicyclic. In general, (G∗)◦ = (G∗)◦.

PROOF. (a) “Only if”: This follows immediately from the fact that any two
vertices in a strong equivalence class are connected in G∗ via a path consisting of
strong lines.

“If”: Let a → b ⇒ d1 ⇒ ·· · ⇒ (dl ≡ a) be a semi-directed l-cycle in G∗
(l ≥ 3). Consider the largest i = 1, . . . , l − 1 such that di ∈ β . Since di ⇒ di+1 ∈
G∗, Lemma 3.6(b) implies that σ(di+1) �= α, hence i ≤ l − 2, γ := σ(di+1) �=
α,β , and α → β ⇒ γ occurs as a subgraph in G∗. Next, consider the largest
j = i + 1, . . . , l − 1 such that dj ∈ γ . Then δ := σ(dj+1) �= β,γ and, since
dj ⇒ dj+1 ∈ G∗, α → β ⇒ γ ⇒ δ occurs in G∗. Either δ = α, producing a semi-
directed 3-cycle of the desired form, or this process may be continued until a semi-
directed k-cycle α → β ⇒ γ ⇒ δ ⇒ ·· · ⇒ α (k ≥ 4) in G∗ is obtained. The final
statement is immediate.

(b) The first part follows from the first statement in (a). By Lemma 3.5,
(G∗)◦ ∈ G, so (G∗)◦ is well defined; clearly, it has the same skeleton as G∗ and
(G∗)◦. Suppose first that α → β ∈ (G∗)◦. Then α → β ∈ G∗ and α → β cannot oc-
cur in a semi-directed cycle in G∗. Select a ∈ α and b ∈ β such that a → b ∈ G∗. By
(a)(“if”), a → b cannot occur in a semi-directed cycle in G∗, hence a → b ∈ (G∗)◦,
so α → β ∈ (G∗)◦.

Suppose next that α − β ∈ (G∗)◦, so either (i) α − β ∈ G∗, (ii) α → β ∈ G∗, or
(iii) α ← β ∈ G∗. In case (i), it follows directly that α − β ∈ (G∗)◦. In case (ii),
α → β must occur in some semi-directed cycle in G∗, hence by (a)(“only if”) again
α − β ∈ (G∗)◦; case (iii) is similar to (ii). Thus, (G∗)◦ = (G∗)◦. �

LEMMA 3.9. (a) G∗ has no flags or chordless undirected cycles.
(b) If α → β − γ occurs as a subgraph in G∗, then α ⇒ γ ∈ G∗.
(c) Any triplex (necessarily an immorality) in G∗ is a triplex in G for each

G ∈ G.
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PROOF. (a) If α → β − γ is a flag in G∗, then β − γ is a weak line and,
by Lemma 3.6(d) and the definition of G∗, there exist a ∈ α, b ∈ β , c ∈ γ such
that a → b − c is a flag in G∗. Therefore, b − c must be a strong line in G∗ by
Lemma 3.2(a), but b − c is a weak line, thus, a contradiction.

Next, if (σ0, σ1, . . . , σk ≡ γ0) is a chordless undirected k-cycle in G∗, then
by Lemma 3.6(d) and the definition of G∗, there exist si ∈ σi , i = 1, . . . , k,
such that (s0, s1, . . . , sk ≡ s0) is a chordless undirected k-cycle in G∗. Each line
si−1 − si ∈ G∗ is weak, but, by Lemma 3.3, each line si−1 − si ∈ G∗ must be
strong, a contradiction.

(b) By (a), α · · ·γ ∈ G∗. Because β − γ must be weak, we can choose G ∈ G
such that β → γ ∈ G, hence, the triangle α ⇒ β → γ · · ·α occurs in G. Since G

is adicyclic, α → γ ∈ G, hence α ⇒ γ ∈ G∗.
(c) By (a), any triplex in G∗ is an immorality, say α → β ← γ . If either arrow is

weak, then by Lemma 3.6(c) there exist a ∈ α, b ∈ β , c ∈ γ such that a → b ← c is
an immorality in G∗. Thus, by Lemma 3.1, ({a, c}, b) is a triplex in G, so by the de-
finition of G, ({α,γ }, β) is a triplex in G. If both arrows in α → β ← γ are strong,
then there exist a ∈ α, b, b′ ∈ β , c ∈ γ such that a → b ∈ G and b′ ← c ∈ G, hence
α → β ← γ is an immorality in G. �

LEMMA 3.10. (a) Any semi-directed cycle in G∗ has at least one (weak) line.
(b) If α → β ⇒ δ ⇒ α is a semi-directed 3-cycle in G∗, then there ex-

ist G,G′ ∈ G such that α ⇒ β ← δ → α occurs in G and α ⇒ β → δ ← α

occurs in G′. Therefore, the semi-directed 3-cycle in G∗ must have the form
α → β w– δ w– α.

(c) In this case, α → β cannot occur in G∗ in a triplex (necessarily an im-
morality α → β ← γ ) or in an induced subgraph of the form γ → α → β .

(d) If σ0 → σ1 ⇒ ·· · ⇒ (σk ≡ σ0) is a semi-directed k-cycle in G∗ (k ≥ 3),
then each σi has at least one weak neighbor in G∗. Thus, by Lemma 3.6(d), the
induced subgraphs G∗

σ1
, . . . ,G∗

σk
are complete.

PROOF. (a) This follows directly from Lemma 3.4(a), using the fact that each
G∗

σ , σ ∈ �, is connected.
(b) The proof is the same as that of Lemma 3.4(b).
(c) Assume that the immorality α → β ← γ occurs in G∗. Let G,G′ be as

specified in (b); since α·� · · γ , necessarily γ �= δ. Because β ← γ ∈ G∗, neces-
sarily β ⇐ γ ∈ G,G′. Since δ − β ← γ occurs as a subgraph of G∗, necessar-
ily δ ⇐ γ ∈ G∗ [Lemma 3.9(b)], hence also δ · · ·γ ∈ G,G′. Thus, the triangle
δ ← β ⇐ γ · · · δ occurs in G′, hence δ ← γ ∈ G by the adicyclicity of G. There-
fore, α → δ ← γ occurs as an immorality in G′, so by Lemma 3.7(b), ({α,γ }, δ)
must occur as a triplex in G. But this is impossible because α ← δ ∈ G. The impos-
sibility of the occurrence of γ → α → β as an induced subgraph of G∗ is proved
by a similar argument.
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(d) Use induction on k. By (b), the result is true when k = 3. Suppose it is true
for all k′ < k. By (a), at least one edge in the k-cycle is a weak line. Let σj

w– σj+1

be the first such edge (1 ≤ j ≤ k − 1), so σj−1 → σj
w– σj+1 occurs in G∗. Thus,

σj−1 ⇒ σj+1 ∈ G∗ by Lemma 3.9(b). If j ≥ 2, then σ0 → σ1 ⇒ ·· · ⇒ σj−1 ⇒
σj+1 ⇒ ·· · ⇒ (σk ≡ σ0) is a semi-directed (k−1)-cycle in G∗, so by the induction
hypothesis, each of its vertices has at least one weak neighbor in G∗. Because the
vertex σj also has a weak neighbor (σj+1), the asserted result holds. If j = 1, then
the cycle σ0 ⇒ σ2 ⇒ ·· · ⇒ (σk ≡ σ0) occurs in G∗. If σ0 → σ2 ∈ G∗, then this
cycle is semi-direct and the induction hypothesis again yields the asserted result.
If σ0

w– σ2 ∈ G∗, then either the cycle is completely undirected, in which case the
asserted result obviously holds, or else it has at least one arrow, in which case the
cycle is semi-directed and the induction hypothesis again applies. �

LEMMA 3.11. (a) An immorality α → β ← γ occurs in G∗ iff it occurs
in (G∗)◦.

(b) Neither G∗ nor (G∗)◦ has any flags.
(c) (G∗)◦ has no chordless undirected cycles.

PROOF. (a) Note that G∗ ⊆ (G∗)◦ and they have the same skeletons. Thus,
if the immorality α → β ← γ occurs in (G∗)◦, it must occur in G∗. Conversely,
suppose that α → β ← γ occurs in G∗ but not in (G∗)◦. Then at least one of
these two arrows must occur in a semi-directed cycle in G∗ and so is converted to
a line in (G∗)◦; also α·� · · γ in both graphs. Choose the immorality α → β ← γ

associated with a semi-directed cycle of minimum length k [minimum with respect
to all immoralities α′ → β ′ ← γ ′ in G∗ that do not occur in (G∗)◦] and assume
without loss of generality that this cycle contains α → β . This cycle thus has the
form α → (β ≡ δ1) ⇒ δ2 ⇒ ·· · ⇒ (δk ≡ α) in G∗. By Lemma 3.10(c), k ≥ 4.

