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Given a two-level regular fractional factorial design of resolution IV, the
method of doubling produces another design of resolution IV which doubles
both the run size and the number of factors of the initial design. On the other
hand, the projection of a design of resolution IV onto a subset of factors is of
resolution IV or higher. Recent work in the literature of projective geometry
essentially determines the structures of all regular designs of resolution IV
with n ≥ N/4 + 1 in terms of doubling and projection, where N is the run
size and n is the number of factors. These results imply that, for instance, all
regular designs of resolution IV with 5N/16 < n ≤ N/2 must be projections
of the regular design of resolution IV with N/2 factors. We show that, for
9N/32 ≤ n ≤ 5N/16, all minimum aberration designs are projections of the
design with 5N/16 factors which is constructed by repeatedly doubling the
25−1 design defined by I = ABCDE. To prove this result, we also derive
some properties of doubling, including an identity that relates the wordlength
pattern of a design to that of its double and a result that does the same for the
alias patterns of two-factor interactions.

1. Introduction. Doubling is a simple but powerful method of constructing
two-level fractional factorial designs, in particular, those of resolution IV. Suppose
X is an N × n matrix with two distinct entries, 1 and −1. Then the double of X,
denoted by D(X), is the 2N × 2n matrix[

X X
X −X

]
,

that is,

D(X) =
[

1 1
1 −1

]
⊗ X,

where ⊗ is the Kronecker product. Suppose X defines an N -run design for n two-
level factors, where the two levels are denoted by 1 and −1, each column of X
corresponds to a factor and each row of X defines a factor–level combination.
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Then D(X) defines a design which doubles both the run size and the number of
factors of X. Such a method was used by Plackett and Burman [10] in their classi-
cal paper on orthogonal main-effect plans.

An N × m submatrix of X, where m ≤ n, is called a projection of X (onto m

factors). Equivalently, such a design can be obtained by deleting n − m columns
(factors) from X. We allow the possibility m = n, so that a design is considered
as its own projection onto all columns. If X is of resolution IV, then all projec-
tions of X are of resolution IV or higher. A less obvious fact is that if X is of
resolution IV, then D(X) is also of resolution IV. Thus, starting with a design of
resolution IV, the combined operation of doubling followed by projection yields a
design of resolution IV or higher.

Some recent results in the literature of finite projective geometry [2, 3, 8] essen-
tially characterize, in terms of doubling and projection, the structures of regular
designs of resolution IV with n ≥ N/4 + 1. These elegant and difficult results
have important implications in statistical design, but are not easily accessible to
statisticians since they were stated in the language of projective geometry. One
purpose of this paper is to review some of these results and rephrase them in de-
sign language. This should be useful to people interested in the statistical design of
experiments. In the past few years we have encountered several occasions where
some special cases of these results were either re-discovered by statisticians or
would have been very helpful if they had been become more widely known in the
statistical literature.

We also present some new results, including an identity that relates the
wordlength pattern of a design to that of its double and a result that does the
same for the alias patterns of two-factor interactions. These results and some other
basic properties of doubling are presented in Section 2. Characterization of regular
designs of resolution IV with n ≥ N/4 + 1 in terms of doubling and projection is
discussed in Section 3. Section 4 shows how the results in Sections 2 and 3 can
be used to investigate certain minimum aberration designs. In particular, we show
that, for 9N/32 ≤ n ≤ 5N/16, a minimum aberration design can be obtained by
deleting factors from the minimum aberration design with 5N/16 factors which
can be constructed by repeatedly doubling the 25−1 design defined by I = ABCDE.

