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UNIVERSAL OPTIMALITY OF PATTERSON’S
CROSSOVER DESIGNS1

BY KIRTI R. SHAH, MAUSUMI BOSE AND DAMARAJU RAGHAVARAO

University of Waterloo, Indian Statistical Institute and Temple University

We show that the balanced crossover designs given by Patterson [Bio-
metrika 39 (1952) 32–48] are (a) universally optimal (UO) for the joint esti-
mation of direct and residual effects when the competing class is the class of
connected binary designs and (b) UO for the estimation of direct (residual)
effects when the competing class of designs is the class of connected designs
(which includes the connected binary designs) in which no treatment is given
to the same subject in consecutive periods. In both results, the formulation of
UO is as given by Shah and Sinha [Unpublished manuscript (2002)].

Further, we introduce a functional of practical interest, involving both di-
rect and residual effects, and establish (c) optimality of Patterson’s designs
with respect to this functional when the class of competing designs is as in (b)
above.

1. Introduction. Crossover designs (repeated measurement designs or
change-over designs) in v treatments on n experimental units in p periods are
useful in a broad spectrum of research areas, including agriculture [2], dairy
husbandry [3], bioassay procedures [4], clinical trials [5], psychological exper-
iments [8] and weather modification experiments [17]. The advantages of the
crossover design are its cost and the elimination of interunit variability. In the
following, we assume that each treatment produces a direct effect in the period of
its application and a residual effect in the subsequent period of its application.

Williams [23] gave designs for p = v which were balanced in the sense that
every paired difference of direct (residual) effects was estimated with the same
precision. Patterson [18] gave combinatorial conditions for balance and also gave
a number of methods for construction of such designs when p ≤ v and when n is
as small as possible. Since p and n are small, these designs are very attractive
to practitioners. All these designs had the property that no treatment immediately
succeeds itself on the same subject.

Hedayat and Afsarinijad [6] showed that when p = v, a balanced design is uni-
versally optimal (UO) (as defined in [9]) for estimation of the direct (residual)
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effects when the designs in the competing class are uniform on periods as well as
subjects. Cheng and Wu [1] showed that these designs are UO for the estimation
of residual effects when the competing designs may not be uniform over subjects
or periods, but again no treatment succeeds itself on the same subject. Kunert [10]
showed that when n = vt , a balanced uniform design is UO for direct effects if
v ≥ 3 and t = 1 or if v ≥ 6 and t = 2. Hedayat and Yang [7] generalized this to
the case where v ≥ 3 and t ≤ (v − 1)/2. The results of Kunert [10] and of Hedayat
and Yang [7] were proved without any condition on the competing designs. How-
ever, there do not appear to be any available results on the optimality of balanced
crossover designs when p < v.

Cheng and Wu [1] also introduced what are called strongly balanced designs
where each of the v2 pairs of treatments occurs in consecutive periods for the
same subject an equal number of times. They established some strong optimality
properties for these designs. However, these designs require p = vt or vt + 1 and
also require n to be large.

Kushner [14] gave a novel approximate design theory approach to obtain UO
designs for arbitrary values of p and v. Further, Kushner [15] gave exact designs
which are UO for direct effects for every pair (v,p) for some n.

Kushner’s results are very attractive because they do not put any conditions
on the competing designs. Their main limitation is that the values of p or of n

are large. Further, in almost all cases these optimal designs are nonbinary (on the
subjects). An attractive property of the binary balanced designs is that they are
optimal when the residual effects are negligible [9].

Some authors have obtained optimal designs under different models. Kunert
and Martin [11] gave optimal designs under an interference model. Kunert and
Martin [12] considered models with correlated errors.

Kunert and Stufken [13] introduced a model where the residual effect of a treat-
ment on itself is different from the residual effect when the treatment is followed
by another treatment. An excellent review of the literature in this broad area up to
1996 is given by Stufken [22].

The balanced designs given by Williams [23] and by Patterson [18] are very
attractive because they have a small number of periods and often involve a small
to moderate number of subjects. These designs have been around for a long time
and are generally believed to be efficient. However, precise optimality results are
rather limited in nature.

In this paper we establish some strong optimality properties of the Patterson
designs. We first show that, within the class of binary designs, these designs are UO
(in the sense of Shah and Sinha [21]) for the joint estimation of direct and residual
effects. This is a very strong property because it implies UO for the estimation of
the direct (residual) effects and a great deal more. For the rest of the paper we refer
to UO as formulated in [21].

Next, we establish the UO property of these designs for the estimation of di-
rect (residual) effects where the only restriction on a competing design is that no
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treatment immediately succeeds itself on the same subject. We also compute lower
bounds for the efficiencies of these designs within the unrestricted class of com-
peting designs and find that these are very high (0.99 or higher), giving rise to
the speculation that, when the fully efficient designs as described by Kushner [15]
do not exist, these designs might, in fact, be optimal for specific criteria, such as
A-optimality.

Further, we introduce an optimality function of practical interest and show that a
Patterson crossover design is optimal for this functional, again with the restrictions
on the competing designs that they are connected and that no treatment immedi-
ately succeeds itself on the same subject.

