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NONQUADRATIC ESTIMATORS OF A QUADRATIC FUNCTIONAL1

BY T. TONY CAI AND MARK G. LOW

University of Pennsylvania

Estimation of a quadratic functional over parameter spaces that are not
quadratically convex is considered. It is shown, in contrast to the theory for
quadratically convex parameter spaces, that optimal quadratic rules are of-
ten rate suboptimal. In such cases minimax rate optimal procedures are
constructed based on local thresholding. These nonquadratic procedures are
sometimes fully efficient even when optimal quadratic rules have slow rates
of convergence. Moreover, it is shown that when estimating a quadratic func-
tional nonquadratic procedures may exhibit different elbow phenomena than
quadratic procedures.

1. Introduction. The Gaussian sequence model

Yi = θi + n−1/2zi, i = 1,2, . . . ,(1)

where zi are i.i.d. standard normal random variables, often serves as a general pro-
totypical model in nonparametric function estimation settings. For example, it is
exactly equivalent to a white noise with drift model and can also be used to approx-
imate nonparametric regression and density estimation models. For the sequence
model considerable attention has focused on estimating linear and nonlinear func-
tionals of the infinite dimensional mean vector θ = (θ1, θ2, . . . ).

One particularly important nonlinear functional is the quadratic functional
Q(θ) = ∑∞

i=1 θ2
i . Early results on this and related problems were given in [3,

11, 15, 17–19]. More recent results can be found in [13, 22, 23].
The problem of estimating this quadratic functional is closely connected to the

construction of confidence balls in nonparametric function estimation. See, for
example, [6, 12, 14, 25]. In addition, as shown in [3, 11, 15] this problem connects
the nonparametric and semiparametric literatures.

One of the interesting features of the quadratic functional estimation problem is
that the usual information bound over any bounded subset of l2, as, for example,
given in [2], is strictly positive and finite for θ �= 0. However this bound may or
may not be useful. Bickel and Ritov [3] and Ritov and Bickel [26] showed in the
context of i.i.d. data that in some cases the information bound is sharp whereas in

Received February 2004; revised December 2004.
1Supported in part by NSF Grant DMS-03-06576.
AMS 2000 subject classifications. Primary 62G99; secondary 62F12, 62F35, 62M99.
Key words and phrases. Besov balls, Gaussian sequence model, information bound, minimax es-

timation, quadratic functional, quadratic estimators.

2930

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053605000000147
http://www.imstat.org
http://www.ams.org/msc/


NONQUADRATIC ESTIMATORS OF A QUADRATIC FUNCTIONAL 2931

other cases the information bound is not informative because the minimax rate of
convergence is slower than the usual parametric rate. This phenomenon is often
known as the elbow phenomenon.

Donoho and Nussbaum [11] and Fan [15] further developed this theory for
orthosymmetric quadratically convex parameter spaces such as hyperrectangles
or Sobolev balls. In particular, the minimax theory was fully developed in these
cases. The elbow phenomenon also occurs in these more general settings. More-
over, quadratic rules occupy a particularly important position in this theory: simple
quadratic rules can always be constructed which are minimax rate optimal.

In this paper we focus on the problem of estimating the quadratic func-
tional Q(θ) over parameter spaces which are not quadratically convex where, as
we shall show, quadratic rules are no longer sufficient for minimax estimation. In
particular, we explore when the information bound is sharp and when nonquadratic
rules are needed to attain the bound. An estimator is called fully efficient if it at-
tains the information bound asymptotically and we say that fully efficient estima-
tion is possible when such an estimator exists. We also consider specific exam-
ples of parameter spaces which are not quadratically convex, namely Besov balls
Bα

p,q(M) and Lp balls Lp(α,M) with p < 2. These spaces, defined in Section 2,
provide a rich collection of possible parameter spaces. For these spaces we charac-
terize the elbow phenomenon for the performance of optimal quadratic procedures
and that of general minimax procedures. In particular, we show that over these
spaces when the optimal quadratic procedure does not attain the usual parametric
rate minimax rate optimal rules must be nonquadratic.

The paper is organized as follows. In Section 2 we first consider the perfor-
mance of quadratic procedures over general orthosymmetric parameter spaces. It
is known that when the parameter space is quadratically convex optimal quadratic
procedures are near minimax. Such an analysis has however not been given for pa-
rameter spaces that are not quadratically convex. In fact, as we show, the near mini-
maxity of optimal quadratic rules typically does not hold when the parameter space
is not quadratically convex. It is shown that the maximum risk of quadratic proce-
dures over any parameter space is equal to the maximum risk over the quadratic
convex hull. It also follows from our results that for Besov balls and Lp balls with
p < 2 quadratic rules can be minimax rate optimal only if the minimax quadratic
risk is of order n−1. For Besov balls and Lp balls the minimax quadratic risk also
exhibits the well-known elbow phenomenon. We show that there is a fully efficient
quadratic procedure as long as α > 1

p
− 1

4 whereas if α ≤ 1
p

− 1
4 optimal quadratic

rules have maximum risk of order n−8s/(1+4s) where s = α + 1
2 − 1

p
.

In Section 3 we develop nonquadratic procedures for estimating the quadratic
functional Q(θ) over Besov balls and Lp balls with p < 2. We show that optimal
nonquadratic procedures exhibit a different elbow phenomenon. A local thresh-
olding estimator is constructed and is shown to be fully efficient over Besov balls
and Lp balls with p < 2 and α > 1

2p
. Hence when p < 2 and 1

2p
< α ≤ 1

p
− 1

4
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there are fully efficient nonquadratic estimators while all quadratic rules are rate
suboptimal.

Section 3 also considers estimating Q(θ) over Besov balls and Lp balls with
p < 2 and α ≤ 1

2p
. In this case it is shown that the minimax rate of convergence is

n−(2−p/(1+2ps)) where s = α + 1
2 − 1

p
, and hence optimal quadratic rules are once

again suboptimal since 2− p
1+2ps

> 8s
1+4s

. A nonquadratic estimator is constructed
which has risk within a constant factor of the minimax risk.

A distinct feature of the case p < 2 is that the hardest hyperrectangle submodel
is not as difficult as the full model. In contrast, in the dense case of p ≥ 2 hyper-
rectangle submodels can be chosen which yield not only useful lower bounds but
also lead to rate optimal quadratic procedures. See [11]. For p < 2 the worst case
can be captured by a mixture prior supported on a large collection of hyperrec-
tangles. Lower bounds are developed in Section 3.3 based on this mixture prior.
Local thresholding procedures which capture any large coefficients are shown to
be within a constant factor of these lower bounds.

Section 4 briefly considers the adaptation problem for some special cases. At-
tention is focused only on adaptive estimation across a collection of parameter
spaces over which the minimax rates of convergence are equal. In particular, for
the collection of all Besov spaces for which fully efficient estimation is possible
a procedure based on term by term thresholding is constructed and is shown to
be simultaneously fully efficient over every parameter space in this collection. On
the other hand, for a fixed nonparametric rate of convergence another estimator is
constructed which is simultaneously rate optimal over all Besov spaces with that
given minimax rate of convergence. The general case of adaptation over parameter
spaces with different minimax rates of convergence is an interesting but challeng-
ing problem. A complete treatment is given in [7].

