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ON THE TWO-PHASE FRAMEWORK FOR JOINT MODEL AND
DESIGN-BASED INFERENCE

BY SUSANA RUBIN-BLEUER1 AND IOANA SCHIOPU KRATINA

Statistics Canada

We establish a mathematical framework that formally validates the two-
phase “super-population viewpoint” proposed by Hartley and Sielken [Bio-
metrics 31 (1975) 411–422] by defining a product probability space which
includes both the design space and the model space. The methodology we
develop combines finite population sampling theory and the classical theory
of infinite population sampling to account for the underlying processes that
produce the data under a unified approach. Our key results are the following:
first, if the sample estimators converge in the design law and the model sta-
tistics converge in the model, then, under certain conditions, they are asymp-
totically independent, and they converge jointly in the product space; second,
the sample estimating equation estimator is asymptotically normal around a
super-population parameter.

1. Introduction. Classical sampling theory concerns inference for finite pop-
ulation parameters. For the finite population mean �Y = ∑N

i=1 yi/N , inference typ-
ically considers the interval

[ȳ ± tpse(ȳ)],
where tp is a constant chosen with a normal or Student distribution in mind, and
se(ȳ) denotes the standard error of the sample mean ȳ (see [13]). The expression
above means that �Y is within the interval [ȳ − tpse(ȳ), ȳ + tpse(ȳ)] with some
degree of confidence. Here N is the size of the finite population, the yi ’s are con-
sidered nonstochastic but unknown numbers and probability statements arise from
the selection of units in the sample. No distributional assumptions are made about
the yi ’s. This nonparametric approach to inference is often called design-based
inference.

However, there are many situations when we have to resort to postulating a
model. For descriptive analysis in a finite population, we need a model when
we have to deal with nonresponse, small area estimation or measurement errors.
For studies involving scientific questions, the parameters of stochastic models are
sometimes of more interest than finite population parameters. For example, in lon-
gitudinal surveys we are interested in modeling the dependencies between health
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status and certain socio-economic covariates. Staying within the finite population
framework limits our inference to the reference population only. To illustrate the
issue, let us take the sample mean ȳ obtained from a sample of size n, and sup-
pose that we wish to draw conclusions on a more general population than the finite
population from which we obtained the sample: we view ȳ as an estimator of the
model mean µ. We have

√
n(ȳ − µ) = √

n(ȳ − �Y) +
√

(n/N)
√

N(�Y − µ).(1.1)

The design-based large sample properties of the first term on the right-hand side
of (1.1) have been studied for many sampling designs. Conditions were given for
the asymptotic normality of the sample mean (design-based central limit theo-
rem, or CLT): for simple random sampling without replacement (SRSWOR) and
rejective sampling with varying probabilities by Hájek [8, 9], for probability pro-
portional to size without replacement (πps) designs by Rosén [19, 20], and for
stratified multistage probability proportional to size with replacement (PPSWR)
designs by Krewski and Rao [15]. For descriptions of these and other sampling
designs, see, for example, [28]. To derive a design-based CLT for the left-hand
side of (1.1), we would have to assume not only that the sampling rate n/N con-
verges to zero, but also that the sequence of numbers

√
N(�Y − µ) is bounded as

N → ∞. As a sequence of numbers, this last condition is very restrictive. How-
ever, as a sequence of sums of independent, identically distributed (i.i.d.) random
variables (r.v.) in the super-population,

√
N(�Y − µ) is bounded in probability and

the second term of the right-hand side of (1.1) converges to zero in the probability
of the model when n/N converges to zero. To study the asymptotic properties of
the survey sample means around the model mean, it is necessary to include the
model and the design in the same probability space.