We conclude this section with a review of some basic terminology and notation.
A factorial design is called an orthogonal array of strength t if, in all projections
onto t factors, all factor–level combinations appear the same number of times.
Regular fractional factorial designs are those which can be constructed by using
defining relations and are discussed in many textbooks on experimental design;
see, for example, [11]. Each interaction that appears in the defining relation is
called a defining word, and the resolution of a regular design is defined as the
length of the shortest defining word. It is well known that a regular design of
resolution R is an orthogonal array of strength R − 1. For each positive integer i,
let Bi be the number of defining words of length i. Then the resolution is equal
to the smallest i such that Bi > 0. The sequence (B1,B2, . . . ,Bn) is called the
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wordlength pattern of the design. The minimum aberration criterion introduced by
Fries and Hunter [9] chooses a design by sequentially minimizing B1, B2, B3, . . . .

Throughout this paper N and n denote the run size and the number of factors,
respectively. We shall restrict consideration to two-level designs only. Under a
regular two-level design, N must be a power of 2, say, N = 2n−p. This design is a
1

2p -fraction of a complete 2n factorial, and is usually referred to as a 2n−p design. It
is well known that a regular two-level design of resolution III must have n ≤ N −1,
and a regular two-level design of resolution IV must have n ≤ N/2. A design of
resolution III is called saturated if n = N − 1, and a design of resolution IV is
called saturated if n = N/2.

2. Some basic properties of doubling. We first note that if X is a Hadamard
matrix of order N , then D(X) is a Hadamard matrix of order 2N . In fact, this
was what Plackett and Burman used in their 1946 classic paper. The following
properties can easily be established:

THEOREM 2.1. If X is an orthogonal array of strength two, then D(X) is
also an orthogonal array of strength two. Likewise, if X is an orthogonal array of
strength three, then D(X) is an orthogonal array of strength three.

Theorem 2.1 has no counterpart for designs of higher strength. In fact, for two
columns a and b of X, D(X) must have four columns of the form

[ a b a b
a b −a −b

]
,

whose componentwise product has all the entries equal to 1. Therefore, D(X) can-
not have strength higher than three. For regular designs, these four columns would
lead to a defining word of length four.

Another important elementary fact is that saturated regular designs of resolu-
tion III are unique (up to isomorphism). Such a design of size 2k can be obtained
by deleting the first column of[

1 1
1 −1

]
⊗

[
1 1
1 −1

]
⊗ · · · ⊗

[
1 1
1 −1

]
︸ ︷︷ ︸

k

.

In other words, saturated regular designs of resolution III can be obtained by
deleting a column of 1’s after successively doubling the 2×2 matrix

[1 1
1 −1

]
. Since

all regular designs of resolution III or higher can be constructed by deleting a sub-
set of columns from a saturated regular design of resolution III (or, equivalently,
by projecting the saturated regular design of resolution III onto the complementary
set of columns), all two-level regular designs of resolution III or higher can be con-
structed by the operation of doubling followed by deletion (or projection). These
observations also imply that if X is a regular design, then D(X) is regular. In other
words, in Theorem 2.1, if X is a regular design of resolution III (resp. IV), then
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D(X) is also a regular design of resolution III (resp. IV). However, by the com-
ment following Theorem 2.1, if X is a regular design of resolution higher than IV,
then D(X) is a regular design of resolution IV only.

Saturated regular designs of resolution IV are also unique (up to isomorphism).
One way of constructing such designs is to foldover saturated regular designs of
resolution III. We would like to present another neat and compact method of con-
struction using doubling. Consider the 22 complete factorial


1 1
1 −1

−1 1
−1 −1


 ,

whose number of factors is precisely half of the run size. Successively doubling the
22 complete factorial results in designs whose number of factors is half of the run
size, and by the discussion at the end of the previous paragraph, are regular designs
of resolution IV. This implies that saturated regular designs of resolution IV can
be obtained by successively doubling the 22 complete factorial.