Connections between the problems of estimating quadratic functionals and a
corresponding testing problem is made in Section 5. This testing problem was first
studied in [20] and Lepski and Spokoiny [24] developed minimax tests for Besov
spaces with 1

α
< p < 2. We show that results developed for the estimation problem

in Section 3 extend the theory of testing to cases not previously considered.
Section 6 is devoted to a discussion of connections with other related nonpara-

metric function estimation problems, namely those of global estimation under sum
of squared error loss and estimating linear functionals. For example, in global es-
timation it is known that simple thresholding procedures can yield minimax rate
optimal procedures over spaces where a few relatively large coefficients may oth-
erwise lead to a large bias. Proofs are given in Section 7.

2. Performance of quadratic procedures. As mentioned in the Introduction,
quadratic procedures have received particular attention in the theory of estimat-
ing quadratic functionals. They have been shown to work well when the parame-
ter space is orthosymmetric and quadratically convex. Most common parameter
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spaces, such as Besov balls and Lp balls, are orthosymmetric. In particular, un-
conditional bases such as wavelet bases transform common function spaces into
an orthosymmetric sequence space. See [28]. However, many of these spaces are
not quadratically convex. In such cases the performance of quadratic rules has not
been studied. In this section we study the performance of quadratic procedures
over general orthosymmetric parameter spaces. In addition, we consider in detail
estimation over Besov balls and Lp balls with p < 2.

2.1. General orthosymmetric parameter spaces. Before studying the perfor-
mance of quadratic procedures over general orthosymmetric parameter spaces it is
convenient to introduce some notation. Write Q for the collection of all quadratic
rules, namely those of the form

Q̂ = ∑
ai,jYiYj + c.(2)

Also write QD for the subclass of diagonal quadratic rules, namely those
of the form

∑
aiY

2
i + c. A parameter space � is called orthosymmetric if

θ = (θ1, θ2, . . . , θm, . . . ) ∈ � implies that (±θ1,±θ2, . . . ,±θm, . . . ) ∈ � for any
choices of the signs ±. An orthosymmetric set � is called quadratically convex if
the set {(θ2

i )∞i=1 : θ ∈ �} is convex.
Write the minimax risk for estimating Q(θ) = ∑

θ2
i as

R∗(n,�) = inf
Q̂

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2(3)

and the minimax quadratic risk and minimax diagonal quadratic risk as

R∗
Q(n,�) = inf

Q̂∈Q
sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 and

(4)
R∗

DQ(n,�) = inf
Q̂∈QD

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2
.

The problem of estimating quadratic functionals has usually assumed that the
parameter space is both orthosymmetric and quadratically convex. Orthosymmetry
allows a minimax analysis of general quadratic rules to focus on diagonal quadratic
rules. More specifically, for any quadratic rule, say Q̂ = ∑

ai,jYiYj + c, define
Q̂′ = ∑

ai,iY
2
i + c. Fan [15] showed that for any orthosymmetric set �

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 ≥ sup
θ∈�

Eθ

(
Q̂′ − Q(θ)

)2
.(5)

In particular, it follows that R∗
Q(n,�) = R∗

DQ(n,�) when � is orthosymmetric.
For the analysis of quadratic procedures over general orthosymmetric parameter

spaces it is convenient and natural to introduce the quadratic convex hull. For an
orthosymmetric set �, the quadratic convex hull of � is defined as

Q.Hull(�) = {(θi)
∞
i=1 : (θ2

i )∞i=1 ∈ Hull(�2+)},(6)
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where �2+ = {(θ2
i )∞i=1 : (θi)

∞
i=1 ∈ �,θi ≥ 0 ∀ i} and Hull(�2+) denotes the con-

vex hull of the set �2+. The following theorem characterizes the performance of
quadratic rules over an orthosymmetric parameter space.

THEOREM 1. Let Q̂ ∈ QD be a diagonal quadratic estimator of Q(θ) = ∑
θ2
i .

Then for any orthosymmetric �,

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 = sup
θ∈Q.Hull(�)

Eθ

(
Q̂ − Q(θ)

)2
.(7)

Consequently the minimax quadratic risk over an orthosymmetric set � equals the
minimax quadratic risk over the quadratic convex hull of �, that is,

R∗
Q(n;�) = R∗

Q

(
n;Q.Hull(�)

) = R∗
DQ

(
n;Q.Hull(�)

)
.(8)

Theorem 1 shows that the performance of the optimal quadratic procedure
is captured by the minimax quadratic risk over the quadratic convex hull of
the parameter space �. If in addition Q.Hull(�) is norm bounded in l2 and
convex it follows from Donoho and Nussbaum [11] that R∗

Q(n;Q.Hull(�)) 	
R∗(n;Q.Hull(�)) and hence R∗

Q(n;�) 	 R∗(n;Q.Hull(�)). When � is not
quadratically convex Q.Hull(�) is larger than � and in some cases, as we shall dis-
cuss below, R∗(n;Q.Hull(�)) 
 R∗(n;�). Consequently the optimal quadratic
procedure can sometimes have a slower rate of convergence than the minimax
rate. As we shall show, such is the case for certain Besov balls and Lp balls.

2.2. Besov balls and Lp balls. We now consider as an example Besov balls
and Lp balls. The Lp balls are defined by

Lp(α,M) =
{
θ :

(∑
ips |θi |p

)1/p ≤ M
}
,(9)

where s = α + 1
2 − 1

p
> 0. Besov balls in sequence space are typically defined in

terms of a doubly indexed sequence {θj,k : j = 0,1, . . . , k = 0, . . . ,2j − 1}. The
Besov balls are then defined by

Bα
p,q(M) =

{
θ :

( ∞∑
j=0

(
2js

( 2j−1∑
k=0

|θj,k|p
)1/p)q)1/q

≤ M

}
,(10)

where s = α + 1
2 − 1

p
> 0. So that we can give a unified treatment of Besov balls

and Lp balls it is convenient for Besov balls to set θi = θj,k where i = 2j + k.
Noisy observation of Besov coefficients can then still be written as in (1). This
convention is used throughout the paper. In addition we shall assume throughout
the paper that p,q,α, s > 0.



NONQUADRATIC ESTIMATORS OF A QUADRATIC FUNCTIONAL 2935

Previous literature has focused primarily on quadratically convex parameter
spaces such as Besov balls Bα

p,q(M) and Lp balls Lp(α,M) with p ≥ 2. In partic-
ular, Fan [15] gave an analysis for Lp balls with p ≥ 2 which shows that for the
parameter space � = Lp(α,M) the minimax risk satisfies

inf
Q̂

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 	 n−r(α),(11)

where r(α) = 1 when α ≥ 1
4 and r(α) = 8α

4α+1 when α < 1
4 . An entirely analo-

gous analysis yields the same result when � = Bα
p,q(M) for p ≥ 2. Moreover,

Fan [15] gave simple quadratic estimators attaining these minimax rates of con-
vergence over Lp balls. Estimating quadratic functionals over Besov spaces was
also considered in [23] where the focus was on adaptive estimation of more general
quadratic functionals using model selection.