In this paper we compare the information matrix for a Patterson design with
the average (over permutations of treatment labels) of the information matrix for a
competing design. This average has a form which is much simpler than the original
matrix. Further, we first prove the optimality results for the model without period
effects and then for the model with period effects. This works well because, when
we introduce period effects, the information matrix for a Patterson design is un-
altered, whereas, for a competing design, it is reduced by a nonnegative definite
matrix.

2. Preliminaries. Let us consider crossover designs where v treatments are
arranged in p rows and n columns. The rows correspond to periods whereas the
columns correspond to the subjects. A crossover design is said to be balanced if
we have the following:

(a) It is uniform over periods, that is, every treatment occurs t times in each
period.

(b) The design with subjects as blocks forms a balanced incomplete block de-
sign (BIBD).

(c) The design with subjects as blocks and last period omitted also forms
a BIBD.

(d) Every ordered pair of distinct treatments occurs in consecutive periods in
units λ times (any pair of identical treatments does not occur in consecutive peri-
ods).

(e) In the set of t subjects receiving a particular treatment in the last period,
every other treatment is applied λ times in the first (p − 1) periods.

These conditions are equivalent to conditions I–VII given by Patterson. We shall
call such designs Patterson designs. Existence of a Patterson design implies

p ≤ v, n = vt, λ = t (p − 1)/(v − 1),

where t and λ are positive integers. We shall assume that the parameter values
p,v,n are such that a Patterson design exists.

The crossover designs given by Williams [23] are balanced with p = v. How-
ever, one can often find balanced designs with p < v and where n is not too large.
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TABLE 1

p 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6
v 3 7 8 11 4 5 7 8 13 5 7 8 11 13 6 7 8 11
n 6 21 56 55 4 20 14 56 52 10 21 56 55 39 6 42 56 22

For v = 4 and p = 3, Patterson ([18], Figure 3) gives the following design with
n = 12:

a b c b d a d a c c d b
b c a a b d a c d b c d
c a b d a b c d a d b c

Patterson [18] gave several methods of construction for balanced crossover de-
signs with p ≤ v. Our Table 1, above extracted from Table 1 in [18] giving designs
available for small values of p, is of practical interest.

Table 1 gives designs with the minimum value of n for given values of p and
v when n ≤ 60. Many more designs can be constructed using the various methods
given by Patterson. Further, such designs are available with p = v = n when v is
even and p = v = n/2 when v is odd [23]. Thus, this is a rich class of designs and
it contains many designs of interest to practitioners.

We exclude the case p = v = 2, n = 2t even though for these parameter values
designs satisfying the combinatorial conditions exist. This is because in this case
neither the direct nor the residual effects are estimable.

Let d(i, j) be the treatment assigned to the j th subject in the ith period and
let yij denote the response obtained from that subject in that period. We assume
that the yij ’s are uncorrelated with common variance σ 2 and

E(yij ) = µ + αi + γj + τd(i,j) + δd(i−1,j),(2.1)

i = 1,2, . . . , p; j = 1,2, . . . , n; δd(0,j) = 0 for all j , where E(·) denotes the ex-
pected value of the variable in the parentheses, µ is the general mean, and
α,γ, τ and δ are the period, subject, direct and residual treatment effects, respec-
tively.

A crossover design is said to be connected if τi − τi′ and δi − δi′ are estimable
for i �= i′. All of Patterson’s designs are connected. Let D denote the class of con-
nected crossover designs using n (= vt) subjects for comparing v treatments in
p periods, with the restriction that, in each column of a design, adjoining positions
are occupied by distinct treatments. Further, let B denote the subclass of D con-
sisting of designs which are binary in the sense that no treatment is applied more
than once to any subject.

We define vectors α(p×1),γ (n×1),τ (v×1) and δ(v×1) whose components
represent the above effects:
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Let

niu = number of appearances of treatment i on subject u,

ñiu = number of appearances of treatment i on subject u

in the first (p − 1) periods,

sij = number of appearances of treatment i preceded

by treatment j on the same unit,

lik = number of appearances of treatment i in period k,

l̃i1 = 0, l̃ik = li(k−1) for k ≥ 2.

We now define the frequency matrices N = (niu), Ñ = (ñiu), S = (sij ),
L = (lik), L̃ = (l̃ik). Further, let diag(r) denote the v×v diagonal matrix whose el-
ements are the replication numbers for the v treatments in the entire design. Also,
let diag(r̃) denote the v × v diagonal matrix whose elements are the replication
numbers for the treatments in the first (p − 1) periods only.

The information matrix for (τ , δ,α,γ ) is given by

I(τ , δ,α,γ ) =




diag(r) S L N

· diag(r̃) L̃ Ñ

· · nIp Jpn

· · · pIn


 ,(2.2)

where Ia denotes the identity matrix of order a and Jab denotes an a × b matrix
with all elements unity. (See equation (2.5) in [1].)