In this article we first construct a product space, which is a mathematical frame-
work for joint design-based and model-based inference. Our key results are quite
general. First, we show that, under certain conditions, if the survey sample es-
timators converge in the law of the sampling design and the associated model
statistics converge in the law of the model (not necessarily to a Gaussian distri-
bution), then they are asymptotically independent and they converge jointly in the
product space. Second, we show that a survey sample estimator of a model para-
meter, which is derived from a very general sampling estimating equation, exists,
is consistent and is asymptotically normal. Hartley and Sielken [11] introduced
the “super-population” approach to describe the relationship between the infinite
population (also called super-population) and the finite population from which we
select the sample. Many authors worked within the two-phase framework and ac-
counted for the variability due to the design and the model by means of the “antic-
ipated variance.” The contributions of Fuller [6], Isaki and Fuller [12], Godambe
and Thompson [7], Korn and Graubard [14], Pfeffermann and Sverchkov [17],
Binder and Roberts [4], Rodríguez [18] and Molina, Smith and Sugden [16] are
just a few among the many on the subject.
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Fuller [6] established large sample properties of the sample regression estimator
around the model parameter with data obtained from stratified cluster samples. His
approach could only be applied to stratified SRSWOR designs in the first stage.
Our general approach to estimation of model parameters extends Fuller [6] to more
general designs and estimators, even if the sampling rate is nonnegligible.

The formal expression of the product space, together with the key results de-
scribed above, establish a general and unified methodology that accommodates
the diverse techniques of these authors, and has enabled us to extend some of their
results. Moreover, the more formal aspects of the methodology (sub-σ -fields, fil-
trations in the product space) proved to be essential for adapting counting process
methodology to the analysis of survival survey data (see [23, 24]). In addition,
the design-based distribution of a sample estimator is a “second phase” concept,
that is, a conditional distribution given the minimal information in the model. In
general, we could apply this methodology to most situations where we have a two
phase randomization process.

The joint design-model distribution of the sample data is also called the dis-
tribution of the sample variables (see [17]). We present other results that refer to
the sample variables under the posterior distribution given the sample labels. For
a sequence of random variables Y = {Y1, . . . , YN }, it is well known that the poste-
rior distribution of Y given the sample outcome {(i, Yi = yi), i ∈ s0} depends only
on the sample s0 actually drawn and not on the sampling design used to draw it,
provided that s0 and Y are stochastically independent given the design variables
(see [29]). Here, however, we look at conditioning just on the s0 actually drawn.
We also show that the posterior distribution depends only on s0. Note that whether
the labels are repeated or not is a consequence of the design. If the sample s0 from a
with replacement (WR) sampling design has repeated labels, the sample variables
under the posterior distribution given s0 are not stochastically independent even
if the original components of Y were independent. It is also well known that an
SRSWOR from a finite population, which was generated by a super-population,
when viewed as a sample from the infinite space inherits the same properties of
the random variables which generated the finite population. Fuller [6] applied the
CLT to the array of variables from an SRSWOR design to obtain the asymptotic
distribution of the sample regression estimator. It is not clear why the classical
CLT could be applied in [6] without further assumptions. In this article, we show
formally that his array of sample variables, not necessarily nested, consists of i.i.d.
variables under the posterior distribution given the sample labels. For the CLT to
hold for this array, we only require that the original super-population variables
have a finite variance.

In order to obtain the total (anticipated) variance in (1.1), we must impose
(model-based) conditions on the super-population model, which survey statisti-
cians would rather avoid. At the very least, some form of model-based indepen-
dence is needed. Many authors assume that the sampling rate is small enough so
they can ignore the variation due to the model component. However, Korn and
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Graubard [14] show that we should not dismiss the second term in the total vari-
ance without checking first that it is indeed sufficiently small relative to the first
term.

