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STABLE LIMITS OF MARTINGALE TRANSFORMS WITH
APPLICATION TO THE ESTIMATION OF GARCH PARAMETERS

BY THOMAS MIKOSCH1 AND DANIEL STRAUMANN

University of Copenhagen and ETH Zürich

In this paper we study the asymptotic behavior of the Gaussian quasi
maximum likelihood estimator of a stationary GARCH process with heavy-
tailed innovations. This means that the innovations are regularly varying with
index α ∈ (2,4). Then, in particular, the marginal distribution of the GARCH
process has infinite fourth moment and standard asymptotic theory with nor-
mal limits and

√
n-rates breaks down. This was recently observed by Hall and

Yao [Econometrica 71 (2003) 285–317]. It is the aim of this paper to indicate
that the limit theory for the parameter estimators in the heavy-tailed case nev-
ertheless very much parallels the normal asymptotic theory. In the light-tailed
case, the limit theory is based on the CLT for stationary ergodic finite vari-
ance martingale difference sequences. In the heavy-tailed case such a general
result does not exist, but an analogous result with infinite variance stable lim-
its can be shown to hold under certain mixing conditions which are satisfied
for GARCH processes. It is the aim of the paper to give a general structural
result for infinite variance limits which can also be applied in situations more
general than GARCH.

1. Introduction. The motivation for writing this paper comes from Gaussian
quasi maximum likelihood estimation (QMLE) for GARCH (generalized autore-
gressive conditionally heteroscedastic) processes with regularly varying noise; we
refer to Section 4 for a detailed description of the problem. Recall that the process

Xt = σtZt with σ 2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , t ∈ Z,(1.1)

is said to be a GARCH(p, q) process [GARCH process of order (p, q)]. Here
(Zt ) is an i.i.d. sequence with EZ2

1 = 1 and EZ1 = 0, and αi, βj are nonnegative
constants. GARCH processes and their parameter estimation have been intensively
investigated over the last few years; see [19] for a general overview and [28] and
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the references therein for parameter estimation in GARCH and related models.
In the context of QMLE, the asymptotic behavior of the parameter estimator is
essentially determined by the limiting behavior of the quantity [see (4.13)]

L′
n(θ0) = 1

2

n∑
t=1

h′
t (θ0)

σ 2
t

(Z2
t − 1),

where L′
n is the derivative of the underlying log-likelihood, h′

t is the derivative of
σ 2

t when considered as a function of the parameter θ , and θ0 is the true parameter
(consisting of the αi and βj values) in a certain parameter space. In this context,

Gt = h′
t (θ0)

σ 2
t

, t ∈ Z,

is a stationary ergodic sequence of vector-valued random variables which is
adapted to the filtration Ft = σ(Yt−1, Yt−2, . . . ), t ∈ Z, where Yt = Z2

t − 1 consti-
tutes an i.i.d. sequence.

If Gt has a finite first moment, the sequence (GtYt ) is a transform of the mar-
tingale difference sequence (Yt ), hence, a stationary ergodic martingale difference
sequence with respect to (Ft ). If E|G1|2 < ∞ and EY 2

1 < ∞, an application of
the central limit theorem (CLT) for finite variance stationary ergodic martingale
differences (see [4], Theorem 23.1) yields

n−1/2
n∑

t=1

GtYt
d→ N(0,�),

where � is the covariance matrix of G1Y1. This result does not require any addi-
tional information about the dependence structure of (GtYt ). It implies the asymp-
totic normality of the parameter estimator based on QMLE.

If EY 2
1 = ∞, a result as general as the CLT for stationary ergodic martingale

differences is not known. However, some limit results for stationary sequences
with marginal distribution in the domain of attraction of an infinite variance stable
distribution exist. We recall two of them in Section 2. Our interest in infinite vari-
ance stable limit distributions for

∑n
t=1 GtYt is again closely related to parameter

estimation for GARCH processes. Recently, Hall and Yao [16] gave the asymp-
totic theory for QMLE in GARCH models when EZ4

1 = ∞. To be more specific,
they assume regular variation with index α ∈ (1,2) for the distribution of Z2

1. It is
our aim to show that their results can be obtained by a general limit result for the
martingale transforms

∑n
t=1 GtYt when the i.i.d. noise (Yt ) is regularly varying

with index α ∈ (1,2). The key notions in this context are regular variation of the
finite-dimensional distributions of (GtYt ) and strong mixing of this sequence; see
Section 2 for these notions.

Our objective is twofold. First, we want to show that the theories on parameter
estimation for GARCH processes with heavy- or light-tailed innovations (Zt ) par-
allel each other. We use the recent structural approach to GARCH estimation by
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Berkes et al. [3] in order to show that such a unified approach is possible. Second,
our approach to the asymptotic theory for parameter estimators is not restricted
to GARCH processes. In the light-tailed case, Straumann and Mikosch [28] ex-
tended the approach by Berkes et al. [3], including among others AGARCH and
EGARCH processes. The main difficulty of our approach when infinite variance
limits occur is the verification of certain mixing conditions. In contrast to the case
of asymptotic normality, such conditions cannot be avoided. However, it is difficult
to check for a given model that these conditions hold; see Section 4.4 in order to
get a flavor of the task to be solved.

GARCH processes and their parameter estimation give the motivation for this
paper. The corresponding limit theory for the QMLE with heavy-tailed innova-
tions can be found in Section 4. Our main tool for achieving these limit results is
based on asymptotic theory for martingale transforms with infinite variance stable
limits. This theory is formulated and proved in Section 3. It is based on more gen-
eral results for sums of stationary mixing vector sequences with regularly varying
finite-dimensional distributions. This theory is outlined in Section 2.

2. Preliminaries. In this section we collect some basic tools and notions to
be used throughout this paper. First we want to formulate a classical result on infi-
nite variance stable limits for i.i.d. vector-valued summands due to Rvačeva [25].
Before we formulate this result, we recall the notions of stable random vector and
multivariate regular variation. The class of stable random vectors coincides with
the class of possible limit distributions for sums of i.i.d. random vectors, and mul-
tivariate regular variation is the domain of attraction condition for sums of i.i.d.
random vectors. Then we continue with an analog of Rvačeva’s result for station-
ary ergodic vector sequences. In this context, we also need to recall some mixing
conditions.

Stable random vectors. Recall that a vector X with values in R
d is said to be

α-stable for some α ∈ (0,2) if its characteristic function is given by

Eei(x,X)

(2.1)
=



exp
{
−
∫

Sd−1
|(x,y)|α(1 − i sign((x,y)) tan(πα/2)

)
× �(dy) + i(x,µ)

}
, α �= 1,

exp
{
−
∫

Sd−1
|(x,y)|

(
1 + i

2

π
sign((x,y)) log |(x,y)|

)
× �(dy) + i(x,µ)

}
, α = 1,

where (x,y) denotes the usual inner product in R
d and | · | the Euclidean norm;

see [27], Theorem 2.3.1. The index of stability α ∈ (0,2), the spectral measure
� on the unit sphere S

d−1 and the location parameter µ uniquely determine the
distribution of an infinite variance α-stable random vector X.
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Multivariate regular variation. If X is α-stable for some α ∈ (0,2), it is regu-
larly varying with index α. This means the following. The random vector X with
values in R

d is regularly varying with index α ≥ 0 if there exists a random vector
� with values in the unit sphere S

d−1 of R
d such that for any t > 0, as x → ∞,

P(|X| > tx, X̃ ∈ ·)
P (|X| > x)

v→ t−αP (� ∈ ·),(2.2)

where for any vector x �= 0,

x̃ = x/|x|,
and

v→ denotes vague convergence in the Borel σ -field of S
d−1; see [22, 23] for

its definition and details. The distribution of � is called the spectral measure of X.
Alternatively, (2.2) is equivalent to

P(X ∈ x·)
P (|X| > x)

v→ µ,(2.3)

where
v→ denotes vague convergence in the Borel σ -field of �Rd \ {0} and µ is

a measure on the same σ -field satisfying the homogeneity assumption µ(tA) =
t−αµ(A) for t > 0.

REMARK 2.1. The property of regular variation of X with index α does not
depend on the chosen norm. However, the spectral measure (the unit spheres S

d−1

depend on the norm) and the limiting measure µ can be different for distinct norms.
The asymptotic theory of this paper does not depend on the particular choice of
the norm | · |. Unless specified otherwise, we will, however, assume that | · | is the
Euclidean norm.