It may be that δi = γ for some (at most one) i = 3, . . . , k − 2. In that case,
however, β ← (γ ≡ δi) occurs in a shorter semi-directed cycle γ → (β ≡ δ1) ⇒
·· · ⇒ (δi ≡ γ ) in G∗, contradicting the minimality of k; hence, δi �= γ for each i.
By Lemma 3.10(a), the minimal-length semi-directed cycle has at least one line
δj

w– δj+1 ∈ G∗ (1 ≤ j ≤ k − 1); consider the minimal such j .
Suppose first that j ≥ 2, so δj−1 → δj − δj+1 occurs as a subgraph of G∗. By

Lemma 3.9(b), δj−1 ⇒ δj+1 ∈ G∗, hence α → (β ≡ δ1) ⇒ ·· · ⇒ δj−1 ⇒ δj+1 ⇒
·· · ⇒ (δk ≡ α) is a shorter semi-directed cycle in G∗ containing α → β , contra-
dicting the minimality of k.

Suppose next that j = 1, so (β ≡ δ1)− δ2 ∈ G∗. By Lemma 3.9(b), α ⇒ δ2 ⇐ γ

occurs as an induced subgraph in G∗. By Lemma 3.10(c), neither edge can be a
line, hence α → δ2 ← γ occurs as an immorality in G∗. But now α → δ2 occurs
in a shorter semi-directed cycle α → δ2 ⇒ ·· · ⇒ (δk ≡ α), contradicting the min-
imality of k.

(b) By Lemma 3.9(a), G∗ has no flags. Assume that α → β − γ occurs as a
flag in (G∗)◦. Then necessarily α → β ∈ G∗, so by (a), α → β → γ occurs as a
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chordless 2-dipath in G∗, and β → γ occurs in some semi-directed cycle in G∗:
β → (γ ≡ δ1) ⇒ δ2 ⇒ ·· · ⇒ (δk ≡ β), with k ≥ 4 by Lemma 3.10(c). Choose the
flag α → β − γ in (G∗)◦ such that the associated semi-directed cycle has mini-
mal length k. [Note that δi �= α for each i; otherwise α → β would be included
in a semi-directed cycle in G∗ and would thus be converted to α − β in (G∗)◦,
a contradiction to the original assumption.]

By Lemma 3.10(a), the semi-directed cycle must have at least one line δj −
δj+1 ∈ G∗ (1 ≤ j ≤ k − 1); consider the minimal such j . If j ≥ 2, then the min-
imality of k is contradicted exactly as in (a), hence j = 1 and δ1 − δ2 ∈ G∗. By
Lemma 3.9(b), β ⇒ δ2 ∈ G∗. If β − δ2, then β → (γ ≡ δ1) − δ2 − β is a semi-
directed 3-cycle containing β → γ in G∗, contradicting Lemma 3.10(c); hence
β → δ2 ∈ G∗.

If α·� · · δ2 in G∗, then α → β → δ2 occurs as a chordless 2-dipath in G∗ and
β → δ2 occurs in the semi-directed cycle β → δ2 ⇒ ·· · ⇒ (δk ≡ β), contradicting
the minimality of k. If α · · · δ2 in G∗, then α → δ2, since otherwise α → β would
occur in the semi-directed cycle α → β → γ − δ2 ⇒ α in G∗, hence would be
converted into α − β in (G∗)◦. But now α → δ2 − γ is a flag in G∗, contradicting
Lemma 3.9(a).

(c) Suppose that (G∗)◦ has a chordless undirected cycle which has no triplexes.
By Lemma 3.9(a), G∗ has no such cycles, so has at least one arrow in this cycle. If
G∗ has at least one opposing arrow in this cycle, it must have at least one triplex
therein. If it has no opposing arrow, then it has at least one line [Lemma 3.10(a)],
so again at least one triplex therein. But by (a) and (b), G∗ and (G∗)◦ have the same
triplexes, hence a contradiction. �

THEOREM 3.2. G∗ is adicyclic (i.e., is a chain graph) and G∗ ∈ G.

PROOF. By Lemma 3.8(b), to show that G∗ is adicyclic, it suffices to show
that G∗ is adicyclic, that is, G∗ = (G∗)◦. To simplify notation, set K := G∗. By
Lemma 3.11, K and K◦ have the same immoralities, have no flags and K◦ is a
chain graph each of whose chain components (K◦)η, η ∈ �(K◦), is chordal. [Note
that η ⊆ � ≡ �(G).]

Because K ⊆ K◦, it suffices to show that if α − β ∈ K◦, then α − β ∈ K . Let
η ∈ �(K◦) be the unique chain component of K◦ such that α − β ∈ (K◦)η. Since
it is chordal, (K◦)η admits two perfect directed versions, say, Dη and D′

η, such
that α → β ∈ Dη and α ← β ∈ D′

η. (Apply Maximum Cardinality Search starting
first at α and next at β .) Extend Dη and D′

η to directed graphs D and D′, each
having the same vertex set � and the same skeleton as K and K◦, by assigning
perfect orientations (the same for D and D′) to all other chain components (K◦)χ ,
χ ∈ �(K◦), χ �= η. Thus, every arrow in K◦ also occurs in D and D′, while
α → β ∈ D and α ← β ∈ D′.

It is readily verified that D and D′ are acyclic (since K◦ is adicyclic and per-
fect orientations of chordal graphs are acyclic) and have the same immoralities as
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K and K◦ (since K◦ has no flags, perfect orientations of chordal graphs are moral,
and every arrow in K◦ also occurs in D and D′).

Now consider the “un-reduced” versions H of D and H ′ of D′. That is,
H and H ′ have the same skeleton as G∗, while if c · · ·d ∈ G∗, then:

A: c − d ∈ H,H ′ iff c s– d ∈ G∗, that is, Hσ = H ′
σ = G∗

σ ∀σ ∈ �;
B: c → d ∈ H (resp., H ′) iff σ(c) → σ(d) ∈ D (resp., D′).

In case B, either

B1: σ(c) → σ(d) ∈ K◦, in which case σ(c) → σ(d) ∈ K , or
B2a: σ(c) − σ(d) ∈ K◦ and σ(c) w– σ(d) ∈ K , or
B2b: σ(c) − σ(d) ∈ K◦ and σ(c) ↔ σ(d) ∈ K but the arrow ↔ is contained

in a semi-directed cycle in K .

Note that if ã ∈ α and b̃ ∈ β are chosen such that ã · · · b̃ ∈ G∗, then ã →
b̃ ∈ H and ã ← b̃ ∈ H ′. If we can show that H,H ′ ∈ G, then ã − b̃ ∈ G∗, so
α − β ∈ G∗ ≡ K , which would complete the proof of the adicyclicity of G∗. Since
D and D′ are acyclic, H and H ′ are adicyclic by their construction. Therefore,
it suffices to show that H and H ′ have the same immoralities and the same flags
as G∗, hence, the same triplexes.

(i) Suppose that c → d ← e occurs as an immorality in G∗. By Lemma 3.5(a),
this immorality also occurs in (G∗)◦, so the arrow(s) σ(c) → σ(d) and σ(d) ←
σ(e) occur in (G∗)◦ = (G∗)◦ ≡ K◦ [Lemma 3.8(b)] and therefore occur in
D and D′. [Note that it is possible that σ(c) = σ(e).] Thus, c → d and d ← e

both occur in H and H ′ so, since c·� · · e in H and H ′, c → d ← e occurs as an
immorality in H and H ′.

(ii) Suppose that c
s→ d s– e occurs as a flag in G∗. By Lemma 3.5(b), this flag

also occurs in (G∗)◦, so the arrow σ(c) → σ(d) occurs in (G∗)◦ = (G∗)◦ ≡ K◦ and
therefore in D and D′. Thus, c → d − e occurs as a flag in H and H ′.