As mentioned earlier, the designs obtained by doubling those of resolution III
or higher are of resolution III or IV. To study statistical properties of such designs,
it is important to consider the alias pattern of two-factor interactions. Suppose
N = 2n−p . Among the 2n − 1 factorial effects, 2p − 1 appear in the defining re-
lation. The rest are divided into g ≡ 2n−p − 1 alias sets, each of size 2p . Without
loss of generality, assume that the first f ≡ 2n−p − 1 − n of these alias sets does
not contain main effects. For each 1≤ i ≤ g, let mi be the number of two-factor
interactions in the ith alias set. Cheng, Steinberg and Sun [7] showed that

B3 = 1
3

[(
n

2

)
−

f∑
i=1

mi

]
(2.1)

and

B4 = 1
6

[ g∑
i=1

m2
i −

(
n

2

)]
.(2.2)

Furthermore, estimation capacity, a measure of model robustness discussed in [7],
can be expressed in terms of the mi ’s. The following result relates the mi values
of a design to those of its double.

THEOREM 2.2. Suppose a regular design X has g alias sets, the first f of
which do not contain main effects, and for 1 ≤ i ≤ g, mi is the number of two-
factor interactions in the ith alias set. Let the corresponding numbers of D(X)

be g∗, f ∗ and m∗
i , respectively. Then g∗ = 2g + 1, f ∗ = 2f + 1, m∗

1 = m∗
2 =

2m1,m
∗
3 = m∗

4 = 2m2, . . . ,m
∗
2f −1 = m∗

2f = 2mf , m∗
2f +1 = n, and m∗

2f +2 =
m∗

2f +3 = 2mf +1, . . . ,m
∗
g∗−1 = m∗

g∗ = 2mg .



550 H. H. CHEN AND C.-S. CHENG

PROOF. Suppose X is a 2n−p design. Then D(X) is a 22n−(n+p−1) design,
and g = 2n−p − 1, f = 2n−p − 1 −n, g∗ = 22n−(n+p−1) − 1, f ∗ = 22n−(n+p−1) −
2n − 1. The relations f ∗ = 2f + 1 and g∗ = 2g + 1 follow.

To each factor in X, say A, there correspond two factors in D(X). Suppose the
column of X corresponding to A is a. We shall denote the factor in D(X) corre-

sponding to the column
[ a

a

]
by A+ and the factor corresponding to

[ a
−a

]
by A−.

Then it is easy to see that, for any two factors A and B in X, under D(X) A+B+
and A−B− are aliased ,A+B− and A−B+ are aliased, and A+A− and B+B−
are aliased. Consequently, if the two-factor interactions AB and CD are aliased
under X, then A+B+, A−B−, C+D+ and C−D− are aliased under D(X), and
A+B−, A−B+,C+D− and C−D+ are also aliased. If the main effect A and two-
factor interaction CD are aliased under X, then A+, C+D+ and C−D− are aliased
under D(X), and A−, C+D− and C−D+ are also aliased. Using these facts, it can
be seen that each alias set of two-factor interactions under X determines two alias
sets of two-factor interactions under D(X), each of which is twice as large as the
original alias set under X. Furthermore, all the n two-factor interactions of the
form A+A− constitute another alias set which does not contain main effects. �

We have the following relationship between the wordlength pattern of X and
that of D(X).

THEOREM 2.3. Let Bk and B∗
k be the number of defining words of length k of

X and D(X), respectively. Then

B∗
k =




min[(k−1)/2,n]∑
s=0

Bk−2s ·
(

n − k + 2s

s

)
2k−2s−1, if k is odd;

min[k/2−1,n]∑
s=0

Bk−2s ·
(

n − k + 2s

s

)
2k−2s−1 +

(
n
k

2

)
,

if k is even and k/2 is even;
min[k/2−1,n]∑

s=0

Bk−2s ·
(

n − k + 2s

s

)
2k−2s−1, if k is even and k/2 is odd.