As pointed out in [11] and [15], one important aspect of the quadratically convex
Lp balls is that the difficulty of estimating a quadratic functional is then captured
by the hardest hyperrectangle subproblem. This reduction is instrumental in devel-
oping a sharp lower bound as well as in the construction of the optimal quadratic
rule.

Our focus is on Besov balls and Lp balls with p < 2, in which case the para-
meter spaces are no longer quadratically convex. The standard technique of find-
ing the hardest hyperrectangle subproblem is then no longer sufficient. In fact,
quadratic rules are in general suboptimal and the hardest hyperrectangle subprob-
lem need not be as difficult as the full model. Nevertheless the performance of
optimal quadratic rules is easy to characterize by the results given in Theorem 1
and an understanding of the quadratic convex hulls of general Besov balls and Lp

balls. In fact, when p < 2 it is easy to check that

Q.Hull
(
Lp(α,M)

) = L2

(
α + 1

2
− 1

p
,M

)
.(12)

See [10]. Similarly it is easy to check that

Q.Hull
(
Bα

p,q(M)
) = B

α+1/2−1/p
2,q (M).(13)

Write r∗(�) for the exponent a whenever R∗(n,�) 	 n−a and similarly r∗
Q(�)

for the exponent b whenever R∗
Q(n,�) 	 n−b. The following result is then a direct

consequence of (11)–(13) and Theorem 1.

COROLLARY 1. Let 0 < p < 2. Then r∗
Q(Lp(α,M)) = r∗

Q(Bα
p,q(M)) =

min{1, 8s
4s+1}, or equivalently,

r∗
Q

(
Lp(α,M)

) =




r∗
Q

(
Bα

p,q(M)
) = 1, when α ≥ 1

p
− 1

4
,

r∗
Q

(
Bα

p,q(M)
) = 8s

4s + 1
, when α <

1

p
− 1

4
.

(14)
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The corollary clearly shows the elbow phenomenon for the minimax quadratic
rate of convergence. There is a break between the usual parametric rate of conver-
gence and slower rates of convergence at α = 1

p
− 1

4 . We shall show later that the
break for the minimax risk for nonquadratic procedures is at a smaller value of α.
This is illustrated in Figure 1 for the case of p = 1.25.

When p < 2 and α > 1
p

− 1
4 it is in fact possible to find a simple procedure

which is efficient, asymptotically attaining the exact minimax risk. Let m = n
logn

and set

Q̂1 =
m∑

i=1

(
Y 2

i − 1

n

)
.(15)

Then simple calculations and lower bounds given in Section 3 yield

sup
θ∈�

Eθ

(
Q̂1 − Q(θ)

)2 = R∗(n,�)
(
1 + o(1)

) = 4M2

n

(
1 + o(1)

)
,(16)

where � = Bα
p,q(M) or � = Lp(α,M) with p < 2 and α > 1

p
− 1

4 .

3. Nonquadratic estimators. In this section we focus on the construction of
a new class of nonquadratic estimators which significantly outperforms the optimal
quadratic rules for Besov balls and Lp balls when p < 2 and α ≤ 1

p
− 1

4 . In this
case the minimax quadratic risk converges more slowly than the minimax risk and
the result shows that quadratic rules are far from optimal.

We shall consider two separate cases. In the first the nonquadratic estimator is
fully efficient over Besov balls and Lp balls when p < 2 and 1

2p
< α < 1

p
− 1

4 ,
whereas the best quadratic estimator does not even achieve the usual parametric
rate. In the second case with p < 2 and α ≤ 1

2p
the nonquadratic estimator has risk

converging faster than the minimax quadratic risk. We then derive minimax lower
bounds in Section 3.3 which show that the risk of this nonquadratic estimator is
within a constant factor of the lower bound, and hence the estimator is minimax
rate optimal.

3.1. Fully efficient estimation: Besov and Lp balls with 1
2p

< α ≤ 1
p

− 1
4 . In

parametric problems, Fisher Information provides a standard benchmark for the
performance of an estimator. These bounds are often asymptotically attainable.
The information bound is often useful in semiparametric models as well. See, for
example, [2]. The problem of estimating a quadratic functional received attention
by Ritov and Bickel [26] as an example where the information is strictly positive
although it is not always possible to achieve the information bound. In the present
context of estimating the quadratic functional Q(θ) the information can easily be
calculated to be I (θ) = n

4
∑

θ2
i

. Standard theory then yields the lower bound

inf
Q̂

sup
Nε(θ)

Eθ

(
Q̂ − Q(θ)

)2 ≥ 1

I (θ)

(
1 + o(1)

)
,(17)
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where Nε(θ) = {(1 − t)θ : 0 ≤ t ≤ ε} and 0 < ε < 1. It then directly follows that
(17) provides a lower bound for the minimax risk over a parameter space � when-
ever Nε(θ) ⊂ �. In particular, the information bound given in (17) immediately
yields

inf
Q̂

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 ≥ 4M2

n

(
1 + o(1)

)
(18)

for � = Bα
p,q(M) or � = Lp(α,M). In Section 2 a simple quadratic procedure

was given which attains the bound given in (18) over Besov and Lp balls with
p < 2 and α > 1

p
− 1

4 .

We now consider Besov balls and Lp balls where p < 2 and 1
2p

< α < 1
p

− 1
4 .

Corollary 1 shows that in this case the exponent of the minimax quadratic rate of
convergence is 8s

4s+1 < 1. We shall show that in this case fully efficient estimation
is possible by using nonquadratic rules. One such fully efficient rule can be given
as follows.

Let m be a given positive integer. Divide the indices i beyond m into blocks of
increasing block size so that the j th block is of the size 2jm. For i in block j , set
τi = 2j , that is,

τi = 2
⌈

log2
i

m

⌉
, i > m,(19)

where �x
 denotes the smallest integer greater than or equal to x.
For i ≥ m + 1, set µn,i = E0{(Y 2

i − τi

n
)+} where the expectation is taken under

θ = 0. Let J∗ be the largest integer such that 2J∗m ≤ n1/(4s) logn where once again
s = α + 1

2 − 1
p

. Set the estimator of the quadratic functional Q = ∑∞
i=1 θ2

i as

Q̂(m) =
m∑

i=1

(
Y 2

i − 1

n

)
+

2J∗m∑
i=m+1

{(
Y 2

i − τi

n

)
+

− µn,i

}
.(20)

The parameter m serves as a tuning parameter. We shall choose different m for dif-
ferent cases. The nonquadratic estimator Q̂(m) is built from a quadratic part and
coordinate-wise thresholding with slowly growing threshold levels. The threshold-
ing terms are used to guard against individual large terms in the tail.