The article is organized as follows. In Sections 2–5 we develop the tools needed
to incorporate the design and the model in the same space. Section 6 is an applica-
tion of the product space methodology. In Section 2 we modify somewhat the usual
definitions of sample design, finite population parameter and sample estimator to
enable us to view them as random variables in the super-population (Definition 4.2,
Remark 4.2). In Section 3 we adopt the super-population definition in [28] to define
what it means for a finite population to be generated by a super-population (Defin-
ition 3.1). Proposition 3.1 shows how conditions needed for the design-based CLT
follow from simple conditions in the super-population. In Section 4 we define the
general product space (Definitions 4.1, 4.3) and show how stochastic dependence
is introduced in the product space (Example 4.1). We exploit the additional in-
formation on the design and the model by calculating posterior distributions and
we study the interplay between dependence and independence of random variables
viewed in the design space, the product space or the model space (Example 4.1 and
Proposition 4.2). In Section 5 we show that, if the sample and super-population sta-
tistics converge in law in their respective spaces, they also converge in law in the
product space. The two terms in the right-hand side of (1.1) are not, in general, sto-
chastically independent. We establish here their “asymptotic independence” under
mild conditions in Theorem 5.1. Example 5.1 yields the asymptotic normality of
the ratio estimator of the weighted average of the strata means under a stratified
one-stage PPSWR design. In Section 6 we establish the existence and asymptotic
normality of a sample estimator derived from a general estimating equation, under
general conditions. Example 6.1 is an application to a two-stage sampling design.

2. Finite populations and sampling designs.

DEFINITION 2.1. A finite population U = {1, . . . ,N} of size N consists of
N labels, with their associated data, that is, each unit i is associated to a unique
vector (yi, xi, zi), i = 1, . . . ,N . Here yi ∈ R

p , xi ∈ R
k represent, respectively,

the characteristics of interest and the auxiliary information, and zi ∈ R
q
+ is the

“prior” information available at the time of the design of the survey on all units i =
1, . . . ,N . We write yN = (yi)i=1,...,N , xN = (xi)i=1,...,N and zN = (zi)i=1,...,N .

REMARK 2.1. In this paper N will denote the size of the finite population (i.e.,
the number of ultimate sampling units in the population) for one-stage-sampling
schemes, and it will denote the number of clusters or primary sampling units
(p.s.u.s) for multistage schemes, in which case the size of the finite population
will be denoted by M .
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DEFINITION 2.2. A sample is the realization of a probabilistic (randomized)
selection or sampling scheme ([28], page 25). We adopt the comprehensive defini-
tion of a sample in [10], page 42: it views the sample as “a finite sequence of units
or labels of the finite population, which are drawn one by one until the sampling
is finished according to some stopping rule. This sequence distinguishes the order
of units, may be of variable length and may include one unit of the finite popula-
tion several times.” This definition includes samples selected without replacement
(WOR) and WR. In what follows, we do not require that samples be selected se-
quentially, but, for convenience, we may consider an order in which the n sampled
units are either observed or selected.

In the literature, a design p associated with a sampling scheme is a proba-
bility function on the set of all possible samples under this scheme (see, e.g.,
[28]). The definition of a sampling design given below requires measurability
of p as a function of the variables containing the prior information. The same
holds for Definition 2.4 of a finite population parameter (cf. [28], page 39). The
measurability conditions ensure that, when the finite population is generated by a
super-population, the finite population parameter and the estimator are real-valued
measurable functions (random variables) defined on the probability space associ-
ated with the super-population (see Definition 3.1).

DEFINITION 2.3. Let U be the finite population of Definition 2.1. Given a
sampling scheme, let S be the set of all possible samples under the scheme. Let
C(S) consist of all subsets of S. A sampling design associated to a sampling
scheme is a function p :C(S) × R

q×N
+ → [0,1] such that:

(i) for all s in S, p(s, ·) is Borel-measurable in R
q×N
+ ;

(ii) for zN ∈ R
q×N
+ , p(·, zN) is a probability measure on C(S).

We say that (S,C(S),p) is a design probability space, where p(s, ·) > 0, s ∈ S.

REMARK 2.2. For the sake of simplicity, in all applications we will take
q = 1.

REMARK 2.3. For a one-stage Poisson sampling scheme, the collection S of
all possible samples is completely determined given only the sizes of the strata in
the population. For other sampling schemes, S cannot be determined unless we
know the strata and sample sizes, and possibly other parameters, depending on
the sampling scheme. Under a one-stage πps scheme, S can be defined without
prior knowledge of the unit sizes. Under a first-stage πps scheme and a second
stage SRSWOR scheme, we cannot completely determine S unless we know the
first-stage unit sizes, since they are the second-stage population sizes.
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DEFINITION 2.4. Consider a finite population as in Definition 2.1. A finite
population parameter θN is a Borel-measurable function defined on a subset of
R

(p+k+q)×N . An estimator of this finite population parameter associated with a
design, also called a sample estimator, is a function θ̂N :S × R

(p+k+q)×N → R,
where θ̂N (s, ·) is Borel-measurable.