PROOF. If Ai1 · · ·Aik is a defining word of X, then A
j1
i1

· · ·Ajk

ik
, where each jl

is a + or −, is a defining word of D(X) as long as an even number of the jl’s
are −’s. When s is even, for any s distinct factors Ai1, . . . ,Ais ,A

+
i1
A−

i1
· · ·A+

is
A−

is

is also a defining word of D(X). In general, a defining word of D(X) is of
the form A+

i1
A−

i1
· · ·A+

is
A−

is
A

js+1
is+1

· · ·Ajs+t

is+t
, where Ai1, . . . ,Ais+t are distinct factors

of X, Ais+1 · · ·Ais+t is a defining word of X, and an even (resp. odd) number of
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the jl’s are −’s when s is even (resp. odd). If A+
i1
A−

i1
· · ·A+

is
A−

is
A

js+1
is+1

· · ·Ajs+t

is+t
is of

length k, then t = k−2s. This implies that 0 ≤ s ≤ min[k/2, n]. On the other hand,
when s is odd, we must have t ≥ 1. Therefore, we have s ≤ min[(k−1)/2, n] when
k is odd, s ≤ min[k/2, n] when k is even and k/2 is even, and s ≤ min[k/2 − 1, n]
when k is even and k/2 is odd. The theorem then follows from the fact that, for
given s, there are 2t−1 = 2k−2s−1 ways to choose (js+1, . . . , js+t ) if t ≥ 1, Bk−2s

ways to choose Ais+1, . . . ,Ais+t and
(n−k+2s

s

)
ways to choose Ai1, . . . ,Ais . Note

that the last term
(n

k
2

)
in the case where k/2 is even corresponds to s = k/2. In this

case, there are
(n

k
2

)
ways to choose A+

i1
A−

i1
· · ·A+

ik/2
A−

ik/2
. �

In particular, for designs of resolution III or higher we have B∗
3 = 4B3 and

B∗
4 = 8B4 + (n

2

)
. These identities can also be derived by using (2.1), (2.2) and

Theorem 2.2.
The following is an immediate consequence of Theorem 2.3.

COROLLARY 2.4. Given two regular designs X1 and X2, X1 has less aberra-
tion than X2 if and only if D(X1) has less aberration than D(X2).

3. Maximal designs of resolution IV. One major difference between designs
of resolution III and IV is that all regular designs of resolution III can be con-
structed by deleting factors from saturated regular designs of resolution III. On the
other hand, not all regular designs of resolution IV can be obtained by deleting fac-
tors from saturated regular designs of resolution IV: while all designs obtained by
deleting factors from saturated regular designs of resolution IV are the so-called
even designs which have no defining words of odd lengths, there are designs of
resolution IV which are not even designs.

We say that a regular design of resolution IV or higher is maximal if its res-
olution reduces to three whenever an extra factor is added. Clearly, the saturated
regular designs of resolution IV are maximal. If a design is not maximal, then at
least one factor can be added so that the design is still of resolution IV or higher.
One can keep adding factors until it becomes maximal. Therefore, if a regular de-
sign of resolution IV is not maximal, then it can be obtained by deleting factors
from a maximal design. Because of the importance of this fact, we state it formally
as a proposition:

PROPOSITION 3.1. Every regular design of resolution IV is a projection of a
certain maximal regular design of resolution IV or higher.

We can also define maximal regular designs of resolution III. It turns out that,
for a given run size, there is only one maximal regular design of resolution III: the
saturated regular design of resolution III. As mentioned earlier, saturated regular
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designs of resolution IV are maximal, but they are not the only maximal designs
of resolution IV.

Theoretically speaking, for a fixed number of runs, if we can determine all
the maximal designs of resolution IV or higher, then all regular designs of res-
olution IV can be constructed by projecting the maximal designs onto subsets of
factors. Recently some significant progress in the determination of such maximal
designs has been made in the literature of finite projective geometry. Note that
maximal designs of resolution IV or higher are equivalent to maximal caps in a
finite projective geometry.

We first state a simple but interesting characterization of maximal regular de-
signs of resolution IV.

THEOREM 3.2. A regular design of resolution IV is maximal if and only if
mi > 0 for all i = 1, . . . , f .