For the case p < 2 and 1
2p

< α < 1
p

− 1
4 , set m2 = n

logn
in (20) and define the

estimator Q̂2 as

Q̂2 = Q̂(m2) =
m2∑
i=1

(
Y 2

i − 1

n

)
+

2J∗m2∑
i=m2+1

{(
Y 2

i − τi

n

)
+

− µn,i

}
.(21)

The following theorem shows that the estimator Q̂2 is fully efficient.
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THEOREM 2. Let 0 < p < 2 and α > 1
2p

. Then the estimator Q̂2 defined
in (21) is fully efficient over Besov balls and Lp balls, that is, it satisfies

sup
θ∈�

Eθ

(
Q̂2 − Q(θ)

)2 = 4M2

n

(
1 + o(1)

)
,(22)

where � = Bα
p,q(M) or � = Lp(α,M).

Comparing (22) with (14) shows that in the case 1
2p

< α ≤ 1
p

− 1
4 nonquadratic

rules can be fully efficient although all quadratic rules are necessarily rate subop-
timal.

REMARK 1. Note that the condition s = α + 1
2 − 1

p
> 0 implies that α > 1

2p

whenever 0 < p ≤ 1. Hence fully efficient estimation of Q(θ) over Besov balls
and Lp balls is always possible when 0 < p < 1. For Lp balls this has already
been noted in [23].

REMARK 2. Although the primary focus in the construction of Q̂2 is on the
case 1

2p
< α ≤ 1

p
− 1

4 , the estimator Q̂2 is also fully efficient when α > 1
p

− 1
4 . The

quadratic part of Q̂2 equals Q̂1 given in (15). The contribution of the thresholding
part of Q̂2 is negligible in the case α > 1

p
− 1

4 .

3.2. Besov balls and Lp balls with α ≤ 1
2p

. So far we have focused on parame-
ter spaces where fully efficient estimation is possible. We now turn to both Besov
balls and Lp balls with α ≤ 1

2p
and construct a nonquadratic estimator which has

a much faster rate of convergence than the minimax quadratic rate given in Sec-
tion 2. This result again shows that quadratic rules are rate suboptimal and there is
much to be gained by using nonquadratic rules.

Let m3 = np(1+2ps) and set the estimator Q̂3 of the quadratic functional Q =∑∞
i=1 θ2

i as Q̂(m) in (20) with m = m3. That is,

Q̂3 = Q̂(m3) =
m3∑
i=1

(
Y 2

i − 1

n

)
+

2J∗m3∑
i=m3+1

{(
Y 2

i − τi

n

)
+

− µn,i

}
,(23)

where once again J∗ is the largest integer such that 2J∗m ≤ n1/(4s) logn. The fol-
lowing provides an upper bound for the risk of the estimator Q̂3.

THEOREM 3. Let 0 < p < 2 and α ≤ 1
2p

. The estimator Q̂3 given in (23)
satisfies

sup
θ∈�

Eθ

(
Q̂3 − Q(θ)

)2 ≤ Cn−(2−p/(1+2ps))(1 + o(1)
)
,(24)

where C > 0 is a constant and � = Bα
p,q(M) or � = Lp(α,M).
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It is easy to check that if p < 2 then 2 − p
1+2ps

> 8s
4s+1 . Hence quadratic rules

are necessarily rate suboptimal when p < 2 and α ≤ 1
2p

. In the next section it is

shown that no estimator has maximum risk converging faster than n−(2−p/(1+2ps))

and thus the estimator Q̂3 is minimax rate optimal.
The analysis of the estimators Q̂2 and Q̂3 relies on a detailed analysis of bias

and variance of thresholding estimators for each coordinate. The following lemma
may also be of independent interest.

LEMMA 1. Let X ∼ N(θ, 1
n
) and τ ≥ 1. Set µ0 = E0{(X2 − τ

n
)+} where the

expectation is taken under θ = 0. Let Q̂ = (X2 − τ
n
)+ − µ0. Then

|µ0| ≤ 4√
2πnτ 1/2eτ/2

,(25)

|EθQ̂ − θ2| ≤ min
(

2τ

n
, θ2

)
(26)

and the variance of Q̂ satisfies

Var(Q̂) ≤ 6θ2

n
+ 4τ 1/2 + 18

n2eτ/2 .(27)

Combining the results given in Section 2 as well as this section for both
quadratic and nonquadratic rules, we can compare the optimal rates of convergence
over Besov and Lp balls. Figure 1 gives a comparison for the case of p = 1.25 as
a function of α. It illustrates the different elbow phenomena for the minimax rate
of convergence and the minimax quadratic rate of convergence.

3.3. Minimax lower bounds. As shown earlier, the information bound given
in (18) is sharp for estimating Q(θ) over Besov balls and Lp balls when 0 < p < 2
and α > 1

2p
, although sometimes nonquadratic rules are needed to attain the bound.

When 0 < p < 2 and α < 1
2p

the information bound is no longer attainable. In this
section we provide an improved lower bound which shows that the minimax rate
of convergence is slower than the usual parametric rate. Furthermore these lower
bounds show that the nonquadratic estimator Q̂3 given in (23) is minimax rate
optimal.

The derivation of the lower bound given in this section differs from the standard
technique of inscribing a hardest hyperrectangle and using the Bayes risk for a
prior supported on the hyperrectangle as a lower bound to the minimax risk. The
hardest hyperrectangle techniques works when the parameter space is quadrati-
cally convex. See, for example, [11] and [15]. However, this technique does not
work in our context where the hardest hyperrectangle submodel is not as difficult
as the full model. The lower bound given below is based on a mixture prior which
mixes over a rich collection of hyperrectangles. The mixing increases the difficulty
of the Bayes estimation problem and results in a sharper lower bound.
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FIG. 1. Comparison of exponents in the minimax rate of convergence and minimax quadratic rate
of convergence for p = 1.25.

THEOREM 4. The minimax risks for estimating the quadratic functional
Q(θ) = ∑

θ2
i over the Besov balls Bα

p,q(M) and Lp balls Lp(α,M) satisfy, for
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TABLE 1
Comparison of minimax and minimax quadratic rates of convergence

0 < p < 2 p ≥ 2

α ≤ 1
2p

1
2p < α ≤ 1

p − 1
4 α > 1

p − 1
4 α ≤ 1

4 α > 1
4

r∗
Q

8s
1+4s

8s
1+4s

1 8α
1+4α

1

r∗ 4ps+2−p
1+2ps

1 1 8α
1+4α

1

some constant C > 0,

inf
δ

sup
θ∈�

Eθ

(
δ − Q(θ)

)2

≥




4M2

n

(
1 + o(1)

)
, when 0 < p < 2 and α >

1

2p
,

Cn−(2−p/(1+2ps)), when 0 < p < 2 and α ≤ 1

2p
,

(28)

where � = Bα
p,q(M) or � = Lp(α,M).

The lower bounds show that when p < 2 and α < 1
2p

the optimal rate is slower
than the parametric rate. A comparison of the lower bound given above with the
upper bound given in (24) shows that in this case the minimax rate of convergence
is n−(2−p/(1+2ps)) and the nonquadratic procedure Q̂3 is minimax rate optimal.