(iii) Suppose that c → d − e occurs as a flag in H (or H ′). Then c · · ·d s– e

occurs as an induced subgraph of G∗ and σ(c) → σ(d) ∈ D (or D′). Consider the
three possibilities B1, B2a, B2b for the edge σ(c) · · ·σ(d):

B1: Here σ(c) → σ(d) ∈ K ≡ G∗, so c → d s– e occurs as a flag in G∗.
B2a: Here σ(c) w– σ(d) ∈ K so c w– d ∈ G∗, hence c w– d s– e ∈ G∗, hence c w– e ∈

G∗ [Lemma 3.2(b)]. But c·� ·· e in G∗, a contradiction.
B2b: Here σ(c) ↔ σ(d) ∈ K and the arrow occurs in a semi-directed cycle in

K ≡ G∗, so by Lemma 3.8(a), c ↔ d must occur in a semi-directed cycle in G∗.
Thus, either c → d s– e occurs as a flag in G∗ but not in (G∗)◦, contradicting
Lemma 3.5(b), or c ← d s– e occurs as an antiflag in G∗ but not in (G∗)◦, con-
tradicting Lemma 3.5(c).

(iv) Suppose that c → d ← e occurs as an immorality in H (or H ′). Then
c · · ·d · · · e occurs as an induced subgraph of G∗, and σ(c) → σ(d) ∈ D (or D′),
σ(c) → σ(d) ∈ D (or D′).
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First, assume that σ(c) = σ(e). Again consider the three possibilities B1, B2a,
B2b for the edge σ(c) · · ·σ(d):

B1: Here σ(c) → σ(d) ∈ K ≡ G∗, so c → d ← e occurs as an immorality
in G∗.

B2a: Here σ(c) w– σ(d) ∈ K , so c w– d ∈ G∗, e w– d ∈ G∗, and G∗
σ(c) ≡ G∗

σ(e) is
complete [Lemma 3.6(d)], but c·� ·· e in G∗, a contradiction.

B2b: Here σ(c) ↔ σ(d) ∈ K and the arrow occurs in a semi-directed cycle in
K ≡ G∗, so G∗

σ(c) ≡ G∗
σ(e) is complete [Lemma 3.10(d)]. But c·� ·· e in G∗, a contra-

diction.

Second, assume that σ(c) �= σ(e). As above, three possibilities (B1, B2a, B2b)
exist for the edge σ(c) · · ·σ(d) in K◦. Similarly, three possibilities (B1′, B2a′,
B2b′) exist for the edge σ(e) · · ·σ(d) in K◦:

B1′: σ(e) → σ(d) ∈ K◦, in which case σ(e) → σ(d) ∈ K , or
B2a′: σ(e) − σ(d) ∈ K◦ and σ(e) w– σ(d) ∈ K , or
B2b′: σ(e) − σ(d) ∈ K◦ and σ(e) ↔ σ(d) ∈ K , but the arrow ↔ is contained

in a semi-directed cycle in K .

Thus, we must consider the nine cases (B1, B1′), (B2a, B1′), . . . , (B2b, B2b′).

(B1, B1′): Here σ(c) → σ(d) ∈ K and σ(e) → σ(d) ∈ K ≡ G∗, so c →
d ← e occurs as an immorality in G∗.

(B1, B2a′): Here σ(c) → σ(d) ∈ K and σ(e) w– σ(d) ∈ K , so c → d w– e occurs
as a flag in G∗, contradicting Lemma 3.2(a). Similarly, the case (B2a, B1′) is also
impossible.

(B1, B2b′): Here σ(c) → σ(d) ∈ K and σ(e) ↔ σ(d) ∈ K with the arrow ↔
contained in a semi-directed cycle in K ≡ G∗. By Lemma 3.8(a), e ↔ d must
occur in a semi-directed cycle in G∗, so either c → d ← e occurs as an immorality
in G∗ but not in (G∗)◦, contradicting Lemma 3.5(a), or c → d → e occurs as a
chordless 2-dipath in G∗ but c → d − e occurs as a flag in (G∗)◦, contradicting
Lemma 3.5(b). Similarly, (B2b, B1′) is impossible.

In the remaining four cases (B2a, B2a′), (B2a, B2b′), (B2b, B2a′) and (B2b,
B2b′), σ(c) − σ(d) − σ(e) occurs as a subgraph in K◦. Because σ(c) → σ(d) ←
σ(e) occurs as a subgraph in D (or D′) and K◦ has the same immoralities as
D,D′, necessarily σ(c) · · ·σ(e) ∈ K ≡ G∗ in these four cases. It cannot occur that
σ(c) w– σ(e) ∈ K [otherwise c · · · e ∈ G∗ by Lemma 3.6(d)], so σ(c) ↔ σ(e) ∈ K .
Therefore, ∃ c′ ∈ σ(c), e′ ∈ σ(e) such that c′ ↔ e′ ∈ G∗. Since c·� ·· e in G∗, either
c �= c′ or e �= e′ (or both).

(B2a, B2a′): Here σ(c) w– σ(d) ∈ K and σ(e) w– σ(d) ∈ K ≡ G∗, so c w– d ∈ G∗,
e w– d ∈ G∗, and both G∗

σ(c) and G∗
σ(e) are complete [Lemma 3.6(d)]. Thus, c′ ↔ e′

occurs in a semi-directed cycle in G∗.
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(•) If we assume that c �= c′, then c s– c′ ↔ e′ occurs as a subgraph of G∗. In
this case c ↔ e′ ∈ G∗, for otherwise the subgraph would occur as an antiflag or flag
in G∗ but not in (G∗)◦, contradicting Lemma 3.5(c),(b). Therefore, e′ �= e (since
c·� · · e in G∗), so c ↔ e′ s– e occurs as a subgraph of G∗. By the same reasoning,
c ↔ e ∈ G∗, thereby contradicting the fact that c·� ·· e ∈ G∗. The same contradiction
is obtained if we assume first that e �= e′.

(B2a, B2b′): Here σ(c) w– σ(d) ∈ K and σ(e) ↔ σ(d) ∈ K with the arrow
↔ contained in some semi-directed cycle in K . Thus, G∗

σ(c) is complete by

Lemma 3.6(d) and G∗
σ(e) is complete by Lemma 3.10(d), so c s– c′ ∈ G∗ if c �= c′

and e s– e′ ∈ G∗ if e �= e′. Because the triangle σ(c) w– σ(d) ↔ σ(e) ↔ σ(c) occurs
in K ≡ G∗ and has exactly one line, by Lemma 3.10(b), it cannot occur as a semi-
directed 3-cycle. This leaves two possible configurations for the triangle in G∗:
σ(c) w– σ(d) ← σ(e) → σ(c) and σ(c) w– σ(d) → σ(e) ← σ(c), and in both cases
the arrow between σ(d) and σ(e) is contained in some semi-directed cycle in G∗.

If the first configuration obtains, therefore, there exists a path σ(d) ⇒ δ1 ⇒
·· · ⇒ (δk ≡ σ(e)) in G∗ (k ≥ 2). If each δi �= σ(c), then σ(e) → σ(c) is contained
in the semi-directed cycle σ(e) → σ(c) w– σ(d) ⇒ δ1 ⇒ ·· · ⇒ (δk ≡ σ(e)) in G∗,
while if δi = σ(c) for some (at most one) i = 2, . . . , k − 1 (so k ≥ 3), then σ(e) →
σ(c) is contained in the semi-directed cycle σ(e) → (σ (c) ≡ δi) ⇒ ·· · ⇒ (δk ≡
σ(e)) in G∗. In both cases, therefore, e′ → c′ is contained in a semi-directed cycle
in G∗ by Lemma 3.8(a). If the second configuration obtains, a similar argument
shows that c′ → e′ is contained in a semi-directed cycle in G∗. Now a contradiction
is reached exactly as in (•). Similarly, (B2b, B2a′) is also impossible.

(B2b, B2b′): Here σ(c) ↔ σ(d) ∈ K and σ(e) ↔ σ(d) ∈ K , with the arrows
↔ both contained in semi-directed cycles in K . Since also σ(c) ↔ σ(e) ∈ K ,
σ(c) ↔ σ(d) ↔ σ(e) ↔ σ(c) occurs as a triangle in K ≡ G∗. Of the eight pos-
sible orientations, two are cyclic but have no lines, hence are impossible by
Lemma 3.4(b), leaving six acyclic possibilities: σ(c) → σ(d) ← σ(e) → σ(c),
σ(c) ← σ(d) ← σ(e) → σ(c), and so on. The argument in the preceding para-
graph can be extended to show again that c′ ↔ e′ occurs in a semi-directed cycle
in G∗, and again a contradiction is reached exactly as in (•).