To give some intuition on regular variation of a vector X, we mention some
immediate consequences of the definition. Regular variation of X implies that |X|
is regularly varying: P(X| > x) = L(x)x−α , where L(x) is slowly varying in the
sense that L(cx)/L(x) → 1 as x → ∞, for every c > 0. This property follows
by plugging the set S

d−1 into (2.2). Moreover, relation (2.3) implies that every
linear combination (a,X), a �= 0, of the components of X is regularly varying
with the same index α. This follows by plugging the d-dimensional halfspace {x ∈
R

d : (a,x) > 1} into (2.3).
Definition (2.2) has an equivalent sequential analog in the following sense.

Choosing any sequence an → ∞ such that

nP (|X| > an) → 1,(2.4)

(2.2) is equivalent to

nP (|X| > tan, X̃ ∈ S) → t−αP (� ∈ S), t > 0,(2.5)
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for all Borel sets S ⊂ S
d−1 with P(� ∈ ∂S) = 0. By an application of Poisson’s

limit theorem, the latter relation implies for an i.i.d. sequence (Xi) with the same
marginal distribution as X that the binomial random variable

Nn

(
(t,∞) × S

)
(2.6)

=
n∑

i=1

I(t,∞)×S

(
(a−1

n |Xi |, X̃i)
) d→ N

(
(t,∞) × S

)
,

where the limiting variable is Poisson with parameter t−αP (� ∈ S) and IA de-
notes the indicator function of A. This binomial variable counts those exceedances
of the scaled lengths a−1

n |X1|, . . . , a−1
n |Xn| of the vectors Xi above the thresh-

old t for which the angles of the Xi’s fall into the set S. The distributional con-
vergence (2.6) can be extended to the weak convergence of the underlying point
processes Nn toward a Poisson process N on �Rd \ {0}, µ being its mean measure;
we omit the details and refer again to the mentioned literature [22, 23]. However,
the limit relation (2.6) already explains to some extent what the spectral measure
describes (in an asymptotic sense): it gives the likelihood that the angles of the
i.i.d. regularly varying vectors X1, . . . ,Xn “far away from the origin” fall into a
specified set S.

The Poisson convergence result (2.6) also tells us what “far away from the ori-
gin” means: the scaling an of the Xi’s has to be chosen according to the condi-
tion (2.4). We see in the sequel that this condition will appear in various disguises.
Finally, we mention that (2.3) can be written in equivalent sequential form with
(an) satisfying (2.4) as

nP (a−1
n X ∈ ·) v→ µ(·).

Stable limits for sums of i.i.d. random vectors. Now let (Yt ) be an i.i.d. se-
quence of random vectors with values in R

d . According to Rvačeva [25], there
exist sequences of constants an > 0 and bn ∈ R

d such that

a−1
n

n∑
t=1

Yt − bn
d→ Xα

for some α-stable random variable Xα with α ∈ (0,2) if and only if Y1 is regularly
varying with index α, and the normalizing constants an can be chosen as

P(|Y1| > an) ∼ n−1.(2.7)

Notice that (2.7) is directly comparable with condition (2.4), which appears in the
sequential definition of regular variation.

For a stationary sequence (Yt ), a similar result can be found in [13] as a multi-
variate extension of one-dimensional results in [12]. For its formulation one needs
regular variation of the summands and a particular mixing condition, called A(an),
which was introduced in [12].
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Mixing conditions. We say that the condition A(an) holds for the stationary
sequence (Yt ) of random vectors with values in R

d if there exists a sequence of
positive integers rn such that rn → ∞, kn = [n/rn] → ∞ as n → ∞ and

E exp

{
−

n∑
t=1

f (Yt /an)

}
−
(
E exp

{
−

rn∑
t=1

f (Yt /an)

})kn

→ 0,
(2.8)

n → ∞, ∀f ∈ Gs,

where Gs is the collection of bounded nonnegative step functions on �Rd \ {0}. The
convergence in (2.8) is not required to be uniform in f . This is indeed a very
weak condition and is implied by many known mixing conditions, in particular,
the strong mixing condition which is relevant in the context of GARCH processes;
see Section 4. We refer to [13] for a comparison of A(an) with other mixing con-
ditions.

For later use we also recall the definition of a strongly mixing stationary se-
quence (Yt ) of random vectors with rate function (φk) (see [24], cf. [14] or [17]):

sup
A∈σ(Ys ,s≤0),B∈σ(Ys ,s>k)

|P(A ∩ B) − P(A)P (B)| =: φk → 0 as k → ∞.

If (φk) decays to zero at an exponential rate, then (Yt ) is said to be strongly mixing
with geometric rate. In Section 4.4 we use a more stringent notion of mixing,
called β-mixing or absolute regularity. It implies strong mixing with the same rate
function.

Stable limits for sums of stationary random variables. The following result is a
combination of Theorem 2.8 and Proposition 3.3 in [13]. It gives conditions under
which an α-stable weak limit occurs for the sum process of a stationary sequence.
In what follows we write

S0 = 0 and Sn = Y1 + · · · + Yn, n ≥ 1,

and for any Borel set B ⊂ R,

SnB = (
S(h)

n (B)
)
h=1,...,d ,

where

S(h)
n (B) =

n∑
t=1

Y
(h)
t IB

(∣∣Y (h)
t

∣∣/an

)
, n ≥ 1.

THEOREM 2.2. Let (Yt ) be a strictly stationary sequence of random vectors
with values in R

d and the real sequence (an) be defined by (2.7). Assume that the
following conditions are satisfied:
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(a) The finite-dimensional distributions of (Yk) are regularly varying with index
α > 0. To be specific, let vec(θ (k)

−k, . . . , θ
(k)
k ) be the (2k +1)d-dimensional ran-

dom row vector with values in the unit sphere S
(2k+1)d−1 that appears in the

definition (2.2) of regular variation of vec(Y−k, . . . ,Yk), k ≥ 0, with respect
to the max-norm | · | in R

(2k+1)d .
(b) The mixing condition A(an) holds for (Yt ).
(c)

lim
k→∞ lim sup

n→∞
P

( ∨
k≤|t |≤rn

|Yt | > any
∣∣∣|Y0| > any

)
= 0, y > 0,(2.9)

where (rn) appears in the formulation of A(an).

Then the limit

γ = lim
k→∞E

(∣∣θ (k)
0

∣∣α −
k∨

j=1

∣∣θ (k)
j

∣∣α)
+

/
E
∣∣θ (k)

0

∣∣α(2.10)

exists. If γ > 0, then the following results hold:

(i) If α ∈ (0,1), then

a−1
n Sn

d→ Xα,

for some α-stable random vector Xα .
(ii) If α ∈ [1,2), and for all δ > 0

lim
y→0

lim sup
n→∞

P
(|Sn(0, y] − ESn(0, y]| > δan

)= 0,(2.11)

then

a−1
n

(
Sn − ESn(0,1]) d→ Xα

for some α-stable random vector Xα .

REMARK 2.3. The structure of the limiting vectors Xα is given by some func-
tional of the points of a limiting point process. The proof of this result makes heavy
use of point process convergence results, which are appropriate tools in the context
of regularly varying distributions when extremely large values may occur in the se-
quence (Yt ); see [13] for details. This leaves the parameters in the characteristic
function (2.1) unspecified (with the exception of α); a specification is not available
so far and requires further investigation.

REMARK 2.4. The quantity γ in (2.4) can be identified as the extremal index
of the sequence (|Yt |); see [12] and Remark 2.3 in [13]. The extremal index γ ∈
[0,1] of a strictly stationary real-valued sequence is a number which characterizes
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the clustering behavior of the sequence above high thresholds. Roughly speaking,
its existence ensures that the approximate relationship

P

(
max

i=1,...,n
|Yi | ≤ un

)
≈ P nγ (|Y1| ≤ un)

holds for suitable sequences un → ∞). For the definition and interpretation of the
extremal index, we refer to [18] and [15], Section 8.1. The case γ = 0 corresponds
to the case of sequences with unusually large cluster sizes above high thresholds.
This case is often considered pathological; see [18] for some examples and the re-
cent paper by Samorodnitsky [26]. For γ = 0 the limit theory developed in [12, 13]
yields that the weak limit results in the above theorem hold with zero limit.