This result was first stated in the coding-theoretic language; see, for exam-
ple, [2]. Chen and Cheng [5] rephrased it in the above form. They also defined
the notion of estimation index. Another way to state the result in Theorem 3.2 is
that a regular design of resolution IV is maximal if and only if its estimation in-
dex is equal to 2. Since we can estimate one effect from each alias set assuming
that the other effects in the same alias set are negligible, Theorem 3.2 says that a
regular design of resolution IV is maximal if and only if all the available degrees
of freedom can be used to estimate main effects and two-factor interactions. Such
designs are said to be second-order saturated by Block and Mee [1].

The following result, whose geometric version can also be found in [2], reveals
the crucial role played by the method of doubling in constructing designs of reso-
lution IV.

THEOREM 3.3. Let X be a regular design of resolution IV or higher. Then X
is maximal if and only if D(X) is maximal.

One can see that Theorem 3.3 follows immediately from Theorem 2.2 and The-
orem 3.3.

The following two key results essentially determine the structures of regular
resolution IV designs with N/4 + 1 ≤ n ≤ N/2.

THEOREM 3.4 ([2, 8]). Every maximal regular design of resolution IV with
N/4 + 2 ≤ n ≤ N/2 can be obtained by doubling a maximal regular design of
resolution IV or higher.

THEOREM 3.5 ([3]). For each N = 2k with k ≥ 4 there exists at least one
maximal regular design of resolution IV or higher with n = N/4 + 1.
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One family of maximal designs with n = N/4 + 1 can be found in Tang, Ma,
Ingram and Wang’s [13] study of designs with maximum number of clear two-
factor interactions.

A complete search shows that there are two maximal regular 16-run designs of
resolution IV or higher. One is the saturated 28−4 design of resolution IV, and the
other is the 25−1 design defined by I = ABCDE, whose existence is assured by
Theorem 3.5. Repeatedly doubling the former yields all larger saturated regular
designs of resolution IV, while successively doubling the latter (a design of resolu-
tion V) leads to a family of maximal designs of resolution IV with n = 5N/16, for
N = 2k , k ≥ 5. Since there are no 16-run maximal regular designs of resolution IV
with 5 < n < 8, by Theorem 3.4, for all N = 2k with k ≥ 5, there are no maxi-
mal designs of resolution IV with 5N/16 < n < N/2. This leads to the following
important conclusion.

COROLLARY 3.6. For 5N/16 < n < N/2, a regular design of resolution IV
must be obtained by deleting columns from saturated designs of resolution IV. All
such designs are even designs.

Doubling the two maximal 16-run regular designs of resolution IV, we obtain
the saturated 216−11 design of resolution IV and a 210−5 design, both of which are
maximal. By Theorem 3.5 there exists at least one maximal regular 32-run design
of resolution IV with n = 9. In fact, there is exactly one such design. Therefore,
for 9 ≤ n ≤ 16 there are exactly three 32-run maximal designs of resolution IV:
a 216−11, a 210−5 and a 29−4. The last one and its repeated doubles constitute a
family of maximal regular designs of resolution IV with n = 9N/32, for N = 2k ,
k ≥ 5. Again, there are no maximal regular designs of resolution IV with 9N/32 <

n < 5N/16. Thus, for the n’s in this range, a regular design of resolution IV must
be obtained by deleting columns from either the saturated design of resolution IV
or the maximal regular design of resolution IV with n = 5N/16.

Doubling the three maximal 32-run designs of resolution IV, we obtain the sat-
urated 232−26 design of resolution IV, a 220−14 design and a 218−12 design, all
of which are maximal. By Theorem 3.5 there exists at least one maximal regular
64-run design of resolution IV with n = 17. Block and Mee’s [1] complete search
shows that there are five such designs. Therefore, for 17 ≤ n ≤ 32 there are eight
64-run maximal regular designs of resolution IV: a 232−26, a 220−14, a 218−12 and
five 217−11. One can also conclude that there are exactly five maximal regular de-
signs of resolution IV with n = 17N/64, for all N = 2k with k ≥ 6.