The results given in Section 2 and this section can be summarized in Table 1
above. For comparison and completeness we also include the well-known results
for p ≥ 2 in the table. As in Section 2 define r∗ and r∗

Q to be the exponents of
the minimax and minimax quadratic rate of convergence, respectively. We can
compare the values of r∗ and r∗

Q for all cases in Table 1, where as usual we assume

s = α + 1
2 − 1

p
> 0.

4. Simple adaptation. The main focus of the paper is on deficiencies of
quadratic estimators and on the minimax performance of the nonquadratic esti-
mators. The estimators Q̂2 and Q̂3 depend on the parameters α and p and are thus
not adaptive. A modification of the estimator Q̂2 can achieve full adaptation over
collections of Besov balls and Lp balls when fully efficient estimation is possible.

Set m = n
logn

and let γ > 1 be a constant. Let J ∗ be the largest integer such that

2J ∗
m ≤ nγ logn. Set

Q̂4 =
m∑

i=1

(
Y 2

i − 1

n

)
+

2J∗
m∑

i=m+1

{(
Y 2

i − τi

n

)
+

− µn,i

}
,(29)
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where µn,i is defined the same as in Q̂2. It is then not difficult to show that for all
0 < p < 2 and α > 1

2p
+ ( 1

2p
− 1

2 + 1
4γ

)+

sup
θ∈�

Eθ

(
Q̂4 − Q(θ)

)2 = 4M2

n

(
1 + o(1)

)
,(30)

where � = Bα
p,q(M) or � = Lp(α,M).

Hence, the estimator Q̂4 is adaptively fully efficient over the collection{
Bα

p,q(M) : 0 < p < 2, α >
1

2p
+

(
1

2p
− 1

2
+ 1

4γ

)
+

}
.

More interestingly, if we take J ∗ = ∞ and set

Q̂5 =
m∑

i=1

(
Y 2

i − 1

n

)
+

∞∑
i=m+1

{(
Y 2

i − τi

n

)
+

− µn,i

}
,(31)

then the estimator Q̂5 is adaptively fully efficient over all Besov balls and Lp

balls with p < 2 and α ≥ 1
2p

. In fact, Q̂5 is also adaptively fully efficient over

Besov balls and Lp balls with p ≥ 2 and α > 1
4 . It is easy to see from Table 1

that these are the maximum collections of Besov balls and Lp balls over which
fully efficient estimation is possible. Therefore the estimator Q̂5 is adaptively fully
efficient whenever fully efficient estimation is possible. We summarize the results
in the following theorem.

THEOREM 5. The estimator Q̂5 defined in (31) satisfies

sup
θ∈�

Eθ

(
Q̂5 − Q(θ)

)2 = 4M2

n

(
1 + o(1)

)
,(32)

where � = Bα
p,q(M) or � = Lp(α,M), with 0 < p < 2 and α > 1

2p
or p ≥ 2 and

α > 1
4 .

Similarly we can also consider the case where the minimax rate of convergence
is nonparametric. Fix a constant 0 < r < 1 and let

	(r) =
{
(α,p) : 0 < p < 2, 0 < α <

1

2p
,

p

1 + 2ps
= 2 − r

}
,

where, as usual, s = α + 1
2 − 1

p
> 0. Note that the minimax rate of convergence for

estimating the quadratic functional Q(θ) = ∑
θ2
i over any Besov or Lp ball with

parameters (α,p) ∈ 	(r) is n−r .
Let m = n2−r and let τi be defined as in (19). Set

Q̂6 =
m∑

i=1

(
Y 2

i − 1

n

)
+

∞∑
i=m+1

{(
Y 2

i − τi

n

)
+

− µn,i

}
.(33)
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Then it is easy to show that the estimator Q̂6 adaptively attains the minimax rate
of convergence n−r over each Besov ball Bα

p,q(M) or Lp ball Lp(α,M) with
(α,p) ∈ 	(r).

The discussion given above is restricted to cases where the minimax rates of
convergence over all the parameter spaces in the collection are the same. A more
general approach should consider adaptation over spaces with different minimax
rates of convergence. The more standard case where p > 2 has been considered by
Klemelä [22]. The general case is an interesting but challenging problem. A com-
plete treatment is given in [7].

5. Connection between estimation and testing. As is common in statistical
inference there are strong connections among the problems of estimation and test-
ing quadratic functionals. In this context the testing problem which has received
most attention is that of testing the null hypothesis

H0 : θ = 0

against the alternative

Ha :
∑

θ2
i ≥ an.

The difficulty of this testing problem depends on assumptions imposed on the un-
known θ . Particularly important early work on this problem can be traced to Ing-
ster [20].

There are two major related goals in these problems. One goal is to find the
test which, given a particular choice of an, minimizes the sum of the type I and
maximum type II errors. Alternatively we may fix the maximal sum of the type I
and type II errors and try to find the smallest possible an compatible with this con-
straint along with the corresponding test. More specifically, for a given 0 < γ < 1
let an(γ ) be the smallest choice of an for which there is a test with type I plus
maximal type II error less than or equal to γ .

The solution to this testing problem always yields lower bounds to the corre-
sponding estimation problem as follows. First note that every estimator Q̂ of

∑
θ2
i

gives rise to a test of this hypothesis in the following way. If Q̂ ≤ an(γ )
2 , then the

null hypothesis H0 is accepted and if Q̂ >
an(γ )

2 the null is rejected. It then imme-
diately follows that

supE
(
Q̂ − ∑

θ2
i

)2 ≥ 1

2
γ

a2
n(γ )

4
= 1

8
γ a2

n(γ ).(34)

It is then easy to connect an asymptotic statement about the testing problem
into asymptotic lower bounds for the estimation problem. For example, if rt is the
optimal minimax rate for the testing problem, namely an(γ ) ∼ n−rt , it then follows
that

inf supE
(
Q̂ − ∑

θ2
i

)2 ≥ Cn−2rt
(
1 + o(1)

)
.(35)
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Hence knowledge about the optimal rate in testing immediately yields a lower
bound for the optimal rate in the estimating problem. Likewise upper bounds on
the estimation problem yield upper bounds on the testing problem. For example, if

sup
θ∈�

E
(
Q̂ − ∑

θ2
i

)2 ∼ n−re ,

then

an(γ ) ≤ Cn−re/2(
1 + o(1)

)
.

This testing problem has been considered in [24] over Besov balls Bα
p,q for

the cases where 1
α

< p < 2. Although the testing theory has not been developed
for the cases where α ≤ 1

p
, the present paper does immediately yield the optimal

rates for testing whenever α ≤ 1
2p

. In this case the optimal rate for the testing is

n−(1−p/(2(1+2ps))) and this rate has the same functional form as the minimax rate
given in [24] in the case α > 1

p
. For the range 1

2p
< α ≤ 1

p
the estimation problem

appears to be “harder” than the testing problem and our results on estimating the
quadratic functional do not yield sharp lower bounds or upper bounds on testing.

6. Discussion. There are strong similarities between estimating a quadratic
functional over a parameter space that is not quadratically convex and that of es-
timating linear functionals over a nonconvex parameter space. For estimating the
quadratic functional it is shown in Section 2 that the maximum risk of quadratic
procedures over a parameter space is equal to the maximum risk over the quadratic
convex hull of the parameter space. On the other hand it was shown in [5] that for
estimating linear functionals the maximum risk of linear procedures over a para-
meter space is equal to the maximum risk over the convex hull of the parameter
space.