3. Stable limits for martingale transform. In this section we want to derive
infinite variance stable limits for sums of strictly stationary random vectors which
have the particular form

Yt = GtYt ,

where (Yt ) is an i.i.d. sequence and (Gt ) is a strictly stationary sequence of ran-
dom vectors with values in R

d such that (Gt ) is adapted to the filtration given
by the σ -fields Ft = σ(Yt−1, Yt−2, . . . ), t ∈ Z. If EY1 = 0 and E|G1| < ∞,
E(GtYt |Ft ) = 0 a.s., and, therefore, (GtYt ) is a martingale difference sequence
and

S0 = 0, Sn = Y1 + · · · + Yn, n ≥ 1,

is the martingale transform of the martingale (
∑n

t=1 Yt )n≥0 by the sequence (Gt ).
We keep this name even if E|Y1| = ∞.

3.1. Basic assumptions. We impose the following assumptions on the se-
quences (Yt ) and (Gt ):

A.1. Y1 is regularly varying with index α ∈ (0,2).
A.2. E|G1|α+ε < ∞ for some ε > 0.
A.3. (GtYt ) satisfies condition A(an) [see (2.8)], where P(|Y1| > an) ∼ n−1 and

(rn), defined in (2.8), is such that

nrn

(
arn

an

)α+ε

→ 0,(3.1)

where ε is the same as in A.2.

REMARK 3.1. Regular variation of Y1 with index α and the i.i.d. property of
(Yt ) imply that

P

(
a−1
n max

1≤t≤n
|Yt | ≤ x

)
→ �α(x) = e−x−α

, x > 0,

for the Fréchet distribution �α ; see [15], Chapter 3.
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In this setting, the heaviness of the tails of the distribution of G1Y1 is essentially
determined by the distribution of Y1; see Remark 3.4 below.

3.2. Main result. We are now ready to formulate our main result on the as-
ymptotic behavior of the sum process (Sn).

THEOREM 3.2. Consider the martingale transform(
n∑

t=1

Yt

)
n≥0

=
(

n∑
t=1

GtYt

)
n≥0

defined above. Assume that the conditions A.1–A.3 are satisfied. Moreover, if α ∈
(1,2), assume that EY1 = 0 and, if α = 1, that Y1 is symmetric. Then the finite-
dimensional distributions of (Yt ) are regularly varying with index α and the limit γ

in (2.4) exists. If γ > 0, then

a−1
n Sn

d→ Xα,(3.2)

where the sequence (an) is given by

P(|Y1| > an) ∼ n−1

and Xα is an α-stable random vector.

REMARK 3.3. In the case when E|G1|2+δ + E|Y1|2+δ < ∞ and EY1 = 0,
(3.2) turns into n−1/2Sn

d→ X, where X is Gaussian with mean zero and the same
covariance structure as G1. This follows since (GtYt ) is a strictly stationary mar-
tingale sequence; see [4].

REMARK 3.4. It is not difficult to see that Yt is regularly varying with in-
dex α. For the proof we need a result of Breiman [11]. It says that if one has two
independent random variables ξ, η > 0 a.s., ξ is regularly varying with index α > 0
and Eην < ∞ for some ν > α, then

P(ξη > x) ∼ EηαP (ξ > x),

that is, ξη is regularly varying with the same index α. Now observe that, for
t, x > 0 and a Borel set S ⊂ S

d−1, by multiple application of Breiman’s result,

P(|G1||Y1| > tx,G1Y1/|G1||Y1| ∈ S)

P (|G1||Y1| > x)

= P(|G1||Y1| > tx, sign(Y1)G̃1 ∈ S)

P (|G1||Y1| > x)

= P(|G1|Y1 > tx, G̃1 ∈ S)

P (|G1||Y1| > x)
+ P(|G1|Y1 < −tx,−G̃1 ∈ S)

P (|G1||Y1| > x)

∼ E(|G1|αIS(G̃1))P (Y1 > tx)

E|G1|αP (|Y1| > x)
+ E(|G1|αIS(−G̃1))P (Y1 ≤ −tx)

E|G1|αP (|Y1| > x)
.
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Writing for some p,q ≥ 0 with p + q = 1 and a slowly varying function L(x),

P(Y1 > x) = pL(x)x−α and P(Y1 ≤ −x) = qL(x)|x|−α, x > 0,

we can read off the spectral measure of the vector Y1:

P(� ∈ S) = p
E(|G1|αIS(G̃1))

E|G1|α + q
E(|G1|αIS(−G̃1))

E|G1|α .(3.3)

By regular variation, an = n1/α�(n) for some slowly varying function �. By
Breiman’s result and since E|G1|α+ε < ∞ for some ε > 0, it also follows that

P(|G1||Y1| > x) ∼ E|G1|αP (|Y1| > x),

and, therefore, P(|Y1| > can) ∼ n−1 for some constant c > 0. Moreover, we have

nP (a−1
n Y1 ∈ ·) v→ µ1,(3.4)

for some measure µ1 on �Rd \ {0} which is determined by α and the spectral mea-
sure.

REMARK 3.5. It follows from the proof below that

nP
(
a−1
n (Y1, . . . ,Yh) ∈ d(x1, . . . ,xh)

)
v→ µ1(dx1)ε0

(
d(x2, . . . ,xh)

)+ · · · + µ1(dxh)ε0
(
d(x1, . . . ,xh−1)

)
(3.5)

=: µh

(
d(x1, . . . ,xh)

)
,

where µ1 is defined by (3.4), ε0 is the Dirac measure at 0 and

(Y1, . . . ,Yh) := vec(Y1, . . . ,Yh) and
(3.6)

(x1, . . . ,xh) := vec(x1, . . . ,xh).

This means, in particular, that the limiting measure in the definition of regular
variation for (Y1, . . . ,Yh) is the same as in the definition of regular variation for
vec(Y′

1, . . . ,Y′
h), where Y′

i are i.i.d. copies of Y1. This part of the theorem is valid
for any α > 0.

PROOF OF THEOREM 2.2. We verify the conditions of Theorem 2.2. Since
A.3 implies A(an) and since we require γ > 0, it remains to check (a) and (c) in
Theorem 2.2.

(a) Regular variation of the finite-dimensional distributions. We show regular
variation of the vector (Y1, . . . ,Yh) defined in (3.6), that is, we show that (3.5)
holds.

We restrict ourselves to proof of regular variation of the pairs (Y1,Y2) :=
vec(Y1,Y2); the case of general finite-dimensional distributions is completely
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analogous. The regular variation of Y1 was explained in Remark 3.4. Let now
B1 and B2 be two Borel sets in [0,∞]d \ {0}, bounded away from zero. In partic-
ular, there exists M > 0 such that |x| > M for all x ∈ B1 and x ∈ B2. Then for any
ε > 0, by intersecting with the events {|Gi | ≤ ε} and {|Gi | > ε}, i = 1,2,

{a−1
n Y1 ∈ B1, a

−1
n Y2 ∈ B2}

⊂ {|G1||Y1| > Man, |G2||Y2| > Man}
⊂ {ε|Y1| > Man, ε|Y2| > Man}

∪ {|G1|I(ε,∞)(|G1|)|Y1| > Man, ε|Y2| > Man

}
∪ {|G2|I(ε,∞)(|G2|)|Y2| > Man, ε|Y1| > Man

}
∪ {|G1|I(ε,∞)(|G1|)|Y1| > Man, |G2|I(ε,∞)(|G2|)|Y2| > Man

}
=:

4⋃
i=1

Di.

By independence and an application of Breiman’s result, nP (D1) → 0 and
nP (D2) → 0. Similarly,

nP (D3) ≤ nP
(|G2|I(ε,∞)(|G2|)|Y2| > Man

)
∼ nP (|Y2| > Man)E

(|G2|αI(ε,∞)(|G2|)),
and thus, by Lebesgue’s dominated convergence theorem,

lim
ε↑∞ lim sup

n→∞
nP (D3) = 0,

and nP (D4) → 0 can be proved in the same way. We conclude that

nP
(
a−1
n (Y1,Y2) ∈ d(x1,x2)

) v→ µ1(dx1)ε0(dx1) + µ1(dx2)ε0(dx2)

= µ2
(
d(x1,x2)

);
see [23]. This proves the regular variation of the two-dimensional finite-dimensio-
nal distributions. The higher-dimensional case is completely analogous.

(c) The condition (2.9). We have for any y > 0,

P

(
max

k≤t≤rn
|Gt ||Yt | > yan

∣∣∣ |G0||Y0| > yan

)

≤ P

(
max

k≤t≤rn
|Gt | > yan/

(
skarn

) ∣∣∣ |G0||Y0| > yan

)

+ P

(
max

k≤t≤rn
|Yt | > skarn

)
=: I1 + I2,
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where (sk) is any sequence such that sk → ∞. In what follows all calculations go
through for any y > 0; for ease of notation, we set y = 1. Then, by Remark 3.1,

lim
k→∞ lim

n→∞ I2 = lim
k→∞

(
1 − �α(sk)

)= 0.