Thus, we have established that H and H ′ have the same triplexes as G∗, so the
proof of the adicyclicity of G∗ is complete. Last, it follows now from Lemma 3.1
that G∗ ∈ G. �

REMARK 3.1. For subsequent use, we summarize the properties of the graphs
H and H ′ constructed in the preceding proof: H and H ′ are adicyclic and have
the same skeleton, immoralities and flags as G∗, so H,H ′ ∈ G. Each strong line
in G∗ occurs as a line in H and H ′, each arrow in G∗ occurs as an arrow with the
same orientation in H and H ′, and each weak line in G∗ is converted to an arrow in
H and H ′. Further, if a weak line a w– b ∈ G∗ is specified, H and H ′ can be chosen
such that a → b ∈ H and a ← b ∈ H ′.
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4. Local properties of AMP essential graphs. Having established that G∗
and G∗ are adicyclic, some of the results in Lemmas 3.2 and 3.9 can be sharpened
and extended. These then yield information about the possible local configurations
of strong/weak arrows/lines in G∗ ≡ (V ,E∗).

A chain component ξ ∈ �(G∗) is nontrivial if |ξ | ≥ 2, so that G∗
ξ contains at

least one line. A nontrivial chain component ξ is called strong (weak) if each line
in G∗

ξ is strong (weak). For v ∈ V , denote the unique chain component of G∗ that
contains v by ξ(v) ≡ ξG∗(v).

LEMMA 4.1. (a) If a → b w– c occurs as a subgraph in G∗, then a → c ∈ G∗.
Thus, if ξ(b) is weak, then a → b′ ∀b′ ∈ ξ(b).

(b) If α → β − γ occurs as a subgraph in G∗, then α → γ ∈ G∗.
(c) If a → b w– c occurs as a subgraph in G∗, then a → b′ w– c′ and a → c′

occur as subgraphs of G∗ for all b′ ∈ σ(b) and c′ ∈ σ(c).
(d) The configuration a s– b w– c cannot occur as an induced or noninduced

subgraph in G∗.

PROOF. (a) and (b) By the adicyclicity of G∗ and G∗, these results follow
immediately from Lemmas 3.2(b) and 3.9(b) and the connectivity of ξ(b).

(c) By Lemma 3.6(d), a → b w– c′ w– b′ occurs as a subgraph in G∗. There-
fore, a → c′ w– b′ occurs in G∗ by (a), whence a → b′ ∈ G∗ also by (a). [Note
that if the arrow a → b is weak, the result concerning a → b′ w– c′ follows from
Lemma 3.6(c), (d), and in turn implies that a → c′ ∈ G∗ by (a).]

(d) Assume that a s– b w– c occurs as a subgraph in G∗ and let ξ = ξ(a) ≡ ξ(b) ≡
ξ(c). By Lemma 3.6(d), a′ w– c′ ∈ G∗ ∀a′ ∈ σ(a), c′ ∈ σ(c), and σ(a) ≡ σ(b) and
σ(c) are complete subsets of ξ . Since every σ ∈ �(G) such that σ ⊆ ξ must be
connected to σ(a) by a path of weak and strong lines, it follows that every such
σ is complete. This implies that any chordless cycle C in G∗

ξ must contain at least

one weak line d w– e, hence ∃G ∈ G such that either d → e ∈ G or d ← e ∈ G. But
this and the adicyclicity of G imply the existence of a triplex in GC , while G∗

C ,
being undirected, has no triplexes, a contradiction since G and G∗ have the same
triplexes. Thus, G∗

ξ can have no chordless cycles, hence is chordal.
Thus, G∗

ξ admits a perfect directed version Fξ (apply MCS), so the edge a · · ·b
occurs as an arrow in Fξ . Let F be the graph obtained from G∗ if we replace
G∗

ξ by Fξ , so F ⊆ G∗. Clearly, F has the same skeleton as G∗ and is adicyclic: any
semi-directed cycle in F cannot be wholly contained in ξ since Fξ is acyclic, hence
such a cycle must contain at least one arrow from G∗, so would correspond to a
semi-directed cycle in G∗ which, however, is adicyclic. Because F differs from G∗
only in that all lines in G∗

ξ become arrows in F , because no triplexes occur within
Fξ or G∗

ξ (the orientation in Fξ is perfect, while G∗
ξ is undirected), and because

neither F nor G∗ has a line d − e with e ∈ ξ and f ∈ V \ ξ [since ξ ∈ �(G)], the
triplexes of F and G∗ can differ only if, for some e, f ∈ ξ , d → e − f occurs as a
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flag in G∗ but d → e → f ∈ F . The former is impossible if e − f is weak in G∗
[Lemma 3.2(a)], so assume e s– f ∈ G∗. Since σ(e) � ξ , ∃g ∈ (ξ \ σ(e)) such that
e w– g ∈ G∗ [Lemma 3.6(d)], so, since f ∈ σ(e), d → f ∈ G∗ [set a = d , b = e,
c = g and b′ = f in part (c)]. Thus, d → e − f cannot occur as a flag in G∗, so F

and G∗ have the same triplexes, hence F ∈ G. Since a · · ·b occurs as an arrow in
F , a − b cannot be a strong line in G∗, contrary to assumption. �

PROPOSITION 4.1. (a) Every nontrivial chain component of G∗ is either
strong or weak.

(b) A nontrivial chain component ξ ∈ �(G∗) is strong iff G∗̄
ξ

contains either

a chordless undirected cycle or a flag, where ξ̄ = clG∗(ξ) ≡ ξ ∪̇paG∗(ξ). In fact,
G∗̄

ξ
must contain either a chordless undirected cycle or a biflag.

PROOF. Lemma 4.1(d) yields (a); Lemmas 3.2(a) and 3.3 yield “if” in (b).
(b) “only if”: Assume that ξ is strong but G∗̄

ξ
contains no chordless undirected

cycles or biflags. Suppose first that G∗̄
ξ

has no flags. Because G∗
ξ is chordal, we can

define Fξ and F as in the proof of Lemma 4.1(d). Then as above, F is adicyclic
and has the same skeleton and triplexes as G∗, hence F ∈ G. Because all edges
in Fξ are arrows, however, the corresponding edges in G∗

ξ cannot be strong lines,
a contradiction.

Suppose next that G∗̄
ξ

has at least one flag, say, a∗ → b∗ − c∗ with b∗, c∗ ∈ ξ .

Let F be the graph constructed from G∗ by converting each such flag into an im-
morality a∗ → b∗ ← c∗. This process is unambiguous since b∗ − c∗ cannot occur
in a 2-biflag in G∗. Since F ⊆ G∗ and they have the same skeleton, each chain
component ρ of F satisfies either ρ ⊆ ξ or ρ ∩ ξ = ∅. Define

�ξ(F ) := {ρ ∈ �(F)|ρ ⊆ ξ},
so ξ = ⋃̇ {ρ|ρ ∈ �ξ(F )}. We shall establish four properties of F :

(1) F is adicyclic. If F were not adicyclic, it would contain a semi-directed
cycle c0 → c1 ⇒ ·· · ⇒ ck ≡ c0 (k ≥ 3). Because F ⊆ G∗ and G∗ is adicyclic, this
cycle must be completely undirected in G∗, in particular, c0 − c1 ∈ G∗, so there
must exist a vertex a �= c0, c1, c2, ck−1 such that c0 − c1 ← a occurs as a flag
in G∗. (If k ≥ 5, then also a �= ci for i = 3, . . . , k − 2, for otherwise c1 ⇒ c2 · · · ⇒
ci → c1 would be a semi-directed cycle in G∗.) Further, a → c1 − c2 cannot occur
as a flag in G∗ (otherwise c1 ← c2 ∈ F ), so a → c2 ∈ G∗. Similarly, a → ci ∈ G∗
for i = 3, . . . , k, which contradicts the nonadjacency of a and ck ≡ c0 in the flag
c0 − c1 ← a.

(2) Each triplex in G∗ corresponds to a triplex in F . This is immediate by the
construction of F from G∗.

(3) Each immorality in F corresponds to a triplex in G∗ (but not every flag
in F need correspond to a triplex in G∗). This holds since G∗

ξ contains no 3-biflag
chains.
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(4) The moralized graph (cf. [4], page 40) L ≡ L(ρ) := (FclF (ρ))
m is chordal

for each ρ ∈ �ξ(F ). If not, then L would contain a chordless k-cycle c0 −c1 −c2 −
· · · − ck ≡ c0 (k ≥ 4), where each ci ∈ clF (ρ) ≡ ρ ∪̇paF (ρ). Since Lρ = Fρ = G∗

ρ

and G∗
ξ is chordal, this cycle cannot lie entirely within ρ, so must intersect paF (ρ).