Now it is clear that if N = 2k , k ≥ 4, then for n ≥ N/4 + 1 a maximal regular
design of resolution IV or higher must have

n ∈ {N/2,5N/16,9N/32,17N/64,33N/128, . . . }.(3.1)

Conversely, for each integer n = (2i + 1)N/2i+2, there exists at least one maximal
regular N -run design of resolution IV or higher with n factors. A maximal regular
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design of resolution IV or higher with n = (2i + 1)N/2i+2 and N = 2k , k > i + 2,
can be constructed by repeatedly doubling a maximal regular 2i+2-run design of
resolution IV or higher with 2i + 1 factors.

4. Some results on minimum aberration designs. By the discussion in
the previous section, there are maximal regular designs of resolution IV with
n = N/2, 5N/16,9N/32,17N/64,33N/128, . . . . Those with n = N/2, the satu-
rated regular designs of resolution IV, are known to have minimum aberration. For
5N/16 < n < N/2, minimum aberration designs (in fact, all regular designs of
resolution IV) must be projections of the saturated regular design of resolution IV.
Butler [4] addressed the issue of deleting factors from the saturated regular design
of resolution IV so that the resulting design has minimum aberration. This is rem-
iniscent of the complementary design theory of Chen and Hedayat [6], Tang and
Wu [14] and Suen, Chen and Wu [12] that deals with how to find a set of factors so
that its complement in the saturated regular design of resolution III has minimum
aberration.

In an unpublished work, N. A. Butler found the minimum aberration design
with n = 5N/16 which, using the terminology in this paper, is the maximal reg-
ular design of resolution IV with n = 5N/16. In this section we shall show that,
for 9N/32 ≤ n ≤ 5N/16, the minimum aberration designs are projections of the
maximal regular design of resolution IV with n = 5N/16. Thus, although for
n > 9N/32 minimum aberration designs are projections of the maximal regular
design of resolution IV with either N/2 or 5N/16 factors, the first two in (3.1),
the pattern breaks down at 9N/32. Even the maximal design of resolution IV with
n = 9N/32 itself does not have minimum aberration.

Before proceeding to the proof of this result, we shall explore a bit more the
alias pattern of two-factor interactions under the maximal design of resolution IV
with n = 5N/16. Suppose N = 16 · 2t , where t ≥ 1, and let X∗ be the maximal de-
sign of resolution IV with 5 · 2t factors. Then X∗ can be obtained by doubling the
25−1 design defined by I = ABCDE t times. Suppose a,b, c,d and e are the five
columns of this 25−1 design corresponding to factors A,B,C,D and E, respec-
tively. Then each of a,b, c,d and e generates 2t columns of X∗. For example, each
of the 2t columns of X∗ generated by a takes the form xt ⊗ · · · ⊗ x1 ⊗ a, where
xi = [1,1]T or [1,−1]T . We shall denote the corresponding factor of X∗ by Aj,
where j = (j1, . . . , jt ), with ji = 1 if xi = [1,1]T and ji = −1 if xi = [1,−1]T .
Notation such as Bj,Cj,Dj and Ej is similarly defined. The 5 · 2t factors of X∗
are thus partitioned into five groups each of size 2t .

Any two of the five factors A,B,C,D and E, say X and Y , generate 2t ·2t two-
factor interactions of the form XiY j, where i and j are 1 × t vectors with entries
1 or −1. These interactions,

(5
2

)
2t ·2t = 10 ·2t ·2t in total, are called between-group

two-factor interactions. Those of the form XiXj with i �= j, 5
(2t

2

) = 5 · 2t−1(2t − 1)

in total, are called within-group two-factor interactions.
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Since the 25−1 design defined by I = ABCDE is of resolution V, there is exactly
one two-factor interaction in each of its ten alias sets not containing main effects.
By applying Theorem 2.2 t times, we see that, under X∗, there are 10 ·2t + (2t −1)

alias sets not containing main effects, 10 ·2t of which each containing 2t two-factor
interactions, and 2t − 1 of which each containing 5 · 2t−1 two-factor interactions.