An application of Markov’s inequality yields, for some constant c > 0 and ε > 0
as in A.2 (here and in what follows, c denotes any positive constant whose value
is not of interest),

I1 ≤
rn∑

t=k

P
(|Gt | > an/

(
skarn

) | |G0||Y0| > an

)

≤
(

skarn

an

)α+ε rn∑
t=k

E[|Gt |α+εI{|G0||Y0|>an/(skarn )}]
P(|G0||Y0| > an)

≤ cnrn

(
skarn

an

)α+ε

E|G0|α+ε

→ 0 as n → ∞.

Here we used Breiman’s result [11] to show that

P(|G0||Y0| > an) ∼ E|G0|αP (|Y0| > an),

condition (3.1) and the fact that E|G1|α+ε < ∞; see A.2.
Now we turn to

P

(
max−rn≤t≤−k

|Gt ||Yt | > an

∣∣∣ |G0||Y0| > an

)

≤ P

(
max−rn≤t≤−k

|Gt | > an/
(
skarn

) ∣∣∣ |G0||Y0| > an

)

+ P

(
max−rn≤t≤−k

|Yt | > skarn

∣∣∣ |G0||Y0| > an

)
=: I3 + I4.

The quantity I3 can be treated in the same way as I1 to show that I3 → 0 a.s. as
n → ∞. We turn to I4. Fix 0 < M < ∞. Then

I4 ≤ P(max−rn≤t≤−k |Yt | > skarn,M|Y0| > an)

P (|G0||Y0| > an)

+ P(|G0|I(M,∞)(|G0|)|Y0| > an)

P (|G0||Y0| > an)

=: I41 + I42.
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By independence of the Yi ’s, Breiman’s [11] result and since rn → ∞,

I41 ∼ P(max−rn≤t≤−k |Yt | > skarn)M
αP (|Y0| > an)

E|G0|αP (|Y0| > an)

∼ c
(
1 − �α(sk)

)
as n → ∞

→ 0 as k → ∞.

By virtue of Breiman’s [11] result,

I42 ∼ E(|G0|αI(M,∞)(|G0|))P (|Y0| > an)

E|G0|αP (|Y0| > an)
.

Since |G0| has finite moments of order greater than α, an application of the
Lebesgue dominated convergence theorem yields

lim
M→∞ lim

n→∞ I42 = 0.

This proves (2.9). �

Thus, the conditions (a)–(c) and γ > 0 of Theorem 2.2 are satisfied. In the
case α < 1, Theorem 2.2 immediately yields (3.2). In the case α ∈ [1,2), we
have to check condition (2.11). It suffices to show it for components S(i)

n (0, y],
i = 1, . . . , d , of Sn(0, y]. Since the components can be handled in the same way,
we suppress the dependence on i and, for ease of notation, write GtYt for the
summands of the ith component.

We start with the case α ∈ (1,2). As before, write Ft = σ(Yt−1, Yt−2, . . . ).
Then, for z > 0, since EY1 = 0,

E
[
GtYtI(0,z](|GtYt |/an) | Ft

]= GtE
[
YtI(0,z](|GtYt |/an) | Gt

]
= −GtE

[
YtI(z,∞)(|GtYt |/an) | Gt

]
.

Consider the decomposition

a−1
n

n∑
t=1

[
GtYtI(0,z](|GtYt |/an) − E

[
G1Y1I(0,z](|G1Y1|/an)

]]

= a−1
n

n∑
t=1

[
GtYtI(0,z](|GtYt |/an) − GtE

[
YtI(0,z](|GtYt |/an) | Gt

]]

− a−1
n

n∑
t=1

[
GtE

[
YtI(z,∞)(|GtYt |/an) | Gt

]− E
[
G1Y1I(z,∞)(|G1Y1|/an)

]]
=: T1 + T2.

For fixed n, T1 is a sum of stationary mean zero martingale differences. An ap-
plication of Karamata’s theorem ([5], page 26) to the regularly varying random
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variable G1Y1 with index α yields for some constant c > 0,

var(T1) = na−2
n E

[
G1Y1I(0,z](|G1Y1|/an)

− G1E
[
Y1I(0,z](|G1Y1|/an) | G1

]]2
≤ cna−2

n E
[
G1Y1I(0,z](|G1Y1|/an)

]2(3.7)

∼ cz2−α as n → ∞
→ 0 as z ↓ 0.

Next we treat T2. Fix 0 < δ < M < ∞ to be chosen later. Notice that, by Kara-
mata’s theorem and the uniform convergence theorem for regularly varying func-
tions uniformly for c ∈ [δ,M],

E[Y1I(cx,∞)(|Y1|)]
cxP (|Y1| > cx)

→ C

for some constant C. Taking this into account, the strong law of large numbers
yields, with probability 1,

a−1
n

n∑
t=1

GtI[δ,M](|Gt |)E[YtI(z,∞)(|GtYt |/an) | Gt

]

= a−1
n

n∑
t=1

GtI[δ,M](|Gt |)

× [(zan/Gt)P (|Yt | > zan/|Gt | | Gt)
(
C + o(1)

)]
(3.8)

= (
C + o(1)

)
z1−αn−1

n∑
t=1

|Gt |αI[δ,M](|Gt |)

→ Cz1−αE
[|G1|αI[δ,M](|G1|)].

On the other hand, since G1I[δ,M](|G1|)Y1 is regularly varying with index α ∈
(1,2), by the same argument and Breiman’s result,

na−1
n E

[
G1I[δ,M](|G1|)Y1I(z,∞)(|G1Y1|/an)

]
= na−1

n

[(
C + o(1)

)
(zan)P

(
G1I[δ,M](|G1|)|Y1| > zan

)]
(3.9)

= (
C + o(1)

)
z1−αE

[|G1|αI[δ,M](|G1|)].
This shows that (3.8) and (3.9) cancel asymptotically as n → ∞ for every fixed z.
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A similar argument shows that, with probability 1,

a−1
n

∣∣∣∣∣
n∑

t=1

GtI[0,δ](|Gt |)E[YtI(z,∞)(|GtYt |/an) | Gt

]∣∣∣∣∣
≤ a−1

n

n∑
t=1

|Gt |I[0,δ](|Gt |)E[|Y1|I(z,∞)(δ|Y1|/an)
]

(3.10)

→ c(z/δ)1−αE
[|G1|I[0,δ](|G1|)].

Moreover,

na−1
n

∣∣E[G1I[0,δ](|G1|)Y1I(z,∞)(|G1Y1|/an)
]∣∣

≤ na−1
n E

[|G1|I[0,δ](|G1|)|Y1|I(z,∞)(δ|Y1|/an)
]

(3.11)

∼ c(z/δ)1−αE
[|G1|I[0,δ](|G1|)].

Now choose δ = z2. Then, first letting n → ∞ and then z ↓ 0, both (3.10) and
(3.11) vanish asymptotically.

Finally, we consider

a−1
n E

∣∣∣∣∣
n∑

t=1

GtI(M,∞)(|Gt |)E[YtI(z,∞)(|GtYt |/an) | Gt

]∣∣∣∣∣
≤ a−1

n nE
[|G1|I(M,∞)(|G1|)|Y1|I(z,∞)(|G1Y1|/an)

]
.

An application of Breiman’s result to the regularly varying random variable
G1I[M,∞)(|G1|)Y1 gives that the right-hand side is asymptotically equivalent as
n → ∞ to

cz1−αE
[|G1|αI[M,∞)(|G1|)].

Choosing M large enough, the right-hand side is smaller than z, say. The same
argument can be applied to

na−1
n

∣∣E[G1I[M,∞)(|G1|)Y1I(z,∞)(|G1Y1|/an)
]∣∣.

Collecting the bounds above, we see that

lim
z↓0

lim sup
n→∞

P(|T2| > r) = 0, r > 0.

This together with (3.7) concludes the proof of (2.11) for α ∈ (1,2).
For α = 1, we use the additional condition of symmetry of Yt . Then

ESn(0, y] = 0 and the same argument as for var(T1) above shows that (2.11) holds
in this case as well. This concludes the proof of (2.11).

Since the conditions of Theorem 2.2 are satisfied for α ∈ [1,2), we conclude
that

a−1
n

(
Sn − ESn(0,1]) d→ Xα
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for some α-stable random vector in R
d . For α = 1, we can drop ESn(0, y] because

of the symmetry of GtYt . For α ∈ (1,2), GtYt is regularly varying with index α.
Since E(Gt Yt ) = 0, Karamata’s theorem yields

a−1
n ESn(0,1] → b

for some constant b which can be incorporated in the stable limit, and, therefore,
centering in (3.2) can be avoided. This concludes the proof of Theorem 3.2.