The information matrix for (τ , δ,α) eliminating γ is given by

I(τ , δ,α|γ ) =




diag(r) − 1

p
NNt S − 1

p
NÑt L − 1

p
NJnp

· diag(r̃) − 1

p
ÑÑt L̃ − 1

p
ÑJnp

· · nIp − n

p
Jp




.(2.3)

Here Jk is a k × k matrix with all elements unity.
When the period effects are ignored, the information matrix for (τ , δ) eliminat-

ing γ is seen to be

I(τ , δ|γ ) =




diag(r) − 1

p
NNt S − 1

p
NÑt

· diag(r̃) − 1

p
ÑÑt


 .(2.4)
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Using
( 1

n
Ip 0

− 1
np

Jnp
1
p

In

)
as a g-inverse of

(nIp Jpn

Jnp pIn

)
, we get the information matrix

for (τ , δ) eliminating (α,γ ) as

I(τ , δ|α,γ )

= I(τ , δ|γ ) −




1

n
LLt − 1

np
NJnpLt 1

n
LL̃t − 1

np
NJnpL̃t

· 1

n
L̃L̃t − 1

np
ÑJnpL̃t


 .

(2.5)

For a Patterson design, L = (tJvp), L̃ = (0|tJv,p−1),diag(r) = ptIv,diag(r̃) =
t (p − 1)Iv . Further, NNt = p(t − λ)Iv + pλJv, ÑÑt = ((p − 1)t − (p − 2)λ)Iv +
(p − 2)λJv and S = λ(Jv − Iv). We note that, for all designs in the design class D ,
the diagonal elements of S are all zeros.

Without loss of generality, we arrange the subjects so that the first n1 subjects
have treatment 1 in the last period, the next n2 units have treatment 2 in the last
period and so on.

This permits us to see that

Ñt = Nt −




1n1 0 · · · 0

0 1n2 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1nv


 ,

where 1h denotes an h × 1 matrix with all elements unity.
This gives us

NÑt = NNt − � and

ÑÑt = NNt − � − �t + diag(n1, n2, . . . , nv),
(2.6)

where � = [θ1, θ2, . . . , θv]. Here, θ i is the sum of the ni columns of N corre-
sponding to the ni subjects where treatment i is in the last period.

It is easy to verify that, for a Patterson design,

� = (t − λ)Iv + λJv, NNt = p�,

NÑt = (p − 1)� and ÑÑt = (p − 2)� + tIv.

For a design d , the information matrix for direct effects, residual effects and
period effects eliminating the subject effects, that is, I(τ , δ,α|γ ) of (2.3), will be
denoted by Md . Let d∗ denote a Patterson design. The matrix Md for a Patterson
design is given by

Md∗ =




vt (p − 1)

(v − 1)
H − vt (p − 1)

p(v − 1)
H 0

− vt (p − 1)

p(v − 1)
H

t (p − 1)(pv − v − 1)

p(v − 1)
H + t (p − 1)

pv
Jv

t

p
1v

(−(p − 1),1t
p−1

)

0
t

p

(−(p − 1)

1p−1

)
1t
v nIp − n

p
Jp


.(2.7)
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Here H = Iv − Jv/v.
Similarly, for d ∈ D , let Cd denote the 2v × 2v information matrix for direct

and residual effects eliminating the subject and period effects. We can write Cd as

I(τ , δ|α,γ ) = Cd =
(Cd11 Cd12

Cd21 Cd22

)
,(2.8)

where Cd11 corresponds to the part for direct effects. Cd12,Cd21 and Cd22 are
described similarly. Note that Cd21 = Ct

d12. Sometimes in the sequel we shall drop
the suffix d .

For the Patterson design d∗, let C∗
ij = Cd∗ij . Using (2.4), (2.5) and (2.8), we

have

C∗
11 = vt (p − 1)

(v − 1)
H, C∗

12 = −vt (p − 1)

p(v − 1)
H and

C∗
22 = t (p − 1)(pv − v − 1)

p(v − 1)
H.

(2.9)

3. UO for joint estimation in the design class B. In this section we shall
show that d∗ is universally optimal (UO) for the joint estimation of direct and
residual effects when the designs in the competing class are connected and are
binary over subjects, that is, niu = 0 or 1.

For formulations of UO one is referred to Kiefer [9], Shah and Sinha [20] and
Shah and Sinha [21]. Here, we shall use the formulation of Shah and Sinha [21],
which may be described as follows.

Let Cd denote a v × v direct effects information matrix (resp., v × v resid-
ual effects information matrix; or 2v × 2v joint direct-residual effects information
matrix) of design d . Let g be a permutation of {1,2, . . . , v}, that is, g ∈ Sv , the
symmetric group on {1,2, . . . , v}. A design d0 having information matrix Cd0 is
said to be UO in an appropriate design class if it minimizes every real valued func-
tion φ(C) (defined on the set of nonnegative definite matrices) that satisfies the
following conditions:

(1) φ(Cdg) = φ(Cd), where dg is the design obtained by permuting treatment
labels according to g.