Since paF (ρ) is complete in L, either (a) exactly one vertex of the cycle lies in
paF (ρ), say, c1, or (b) exactly two vertices of the cycle, necessarily consecutive,
lie in paF (ρ), say, c0 ≡ ck and c1.

In case (a), c2, ck ∈ ρ, while c1 ∈ paF (ρ), so c1 → c2 ∈ F and c1 → ck ∈ F

by (1) and the connectedness of Fρ , hence c1 ⇒ c2 ∈ G∗ and c1 ⇒ ck ∈ G∗. Be-
cause c2 − c3 ∈ Fρ = G∗

ρ and ck−1 − ck ∈ Fρ = G∗
ρ , c1 − c2 ∈ G∗ and c1 − ck ∈ G∗

by the definition of F , so the cycle lies in G∗
ξ and is chordless, contradicting the

chordality of G∗
ξ .

In case (b), a similar argument shows that c1 → c2 ∈ F and ck → ck−1 ∈ F ,
while c1 − c2 ∈ G∗ and ck − ck−1 ∈ G∗. Therefore, all vertices c1, . . . , ck lie in ξ ,
so c1 and ck cannot be adjacent in G∗ since G∗

ξ is assumed to be chordal. (Instead,
the line c1 − ck ≡ c0 in L must have been added by moralization.) Furthermore,
by the definition of F , there must exist vertices a, b (possibly a = b) such that
c1 −c2 ← a and b → ck−1 −ck occur as flags in G∗. Thus, a �= c1, c2, c3 and, since
the cycle is chordless in L, a �= c4, . . . , ck . Similarly, b �= c1, . . . , ck . Because ci −
ci+1 ∈ F ⊆ G∗ for i = 2, . . . , k − 2 and G∗

ξ contains no biflag chains, necessarily
a → ci ∈ G∗ for i = 3, . . . , k − 1 and b → ci ∈ G∗ for i = k − 2, . . . ,2. Thus,
at least one of [a; c1, . . . , ck], [b; c1, . . . , ck] or [a, b; c1, . . . , ck] must occur as a
k-biflag in G∗, contradicting the assumption that G∗̄

ξ
does not contain a biflag. Thus,

(4) holds.
Now construct a graph F ′ ⊆ F with the same skeleton as F , as follows. For

each ρ ∈ �ξ(F ), assign a perfect orientation to the edges of the chordal undi-
rected graph L(ρ) ≡ (FclF (ρ))

m according to MCS starting at an arbitrary vertex
in paF (ρ) (if any), obtaining a perfect digraph D(ρ) with vertex set clF (ρ). Be-
cause paF (ρ) is complete in L(ρ), MCS can be chosen to visit each vertex in
paF (ρ) before visiting any vertex in ρ itself. Thus, for any edge between a vertex
in paF (ρ) and a vertex in ρ, the orientations of this edge in D(ρ) and in F (and
in F ′ defined below) are identical.

Let F ′ ⊆ F be the graph obtained from F by orienting each undirected edge in
Fρ (= G∗

ρ) according to its orientation in D(ρ), for each ρ ∈ �ξ(F ). Note that,
for any pair d, e ∈ V with either d /∈ ξ or e /∈ ξ (or both), the edge d · · · e (if any)
must be identical in G∗, F and F ′. Also, every line in G∗

ξ is converted to an arrow
in F ′. We shall show that F ′ is adicyclic and has the same triplexes as G∗, hence
F ′ ∈ G. This contradicts the fact that every line in G∗

ξ (in particular, b∗ − c∗) is
strong, which will complete the proof.

If F ′ were not adicyclic, it would have a semi-directed cycle which cannot lie
entirely within any one ρ ∈ �ξ(F ) since each D(ρ) is perfect. Nor can this cycle
lie entirely outside ξ , since there F ′ coincides with F which is adicyclic. Thus,
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this cycle must contain two consecutive vertices c1 · · · c2 such that either c1 ∈ ρ1
and c2 ∈ ρ2 for distinct ρ1, ρ2 ∈ �ξ(F ), or else c1 ∈ ξ and c2 /∈ ξ . In either case
the edge c1 · · · c2 must occur as an arrow in F , so the cycle is also semi-directed
in F (since F ⊇ F ′), contradicting the adicyclicity of F .

Since G∗ ⊇ F ′, each immorality in G∗ remains an immorality in F ′, while, by
the construction of F and F ′, each flag d → e−f in G∗ either remains a flag in F ′
(if e, f /∈ ξ ) or else is converted to an immorality in F ′ (if e, f ∈ ξ ). Also, by this
construction, if d → e − f is a flag in F ′, then necessarily e, f /∈ ξ , so this flag
also occurs in G∗.

Last, suppose that d → e ← f is an immorality in F ′ that does not occur as
a triplex in G∗. Then d − e − f must occur as an induced subgraph in G∗

ξ , but
d, e, f cannot all lie in the same ρ ∈ �ξ(F ), since D(ρ) is perfect, hence has no
immoralities. Without loss of generality, assume that d ∈ ρ1 and e ∈ ρ2, where
ρ1 �= ρ2. Thus, the edge d · · · e must be an arrow in F , hence d → e ∈ F since
F ⊇ F ′, and e ⇐ f ∈ F for the same reason. If e ← f ∈ F , then d → e ← f

would occur as an immorality in F , hence by (3) would correspond to a triplex
in G∗, contrary to assumption, so necessarily e−f ∈ F and f ∈ ρ2. Thus, the edge
d · · ·f cannot be added in the moralization process for L(ρ2), hence cannot occur
in D(ρ2), so d → e ← f is an immorality in D(ρ2), contradicting its perfectness.
Thus, F ′ and G∗ have the same triplexes. �

We note that not every line in a strong chain component need be contained in a
biflag or chordless cycle. Examples appear in [5, 6].

Let D0 ≡ (V ,E0) be an ADG and let D denote its ADG Markov equivalence
class, the set of all ADGs D ≡ (V ,ED) that are Markov equivalent to D0. Anders-
son, Madigan and Perlman [3] defined the ADG essential graph

D∗ ≡ ⋃ {D|D ∈ D} := (
V,

⋃
(ED | D ∈ D)

)
(4.1)

determined by D and showed that it uniquely represents D . For ADGs, in fact,
the ADG and AMP definitions of essential graph are identical.

PROPOSITION 4.2. G contains some ADG D0 iff G∗ has no biflags and all its
chain components are chordal. In this case G∗ = D∗.

PROOF. Since G∗ ∈ G, the first statement follows from Proposition 3 of [4].
By Proposition 4.1(b), G∗ has no strong chain components, hence no strong lines.
Clearly, each arrow in G∗, strong or weak, must occur with the same orientation
in every D ∈ D , so must occur in D∗. If a weak line a w– b occurs in G∗, then the
graphs H,H ′ in Remark 3.1 are ADGs and belong to D , so the line a − b must
occur in D∗. Thus, G∗ = D∗. �

We now turn to a characterization of the arrows in G∗.
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FIG. 5. The seven protected configurations for an arrow a → b ∈ G.

DEFINITION 4.1. Let G ≡ (V ,E) be a chain graph. An arrow a → b ∈ G is
protected in G if it occurs in at least one of the seven configurations shown in
Figure 5 as an induced subgraph of G.

DEFINITION 4.2. Let G ≡ (V ,E) be a chain graph. An arrow a → b ∈ G

is irreversible in G if replacing a → b by a ← b creates or destroys a triplex or
creates a semi-directed cycle.

Determination of the irreversibility of an arrow in G apparently requires global
knowledge of G, since semi-directed cycles may be of arbitrary length. In fact,
however, only local knowledge of G is required:

LEMMA 4.2. Let G ≡ (V ,E) be a chain graph. An arrow is irreversible in G

if and only if it is protected in G.