4. Gaussian quasi maximum likelihood estimation for GARCH processes
with heavy-tailed innovations. In this section we apply Theorem 3.2 to
Gaussian quasi maximum likelihood estimation (QMLE) in GARCH processes.
The limit properties of the QMLE were studied by Berkes et al. [3]. They proved
strong consistency of the QMLE under the moment condition E|Z1|2+δ < ∞ for
some δ > 0 and established asymptotic normality under EZ4

1 < ∞. Here (Zt ) is an
i.i.d. innovation sequence; see Section 4.1 below for the definition of the GARCH
model and the QMLE. Hall and Yao [16] refined these results and also allowed
for innovations sequences, where Z2

1 is regularly varying with index α ∈ (1,2).
Then the speed of convergence is slower than the usual

√
n rate and the limiting

distribution of the QMLE is (multivariate) α-stable.
It is our objective to show that the asymptotic theories for the QMLE under

light- and heavy-tailed innovations parallel each other and that very similar tech-
niques can be applied in both cases. However, in the light-tailed case (see [3]) an
application of the CLT for stationary ergodic martingale differences is the basic
tool which establishes the asymptotic normality of the QMLE. In the heavy-tailed
situation one depends on an analog of the CLT which is provided by Theorem 3.2.

As a matter of fact, the structure of the proofs shows that the asymptotic prop-
erties of the QMLE are not dependent on the particular structure of the GARCH
process if one can establish the regular variation of the finite-dimensional distrib-
utions of the underlying process (Xt) and the mixing condition A(an). Therefore,
the results of this section have the potential to be extended to more general models,
including, for example, the AGARCH or EGARCH models whose QMLE proper-
ties in the light-tailed case are treated in [28]. The most intricate step in the proof
is, however, the verification of this mixing condition for a given time series model.
We establish this condition for a GARCH process by an adaptation of Theorem 4.3
in [21]; this yields strong mixing with geometric rate of the relevant sequence. We
devote Section 4.4 to the solution of this problem.

Before we start, we introduce some notation. If K ⊂ R
d is a compact set, we

write C(K,R
d ′

) for the space of continuous R
d ′

-valued functions equipped with
the sup-norm ‖v‖K = sups∈K |v(s)|. The space C(K,R

d1×d2) consists of the con-
tinuous d1 ×d2-matrix valued functions on K ; in R

d1×d2 we work with the operator
norm induced by the Euclidean norm | · |, that is,

‖A‖ = sup
|x|=1

|Ax|, A ∈ R
d1×d2 .
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4.1. Definition of the QMLE. Recall the definition of a GARCH(p, q) process
(Xt) from (1.1). As before, (Zt ) is an i.i.d. innovation sequence with EZ2

1 = 1
and EZ1 = 0, and αi, βj are nonnegative constants. GARCH processes have been
intensively investigated over the last few years. Assumptions for strict stationarity
are complicated: they are expressed in terms of Lyapunov exponents of certain
random matrices; see [6] for details. A necessary condition for stationarity is

β1 + · · · + βq < 1(4.1)

(Corollary 2.3 in [6]). We will make use of this condition later.
In what follows we always assume strict stationarity of the GARCH processes.

As a matter of fact, the observation Xt is always a measurable function of the
past and present innovations (Zt ,Zt−1,Zt−2, . . . ); hence, (Xt) is automatically
ergodic.

In what follows we review how an approximation to the conditional Gaussian
likelihood of a stationary GARCH(p, q) process is constructed, that is, a con-
ditional likelihood under the synthetic assumption Zt i.i.d. ∼ N (0,1). Given
X0, . . . ,X−p+1 and σ 2

0 , . . . , σ 2−q+1, the random variables X1, . . . ,Xn are con-
ditionally Gaussian with mean zero and variances ht (θ), t = 1, . . . , n, where
θ = (α0, α1, . . . , αp,β1, . . . , βq)

T denotes the presumed parameter and

ȟt (θ) =


σ 2

t , t ≤ 0,

α0 + α1X
2
t−1 + · · · + αpX2

t−p

+ β1ȟt−1(θ) + · · · + βqȟt−q(θ), t > 0.

The conditional Gaussian log-likelihood has the form

logfθ (X1, . . . ,Xn | X0, . . . ,X−p+1, σ
2
0 , . . . , σ 2−q+1)

(4.2)

= −n

2
log(2π) − 1

2

n∑
t=1

(
X2

t

ȟt (θ)
+ log ȟt (θ)

)
.

Since X0, . . . ,X−p+1 are not available and the squared volatilities σ 2
0 , . . . , σ 2−q+1

unobservable, the conditional Gaussian log-likelihood (4.2) cannot be numerically
evaluated without a certain initialization for σ 2

0 , . . . , σ 2−p+1 and X0, . . . ,X−q+1.
The initial values being asymptotically irrelevant, we set the Xt ’s equal to zero
and ĥt (θ) = α0/(1 − β1 − · · · − βq) for t ≤ 0. We arrive at

ĥt (θ) =


α0/(1 − β1 − · · · − βq), t ≤ 0,

α0 + α1X
2
t−1 + · · · + αmin(p,t−1)X

2
max(t−p,1)

+ β1ĥt−1(θ) + · · · + βqĥt−q(θ), t > 0.

(4.3)

The function (ĥt (θ))1/2 can be understood as an estimate of the volatility at time t

and under parameter hypothesis θ . It can be established that |ĥt − ȟt | a.s.→ 0 with
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a geometric rate of convergence and uniformly on the compact set K defined
in (4.4) below. This suggests that, by replacing ȟt (θ) by ĥt (θ) in (4.2), we ob-
tain a good approximation to the conditional Gaussian log-likelihood. Since the
constant −n log(2π)/2 does not matter for the optimization, we define the QMLE
θ̂n as a maximizer of the function

L̂n(θ) =
n∑

t=1

�̂t (θ) = −1

2

n∑
t=1

(
X2

t

ĥt (θ)
+ log ĥt (θ)

)
with respect to θ ∈ K , with K being the compact set

K = {θ ∈ R
p+q+1 | m ≤ αi, βj ≤ M,β1 + · · · + βq ≤ β̄},(4.4)

where 0 < m < M < ∞ and 0 < β̄ < 1 are such that qm < β̄ .

REMARK 4.1. From a comparison with [3], one might think at first sight that
our definition of the QMLE is different from theirs. To see that ĥt coincides with
w̃t in [3], introduce the polynomials

α(z) = α1z + · · · + αpzp and β(z) = 1 − β1z − · · · − βqz
q

for every θ = (α0, α1, . . . , αp,β1, . . . , βq)
T ∈ K . Then one can show by induction

on t that

ĥt (θ) = α0

β(1)
+

t−1∑
j=1

ψj(θ)X2
t−j ,(4.5)

where the coefficients ψj(θ) are defined through

α(z)

β(z)
=

∞∑
j=1

ψj(θ)zj , |z| ≤ 1.(4.6)

Note that the latter Taylor series representation is valid because βi ≥ 0 and β1 +
· · ·+βq ≤ β̄ < 1 imply β(z) �= 0 on K for |z| ≤ 1+ ε and ε > 0 sufficiently small.
We choose (4.3) rather than (4.5) as a first definition for the squared volatility
estimate under parameter hypothesis θ , because the recursion (4.3) is natural and
computationally attractive. In [3] the starting point for the definition of the QMLE
is Theorem 2.2, which says that for all t ∈ Z one has ht (θ0) = σ 2

t , where θ0 is the
true parameter and

ht (θ) = α0

β(1)
+

∞∑
j=1

ψj(θ)X2
t−j .(4.7)

In [3] this leads to the definition of a squared volatility estimate at time t under
parameter θ based on (X1, . . . ,Xn), which is given by (4.5). Note also that (ht (θ))

obeys

ht+1(θ) = α0 + α1X
2
t + · · · + αpX2

t+1−p
(4.8)

+ β1ht (θ) + · · · + βqht+1−q(θ), θ ∈ K.
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4.2. Limit distribution in the case EZ4
1 < ∞. First we list the conditions em-

ployed by [3] for establishing consistency and asymptotic normality of θ̂n. Write
θ0 = (α◦

0, α◦
1, . . . , α◦

p,β◦
1 , . . . , β◦

q )T for the true parameter.