It can be seen that the 2t · 2t between-group two-factor interactions arising from
the same pair (X,Y ) are distributed evenly in 2t alias sets of size 2t . Each of these
2t alias sets is of the form {XiY j : i � j = k}, where k is a 1 × t vector with entries
1 or −1 and i � j is the componentwise product of i and j. We denote this alias
set by XYk. The ten possible pairs of X and Y account for the 10 · 2t alias sets of
size 2t mentioned in the previous paragraph. On the other hand, the 2t−1(2t − 1)

within-group two-factor interactions XiXj arising from the same X are distributed
evenly in the remaining 2t − 1 alias sets. Each of these alias sets consists of the
5 ·2t−1 interactions AiAj, B iBj, CiCj, DiDj, EiEj with i� j = k. (Note that XiXj

is the same as XjXi and k �= 1, where 1 is the vector of 1’s.) We denote this alias
set by Wk.

One key property that is important for the proof is that each of the 2t factors of
the form Xi appears in exactly one of the 2t two-factor interactions in each alias
set XYk. As a consequence, if u factors generated by X are deleted from X∗, then
the number of two-factor interactions in each of these 2t alias sets is reduced by u.
In this case, since each factor of the 25−1 design can be coupled with four other
factors, the number of two-factor interactions in 4 ·2t of the 10 ·2t alias sets of size
2t is reduced to 2t − u; that in each of the other 6 · 2t alias sets remains to be 2t .

It can also be seen that each of the 5 · 2t factors appears in exactly one within-
group two-factor interaction in each Wk.

Now we are ready to prove the following theorem.

THEOREM 4.1. For any N = 2k , k ≥ 5, and 9N/32 ≤ n ≤ 5N/16, the mini-
mum aberration design must be a projection of the design constructed by repeat-
edly doubling the 25−1 design defined by I = ABCDE.

PROOF. Let N = 16 · 2t and u = 5N/16 − n. Then since 5N/16 − 9N/32 =
2t−1, we have 0 ≤ u ≤ 2t−1.

The minimum aberration design with N = 32 and n = 9 is known to have at
least one zero among the mi ’s, 1 ≤ i ≤ f ([7], page 91), and therefore is not max-
imal. In fact, it is obtained by deleting one factor from the maximal design with
ten factors. By repeatedly applying Corollary 2.4, we see that, for each N = 2k

with k ≥ 5, the maximal regular design of resolution IV with 9N/32 factors does
not have minimum aberration. Now since there are only two maximal regular de-
signs of resolution IV with more than 9N/32 factors, one with N/2 factors and
the other with 5N/16 factors, it is enough to show that, for N = 16 · 2t with t ≥ 2,
there is at least one (5N/16 − u)-factor projection of the maximal regular design
of resolution IV with 5N/16 factors that has less aberration than all projections
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of the saturated regular design of resolution IV. As before, let X∗ be the maximal
regular design of resolution IV with 5N/16 factors.

Now consider a design X obtained by deleting from X∗u factors that are gen-
erated by the same factor A of the 25−1 design defined by I = ABCDE. We shall
show that X has fewer defining words of length four or, equivalently, by (2.2),
a smaller value of

∑f
i=1 m2

i than all projections of the saturated regular design of
resolution IV.

By the observations preceding the statement of the current theorem, under X,
4 · 2t of the 10 · 2t alias sets of between-group two-factor interactions have mi

equal to 2t − u, and the other 6 · 2t alias sets have mi equal to 2t . Now we provide
an upper bound on the sum of squares of the mi values over the alias sets of within-
group two-factor interactions.

Under X∗, in each of the 2t −1 alias sets of within-group two-factor interactions,
2t−1 of the 5 · 2t−1 two-factor interactions involve factors generated by A. Thus,
when only factors generated by A are deleted, for each of these alias sets, the
resulting mi satisfies 4 · 2t−1 ≤ mi ≤ 5 · 2t−1. Consequently, an upper bound on
the sum of squares of the mi values over these alias sets can be obtained by making
as many of the mi values equal to 5 · 2t−1 or 4 · 2t−1 as possible.