There is also some similarity between the work on estimating a quadratic func-
tional and that of estimating all the coefficients under sum of squared error loss. In
both problems extra care must be taken for parameter spaces where a few large co-
efficients can degrade the performance of naive estimators. Under sum of squared
error loss the naive estimators correspond to linear estimators. Such estimators can
perform well for p ≥ 2. In particular there are simple linear procedures which are
minimax rate optimal. On the other hand, if p < 2 then minimax rate optimal pro-
cedures must be nonlinear. The case where p ≥ 2 is sometimes referred to as the
dense case since in this situation the difficulty of the problem is caused by situa-
tions where there are many small coefficients. The case where p < 2 corresponds
to sparse situations where there may be a “few” large coefficients which if not es-
timated well inflate the risk. For global estimation under sum of squared error loss
Donoho and Johnstone [8] have shown that fairly simple term-by-term threshold-
ing rules can then yield minimax rate optimal procedures. In density estimation
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problems Donoho, Johnstone, Kerkyacharian and Picard [9] showed a similar phe-
nomenon exists.

For estimating quadratic functionals, the naive estimators are quadratic rather
than linear. Similar to the problem of global estimation the case p ≥ 2 is easiest.
Minimax rate optimal quadratic estimators always exist. However, for estimating
a quadratic functional quadratic rules can sometimes be asymptotically fully ef-
ficient even in cases when p < 2. Such is the case when p < 2 and α > 1

p
− 1

4 .
When p < 2 and α < 1

p
− 1

4 , quadratic rules are rate suboptimal while in some
cases nonquadratic rules can be fully efficient. As in the case of global estimation
term-by-term thresholding can yield minimax rate optimal procedures.

In global estimation minimax rate optimal procedures can be based either
on soft thresholding or hard thresholding. The same holds when estimating the
quadratic functional. The form of this thresholding is not important. There is an
analog of Lemma 1 for hard thresholding and so minimax rate optimal procedures
can be based on hard thresholding. More specifically, let the estimator Q̃(m) be
defined as

Q̃(m) =
m∑

i=1

(
Y 2

i − 1

n

)
+

2J∗m∑
i=m+1

{
Y 2

i I

(
Y 2

i >
τi

n

)
− ρn,i

}
,(36)

where τi is given as in (19) and ρn,i = E0{Y 2
i I (Y 2

i > τi

n
)} with the expectation

taken under θ = 0. Then the results of Theorems 2, 3 and 5 hold for Q̃(m) with
the same choices of m.

Finally we should also note that the term-by-term thresholding procedures used
here are quite different from the global thresholding rules used in [21] and [27],
which are designed for estimation over quadratically convex parameter spaces
where the worst case is always given by a large number of small coefficients but
where the exact locations of these coefficients are unknown.

7. Proofs. For proofs involving both Besov balls and Lp balls we shall only
give details for the Lp balls since the proofs for Besov balls are entirely analogous.
The proofs of Theorems 2, 3 and 5 all rely on the technical result given in Lemma 1
and are similar. We shall present a detailed proof for Theorem 3, a brief proof for
Theorem 2 and omit the proof for Theorem 5. In the proofs we shall denote by C

a positive constant not depending on n that may vary from place to place.

PROOF OF THEOREM 1. Since � ⊆ Q.Hull(�), it is obvious that

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 ≤ sup
θ∈Q.Hull(�)

Eθ

(
Q̂ − Q(θ)

)2
.

Let Q̂ be a diagonal quadratic estimator of Q(θ). Write Q̂ = ∑
i aiY

2
i + b. Let

θ ∈ Q.Hull(�) and θ2 = ∑
j λj (θ

(j))2 with θ(j) ∈ �, λj ≥ 0 and
∑

j λj = 1. Write

V (θ) = Varθ (Q̂) and B(θ) = EθQ̂ − Q(θ).



2946 T. T. CAI AND M. G. LOW

Then

V (θ) = 4
∑

i a
2
i θ

2
i

n
+ 2

∑
i a

2
i

n2 = ∑
j

λj

{
4

∑
i a

2
i (θ

(j)
i )2

n
+ 2

∑
i a

2
i

n2

}

= ∑
j

λjV
(
θ(j))

and

B(θ) = ∑
i

aiθ
2
i + ∑

i

ai

n
+ b − ∑

i

θ2
i

= ∑
j

λj

{∑
i

ai

(
θ

(j)
i

)2 + ∑
i

ai

n
+ b − ∑

i

(
θ

(j)
i

)2
}

= ∑
j

λjB
(
θ(j)).

Let maxj {V (θ(j)) + B2(θ(j))} = D. Then the Cauchy–Schwarz inequality yields

Eθ

(
Q̂ − Q(θ)

)2 = V (θ) + B2(θ) = ∑
j

λjV
(
θ(j)) +

(∑
j

λjB
(
θ(j)))2

≤ D − ∑
j

λjB
2(

θ(j)) +
(∑

j

λjB
(
θ(j)))2

≤ D

≤ sup
θ ′∈�

Eθ ′
(
Q̂ − Q(θ ′)

)2
.

Hence for any diagonal quadratic estimator Q̂

sup
θ∈Q.Hull(�)

Eθ

(
Q̂ − Q(θ)

)2 = sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2
.(37)

Since � is orthosymmetric it follows from [15] that minimax quadratic procedures
are found within the class of diagonal quadratic procedures. So it follows from (37)
that for any quadratic estimator Q̂

sup
θ∈Q.Hull(�)

Eθ

(
Q̂ − Q(θ)

)2 = sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2
,

and hence (8) holds. �

PROOF OF LEMMA 1. Denote by φ(z) and 
(z) the density and cumulative
distribution function of Z, respectively, and set 
̃(z) = 1 − 
(z). It then follows
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from the alternating series bound for Gaussian tails 
̃(z) ≥ (1
z
− 1

z3 )φ(z) for z > 0
that

µ0 = 2

n

∫ ∞
τ 1/2

(z2 − τ)
1√
2π

e−z2/2 dz

= 2τ 1/2
√

2πneτ/2
− 2(τ − 1)

n

̃(τ 1/2)

(38)

≤ 2τ 1/2
√

2πneτ/2
− 2(τ − 1)√

2πneτ/2

(
1

τ 1/2 − 1

τ 3/2

)

≤ 4√
2πnτ 1/2eτ/2

.