PROOF. Clearly, a protected arrow is irreversible. If a → b is irreversible in
G by virtue of a ← b creating (resp., destroying) a triplex, then a → b must occur
in configuration (i) or (vi′) [resp., (ii) or (vii′)] as an induced subgraph of G. If
a → b is irreversible in G by virtue of a ← b creating a semi-directed cycle, then
a → (b ≡ d1) ⇐ d2 ⇐ ·· · ⇐ (dk ≡ a) (k ≥ 3) occurs as a subgraph in G. Since G

is adicyclic, at least one ⇐ must be ←.
Suppose first that b ← d2 ∈ G. If a·� ··d2, then a → b occurs in configuration (ii)

with c = d2. If a · · ·d2 in G, then either a → d2 ∈ G, a − d2 ∈ G or a ← d2 ∈ G.
In the first (resp., second) case a → b occurs in configuration (iii) [resp., (v′)] with
c = d2. The third case cannot occur, for otherwise k ≥ 4 and a ← d2 ⇐ ·· · ⇐
(dk ≡ a) would be a semi-directed cycle in G. Suppose next that b − d2 ∈ G. Then
a similar argument shows that a → b must occur in configuration (vii′) or (viii′)
with c = d2. �
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FIG. 6. The eight well-protected configurations for an arrow a → b ∈ G∗

By the definition of G∗, each arrow a → b ∈ G∗ must be irreversible in G∗,
hence, since G∗ is a chain graph, protected in G∗. In fact, each arrow must be well
protected in G∗.

DEFINITION 4.3. Let G∗ ≡ (V ,E∗) be an AMP essential graph. An arrow
a → b ∈ G∗ is well protected in G∗ if it occurs in at least one of the eight configu-
rations shown in Figure 6 as an induced subgraph of G∗.

PROPOSITION 4.3. Each arrow in an AMP essential graph G∗ is well pro-
tected in G∗.

PROOF. If ξ(a) is strong, hence, nontrivial, ∃ c ∈ ξ(a) such that c s– a → b is a
subgraph of G∗. Here a → b must occur in configuration (v) or (vi) in G∗. If ξ(b)

is strong, hence nontrivial, then ∃ c ∈ ξ(a) such that a → b s– c is a subgraph of G∗.
Here a → b must occur in configuration (vii) or (viii) in G∗.

Last, assume that both ξ(a) and ξ(b) are weak (or trivial). In particular, a → b

cannot occur in configuration (v), (vi), (vii) or (viii) in G∗. We shall assume also
that it does not occur in configuration (i), (ii), (iii) or (iv) and obtain a contradiction.

We begin by showing that G∗
θ is complete, where

θ := {c ∈ ξ(a)|c → b ∈ G∗}.(4.2)

Note that a ∈ θ . If c ∈ θ \ {a}, then c → b ∈ G∗. Thus, c · · ·a (necessarily
c − a ∈ G∗), for otherwise a → b ← c would occur as an immorality in G∗, con-
tradicting the assumed nonoccurrence of a → b in configuration (ii) in G∗. If
c, c′ ∈ θ \ {a} then c → b ∈ G∗ and c′ → b ∈ G∗, while c − a ∈ G∗ and c′ − a ∈ G∗
by the preceding argument, hence c − c′ ∈ G∗ by the nonoccurrence of (iv) in G∗.
Thus, θ is complete.
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By Lemma 3.3, G∗
ξ(b) and G∗

ξ(a) are chordal UGs. Construct G from G∗ by as-
signing perfect orientations to the lines (if any) in these two UGs as follows. First,
let q = |θ | ≥ 1, let (c1, . . . , cq−1) be an arbitrary numbering of θ \ {a} and let
cq = a. Apply MCS to G∗

ξ(a) starting at c1. The completeness of G∗
θ ensures that

MCS can reproduce the initial sequence (c1, . . . , cq ≡ a). The resulting perfect
orientation in G of the lines of G∗

ξ(a) satisfies the following two conditions:

(α) any line a − c ∈ G∗
ξ(a) with c ∈ θ \{a} becomes a ← c in G;

(β) any line a − d ∈ G∗
ξ(a) with d ∈ ξ(a)\θ becomes a → d in G. Next, orient

the lines in G∗
ξ(b) according to MCS started at b; in particular,

(γ ) any line b − c ∈ G∗
ξ(b) becomes b → c in G.

Now construct G′ from G by replacing a → b by a ← b, so G∗, G and G′
have the same skeleton. We shall show that G and G′ are adicyclic and have the
same flags and immoralities as G∗, hence G,G′ ∈ G. Thus, a − b ∈ G∗, the desired
contradiction.

Because Gξ(a) and Gξ(b) are acyclic digraphs, any semi-directed cycle in G

cannot be entirely contained in Gξ(a) or in Gξ(b), hence must include at least one
arrow of G∗. Since G ⊆ G∗, this cycle must correspond to a semi-directed cycle
in G∗, contradicting the adicyclicity of G∗. Thus, G is adicyclic.

If d → e ← f is an immorality in G∗, then it also occurs as an immorality
in G, since both graphs have the same skeleton and G ⊆ G∗. If d → e − f is a
flag in G∗, then d → e ∈ G and e s– f ∈ G∗ [Lemma 3.2(a)] so e −f remains a line
in G, hence d → e−f is a flag in G. If d → e−f is a flag in G but not in G∗ ⊇ G,
then d − e − f occurs as an induced subgraph of G∗ and necessarily d − e ∈ G∗

ξ(a)

or G∗
ξ(b), hence also e − f ∈ G∗

ξ(a) or G∗
ξ(b), so e · · ·f must occur as an arrow in

G, a contradiction. Finally, if d → e ← f is an immorality in G, but not in G∗,
then at least one of these arrows, say, d → e, occurs as a line d − e in G∗, hence
d − e ∈ G∗

ξ(a) or G∗
ξ(b), so d w– e ∈ G∗. Since d w– e ← f cannot occur as a flag in G∗,

necessarily e − f ∈ G∗, so d − e − f occurs as an induced subgraph of G∗
ξ(b) or

G∗
ξ(b). But this subgraph cannot become an immorality d → e ← f in G because

the orientations of Gξ(b) and Gξ(b) are perfect, a contradiction. Thus, G∗ and G

have the same flags and immoralities.
If G′ were not adicyclic, then since G is adicyclic, G′ must contain a semi-

directed cycle with a ← b, so this cycle must have the form a ← (b ≡ c1) ⇐
c2 ⇐ ·· · ⇐ (ck ≡ a) (k ≥ 3) in G′. Therefore, G must contain the subgraph a →
(b ≡ c1) ⇐ c2 ⇐ ·· · ⇐ (ck ≡ a) and, since G ⊆ G∗, a subgraph of this form also
occurs in G∗. Consider the edge b ⇐ c2 in G∗. If b − c2 ∈ G∗, then b − c2 ∈ G∗

ξ(b),
hence b → c2 ∈ G by (γ ), contradicting the occurrence of b ⇐ c2 in G. Next, if
b ← c2 ∈ G∗, then a ⇐ c2 in G∗ by the assumed nonoccurrence of (ii) and (iii)
in G∗. If this edge is a ← c2 in G∗, then a ← c2 ∈ G, so a ← c2 ∈ G′, which
implies that k ≥ 4 and that a ← c2 ⇐ ·· · ⇐ (ck ≡ a) is a semi-directed cycle
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in G, a contradiction. If this edge is a − c2 in G∗, then c2 ∈ θ \{a}, so a ← c2 ∈ G

by (α), leading to the same contradiction. Thus, G′ is adicyclic.
Suppose that an immorality d → e ← f occurs in G but not in G′. Then one

of these two arrows, say, d → e, must be a → b, so a → b ← f occurs as an
immorality in G ⊆ G∗. Thus, either a → b ← f occurs as an immorality in G∗,
contradicting the nonoccurrence of (ii), or a → b − f occurs as a subgraph in G∗
so b → f ∈ G by (γ ), a contradiction. If d → e − f occurs as a flag in G but not
in G′, then the arrow d → e must be the arrow a → b in G, hence a → b − f

occurs as a subgraph in G and therefore in G∗, so b → f ∈ G by (γ ), again a
contradiction. If d − e ← f occurs as a flag in G′ but not in G, then the arrow
e ← f must be the arrow a ← b in G′, so d − a → b is a subgraph of G ⊆ G∗,
hence d ∈ ξ(a). But then the edge d · · ·a must be an arrow in G, a contradiction.
Finally, if d → e ← f occurs as an immorality in G′ but not in G, then one arrow,
say, e ← f , must be a ← b in G′, so d → a → b occurs as an induced subgraph in
G ⊆ G∗. Thus, either d → a → b occurs as an induced subgraph in G∗, contradict-
ing the nonoccurrence of (i), or d w– a → b occurs as an induced subgraph in G∗,
so d ∈ ξ(a)\θ , hence d ← a ∈ G by (β), a contradiction. Thus, G and G′ have the
same flags and immoralities. �

The examples in Figures 3 and 4 show that Proposition 4.3 is rendered invalid if
any of the eight configurations (i), (ii), (iii), (iv), (v), (vi), (vii) or (viii) is excluded
from the definition of well protection in Definition 4.3. However, weak arrows and
strong arrows of G∗ are well protected in more stringent fashions, namely, config-
urations (iv) and (vii) cannot occur for the well protection of weak arrows, while
(vi) is not required for the well protection of strong arrows—see [5], Propositions
4.4 and 4.5.