When u factors generated by A are deleted,
(u

2

) + u(2t − u) within-group two-
factor interactions are also deleted. Write

u(u + 1)/2 = a · 2t−1 + b,

where a and b are nonnegative integers such that b < 2t−1. Then(
u

2

)
+ u(2t − u) = (2u − a)2t−1 − b.(4.1)

By the observation two paragraphs above, an upper bound on the sum of squares of
the mi values over the 2t − 1 alias sets of within-group two-factor interactions can
be obtained by assuming that 2u−a−1 of the mi values are equal to 4 ·2t−1, one is
equal to 4 ·2t−1 +b, and the remaining 2t −2u+a −1 values are equal to 5 ·2t−1.
Combining this with the mi values for the alias sets of between-group interactions
obtained earlier, we conclude that if u factors generated by A are deleted from X∗,
then

f∑
i=1

m2
i ≤ 4 · 2t · (2t − u)2 + 6 · 2t · (2t )2 + (4 · 2t−1 + b)2

(4.2)
+ (2t − 2u + a − 1)(5 · 2t−1)2 + (2u − a − 1)(4 · 2t−1)2.

On the other hand, a saturated regular design of resolution IV has all the
(5·2t−u

2

)
two-factor interactions in N/2 − 1 = 2t+3 − 1 alias sets. Thus, a design obtained
by deleting factors from a saturated regular design of resolution IV can have at
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most 2t+3 − 1 nonzero mi ’s. For such a design,

f∑
i=1

m2
i ≥

[ (5·2t−u
2

)
2t+3 − 1

]2

· (2t+3 − 1).(4.3)

It is sufficient to show that the right side of (4.2) is less than that of (4.3). This
can be verified by tedious calculations using (4.1) and the assumption that 0 ≤ b <

2t−1. The details are omitted. �

Note that the case u = 0 provides an alternative proof of Butler’s result on the
optimality of maximal designs of resolution IV with n = 5N/16.

Theorem 4.1 leaves open the issue of which projection of the maximal design of
resolution IV with n = 5N/16 has minimum aberration. A complementary design
theory in the same spirit as that for saturated regular designs of resolution III and
IV needs to be developed.

Suppose u factors are deleted from X∗. For X = A,B,C,D,E, let nX be the
number of factors deleted from those generated by X. Among the nXnY pairs (i, j)
where Xi and Y j are deleted, let nk

X,Y be the total number such that i� j = k; this is
the number of between-group two-factor interactions formed by the deleted Xi and
Y j’s that belong to the alias set XYk. Similarly, among the

(nX

2

)
ordered pairs (i, j)

where Xi and Xj are deleted, let nk
X,X be the total number such that i � j = k; this

is the number of within-group two-factor interactions formed by the deleted Xi’s
that belong to the alias set Wk. Then the number of two-factor interactions in XYk
is reduced by nX + nY − nk

X,Y , and the number of two-factor interactions in Wk is

reduced by nA + nB + nC + nD + nE − nk
A,A − nk

B,B − nk
C,C − nk

D,D − nk
E,E =

u − nk
A,A − nk

B,B − nk
C,C − nk

D,D − nk
E,E . Thus, a minimum aberration projection

of X∗ must minimize∑
X,Y

∑
k

(2t − nX − nY + nk
X,Y )2

+ ∑
k�=1

(5 × 2t−1 − u + nk
A,A + nk

B,B + nk
C,C + nk

D,D + nk
E,E)2,

where, in the first term, the first sum is over the ten possible (X,Y )’s and the
second sum is over all the 1 × t vectors of 1’s and −1’s. While this can be solved
without difficulty for small u’s, more general results need to be developed. We
expect an optimal strategy to delete the factors one at a time alternately from the
five groups of factors generated by A,B,C,D,E, while making the two-factor
interactions formed by the deleted factors as uniformly distributed among the alias
sets as possible.
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