In the next example we define the fundamental notation used by Krewski and
Rao [15], which we will use subsequently (e.g., in Proposition 3.1).

EXAMPLE 2.1 (Stratified two-stage PPSWR [15]). Let Nh be the number of
p.s.u.s in stratum h, Mhi be the number of ultimate units in p.s.u. hi, i = 1, . . . ,Nh,
h = 1, . . . ,L, and L the number of strata. Let N = ∑L

h=1 Nh, Mh = ∑Nh

i=1 Mhi

and M = ∑L
h=1 Mh. The prior information consists of the “sizes” zhi = Mhi ,

i = 1, . . . ,Nh, h = 1, . . . ,L. Suppose nh ≥ 2 p.s.u.s are selected with replace-
ment in stratum h with probabilities phi = Mhi/Mh, i = 1, . . . ,Nh, h = 1, . . . ,L

at each draw. The selection is independent in each stratum, and independent sec-
ond stage samples are taken within those p.s.u.s selected more than once. The
finite population mean is θN = ∑L

h=1 Whθh, where Wh = Mh/M is the stratum
weight, θh = �Yh = ∑Nh

i=1 yhi/Mh is the finite population stratum mean and yhi is
the total of p.s.u. hi, i = 1, . . . ,Nh, h = 1, . . . ,L. Let I k

hi = 1 if p.s.u. hi is se-
lected in the sample at the kth draw in stratum h and 0 otherwise, k = 1, . . . , nh,
i = 1, . . . ,Nh, h = 1, . . . ,L. If the cluster hi is selected at the kth draw, let ŷhi

be an unbiased estimator of the total yhi based on sampling at the second stage
and set ŷhi = 0 otherwise, k = 1, . . . , nh, i = 1, . . . ,Nh, h = 1, . . . ,L. For stra-
tum h, we consider the estimator θ̂h = ∑nh

k=1 θ̂ k
h/nh, where θ̂ k

h = ∑Nh

i=1 ŷhiI
k
hi/Mhi ,

k = 1, . . . , nh, i = 1, . . . ,Nh, h = 1, . . . ,L. Finally, a design-unbiased sample es-
timator of θN is θ̂N (yN,MN) = ∑L

h=1 Whθ̂h.

We often refer to conditions C1 to C3 of Yung and Rao [31], which evolved
from conditions introduced by Krewski and Rao [15] for the asymptotic normality
of the sample mean θ̂N (see the Appendix).

3. Super-populations.

DEFINITION 3.1. Consider a finite population U of size N as in Defini-
tion 2.1. A super-population associated with it consists of a probability space
(�,F ,P ) and random vectors (Yi,Xi,Zi), Yi :� → R

p , Xi :� → R
k , Zi :� →

R
q
+, such that Yi(ω0) = yi , Xi(ω0) = xi , Zi(ω0) = zi , for some ω0 ∈ �, i =

1, . . . ,N . We write YN = (yi)i=1,...,N and define XN and ZN similarly. We say
that U is a realization of or is generated by the super-population. Any distribution
of (YN,XN,ZN) that is given a priori is called a super-population model. We note
that different outcomes ω can generate the same finite population.
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Definition 3.1 is similar to the definition given in [28], page 533. We assume
throughout this work that N is not random. In what follows, the subscript “d”
refers to design randomization and “m” refers to the randomization on the prob-
ability space (�,F ,P ). We use Em, Vm to denote, respectively, the expectation
and variance with respect to the probability space (�,F ,P ). We use the standard
notation σ(X) for the σ -field generated by the function X (see also Definition 3.1
in [22] or [25]).