By Lemma 3.6(b), both arrows in configurations (v) and (viii) must be strong
or both weak. The example in Figure 4(4) (resp., Figure 7) shows that if the strong
line in (v) [resp., (viii)] is replaced by a weak line, then it can occur in G∗ that one
arrow is strong and the other weak.

We conclude this section with an easy characterization of those directed graphs
that can occur as AMP essential graphs.

FIG. 7. An AMP essential graph G∗.
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THEOREM 4.1. A directed graph G is an AMP essential graph iff it is acyclic
and each arrow is protected in G, that is, occurs in one of the configurations (i),
(ii), or (iii) as an induced subgraph of G. Thus, the class of directed AMP essential
graphs coincides with the class of directed ADG essential graphs.

PROOF. “Only if” follows immediately from Theorem 3.2 and Proposi-
tion 4.3. “If” and the final statement follow from Corollary 4.2 of [3] and Proposi-
tion 4.2. �

5. Characterization of AMP essential graphs. Because the well-protected
configurations (v), (vi), (vii) and (viii) in Definition 4.3 involve strong lines, the
local characterization of the arrows of an AMP essential graph G∗ given in Proposi-
tion 4.3 in turn requires a characterization of the strong lines of G∗. By Lemma 3.3,
any line in a chordless undirected cycle or biflag must be strong, but G∗ may con-
tain other strong lines as well (see [5, 6]). Because [Proposition 4.1(b)] the strong
chain components of G∗ are distinguished from the weak chain components by the
presence of at least one chordless cycle or biflag and the latter involves at least one
arrow, the strong lines cannot be determined in an intrinsic way. A characterization
(necessarily nonintrinsic) of the strong chain components of G∗ is contained in the
characterization of AMP essential graphs given in Theorem 5.1.

Some additional terminology is required. Let G ≡ (V ,E) be an adicyclic graph.
For any nonempty subset α ⊆ V , a vertex v /∈ α is called a covering neighbor (cov-
ering parent) of α if v is a neighbor (parent) of each a ∈ α, while v /∈ α is called
a noncovering neighbor (noncovering parent) of α if v is a neighbor (parent) of at
least one a ∈ α but fails to be a neighbor (parent) of at least one other a′ ∈ α.
The set of covering neighbors (covering parents) of α is denoted by cnbG(α)

[cpaG(α)]. The set of noncovering neighbors of α is denoted by ncnbG(α). Note
that nbG(α) = cnbG(α) ∪̇ncnbG(α) and cnbG(cnbG(α)) ⊇ α. If α ≡ {a} is a sin-
gleton, then trivially ncnbG(α) = ∅.

LEMMA 5.1. Let G ≡ (V ,E) be a chain graph, ξ ∈ �(G) a nontrivial chain
component, and ξ̄ = clG(ξ) ≡ ξ ∪̇paG(ξ). The following two properties of Gξ̄ are
equivalent:

S: For every nonempty complete subset α � ξ in Gξ such that κ ≡ cnbGξ (α) is
nonempty, let κ1, . . . , κr denote the connected components of Gκ . Then for
each q = 1, . . . , r , either:

(i) nbGξ (κq) \ α �= ∅, or
(ii) paGξ̄

(α) \ cpaGξ̄
(κq) �= ∅ (equivalently, Gξ̄ contains a flag t → u − v

with t ∈ V \ ξ , u ∈ α, and v ∈ κq ).

S′: For every nonempty connected subset κ � ξ such that α ≡ cnbGξ (κ) is non-
empty and complete, either:
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(i′) ncnbGξ (κ) �= ∅, or
(ii′) paGξ̄

(α) \ cpaGξ̄
(κ) �= ∅ (equivalently, Gξ̄ contains a flag t → v − w

with v ∈ α and w ∈ κ).

PROOF. S �⇒ S′: Assume that Gξ̄ satisfies S and let κ � ξ be a non-
empty connected subset in Gξ s.t. α ≡ cnbGξ (κ) is nonempty and complete.
Then κ ′ ≡ cnbGξ (α) ⊇ κ is nonempty, so by S, either (i) nbGξ (κ

′
q) \ α �= ∅ or

(ii) paGξ̄
(α)\ cpaGξ̄

(κ ′
q) �= ∅, where κ ′

q is the unique connected component of Gκ ′

that contains κ . If κ ′
q = κ , then either nbGξ (κ)\α �= ∅ or paGξ̄

(α)\cpaGξ̄
(κ) �= ∅,

so (i′) or (ii′) holds. If c ∈ κ ′
q � κ , let π = (c ≡ c0, c1, . . . , cl) be a minimal-length

path from c to κ in Gκ ′
q
. Then cl−1 ∈ nbGξ (κ) ∩ κ ′

q ⊆ nbGξ (κ) \ α = ncnbGξ (κ),
so (i′) holds. Thus, S′ holds in either case.

S′ �⇒ S: Assume that Gξ̄ satisfies S′ and let α � ξ be a nonempty com-
plete subset in Gξ s.t. κ ≡ cnbGξ (α) is nonempty. Let κ1, . . . , κr denote the con-
nected components of Gκ , fix q ∈ {1, . . . , r}, and let α′ ≡ cnbGξ (κq) ⊇ α �= ∅.
If nbGξ (κq) \ α �= ∅, then (i) holds, so assume that nbGξ (κq) \ α = ∅. In this
case α′ = α, so α′ is nonempty and complete, hence S′ implies that either (i′)
ncnbGξ (κq) �= ∅ or (ii′) paGξ̄

(α′) \ cpaGξ̄
(κq) �= ∅. If (i′), then nbGξ (κq) \ α ≡

ncnbGξ (κq) �= ∅ so (i) holds, while if (ii′), then (ii) is immediate, so S holds in
either case. �

LEMMA 5.2. Let σ be a strong chain component of the AMP essential
graph G∗ and let σ̄ = clG∗(σ ) ≡ σ ∪̇paG∗(σ ). Then G∗̄

σ satisfies S ≡ S′.

PROOF. To show that G∗̄
σ satisfies S, let α � σ be a complete subset of G∗

σ such
that κ ≡ cnbG∗

σ
(α) �= ∅ and let κ1, . . . , κr be the connected components of G∗

κ . For
any q = 1, . . . , r , let H be the graph obtained from G∗ by replacing the lines a − c

by a → c for every (a, c) ∈ α ×κq . This cannot create any immoralities in H since
α is complete. If paG∗̄

σ
(α) \ cpaG∗̄

σ
(κq) = ∅, this would not destroy any triplexes

in G∗. (Note that such a destroyed triplex must be a flag in G∗, since no arrows
of G∗ are altered.) If nbG∗

σ
(κq) \ α = ∅, neither would any flags or semi-directed

cycles be created in H . Thus, H would have the same skeleton and triplexes as G∗,
so H ∈ G. But Hσ contains at least one arrow, so this contradicts the assumption
that σ is strong. �

We are ready to present a complete characterization of general AMP chain
graphs. The following definitions are needed.

DEFINITION 5.1. Let G ≡ (V ,E) be a chain graph and let �s(G) denote
the set of nontrivial chain components ξ of G such that Gξ̄ contains at least one
chordless undirected cycle or flag. Call a line a − b ∈ G strong in G (indicated as
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a s– b ∈ G) if a, b ∈ ξ for some ξ ∈ �s(G). Let �t(G) denote the set of trivial (≡
singleton) chain components of G, set �w(G) = �(G) \ (�s(G) ∪̇�t(G)), and
call a line a − b ∈ G weak in G (indicated as a w– b ∈ G) if a, b ∈ ξ for some
ξ ∈ �w(G). Thus, for each ξ ∈ �w(G), Gξ̄ contains no chordless undirected cycle
or flag.