C.1. There is a δ > 0 such that E|Z1|2+δ < ∞.
C.2. The distribution of |Z1| is not concentrated in one point.
C.3. There is a µ > 0 such that P(|Z1| ≤ t) = o(tµ) as t ↓ 0.
C.4. The true parameter θ0 lies in the interior of K .
C.5. The polynomials α◦(z) = α◦

1z+· · ·+α◦
pzp and β◦(z) = 1−β◦

1z−· · ·−β◦
qzq

do not have any common roots.

Now we are ready to quote the main result of [3]. We cite it in order to be able to
compare the assumptions and assertions both in the light- and heavy-tailed cases;
see Theorem 4.4 below.

THEOREM 4.2 (Theorem 4.1 of [3]). Let (Xt) be a stationary GARCH(p, q)

process with true parameter vector θ0. Suppose the conditions C.1–C.5 hold. Then
the QMLE θ̂n is strongly consistent, that is,

θ̂n
a.s.→ θ0, n → ∞.

If, in addition, EZ4
0 < ∞, then θ̂n is also asymptotically normal, that is,

√
n(θ̂n − θ0)

d→ N (0,B−1
0 A0B−1

0 ),

where the (p + q + 1) × (p + q + 1) matrices A0 and B0 are given by

A0 = E(Z4
0 − 1)

4
E

(
1

σ 4
1

h′
1(θ0)

T h′
1(θ0)

)
,

(4.9)

B0 = −1

2
E

(
1

σ 4
1

h′
1(θ0)

T h′
1(θ0)

)
.

4.3. Limit distribution in the case EZ4
1 = ∞. First we identify the limit deter-

mining term for the QMLE. To this end, we set analogously to [3],

Ln(θ) =
n∑

t=1

�t (θ) = −1

2

n∑
t=1

(
X2

t

ht (θ)
+ loght (θ)

)

and define θ̃n as a maximizer of Ln with respect to θ ∈ K . It is a slightly simpler
problem to analyze θ̃n because (�t ) is stationary ergodic, in contrast to (�̂t )t∈N.
As is shown in Proposition 4.3 below, θ̂n and θ̃n are asymptotically equivalent. It
turns out that the asymptotic distribution of the QMLE is essentially determined by
the limit behavior of L′

n(θ0)/n, up to multiplication with the matrix −B−1
0 . These

results follow by a careful analysis of the proofs in [3]. We omit details and refer to
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the website [20] for a detailed proof. Compare also with the similar reference [28],
where the case of processes with a more general volatility structure than GARCH
is treated.

PROPOSITION 4.3. Let (Xt) be a stationary GARCH(p, q) process with true
parameter vector θ0. Suppose the conditions C.1–C.5 apply. If there is a positive
sequence (xn)n≥1 with xn = o(n) as n → ∞ and

xn

L′
n(θ0)

n

d→ D, n → ∞,(4.10)

for an R
p+q+1-valued random variable D, then the QMLE θ̂n satisfies the limit

relation

xn(θ̂n − θ0)
d→ −B−1

0 D,(4.11)

where B0 is given by (4.9).

Now we can state the main theorem of this section. We note once again that Hall
and Yao [16] derived the identical result by means of different techniques.

THEOREM 4.4. Let (Xt) be a stationary GARCH(p, q) process with true pa-
rameter vector θ0. Suppose that Z2

1 is regularly varying with index α ∈ (1,2) and
that C.3–C.5 hold. Moreover, assume that Z1 has a Lebesgue density f , where
the closure of the interior of the support {f > 0} contains the origin. Define
(xn) = (na−1

n ), where

P(Z2
1 > an) ∼ n−1, n → ∞.

Then the QMLE θ̂n is consistent and

xn(θ̂n − θ0)
d→ Dα, n → ∞,(4.12)

for some nondegenerate α-stable vector Dα .

Before proving the theorem, we discuss its practical consequences for parameter
inference:

• The rate of convergence xn has—roughly speaking—magnitude n1−1/α , which
is less than

√
n. The heavier the tails of the innovations, that is, the smaller α,

the slower is the convergence of θ̂n toward the true parameter θ0.
• The limit distribution of the standardized differences (θ̂n − θ0) is α-stable and,

hence, non-Gaussian. The exact parameters of this α-stable limit are not explic-
itly known.

• Confidence bands based on the normal approximation of Theorem 4.2 are false
if EZ4

1 = ∞.
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• By the definition of a GARCH process, the distribution of the innovations Zt is
unknown. Therefore, assumptions about the heaviness of the tails of its distri-
bution are purely hypothetical. As a matter of fact, the tails of the distribution
of Xt can be regularly varying even if Zt has light tails, such as for the normal
distribution; see [2]. Depending on the assumptions on the distribution of Z1,
one can develop different asymptotic theories for QMLE of GARCH processes:
asymptotic normality as provided by Theorem 4.2 or infinite variance stable
distributions as provided by Theorem 4.4.

PROOF OF THEOREM 4.4. The proof follows by combining Theorem 3.2 and
Proposition 4.3. Indeed, setting

Gt = h′
t (θ0)/σ

2
t , Yt = (Z2

t − 1)/2 and Yt = GtYt ,

one recognizes that

L′
n(θ0) = 1

2

∞∑
t=1

h′
t (θ0)

σ 2
t

(Z2
t − 1) =

n∑
t=1

GtYt(4.13)

is a martingale transform. Regular variation of Z2
1 with index α ∈ (1,2) im-

plies A.1, but also C.1 and C.2. Condition A.2 is fulfilled because ‖h′
1/h1‖K has

finite moments of any order (Lemma 5.2 of [3]), and so has ‖G1‖. The condi-
tion A.3 holds if we can show that (Yt ) is strongly mixing with geometric rate, in
which case we choose rn = nδ in A(an) for any small δ > 0, so that (3.1) imme-
diately follows. This choice of (rn) is justified by the arguments given in [2]. The
strong mixing condition with geometric rate of (Yt ) will be verified in Section 4.4.

Finally, we have to give an argument for γ > 0. The latter quantity has inter-
pretation as the extremal index of the sequence (|Yt |); see Remark 2.4. Accord-
ing to Theorem 3.7.2 in [18], if γ = 0 and for some sequence (un) the relation
lim infn→∞ P(M̃n ≤ un) > 0 holds, then one neccessarily has limn→∞ P(Mn ≤
un) = 1. Here Mn = max(|Y1|, . . . , |Yn|) and (M̃n) is the corresponding sequence
of partial maxima for an i.i.d. sequence (Ri), where R1 has the same distribution
as |Y1|.

We want to show by contradiction that γ = 0, using the above result. The

random variable |Y1| d= Ri is regularly varying with index α since Y1 is reg-
ularly varying with index α. Hence, (a−1

n M̃n) has a Fréchet limit distribution
�α(x) = exp{−x−α}, x > 0; see Remark 3.1.

On the other hand, we will show that P(Mn ≤ xan) → 1 does not hold for
any positive x, thus contradicting the hypothesis γ = 0. Indeed, straightforward
arguments exploiting

∞∑
j=1

∂ψj (θ)

∂αi

zj = zi

β(z)
, |z| ≤ 1,
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for all i = 1, . . . , p, show that

∂ht (θ)

∂αi

≥ 0 for all i = 0, . . . , p,(4.14)

and
p∑

i=0

αi

∂ht (θ)

∂αi

= ht (θ).(4.15)

Since the Euclidean norm is equivalent to the 1-norm |x| = ∑p+q+1
i=1 |xi | and

αi ≤ M on K , there is a c > 0 such that

|h′
t (θ)|

ht (θ)
≥ c

ht (θ)

p∑
i=0

αi

∣∣∣∣∂ht (θ)

∂αi

∣∣∣∣= c

ht (θ)

p∑
i=0

αi

∂ht (θ)

∂αi

= c.

Note that the last two equalities in the latter display are a consequence of (4.14)
and (4.15). In particular, we proved that |Gi | ≥ c for all i and therefore

P(Mn ≤ xan) = P

(
max

i=1,...,n
|Gi ||Yi | ≤ xan

)

≤ P

(
max

i=1,...,n
|Yi | ≤ c−1xan

)
.

The same classical limit result for maxima as above ensures that the right-hand side
probability converges to a Fréchet limit and is never equal to 1 for all positive x.
Thus, we have proved γ > 0.