(2) Cd ≥ Cf ⇒ φ(Cd) ≤ φ(Cf ), where d and f are any two designs.
(3) φ(

∑
wgCdg) ≤ φ(Cd), where wg are all rational weights satisfying∑

wg = 1. Here g runs over all permutations in Sv .

It may be noted that every convex functional satisfies (3). This formulation of
UO is an extension of Kiefer’s original formulation [9], in the sense that the condi-
tion of convexity is replaced by the slightly weaker condition (3) above. See [20]
and also [21] for a discussion of this.

A sufficient condition due to Shah and Sinha [21] for d0 to be UO is∑
wgCdg ≤ Cd0 for every d.(3.1)
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In (3.1) the wg’s can be any specific set of weights (which may depend upon d).
In the sequel we will use (3.1) when wg = 1/v! for all g ∈ Sv .

Let Mdg denote the matrix obtained from Md by permuting treatment labels
according to g. We shall first show that

Md∗ = ∑
g

Mdg/v!.(3.2)

To show this, we shall state the following lemma which is easily established.

LEMMA 3.1. Let A be a k × k matrix and let g denote a permutation on
{1,2, . . . , k} for which the permutation matrix is Pg . Then Ā = ∑

g∈Sk
Pt

gAPg/k!
is a completely symmetric matrix with diagonal and off-diagonal elements a and b,
respectively, given by

a = ∑
i

aii/k and b =
(
s −∑

i

aii

)/
k(k − 1).

Here s = ∑
i

∑
j aij is the sum of all elements of A.

We now consider the various submatrices of Md for a binary design and show
that, for each of these, the average over the permutations of treatment labels equals
the corresponding expression for d∗.

For any binary design, the ith diagonal element of NNt is
∑

i

∑
u n2

iu =∑
i

∑
u niu = ri , the replication number for the ith treatment. (This does not hold

for a nonbinary design.) The average of ri over all permutations is pt , which is
the replication number for d∗. Further, for a binary design the ith diagonal ele-
ment of � is ni . The average of ni over all permutations is t = n/v, the common
diagonal element of � for d∗.

Let g be a permutation on {1,2, . . . , v}. We note that the matrix Mdg is given

by Mdg = Qt
gMdQg , where Qg =

(
Pg 0 0
0 Pg 0
0 0 I

)
.

Using Lemma 3.1 and the expressions given in (2.3), one can easily verify that,
if the design is binary and is connected for each of diag(r) − NNt /p,S − NÑt /p

and for diag(r̃) − ÑÑt /p, the average over all g is indeed the corresponding ex-
pression for d∗. We note here that, for the first two of these, the sum of all the
elements is zero, whereas, for the third one, it is vt (p − 1)/p.

The assumption of connectedness is crucial here. If the design is not connected,
NNt and/or ÑÑt would have a block diagonal form where the off-diagonal subma-
trices consist of zeros.

We also note that the average for L is tJvp and the average for N is (p/v)Jvn.
Thus, the average for L − NJnp/p is 0.

Finally, we note that for each of L̃ and Ñ the average over the v! permutations
gives the corresponding expressions for a Patterson design. This completes the
proof of the assertion.
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Now we note that the adjustment for the period effects α is equivalent to
computing the Schur complement. Thus, the Schur complement of Md∗ is Cd∗ ,
whereas the Schur complement of Mdg is Cdg . Here Cd∗ and Cdg refer to the
2v × 2v joint direct-residual effects information matrix. Since Md∗ = ∑

g Mdg/v!
and since the Schur complement is a concave function [19], we get

Cd∗ ≥ ∑
g

Cdg/v!.

Using the sufficient condition (3.1), with weights wg = 1/v!, g ∈ Sv , we see that
d∗ is UO w.r.t. any design d ∈ B.

As shown in [16] and in [21], UO for the joint estimation of two sets of parame-
ters is a very strong property. In particular, it implies UO for the estimation of each
set of parameters. It is shown in [21] that the converse is not true. A design can
be UO for the estimation of the direct effects, as well as for the residual effects.
However, it might fail to be UO for the joint estimation of the two.

4. UO for direct (residual) effects in the design class D. We now consider
the case where the competing class of designs is D , a class of designs that contains
all binary designs. Initially we shall assume that there are no period effects. We
shall relax this assumption subsequently.

The Cd matrix for this case is given by the submatrices of the matrix Md which
correspond to the direct and the residual effects. These are the components of the
information matrix Cd for the direct and the residual effects ignoring the period
effects. We write the expressions for these dropping the suffix d ,

C11 = diag(r) − NNt /p,

C12 = S − NÑt /p, C21 = Ct
12,

C22 = diag(r̃) − ÑÑt /p.

(4.1)

We also write below the expressions for these submatrices for d∗, the Patterson
design,

C∗
11 = Cd∗11 = vt (p − 1)

(v − 1)
H,

C∗
12 = Cd∗12 = −vt (p − 1)

p(v − 1)
H, C∗

21 = (C∗
12)

t ,

C∗
22 = Cd∗22 = t (p − 1)(pv − v − 1)

p(v − 1)
H + t (p − 1)

pv
Jv.