DEFINITION 5.2. An arrow a → b ∈ G is well protected in G if it occurs in
at least one of the eight configurations in Figure 6 as an induced subgraph of G,
where s– is now defined as in Definition 5.1.

By Proposition 4.1(b), these definitions of strong/weak lines in G and well-
protected arrows in G agree with the previous definitions when G ≡ G∗ is an AMP
essential graph.

THEOREM 5.1. A graph G ≡ (V ,E) is an AMP essential graph, that is,
G = G∗ for some AMP Markov equivalence class G, if and only if G satisfies the
following three conditions:

G1: G is a chain graph, that is, is adicyclic.
G2: For each ξ ∈ �s(G), Gξ̄ satisfies property S ≡ S′.
G3: Each arrow in G is well protected in G.

PROOF. “Only if”: If G ≡ G∗ is an AMP essential graph, G1 follows from
Theorem 3.2, G2 follows from Proposition 4.1(b) and Lemma 5.2, and G3 follows
from Proposition 4.3.

“If”: Assume that G satisfies G1, G2 and G3. Let G be the AMP Markov equiva-
lence class containing G. To show that G = G∗, it suffices to establish the stronger
fact that:

(a) if a w– b ∈ G, then a w– b ∈ G∗;
(b) if a s– b ∈ G, then a s– b ∈ G∗;
(c) if a → b ∈ G, then a → b ∈ G∗.

(a): It suffices to show that ∃ H,H ′ ∈ G such that a → b ∈ H and a ← b ∈ H ′.
Since a w– b ∈ G, a, b ∈ ξ for some ξ ∈ �w(G). Since Gξ is chordal, use MCS
starting at a (resp., b) to obtain a perfect orientation of Gξ , thereby replacing G

by a graph H (resp., H ′) with a → b ∈ H (resp., a ← b ∈ H ′). Since Gξ̄ has no
flags, it is straightforward to show that H and H ′ are adicyclic and have the same
triplexes as G, as required.

(b): It suffices to show that, for every ξ ∈ �s(G) and every H ∈ G, Hξ has
no arrows. Suppose to the contrary that Hξ has at least one arrow. (Note that
Hξ must be adicyclic since H is adicyclic.) Choose a → b ∈ Hξ so that b is
maximal w.r.t. the pre-ordering induced on ξ by Hξ , that is, there exists no semi-
directed path in Hξ beginning at b. Let ξ(b) ∈ �(Hξ) be the unique chain com-
ponent of Hξ (possibly trivial) containing b and let α = nbGξ (ξ(b)). Note that
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a ∈ α since a − b ∈ Gξ . For any a′ ∈ α, a′ − b′ ∈ Gξ for some b′ ∈ ξ(b), so
a′ · · ·b′ ∈ Hξ . If a′ �= a, then, by the maximality of b and the connectedness of
ξ(b), a′ ⇒ b′ ∈ Hξ , so by the definition of ξ(b), a′ → b′ ∈ Hξ . If a′ = a, then
a′ → b ∈ Hξ . Thus, for every a′ ∈ α, a′ → b′′ ∈ Hξ for all b′′ ∈ ξ(b) since ξ(b)

is connected and Hξ can have no flags (because Gξ has no arrows, hence no
triplexes). Thus, α = cnbGξ (ξ(b)), which in turn implies that α is complete, since
Hξ can have no immoralities. Therefore, since Gξ̄ satisfies property S′ by G2, ei-
ther ncnbGξ (ξ(b)) �= ∅ or paG(α) \ cpaG(ξ(b)) �= ∅. The former is impossible
since ncnbGξ (ξ(b)) = nbGξ (ξ(b)) \ cnbGξ (ξ(b)) = α \ α = ∅. If the latter holds,
then ∃v ∈ V \ ξ , a′ ∈ α, and b′ ∈ ξ(b) such that v → a′ ∈ G but v·� ·· b′ in G. But
necessarily a′ − b′ ∈ Gξ , while a′ → b′ ∈ Hξ , so v → a′ − b′ occurs as a flag in G

but not in H , also a contradiction.
(c): It suffices to show that

A ≡ {a′ ∈ V |∃b′ ∈ V � a′ → b′ ∈ G,a′ − b′ ∈ G∗} = ∅.

If A �= ∅, let a be a minimal element of A with respect to the pre-ordering induced
on V by G. Since a ∈ A,

B ≡ {b′ ∈ V |a → b′ ∈ G,a − b′ ∈ G∗} �= ∅.

Let b be a minimal element of B; in particular, a → b ∈ G and a − b ∈ G∗. By G3,
a → b is well protected in G, so it occurs in at least one of the eight configurations
(i)–(viii) in Figure 6 as an induced subgraph of G.

(i) If c → a → b occurs as an induced subgraph in G, then by the minimality
of a the flag c → a −b must occur in G∗, contradicting the fact that G and G∗ have
the same triplexes.

(ii) If a → b ← c occurs as an induced subgraph in G, then the flag a − b ← c

must occur in G∗, which would require that a s– b ∈ G∗, hence a − b ∈ G, again a
contradiction.

(iii) If a → b ← c ← a occurs as a triangle in G, then, by the minimality of b,
the semi-directed triangle a − b ⇐ c ← a must occur in G∗, contradicting the
adicyclicity of G∗.

(iv) If a → b occurs in configuration (iv) in G, denote the immorality in this
configuration by c → b ← d . Since G and G∗ have the same triplexes, either
c → b ⇐ d or c ⇒ b ← d occurs as an induced subgraph of G∗. Without loss
of generality, assume the former. Since a − b ∈ G∗, necessarily c → a ∈ G∗ by the
adicyclicity of G∗, hence a → d ∈ G∗ since G and G∗ have the same triplexes. But
then the semi-directed triangle a → d ⇒ b − a occurs in G∗, again contradicting
adicyclicity.

(v), (vi), (vii), (viii): If a → b occurs in configuration (v), (vi), (vii) or (viii)
in G, by (b) the strong line in this configuration must also be strong in G∗. Since
a − b ∈ G∗, Lemma 4.1(d) implies that a s– b ∈ G∗, which contradicts a → b ∈ G.
This completes the proof of (c). �
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The necessity of Condition G2 is demonstrated by the graph G in Figure 2 and
the upper graph G∞ in Figure 1. The necessity of G3 is demonstrated by the graph
consisting of a single arrow.

For comparison with Theorem 5.1, the characterization of ADG essential graphs
in Theorem 4.1 of [3] can be stated as follows: G is an ADG essential graph iff it
satisfies conditions G1, G2′: �s(G) = ∅ and G3.

More detailed results on the structure of a strong chain component σ of G∗ ≡
(V ,E∗) can be obtained from Theorem 5.1. For example, if G∗ is a strong con-
nected undirected AMP essential graph (so σ = V ), then by Proposition 4.1(b),
G∗ must contain at least one chordless cycle. Using Theorem 5.1, however, it can
be shown that unless G∗ consists exactly of a single chordless cycle, it must con-
tain at least one additional chordless cycle. For a general AMP essential graph G∗,
by Proposition 4.1(b), G∗̄

σ must contain either a chordless undirected cycle or a
biflag. Using Theorem 5.1, however, it can be shown that G∗̄

σ must contain an-
other chordless undirected cycle or biflag or “3-halfbiflag.” These results appear in
[5, 6].

6. Current research. Like the essential graph D∗ for ADG Markov models,
the AMP essential graph G∗ plays a fundamental role for inference, model se-
lection and model averaging for AMP CG Markov models. For these purposes,
the results of [3] and [21] can be extended to AMP CG models by means of
our characterization of AMP essential graphs in Theorem 5.1 above. In particu-
lar, a polynomial-time algorithm for constructing G∗ from any G ∈ G has been
obtained—see [5], Chapter 7.

The following additional topics are currently under development:

1. The computational complexity of the above construction algorithm.
2. An algorithm for recovering all G ∈ G from G∗.
3. Markov chain Monte Carlo algorithms for model search over the space of AMP

Markov equivalence classes by means of AMP essential graphs.
4. A catalog of AMP essential graphs with small vertex sets.
5. Determination of the ratio rn of the number of AMP CG Markov equivalence

classes to the total number of CGs with n vertices (cf. [16] for the corresponding
question for ADG models).

6. When is an AMP CG Markov equivalent to some LWF CG, and vice versa?
(Cf. [4], Theorem 6.)
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