EXAMPLE 3.1 (Two-stage super-population model). Let � be the conceptual
population of people living in a country. Suppose it is composed of L disjoint
strata of units hi, i = 1, . . . ,Nh, h = 1, . . . ,L, where unit hi represents a cluster
of individuals. Let (�,F ,P ) be the corresponding probability space. Now we
assume that Zhi are discrete r.v.s on the probability space that represent the num-
ber of individuals that live in cluster hi. We are interested in characteristics Yhij

pertaining to the individuals labelled by hij , living in cluster hi, i = 1, . . . ,Nh,
h = 1, . . . ,L. In order to be able to define the super-population according to Defin-
ition 3.1, we must know an outcome of the Zhi , say, the sizes of the clusters of the
population existing right now. Let FM = {ω ∈ � :Zhi(ω) = Mhi , i = 1, . . . ,Nh,
h = 1, . . . ,L}. We use this information to define the super-population model by
conditioning on the σ -field generated by the event FM . The conditional probabil-
ity measure is given by PM(F,ω0) = P(F |FM) if ω0 ∈ FM for F ∈ F (see [5],
Equation 3, page 222 and note that P(FM) > 0 since the r.v.s Zhi are discrete).
Now we define the super-population on (�,F ,PM) by random vectors Yhij of p

socio-economic characteristics associated with the individual hij , Yhij :� → R
p ,

j = 1, . . . ,Mhi , i = 1, . . . ,Nh, h = 1, . . . ,L. The cluster totals {Yhi = ∑Mhi

j=1 Yhij ,
i = 1, . . . ,Nh, h = 1, . . . ,L} are assumed i.i.d. r.v.s within strata.

We now illustrate how conditions that are sufficient for design-based CLTs can
be justified as a consequence of simple moment conditions in the super-population,
which, in turn, can be justified by expert knowledge of the model.

Consider the two-stage super-population model of Example 3.1 and assume
that the total number of clusters N → ∞. Assume the sampling design of Ex-
ample 2.1, defined on the finite population generated by ω ∈ �, where Yhi(ω) =∑Mhi

j=1 Yhij (ω), ω ∈ �. In Proposition 3.1 below we show that moment condi-
tions in the super-population yield the Liapunov-type condition (C′

1) similar to∑L
h=1 WhEd |θ̂ k

h − �Yh|2+δ = O(1) as n → ∞, θ̂ k
h as in Example 2.1, which is con-

dition C1 of Krewski and Rao [15].

PROPOSITION 3.1. Let n = n1 + n2 + · · · + nL. We assume the model-based
condition

(1/N)

L∑
h=1

Nh∑
i=1

Em|Yhi |2+δ = O(1), δ > 0 as N → ∞.(M1)
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Then

(C′
1) for all k = 1, . . . , nh, h = 1, . . . ,L,

∑L
h=1 WhEd |θ̂ k

h − �Yh|2+δ(ω) = O(1),

for all ω in a set with model probability 1 (a.s. ω), N → ∞, where θ̂ k
h is the

estimator of the stratum mean based on the kth draw in stratum h, 1 ≤ k ≤ nh,
h = 1, . . . ,L, defined in Example 2.1.

The proof is given in the Appendix. Here Ed is the design-based expectation
and is calculated in the Appendix. Note that Ed |θ̂ k

h |2+δ(ω) is a random variable in
the model space.

4. The product space. In this section we define a product probability space
that includes the super-population and the design space, under the premise that
sample selection and the model characteristic Y are independent given all of the
design variables Z. We investigate independence properties of the sample vari-
ables under the posterior distribution given the sample labels and we provide the
formal proof of the CLT under the posterior distribution for an SRSWOR design.
Proposition 4.4 derives the product space probability given the model.

DEFINITION 4.1. Consider a finite population of size N generated by a super-
population (YN,XN,ZN) as in Definition 3.1. We define the product space as the
set S × � with the σ -field C(S) × F .