Set B(θ) = EθQ̂ − θ2 = Eθ(X
2 − τ

n
)+ − µ0 − θ2. It is easy to check that

θ2 − τ

n
≤ E

(
X2 − τ

n

)
+

≤ θ2 + 1

n
.(39)

Hence

|B(θ)| ≤ τ

n
+ µ0 ≤ 2τ

n
.(40)

Straightforward calculation yields for θ ≥ 0

B ′(θ) = 2√
n
[φ(τ 1/2 − n1/2θ) − φ(τ 1/2 + n1/2θ)]

(41) − 2θ [
(τ 1/2 − n1/2θ) − 
(−τ 1/2 − n1/2θ)]
and

B ′′(θ) = 2τ 1/2[φ(τ 1/2 − n1/2θ) + φ(τ 1/2 + n1/2θ)]
(42) − 2[
(τ 1/2 − n1/2θ) − 
(−τ 1/2 − n1/2θ)].
It suffices to only consider θ ≥ 0 since B(θ) = B(−θ). It follows immediately
from (41) that for all θ ≥ 0, B ′(θ) ≥ −2θ and hence

B(θ) ≥ −θ2.(43)

On the other hand, for 0 ≤ θ ≤ 1√
n

, equation (42) yields

B ′′(θ) ≤ sup
τ≥1

{2τ 1/2[φ(τ 1/2 − 1) + φ(τ 1/2)]} ≤ 2.(44)

Note that B ′(0) = 0 and hence for 0 ≤ θ ≤ 1√
n

B ′(θ) ≤ 2θ.(45)
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For θ ≥ 1√
n

it follows from (41) that

B ′(θ) ≤ 2√
n

≤ 2θ(46)

and it follows from B(0) = 0 that for all θ , B(θ) ≤ θ2. Hence for all θ

|B(θ)| ≤ θ2(47)

and (26) now follows from (40) and (47). The proof will be complete once we
establish (27). First we state and prove the following simple lemma.

LEMMA 2. For any two random variables X and Y ,

Var(max{X,Y }) ≤ VarX + VarY.(48)

In particular, for any random variable X,

Var
(
(X)+

) ≤ VarX.(49)

PROOF. Without loss of generality we can assume µX = 0 and µY ≥ 0. Let
Z = max{X,Y }. Then

EZ2 ≤ EX2 + EY 2(50)

and

EZ ≥ µY .(51)

Hence

VarZ = EZ2 − (EZ)2 ≤ EX2 + EY 2 − µ2
Y = VarX + VarY.(52) �

We now turn to the proof of (27). When θ2 ≥ 1
n

, it follows from Lemma 2 that

Var(Q̂) ≤ Var(X2) = 4θ2

n
+ 2

n2 ≤ 6θ2

n

and so (27) holds.
Now consider θ2 < 1

n
. Because of the symmetry, it suffices to consider 0 ≤ θ <

1√
n

. Note that direct calculations show for 0 ≤ θ < 1√
n

Var(Q̂) ≤ E

{(
X2 − τ

n

)
+

}2

=
√

n√
2π

∫
x2≥τ/n

(
x2 − τ

n

)2

e−n/2(x−θ)2
dx

= 1√
2πn2

∫
(z+n1/2θ)2≥τ

(
(z + n1/2θ)2 − τ

)2
e−z2/2 dz

≤ 1√
2πn2

∫ τ 1/2

τ 1/2−n1/2θ

(
(z + n1/2θ)2 − τ

)2
e−z2/2 dz
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+ 2√
2πn2

∫ ∞
τ 1/2

(
(z + 1)2 − τ

)2
e−z2/2 dz

≤ 1√
2πn2

∫ τ 1/2

τ 1/2−n1/2θ
ze−z2/2 dz · sup

z∈[τ 1/2−n1/2θ,τ 1/2]
z−1(

(z + n1/2θ)2 − τ
)2

+ 2√
2πn2

∫ ∞
τ 1/2

[z4 + 4z3 + (−2τ + 6)z2 + (−4τ + 4)z + (τ − 1)2]

× e−z2/2 dz

≡ V1 + V2.

Note that∫ τ 1/2

τ 1/2−n1/2θ
ze−z2/2 dz ≤

∫ τ 1/2

τ 1/2−1
ze−z2/2 dz = e−1/2(τ 1/2−1)2 − eτ/2

and

sup
z∈[τ 1/2−n1/2θ,τ 1/2]

z−1(
(z + n1/2θ)2 − τ

)2 = sup
x∈[0,n1/2θ ]

x(x + 2τ 1/2)2

1 + (τ 1/2 − n1/2θ)x−1

= nθ2τ−1/2(2τ 1/2 + n1/2θ)2

≤ nθ2τ−1/2(2τ 1/2 + 1)2.

Hence

V1 ≤ θ2

n
· sup
x≥1

{
1√
2π

x−1(2x + 1)2[
e−1/2(x−1)2 − ex2/2]}

≤ 3θ2

n
.

We now turn to the term V2. Note that for any p ≥ 0∫ ∞
a

zpe−z2/2 dz = ap−1e−a2/2 + (p − 1)

∫ ∞
a

zp−2e−z2/2 dz,

and in particular for any a > 0∫ ∞
a

e−z2/2 dz ≤ a−1e−a2/2.

Hence, after some algebra, we have

V2 ≤ 10τ 1/2 + 20τ−1/2 + 24√
2πn2eτ/2

≤ 4τ 1/2 + 18

n2eτ/2 .

Hence, for 0 ≤ θ ≤ 1√
n

Var(Q̂) ≤ 3θ2

n
+ 4τ 1/2 + 18

n2eτ/2
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and consequently, for all θ , Var(Q̂) ≤ 6θ2

n
+ 4τ 1/2+18

n2eτ/2 . �

PROOF OF THEOREM 3. Set m = m3 = np/(1+2ps). Note that for X ∼
N(µ,σ 2), Var(X2) = 4µ2σ 2 + 2σ 4. Note also that τi = 2j for all coordinates
in the j th block beyond the initial m terms. It then follows from Lemma 1 that

Var(Q̂3) ≤ 2m

n2 + 4
∑m

i=1 θ2
i

n
+ 6

∑2J∗m
i=m+1 θ2

i

n

+
J∗∑

j=1

2j−1m · 4(2j)1/2 + 18

n2ej
(53)

≤ Cn−(2−p/(1+2ps))(1 + o(1)
)

for some constant C > 0, where the last step follows from the fact that for any
b > 0

∞∑
j=1

j1/2e−bj < ∞.(54)

For the bias note that equation (26) in Lemma 1 yields

|Bias(Q̂3)| ≤
2J∗m∑

i=m+1

min
(

2τi

n
, θ2

i

)
+

∞∑
i=2J∗m+1

θ2
i .(55)

The second term in (55) is easy to bound. Note that for any j ≥ 0, the Lp ball
constraint (9) yields for p < 2

( 2j+1m∑
i=2jm+1

θ2
i

)1/2

≤
( 2j+1m∑

i=2jm+1

|θi |p
)1/p

≤ M2−jsm−s .(56)

Hence for all θ ∈ Lp(α,M),

∞∑
i=2J∗m+1

θ2
i ≤

∞∑
j=J∗

M2−2jsm−2s ≤ Cn−1/2

for some constant C > 0.
It remains to bound the first term in (55). Note that it is straightforward to verify

that for all θ ∈ Lp(α,M) and all j ≥ 1,

2jm∑
i=2j−1m+1

|θi |p ≤ Mp2ps2−jpsm−ps.(57)
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Hence