(4.2)
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Let C̄ denote the average of C over all permutations of treatment labels. To
describe the structure of C̄, we introduce some notation. We define the following:

β = ∑
i

∑
u

n2
iu,

l = ∑
i

(sum of niu’s for subjects with treatment i in the last period).
(4.3)

Using the expressions for NÑt and ÑÑt in terms of NNt and � given in (2.6)
and using Lemma 3.1, one can verify that the matrices C̄11, C̄12 and C̄22 have the
following structure:

C̄11: Diagonal element is (p2vt − β)/pv,
off-diagonal element is −(p2vt − β)/pv(v − 1).

C̄12: Diagonal element is −(β − l)/pv,
off-diagonal element is (β − l)/pv(v − 1).

C̄22: Diagonal element is
(
vt (p2 − p − 1) − (β − sl)

)
/pv,

off-diagonal element is
(
β − 2l + pvt(2 − p)

)
/pv(v − 1).

To illustrate the nature of the computations, we consider C̄22. The sum of all
the elements of diag(r̃) − ÑÑt /p is vt (p − 1)/p. The average of the diagonal
elements of ÑÑt = NNt −�−�t + diag(n1, . . . , nv) is (β − 2l + vt)/v, whereas
the average of the diagonal elements of diag(r̃) is t (p − 1). Use of Lemma 3.1
yields the expressions given above.

From these we deduce that

C̄11 = (p2vt − β)

p(v − 1)
H, C̄12 = − β − l

p(v − 1)
H and

C̄22 = pvt(p − 1) − (β − 2l) − t (v + p − 1)

p(v − 1)
H + t (p − 1)

pv
Jv.

(4.4)

We shall now work with the information for direct (residual) effects adjusted
for residual (direct) effects and shall use condition (3.1) to show the UO property
of Patterson designs.

We show below that both (C̄22)
−1 and (C∗

22)
−1 exist. It is then easy to see that

C11.22 = C11 − C12C−1
22 C21 for C∗ and for C̄ are given by

C∗
11.22 = vt (p − 1)

(v − 1)

{
1 − v

p(pv − v − 1)

}
H and

C̄11.22 = 1

p(v − 1)

{
p2tv − β

− (β − l)2

[pvt(p − 1) − (β − 2l) − t (v + p − 1)]
}

H.

(4.5)
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We note that C11.22 is the information matrix for the direct effects eliminating
the residual effects. Further, C̄11.22 is (

∑
g Cg/v!)11.22.

We now show that each of C∗
22 and C̄22 is nonsingular. We first consider C̄22.

Since t (p−1)/pv �= 0, C̄22 is nonsingular iff the coefficient of H in the expression
for C̄22 is nonzero. If this coefficient is zero, rank C̄22 is unity. We now recall that
the (δi − δi′)’s are all estimable when the period effects are eliminated. These
continue to be estimable when the period effects are ignored. Now, estimability of
all (δi − δi′)’s implies that rank C22 ≥ v − 1. This also implies that the sum of C22
over all permutations of treatment labels has rank at least (v − 1). We thus have
rank C̄22 ≥ v − 1 and, hence, the coefficient of H in the above expression for C̄22
must be nonzero. From the expression (4.2) for C∗

22, it is clear that it is of full rank.
We shall now show that C∗

11.22 − C̄11.22 is n.n.d. To see this, let lij denote
the value of niu in the j th of the ni subjects with treatment i in the last period.
Similarly, let βij denote the contribution to β for that subject. We now note that
β = ∑v

i=1
∑ni

j=1 βij , l = ∑v
i=1

∑ni

j=1 lij . We note that l ≥ vt . Further, for the j th
subject with treatment i in the last period, one niu is lij and there are (v − 1) other
niu’s which add up to p − lij . Hence,

βij ≥ l2
ij + (p − lij ) = lij (lij − 1) + p.

It follows that

βij − 2lij ≥ l2
ij − 3lij + p = (lij − 1)(lij − 2) + p − 2,

βij − lij ≥ l2
ij − 2lij + p = (lij − 1)2 + p − 1.

Since lij is 0, 1, 2 or greater than 2, we have

βij − 2lij ≥ p − 2, βij − lij ≥ p − 1, βij ≥ p.

This gives β ≥ pvt,β − l ≥ vt (p − 1), β − 2l ≥ vt (p − 2). Using the above rela-
tions, it is easy to see that C∗

11.22 ≥ C̄11.22, that is, C∗
11.22 − C̄11.22 is n.n.d.

An application of (3.1) shows that d∗ is UO (compared with any design in D) if

C∗
11.22 −∑

g

(Cg)11.22/v! is n.n.d.

Here (Cg)11.22 is obtained by permuting treatment labels in C by g and then
computing the Schur complement (Cg)11.22. In turns out that the result is the same
as applying permutations g to the rows and columns C11.22, that is, (Cg)11.22 =
(C11.22)g .