Now, all conditions of Theorem 3.2 are verified so that

2a−1
n L′

n(θ0) = 2xn

L′
n(θ0)

n

d→ D̃α,

where D̃α is α-stable [notice that P((Z2
0 − 1)/2 > an/2) ∼ P(Z2

0 > an) ∼ n−1].
Since xn/n = a−1

n → 0, Proposition 4.3 implies

xn(θ̂n − θ0)
d→ −2−1B−1

0 D̃α = Dα.

Recalling that a linear transformation of an α-stable random vector is again
α-stable (see [27]), we conclude the proof of the theorem. �

4.4. Verification of strong mixing with geometric rate of (Yt ). To begin with,
we quote a powerful result due to Mokkadem [21], which allows one to estab-
lish strong mixing in stationary solutions of so-called polynomial linear stochastic
recurrence equations (SREs). A sequence (Yt ) of random vectors in R

d obeys a
linear SRE if

Yt = PtYt−1 + Qt ,(4.16)
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where ((Pt ,Qt )) constitutes an i.i.d. sequence with values in R
d×d × R

d . A lin-
ear SRE is called polynomial if there exists an i.i.d. sequence (et ) in R

d ′
such that

Pt = P(et ) and Qt = Q(et ), where P(x) and Q(x) have entries and coordinates, re-
spectively, which are polynomial functions of the coordinates of x. The existence
and uniqueness of a stationarity solution to (4.16) has been studied by Brandt [10],
Bougerol and Picard [7], Babillot et al. [1] and others. The following set of con-
ditions is sufficient: E log+ ‖P1‖ < ∞, E log+ |Q1| < ∞, and the top Lyapunov
coefficient associated with the operator sequence (Pt ) is strictly negative, that is,

ρ = inf{t−1E log‖Pt · · ·P1‖ | t ≥ 1} < 0.(4.17)

Here ‖ · ‖ is the operator norm corresponding to an arbitrary fixed norm | · | in R
d ,

for example, the Euclidean norm. The following result is a slight generalization of
Theorem 4.3 in [21]; see the beginning of the proof below for a comparison.

THEOREM 4.5. Let (et ) be an i.i.d. sequence of random vectors in R
d ′

. Then
consider the polynomial linear SRE

Yt = P(et )Yt−1 + Q(et ),(4.18)

where P(et ) is a random d × d matrix and Q(et ) a random R
d -valued vector.

Suppose:

1. P(0) has spectral radius strictly smaller than 1 and the top Lyapunov coefficient
ρ corresponding to (P(et )) is strictly negative.

2. There is an s > 0 such that

E‖P(e1)‖s < ∞ and E|Q(e1)|s < ∞.

3. There is a smooth algebraic variety V ⊂ R
d ′

such that e1 has a density f with
respect to Lebesgue measure on V . Assume that 0 is contained in the closure of
the interior of the support {f > 0}.

Then the polynomial linear SRE (4.18) has a unique stationary ergodic so-
lution (Yt ) which is absolutely regular with geometric rate and consequently
strongly mixing with geometric rate.

REMARK 4.6. As regards the definition of a smooth algebraic variety, we first
introduce the notion of an algebraic subset. An algebraic subset of the R

d ′
is a set

of the form

V = {x ∈ R
d ′ | F1(x) = · · · = Fr(x) = 0},

where F1, . . . ,Fr are real multivariate polynomials. An algebraic variety is an al-
gebraic subset which is not the union of two proper algebraic subsets. An algebraic
variety is smooth if the Jacobian of F = (F1, . . . ,Fr)

T has identical rank every-
where on V . Examples of smooth algebraic varieties in R

d ′
are the hyperplanes

of R
d ′

or V = R
d ′

.



516 T. MIKOSCH AND D. STRAUMANN

REMARK 4.7. Recall that absolute regularity (or β-mixing) is a mixing notion
which is slightly more restrictive than strong mixing:

E

(
sup

B∈σ(Yt ,t>k)

∣∣P (B | σ(Ys, s ≤ 0)
)− P(B)

∣∣)=: bk → 0, k → ∞.

Indeed, β-mixing implies strong mixing with the same rate function; see [14] for
details on mixing.

PROOF OF THEOREM 4.5. If E‖P(e1)‖s̃ < 1 for some s̃ > 0, we can im-
mediately apply Theorem 4.3 in [21]. In the general case, we use Mokkadem’s
result to prove absolute regularity with geometric rate for some subsequence
(Ỹt ) = (Ytm)t∈Z, some m ≥ 1, by observing that (Ỹt ) satisfies the linear SRE
(4.19) below. The subsequence argument works because the mixing coefficient bk

is nonincreasing and since (Yt ) is a Markov process. Then one has the simpler
representation

bk = E

(
sup

B∈σ(Yk+1)

∣∣P(B | σ(Y0)) − P(B)
∣∣);

see, for example, [9].
Since ρ < 0, there is an m ≥ 1 with E log‖P(em) · · ·P(e1)‖ < 0. From

the fact that the map u �→ E‖P(em) · · ·P(e1)‖u has first derivative equal to
E log‖P(em) · · ·P(e1)‖ at u = 0, we deduce that there is an 0 < s̃ ≤ s with
E‖P(em) · · ·P(e1)‖s̃ < 1. Then note that (Ỹt ) = (Ytm) obeys a linear SRE:

Ỹt = P̃(ẽt )Ỹt−1 + Q̃(ẽt ),(4.19)

where

ẽt =
 etm

...

e(t−1)m+1


and

P̃(ẽt ) = P(etm) · · ·P
(
e(t−1)m+1

)
,

Q̃(ẽt ) = Q(etm) +
m−1∑
j=1

( j∏
i=1

P(etm+1−i )

)
Q(etm−j ).

Since both the matrix P̃(ẽt ) and the vector Q̃(ẽt ) are polynomial functions of
the coordinates of ẽt and the sequence (ẽt ) is i.i.d., (Ỹt ) obeys a polynomial lin-
ear SRE. Observe that P̃(0) = (P(0))m has spectral radius strictly smaller than 1,
that E‖P̃(ẽ1)‖s̃ < 1 and E‖Q̃(ẽ1)‖s̃ < ∞ and that ẽ1 has a density with respect
to Lebesgue measure on V m, where V m is a smooth algebraic variety (see A.14
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in [21]). Thus, an application of Theorem 4.3 in [21] yields that (Ỹt ) is absolutely
regular with geometric rate. This proves the assertion. �

The following two facts will also be needed.

LEMMA 4.8. Let (Pt ) be an i.i.d. sequence of k × k matrices with E‖P1‖s <

∞ for some s > 0. Then the associated top Lyapunov coefficient ρ < 0 if and only
if there exist c > 0, s̃ > 0 and λ < 1 so that

E‖Pt · · ·P1‖s̃ ≤ cλt , t ≥ 1.(4.20)

PROOF. For the proof of necessity, observe that there exists n ≥ 1 such that
E log‖Pn · · ·P1‖ < 0. From the fact that the map u �→ E‖Pn · · ·P1‖u has first
derivative equal to E log‖Pn · · ·P1‖ at u = 0, we deduce that there is an s̃ > 0
with E‖Pn · · ·P1‖s̃ = λ̃ < 1. Since the operator norm ‖ · ‖ is submultiplicative and
the factors in Pt · · ·P1 are i.i.d.,

E‖Pt · · ·P1‖s̃ ≤ λ̃t/n−1
(

max
�=1,...,n−1

E‖P� · · ·P1‖s̃

)
≤ cλt , t ≥ 1,

for c = λ̃−1(max�=1,...,n−1 E‖P� · · ·P1‖s̃ ) and λ = λ̃1/n. Regarding the proof of
sufficiency, use Jensen’s inequality and limt→∞ t−1E log‖Pt · · ·P1‖ = ρ to con-
clude

ρ = lim
t→∞

1

t s̃
E log‖Pt · · ·P1‖s̃ ≤ lim sup

t→∞
1

t s̃
logE‖Pt · · ·P1‖s̃

≤ lim sup
t→∞

1

t s̃
(log c + t logλ) = logλ

s̃
< 0.

This completes the proof of the lemma. �

LEMMA 4.9. Suppose that

Pt =
(

At 0r×(k−r)

Bt Ct

)
, t ∈ Z,(4.21)

forms an i.i.d. sequence of k × k matrices with E‖P1‖s < ∞, s > 0, where At ∈
R

r×r , Bt ∈ R
(k−r)×r and Ct ∈ R

(k−r)×(k−r). Then its associated top Lyapunov
coefficient ρP < 0 if and only if the sequences (At ) and (Ct ) have top Lyapunov
coefficients ρA < 0 and ρC < 0.