2J∗m∑
i=m+1

min
(

2τi

n
, θ2

i

)
=

J∗∑
j=1

2jm∑
i=2j−1m+1

min
(

4j

n
, θ2

i

)

=
J∗∑

j=1

4j

n

2jm∑
i=2j−1m+1

min
(

1, θ2
i · n

4j

)

≤
J∗∑

j=1

4j

n

2jm∑
i=2j−1m+1

min
(

1,

{
θ2
i · n

4j

}p/2)
,

where the last step follows from the facts min(1, θ2
i · n

4j
) ≤ 1 and p

2 ≤ 1. Hence,

2J∗m∑
i=m+1

min
(

2τi

n
, θ2

i

)
≤

J∗∑
j=1

(
4j

n

)1−p/2 2jm∑
i=2j−1m+1

|θi |p

≤
{
Mp2ps+2−p

J∗∑
j=1

j1−p/22−jps

}
· m−psnp/2−1(58)

≤ Cm−psnp/2−1

for some constant C > 0, since
∑∞

j=1 j1−p/22−jps < ∞. Hence, with m =
np/(1+2ps),

2J∗m∑
i=m+1

min
(

2τi

n
, θ2

i

)
≤ Cn−(2−p/(1+2ps))/2.(59)

Hence for p < 2 and α ≤ 1
2p

Bias2(Q̂3) ≤ Cn−(2−p/(1+2ps))(1 + o(1)
)
.(60)

Equations (53) and (60) together yield

Eθ

(
Q̂3 − Q(θ)

)2 ≤ Bias2(Q̂3) + Var(Q̂3) ≤ Cn−(2−p/(1+2ps))(1 + o(1)
)
. �

PROOF OF THEOREM 2. The proof of Theorem 2 is analogous to that of The-
orem 3 and we only give a brief outline here. Set m = m2 = n

logn
. Then

Var(Q̂2) ≤ 2m

n2 + 4
∑m

i=1 θ2
i

n
+ 6

∑2J∗m
i=m+1 θ2

i

n
+

J∗∑
j=1

2j−1m · 4(2j)1/2 + 18

n2ej

(61)
≤ 4M

n

(
1 + o(1)

)
.
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The maximum squared bias of Q̂2 is negligible relative to the minimax risk. This
can be shown as follows. Same as in (55) we have

|Bias(Q̂2)| ≤
2J∗m∑

i=m+1

min
(

2τi

n
, θ2

i

)
+

∞∑
i=2J∗m+1

θ2
i .(62)

With m = n
logn

and αp > 1
2 , equation (58) yields that for some constant C > 0

2J∗m∑
i=m+1

min
(

2τi

n
, θ2

i

)
≤ Cm−psnp/2−1 = C

(
logn

n

)αp

.(63)

For the tail term it follows from (56) that
∞∑

i=2J∗m+1

θ2
i ≤

∞∑
j=J∗

M2−2jsm−2s

(64) = M(1 − 2−2s)−1(2J∗m)−2s ≤ Cn−1/2(logn)−2s

for some constant C > 0. Equations (63) and (64) yield Bias2(Q̂2) = o( 1
n
) and

Theorem 2 follows. �

PROOF OF THEOREM 4. We shall only consider the case 0 < p < 2 and
α ≤ 1

2p
since the information bound given in (17) can otherwise be applied. The

main idea is to inscribe a collection of hyperrectangles inside the parameter space.
A prior then mixes over the vertices of the hyperrectangles in this collection and a
lower bound for the corresponding Bayes risk and hence minimax risk is given.

Let �k,m be the union of the zero vector θ0 = (0,0, . . . ) and the collection
of vectors which have exactly k nonzero coordinates equal to 1√

n
in the first m

coordinates and are otherwise equal to zero. We shall write �m for �[m1/2],m. Now

suppose that Q̂ is an estimator which satisfies

Eθ0

(
Q̂ − Q(θ0)

)2 ≤ c
m

n2(65)

for some constant 0 < c < 1
64e1−e. We shall now show that in this case

sup
θ∈�m

Eθ

(
Q̂ − Q(θ)

)2 ≥
(

1

4
− 2e(e−1)/2c1/2

)
m

n2 ,(66)

and hence for some constant C > 0,

inf
Q̂

sup
θ∈�m

Eθ

(
Q̂ − Q(θ)

)2 ≥ C
m

n2 .(67)

Let ψµ be the density of a univariate normal distribution with mean µ and vari-
ance 1

n
. Let I(k,m) be the class of all subsets of {1, . . . ,m} of k elements and for
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I ∈ I(k,m) let

gI (y1, . . . , ym) =
m∏

j=1

ψµj
(yj ),

where µj = 1√
n
1(j ∈ I ). Finally let

g = 1(m
k

) ∑
I∈I(k,m)

gI

and f be the joint density of m independent normal random variables each with
mean 0 and variance 1

n
. Note that a similar mixture prior was used in [1] to give

lower bounds in a nonparametric testing problem. Now note that if

EgI

(
δ − k

1

n

)2

≤ C

for all I ∈ I(k,m), then it follows that

Eg

(
δ − k

1

n

)2

≤ C.

We will now apply the constrained risk inequality of Brown and Low [4]. First we
need to calculate a chi-squared distance between f and g. This is done as follows.
Note that ∫

g2

f
= 1(m

k

)2

∑
I∈I(k,m)

∑
I ′∈I(k,m)

∫
gIgI ′

f

and simple calculations show that∫
gIgI ′

f
= ej ,

where j is the number of points in the set I ∩ I ′. It follows that∫
g2

f
= EeJ ,

where J has the hypergeometric distribution

P(J = j) =
(k
j

)(m−k
k−j

)
(m
k

) .

Now note that from [16], page 59,

P(J = j) ≤
(

k

j

)(
k

m

)j(
1 − k

m

)k−j(
1 − k

m

)−k

.
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Now let k = [m1/2]. Then for m ≥ 4,(
1 − k

m

)−k

≤ 4

and hence

P(J = j) ≤ 4
(

k

j

)(
k

m

)j(
1 − k

m

)k−j

.

Consequently ∫
g2

f
= EeJ ≤ 4

(
1 + (e − 1)

k

m

)k

≤ 4ee−1.

It now follows from the constrained risk inequality in [4] that if

Ef

(
Q̂ − Q(θ0)

)2 ≤ c
m

n2 ,(68)

then

Eg

(
Q̂ − k

n

)2

≥ k2

n2 − 4
k

n
e(e−1)/2c1/2 m1/2

n

≥ (
1 − 8e(e−1)/2c1/2)k2

n2(69)

≥
(

1

4
− 2e(e−1)/2c1/2

)
m

n2 .

Hence (67) holds.
It is now easy to check that �m as defined above is contained in the Lp ball

Lp(α,M) when m = Cnp/(1+2ps) for sufficiently small constant C > 0. Hence it
directly follows from (67) that

inf
δ

sup
θ∈Lp(α,M)

Eθ

(
δ − Q(θ)

)2 ≥ inf
δ

sup
θ∈�m

Eθ

(
δ − Q(θ)

)2

(70) ≥ Cnp/(1+2ps)−2. �
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