Since the Schur complement C11.22 is a concave function [19],(∑
g

Cg

)
11.22

≥ ∑
g

(Cg)11.22.
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Since C̄11.22 = ( 1
v!
∑

g Cg)11.22, we have

C∗
11.22 ≥ C̄11.22 =

(∑
g

Cg

)
11.22

/
v! ≥ ∑

g

(Cg)11.22/v!.

Thus, d∗ is UO in D for the model without period effects.
We shall now introduce period effects and consider estimation of the direct and

the residual effects eliminating the period effects. When we adjust for periods,
C gets reduced by an n.n.d. matrix and, hence,

C (adjusted for periods) ≤ C (ignoring periods).

This implies ([19], Section 3.13)

C (adjusted for periods)11.22 ≤ C (ignoring periods)11.22.

We now show that, for d∗,

C∗ (adjusted for periods)11.22 = C∗ (ignoring periods)11.22.

Note that, for d∗, the expressions for Cd given by (2.9) and (4.2) dif-
fer only in C∗

22. For these two cases, the Moore–Penrose inverses are C∗+
22 =

p(v−1)
t (p−1)(pv−v−1)

H and C∗+
22 = p(v−1)

t (p−1)(pv−v−1)
H + p

tv(p−1)
Jv , respectively. Since

C11.22 = C11 − C12C+
22C21, and since HJv = 0, the result follows.

We now have

C∗ (adjusted for periods)11.22 = C∗ (ignoring periods)11.22

≥ 1

v!
∑
g

(
Cg (ignoring periods)

)
11.22

≥ 1

v!
∑
g

(
Cg (adjusted for periods)

)
11.22.

This establishes the UO property of d∗ (relative to any design in D) for the
estimation of direct effects.

An analogous argument also works for the estimation of residual effects. We
outline the relevant important steps here. The information matrix for residual
effects eliminating direct effects is now given by C22.11 = C22 − C21C+

11C12,
where C+

11 is the Moore–Penrose inverse of C11. The expressions for C∗
22.11 and

C̄22.11 = (
∑

g Cg/v)22.11 are given by

C∗
22.11 = t (p − 1)(pv − v − 1)

p(v − 1)
H + t (p − 1)

pv
Jv − vt (p − 1)

p2(v − 1)
H,

C̄22.11 = pvt(p − 1) − (β − 2l) − t (v + p − 1)

p(v − 1)
H

+ t (p − 1)

pv
Jv − (β − l)2

p(v − 1)(p2vt − β)
H.
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Use of β ≥ pvt,β − l ≥ vt (p − 1) and β − 2l ≥ vt (p − 2) yields
C∗

22.11 ≥ C̄22.11. As in the case of direct effects, one can now show the UO for
the estimation of residual effects.

It should be noted that d∗ is not UO in the class D for the joint estimation of
direct and residual effects. This has been shown in [21].

It is not known if a Patterson design using the smallest number of subjects for
given values of p and v is UO for the estimation of direct (residual) effects in
the whole class of competing designs with fixed values of p,v and n. Hence, we
obtain a lower bound for the efficiency factor for the estimation of direct effects
along the lines of [15].

First, we note that, for an approximate optimal design, the information matrix
C11.22 given by [15] is

C̃11.22 = vt

v − 1

{
p − 1 − 1

p
− 1

p(p − 1)v

}
H.

φ(C̃11.22) can serve as a lower bound to the φ value of the information matrix for
any competing design. Further, we note that both C̃11.22 and C∗

11.22 given by (4.5)
are multiples of the matrix H. Hence, a lower bound to the efficiency of a Patterson
design for the estimation of the direct effects is given by

e∗ =
(

1 − v

p(pv − v − 1)

)/(
1 − pv − v + 1

pv(p − 1)2

)
.

On simplification this reduces to

e∗ = A/(A + v),

where A = v2(p − 1)2(pv(p − 1) − p − v).
In Table 2 we give the values of e∗ for the 18 designs given in Table 1 of Sec-

tion 2.
As remarked earlier, these are very high. Thus, while our optimality results are

restricted to the design class D , we see that Patterson designs have very high effi-
ciencies even in the unrestricted class. As remarked in [15], when p ≤ v, no design

TABLE 2
Efficiency lower bounds for Patterson designs for direct effects

p v e∗ p v e∗ p v e∗

3 3 0.993103 4 7 0.999783 5 11 0.999972

3 7 0.998885 4 8 0.999835 5 13 0.999980

3 8 0.999156 4 13 0.999939 6 6 0.999960

3 11 0.999563 5 5 0.999853 6 7 0.999971

4 4 0.999306 5 7 0.999930 6 8 0.999978

4 5 0.999565 5 8 0.999947 6 11 0.999988
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can be optimal in the unrestricted class for each of direct and residual effects. Pat-
terson designs are UO for each of direct and residual effects within the class D
and are highly efficient even when we do not put any restrictions on the class of
competing designs.

5. A functional of interest. In this section we establish an interesting opti-
mality property of d∗ when D is the class of competing designs.