DEFINITION 4.2. Consider a super-population associated with a finite popu-
lation as in Definition 4.1. Let p :C(S) × R

q×N
+ → [0,1] be a sampling design on

the finite population as in Definition 2.3. Then the sampling design can be viewed
as a random variable on (S × �,C(S) × F ) defined by

p(s,ω) = p
(
s,ZN(ω)

)
, s ∈ S, ω ∈ �.(4.1)

DEFINITION 4.3. We define Pd,m as the σ -additive measure that, on elemen-
tary rectangles of the product σ -field, has the value

Pd,m({s} × F) =
∫
F

p(s,ω)dP, s ∈ S, F ∈ F .(4.2)

Note that each set in C(S) × F can be expressed as a finite union of elementary
rectangles and Pd,m(S × �) = 1. Hence, Pd,m is a probability measure on the
product space. If ZN are discrete random variables, we may build the product
space from the super-population model given ZN , with the probability measure
Pz(·) = P(·|Fz), Fz = {ω :ZN(ω) = zN }. With Pz replacing P in (4.2), we obtain

P ∗
d,m({s} × F) = p(s, zN) · Pz(F ), s ∈ S, F ∈ F .
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REMARK 4.1. Any measurable set in the product space is of the form B =⋃
s∈S{s} × Fs , where some sets Fs ∈ F could be empty. By Definition 4.3,

Pd,m(B) = ∫
�

∑
s∈S p(s,ω)IFs (ω)dP . We denote the integrand by Pd,m(B|S ×

F )(ω) = ∑
s∈S p(s,ω)IFs (ω). By Proposition 4.4 this is a conditional probability

given the σ -field S × F .

REMARK 4.2. Let θ̂N be a sample estimator on the design space with asso-
ciated super-population (YN,XN,ZN). It can be viewed as a random variable on
the product space defined by

θ̂N (s,ω) = θ̂N

(
s, YN(ω),XN(ω),ZN(ω)

)
, s ∈ S, ω ∈ �.(4.3)

We omit writing the index N when no confusion may arise.

DEFINITION 4.4 (The sample variables). The components of a sample out-
come ys = {yi, i ∈ s}, s ∈ S, can be viewed as random variables in the product
space, and following Pfeffermann and Sverchkov [17], we call them sample vari-
ables.

A sample can be written as a sequence of labels i(k), indexed by k = 1, . . . , n,
the order in which the labels are observed. Let us define I k

i = 1 if label i(k) = i

and I k
i = 0 otherwise. If the sample is drawn sequentially, the I k

i coincide with the
kth draw indicators in Example 2.1. Thus, the sample outcome can be written as
the sequence of n units, where each coordinate k of the sequence represents the
y-value for the label i(k), k = 1, . . . , n:

ys =
(

N∑
i=1

yiI
1
i (s),

N∑
i=1

yiI
2
i (s), . . . ,

N∑
i=1

yiI
n
i (s)

)
.

The sample variables can be written as

Yi(k)(s,ω) =
N∑

j=1

Yj (ω)I k
j (s), k = 1, . . . , n.

We will use this notation subsequently. Note that, for WR designs, the labels i(k)

and i(l) could be the same for k 
= l.

REMARK 4.3. Assume that the components of YN are independent random
variables. If the design is SRSWOR and the components of YN are i.i.d. in the
super-population, the “sample variables” Yi(k), k = 1, . . . , n, are independent in
the product space. However, if the original YN are not identically distributed, the
variables Yi(k), k = 1, . . . , n, may become stochastically dependent in the product
space. Under a simple random sample with replacement (SRSWR) design, the vari-
ables Yi(k), k = 1, . . . , n, are stochastically dependent in the product space whether
the original super-population variables are i.i.d. or not. We refer to the Appendix
for an illustration of the mechanism.
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EXAMPLE 4.1 (Stochastic dependence in the product space). Let N = n = 2
and Yi , i = 1,2, be i.i.d. r.v.s each with a Bernoulli distribution B(1,0.5). Under
simple random sampling (SRS), Pd,m(Yi(1) = 1) = Pd,m(Yi(2) = 1) = 0.5. Under
SRSWR, Pd,m(Yi(1) = 1, Yi(2) = 0) = 0.125 
= 0.5 × 0.5 [see (A.2′) in the Appen-
dix], whereas under SRSWOR, Pd,m(Yi(1) = 1, Yi(2) = 0) = 0.25 = 0.5 × 0.5.