PROOF. For the proof of sufficiency of ρA < 0 and ρC < 0 for ρP < 0, it is by
Lemma 4.8 enough to derive a moment inequality of the form (4.20) for (Pt ). By
induction we obtain

Pt · · ·P1 =
(

At · · ·A1 0r×(k−r)

Qt Ct · · ·C1

)
,
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where

Qt = BtAt−1 · · ·A1 + CtBt−1At−2 · · ·A1 + CtCt−1Bt−2At−3 · · ·A1

+ · · · + Ct · · ·C3B2A1 + Ct · · ·C2B1.

Observe that

max(‖At · · ·A1‖,‖Ct · · ·C1‖)
(4.22)

≤ ‖Pt · · ·P1‖ ≤ ‖At · · ·A1‖ + ‖Ct · · ·C1‖ + ‖Qt‖.
It is sufficient to show (4.20) for each block in the matrix Pt · · ·P1. Because of
ρA < 0, ρC < 0 and E‖A1‖s,E‖C1‖s ≤ E‖P1‖s < ∞, Lemma 4.8 already im-
plies moment bounds of the form (4.20) for (At ) and (Ct ). Thus, we are left to
bound ‖Qt‖. Without loss of generality, we may assume that the constants λ < 1
and s̃, c > 0 in (4.20) are equal for (At ) and (Ct ) and that s̃ ≤ s ≤ 1. From an
application of the Minkowski inequality and exploiting the independence of the
factors in each summand of Qt , we obtain the desired relation

E‖Qt‖s̃ ≤ c2tE‖B1‖s̃λt−1 ≤ c̃λ̃t ,

for some λ̃ ∈ (λ,1), c̃ > 0. For the proof of necessity, assume ρP < 0. Then the
left-hand side estimates in (4.22) and Lemma 4.8 imply that ρA < 0 and ρC < 0.

�

We now exploit Theorem 4.5 in order to establish strong mixing with geometric
rate of the sequence (Yt ) = (GtYt ), where Gt = h′

t (θ0)/σ
2
t and Yt = (Z2

t − 1)/2.

PROPOSITION 4.10. Let (Xt) be a stationary GARCH(p, q) process with
true parameter vector θ0. Moreover, assume that Z1 has a Lebesgue density f ,
where the closure of the interior of the support {f > 0} contains the origin. Then
(Yt ) is absolutely regular with geometric rate.

PROOF. For the proof of this result, we first embed (Yt ) in a polynomial linear
SRE. Without loss of generality, assume p,q ≥ 3. Write

Ỹt =
(
σ 2

t+1, . . . , σ
2
t−q+2,X

2
t , . . . ,X

2
t−p+2,

∂ht+1(θ0)

∂α0
, . . . ,

∂ht−q+2(θ0)

∂α0
, . . . ,

∂ht+1(θ0)

∂αp

, . . . ,
∂ht−q+2(θ0)

∂αp

,

∂ht+1(θ0)

∂β1
, . . . ,

∂ht−q+2(θ0)

∂β1
, . . . ,

∂ht+1(θ0)

∂βq

, . . . ,
∂ht−q+2(θ0)

∂βq

)T

.

Since Z2
t = X2

t /σ
2
t , we have

σ(Yt , t > k) ⊂ σ(Ỹt , t > k) and σ(Yt , t ≤ 0) ⊂ σ(Ỹt , t ≤ 0).
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Consequently, it is enough to demonstrate absolute regularity with geometric rate
of the sequence (Ỹt ). We introduce various matrices. Write 0d1×d2 for the d1 × d2
matrix with all entries equal to zero and let Id denote the identity matrix of dimen-
sion d . Then set

M1(Zt ) =


τ t β◦

q α◦ α◦
p

Iq−1 0(q−1)×1 0(q−1)×(p−2) 0(q−1)×1

ξ t 01×1 01×(p−2) 01×1

0(p−2)×(q−1) 0(p−2)×1 0(p−2)×(p−2) 0(p−2)×1

 ,

where

τ t = (β◦
1 + α◦

1Z2
t , β

◦
2 , . . . , β◦

q−1) ∈ R
q−1,

ξ t = (Z2
t ,0, . . . ,0) ∈ R

q−1,

α◦ = (α◦
2, . . . , α◦

p−1) ∈ R
p−2.

Moreover, define

M2(Zt ) =


0q×(p+q−1)

U1
...

Up

 and M4 =
V1

...

Vq

 ,

where Ui ∈ R
q×(p+q−1) and Vj ∈ R

q×(p+q−1) are given by

[U1]k,� = δk�,11Z
2
t ,

[Ui]k,� = δk�,1(q+i−1), i ≥ 2,

[Vj ]k,�
= δk�,1j .

Here δ· denotes the Kronecker symbol. Also introduce the q × q matrix

C =
(

β◦
1 · · · β◦

q

Iq−1 0(q−1)×1

)
,

and let

M3 = diag(C,p + 1), M5 = diag(C, q)

be the block diagonal matrices consisting of p + 1 (or q) copies of the block C.
Finally, we define

P(Zt ) =
M1(Zt ) 0(p+q−1)×(p+1)q 0(p+q−1)×q2

M2(Zt ) M3 0(p+1)q×q2

M4 0q2×(p+1)q M5
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and Q ∈ R
p+q−1+q(p+q+1) by [Q]k = α0δk,1 + δk,p+q . Differentiating both sides

of (4.8) at the true parameter θ = θ0, we recognize that

h′
t+1(θ0) = (1,X2

t , . . . ,X
2
t+1−p, σ 2

t , . . . , σ 2
t+1−q)

T

+ β◦
1h′

t (θ0) + · · · + β◦
qh′

t+1−q(θ0).

From this recursive relationship together with σ 2
t+1 = α◦

0 + α◦
1X2

t + · · · +
α◦

pX2
t+1−p +β◦

1σ 2
t +· · ·+β◦

qσ 2
t+1−q , we derive a polynomial linear SRE for (Ỹt ):

Ỹt = P(Zt )Ỹt−1 + Q.(4.23)

The proof of Proposition 4.10 follows from the following lemma. �

LEMMA 4.11. Under the assumptions of Proposition 4.10, the polynomial
linear SRE (4.23) has a strictly stationary solution (Ỹt ) which is absolutely regular
with geometric rate.

PROOF. The aim is to show that (4.23) obeys the conditions of Theorem 4.5.
Since EZ2

1 = 1, it is immediate that E‖P(Z1)‖ < ∞ since this statement is true for
the Frobenius norm and all matrix norms are equivalent. Treat the blocks M1(Zt ),
M3 and M4 separately. Observe that the matrix M1(Zt ) appears in the linear SRE
for the vector St = (σ 2

t+1, . . . , σ
2
t−q+2,X

2
t , . . . ,X

2
t−p+2)

T , namely,

St = M1(Zt )St−1 + (α◦
0,0, . . . ,0)T .

Theorem 1.3 of [6] says that (1.1) admits a unique stationary solution if and only
if (M1(Zt )) has strictly negative top Lyapunov coefficient; consequently, ρM1 < 0.
Moreover, arguing by recursion on p and expanding the determinant with respect
to the last column, it is easily verified that M1(0) has characteristic polynomial

det
(
λIp+q−1 − M1(0)

)= λp+q−1

(
1 −

q∑
i=1

β◦
i λ−i

)
.

Since (4.1) holds for a stationary GARCH(p, q) process, by the triangle inequality∣∣∣∣∣1 −
q∑

i=1

β◦
i λ−i

∣∣∣∣∣≥ 1 −
q∑

i=1

β◦
i λ−i ≥ 1 −

q∑
i=1

β◦
i > 0

if |λ| ≥ 1 and, hence, M1(0) has spectral radius < 1. Observe that the building
block C has characteristic polynomial

det(λIq − C) = λq

(
1 −

q∑
i=1

β◦
i λ−i

)
,

showing that its spectral radius is strictly smaller than 1 (use the same argument
as before). Thus, the deterministic matrices M3 and M5 have spectral radius < 1,
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which also implies that their associated top Lyapunov coefficients are stricly neg-
ative. Combining these results, we deduce that P(0) has spectral radius < 1 and
conclude by twice applying Lemma 4.9 that (P(Zt )) has strictly negative top
Lyapunov coefficient. Hence, by Theorem 4.5 the stationary sequence (Ỹt ) is ab-
solutely regular with geometric rate. �

REMARK 4.12. Since (X2
t , σ

2
t ) is a subvector of Ỹt , stationary GARCH(p, q)

processes are absolutely regular with geometric rate; this result has previously been
established by Boussama [8].
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