Sometimes, one may wish to look for the best combination of direct and residual
effects. Thus, we would like to compare the yield when treatment j is followed
by treatment i with the yield when treatment j ′ is followed by treatment i′. This
means that we wish to estimate all functions of the form τi + δj − τi′ − δj ′ as
precisely as possible. This leads to the minimization of

A = ∑
Var(τ̂i + δ̂j − τ̂i′ − δ̂j ′),(5.1)

where the summation is over i, i′, j, j ′ such that i �= j, i �= i ′, i ′ �= j ′, j �= j ′.
Since the variances of estimable parametric functions are functions of C, we

may write A as A(C).
Let C+ = (� �

�t �

)
denote the Moore–Penrose inverse of C. It is easy to see

from (2.5) that each of �, � or � has zero row (column) sums. Expressing A as

A = ∑{Var(τ̂i − τ̂
i
′ ) + Var(δ̂j − δ̂

j
′ ) + 2 Cov(τ̂i − τ̂

i
′ , δ̂j − δ̂

j
′ )}

and using the above property of �,� and �, one can show that

A = 2v

[
{(v − 1) + (v − 2)2}

{
v∑
1

αii +
v∑
1

βii

}
− 2(v − 1)

v∑
1

θii

]
σ 2,(5.2)

where � = (αij ),� = (βij ) and � = (θij ). We note that (5.2) may not hold if row
(column) sums of each �,� and � are not zero.

One can see that A can be written as A = A(C) = (
∑

l∈L ltC+l)σ 2, where L
denotes the set of coefficient vectors for all contrasts included in (5.1).

We shall first show that A viewed as a functional on C and denoted by A(C)

satisfies the three conditions on φ(C) given in the UO formulation in Section 3.
To see that A is invariant under a permutation of treatment labels, we shall

show that a permutation g changes a coefficient vector l into a vector g(l) = l′,
where l′ can be seen to satisfy all the necessary constraints. Let Pg be the v × v

matrix for a permutation g ∈ Sv . Let Fg = (Pg 0
0 Pg

)
. Then Cdg = Ft

gCdFg , giving

C+
dg = Ft

gC+
d Fg . Thus, ltC+

dgl = l′tC+
d l′, where l′ = Fgl. As l varies over L, l′ also

varies over L. Thus, condition (1) holds. Next, if C1 ≥ C2,C+
1 ≤ C+

2 and, hence,
ltC+

1 l ≤ ltC+
2 l for all l ∈ L. Thus, condition (2) also holds.

To show that condition (3) holds, we first note that C+ is a convex function of
C, that is, (

∑
wgCg)

+ ≤ ∑
wgC+

g , where the wg’s are rational weights satisfying
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∑
wg = 1. Thus, we have

A
(∑

wgCg

)
= ∑

l

lt
(∑

wgCg

)+
l · σ 2

≤ ∑
l

lt
∑
g

wgC+
g l · σ 2

≤ ∑
g

wg

∑
l

ltC+
g l · σ 2

= ∑
g

wgA(Cg) = ∑
g

wgA(C) = A(C).

This completes the verification. If we take wg = 1/v!, we get A(C̄) ≤ A(C).
Thus, to show that A(Cd∗) ≤ A(Cd), it is enough to show that A(Cd∗) ≤ A(C̄d).

Again, we initially assume that there are no period effects in the model.
We first express Cd∗ and C̄d as

Cd∗ =
(

a∗H b∗H

b∗H c∗H + eJv

)
,

C̄d =
(

ādH b̄dH
b̄dH c̄dH + eJv

)
,

(5.3)

where a∗, b∗, c∗, e, ād , b̄d and c̄d obtained from (4.2) and (4.4) are

a∗ = vt (p − 1)

v − 1
, b∗ = −vt (p − 1)

p(v − 1)
,

c∗ = t (p − 1)(pv − v − 1)

p(v − 1)
, e = t (p − 1)

pv
,

ād = (p2vt − β)

p(v − 1)
, b̄d = − (β − l)

p(v − 1)
,

c̄d = pvt(p − 1) − (β − 2l) − t (v + p − 1)

p(v − 1)
.

For simplicity of notation, we shall drop the subscript d from ād , b̄d and c̄d .
Since C̄ is an average of nonnegative definite (n.n.d.) matrices, it is n.n.d. Also,

C̄
(1v

0

) = 0 and C̄
( 0
1v

) = ev
( 0
1v

)
. Other eigenvalues of C̄ are obtained as follows.

Let u be a (v × 1) vector satisfying Hu = u. It is easy to verify that
( u
αu

)
is an

eigenvector of C̄ if α = {(c̄ − ā) ±
√

(ā + c̄)2 − 4(āc̄ − b̄2)}/2. The correspond-

ing eigenvalue is {(ā + c̄) ±
√

(ā + c̄)2 − 4(āc̄ − b̄2)}/2. Since there are (v − 1)

orthonormal choices for u, each of {(ā + c̄) ±
√

(ā + c̄)2 − 4(āc̄ − b̄2) }/2 is an

eigenvalue of C̄ of multiplicity v − 1.
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Since τi − τi′ and δj − δj ′ are estimable in the model eliminating period ef-
fects, they are also estimable in the model ignoring period effects. Thus, rank
C̄ ≥ 2(v − 1).

If 
̄ = āc̄ − b̄2 < 0, C̄ has a negative eigenvalue. If 
̄ = 0, rank C̄ = v, which
is also a contradiction. Thus, 
̄ > 0. Similarly, 
∗ = a∗c∗ − b∗2 > 0.

Direct calculations yield

C∗+ =
(

c∗H/
∗ −b∗H/
∗

−b∗H/
∗ a∗H/
∗ + Jv/ev
2

)
,

C̄+ =
(

c̄H/
̄ −b̄H/
̄

−b̄H/
̄ āH/
̄ + Jv/ev
2

)
.

(5.4)

Since the last v components in each vector l are v−2 zeros, +1 and −1 (in some
order), we can, in computing

∑
l∈L ltC+l, ignore the term Jv/ev

2 in C∗+ and C̄+.
The v × v submatrices of the remaining matrix have zero row and column sums.
Hence (5.2) is applicable to this matrix.

We can thus express A∗ = A(Cd∗) and Ā = A(C̄d) as

A∗ = 2v(v − 1)

[
{(v − 1) + (v − 2)2}(a

∗ + c∗)

∗ + 2(v − 1)

b∗


∗
]
σ 2

and

Ā = 2v(v − 1)

[
{(v − 1) + (v − 2)2}(ā + c̄)


̄
+ 2(v − 1)

b̄


̄

]
σ 2.

If we write β − 2l = vt (p − 2)+ x and l = vt + y, we can express ā, b̄ and c̄ as

ā = a∗ − x + 2y

p(v − 1)
, b̄ = b∗ − x + y

p(v − 1)
, c̄ = c∗ − x

p(v − 1)
.

It was noted in Section 4 that β − 2l ≥ pvt(p − 2) and l ≥ vt . Hence, we have
x ≥ 0 and y ≥ 0.

We may write A∗ = A(0,0) and Ā = A(x, y). To show that A(0,0) ≤ A(x, y),
we shall proceed as follows:

Using the expressions for ā, b̄ and c̄ given above, it can be seen that

A(x, y) = {
(c11 + c12x + c13y)/

(
c21 + c22x + c23y − y2/t (p − 1)

)}
σ 2,

where

c11 = 2pv(v − 1)(2pv3 − 6pv2 + 6pv − v3 + 2v − 3),

c12 = c13 = −4pv(v − 1)(v2 − 2v + 2)/t (p − 1),

c21 = tv(p − 1)(p2v − pv − p − v),

c22 = −(2pv + v − 1), c23 = −2(pv − 1).



2870 K. R. SHAH, M. BOSE AND D. RAGHAVARAO

It is easy to verify that


̄ = t (p − 1)

p2(v − 1)2 {c21 + c22x + c23y − y2/t (p − 1)}.

Since 
̄ > 0, it follows that c21 +c22x+c23y−y2/t (p−1) > 0. Similarly, 
∗ > 0
implies c21 > 0.

It follows that A(x, y) − A(0,0) is strictly positive iff (c21c12 − c11c22)x +
(c21c13 − c11c23)y + c11y

2/t (p − 1) is strictly positive. For p ≥ 3, v ≥ p, the co-
efficients of x, y and y2 are all seen to be strictly positive and, hence, A(x, y) −
A(0,0) > 0 if (x, y) �= (0,0). When p = 2, we must have y = 0. We shall com-
ment on this case later in this section.

We have thus shown that A(x, y) ≥ A(0,0) when period effects are ignored.
When we take period effects into the model, Cd∗ in (5.3) gets reduced by( 0 0

0 eH

)
which has no effect on A. For C̄ we argue as follows. We first note that

C (adjusted for periods) ≤ C (ignoring periods),

Since C̄ is obtained by averaging Cg over all permutations, it follows that

C̄ (adjusted for periods) ≤ C̄ (ignoring periods),

C̄+ (adjusted for periods) ≥ C̄+ (ignoring periods).

Since A(C) = ∑
l ltC+l ·σ 2, it follows that adjustment for periods cannot decrease

the value of A(C).
We now summarize the situation as follows. Here, “adj” means adjusted for

periods and “ign” means ignoring periods. We have seen that

A(Cd∗(adj)) = A(Cd∗(ign)),

A(Cd∗(ign)) ≤ A(C̄d(ign)), d ∈ D,

A(C̄d(ign)) ≤ A(C̄d(adj)).

These imply

A(Cd∗(adj)) ≤ A(C̄d(adj)), d ∈ D .

This completes the proof of optimality of d∗ for the functional A(C) in the design
class D .

In the definition of A(C) we could also permit i = i ′, as this would only add
comparisons of the type δj − δj ′ . We have already seen that, for the estimation of
residual effects, d∗ is UO in D . Similarly, we could also permit j = j ′.

It should be noted that the above proof was needed only when d is nonbinary
with y > 0. When the design is binary, or nonbinary with y = 0, the result follows
from the UO property of d∗ (Section 3 of this paper; [21]) for the joint estimation
of direct and residual effects.
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