EXAMPLE 4.2 (Two-stage super-population model and two stage design). We
assume the two-stage super-population model of Example 3.1, where we use the
size of the clusters of a population existing right now to define the model. This
minimum necessary information is contained in FM = {ω ∈ � :Zhi(ω) = Mhi ,
i = 1, . . . ,Nh, h = 1, . . . ,L}, where the Mhi are cluster sizes as in Example 3.1.
We select the sample with probability proportional to those sizes, but we want
to draw conclusions about a more general population than the finite population
living in those clusters now. We set MNh = (Mhi)i=1,...,Nh

, h = 1, . . . ,L. Once
the model is defined, we define a sample space S as the collection of all possible
“stratified clustered” sequences of units (see Remark 2.3) of a finite population
associated with the super-population model. Then we define a stratified two-stage
sampling design p(s,MN1, . . . ,MNL) with L strata, N clusters and M ultimate
units. We then construct the space S ×� with probability measure Pd,m defined on
the elementary rectangles by Pd,m(s × F) = p(s,MN1, . . . ,MNL)PM(F), s ∈ S,
F ∈ F (see also Example 4.3 in [27]).

Consider a sample s0 ∈ S and let σ(s0 × �) be the four-set sub-field generated
by s0 × �. Let P(·|s0) be the conditional probability measure given this field. We
have the following result.

PROPOSITION 4.1. For each B = ⋃
s∈A{s}×Fs , A ∈ C(S), Fs ∈ F , we have

(i) P(B|s0) = Pd,m

(
s0 × Fs0

)
/Pd,m(s0 × �)(4.4)

if s0 ∈ A, and 0 otherwise. If, in particular, p(s,ω) does not depend on ω ∈ �, and
IA(s0) is the value of the indicator function of the set A at s0, we have

(ii) P(B|s0) = P(Fs0)IA(s0).

PROOF. (i) is immediate from [5], Example 1, page 223. Statement (ii) follows
from (i). �

PROPOSITION 4.2 [Stochastic independence of the sample under P(·|s0)]. Let
YN denote the super-population composed of N independent random vectors.
Assume an SRS design. Under P(·|s0), the Yi(k), k = 1, . . . , n, variables are sto-
chastically independent if there are no repeated labels in the selected sample and
stochastically dependent otherwise.



JOINT MODEL AND DESIGN INFERENCE 2799

See the Appendix for the proof (see also [26]).

EXAMPLE 4.3. Let N = n = 2. Suppose, as in Example 4.1, that Yi , i = 1,2,
are i.i.d. r.v.s distributed as B(1,0.5). Assume that we selected s0 = {1,2} under
SRS. This sample has no repeated labels and I 1

i (s0)I
2
j (s0) = 0 if i = j , i, j = 1,2.

Then P(Yi(1) = 1|s0) = P(Yi(2) = 1|s0) = 0.5 and P(Yi(1) = 1, Yi(2) = 0|s0) =
0.25 = 0.5 × 0.5 by (A.3) in the Appendix. Here the sample variables {Yi(1), Yi(2)}
under the posterior distribution given s0 inherit the independence of the Y ’s, even
if the design were SRSWR.

If we selected s0 = {1,1}, then I 1
1 (s0)I

2
1 (s0) = 1, I 1

1 (s0)I
2
2 (s0) = I 1

2 (s0)I
2
1 (s0) =

I 1
2 (s0)I

2
2 (s0) = 0 and P(Yi(1) = 1, Yi(2) = 0|s0) = 0. Here {Yi(1), Yi(2)} are sto-

chastically dependent under P(·|s0).

We next deal with a sequence of super-populations indexed by ν = 1,2, . . . .

PROPOSITION 4.3 [Asymptotic normality under P(·|sν)]. Let Yνi , i = 1, . . . ,

Nν , ν ≥ 1, be i.i.d. r.v.s on (�,F ,P ) with zero mean and finite variance σ 2 > 0.
Consider SRSWOR samples sν of size nν and Pν = P(·|sν) as in (4.4). Let
Yνi(k)(sν,ω) denote the array of r.v.s as in Definition 4.4. Then (σ 2nν)

−1/2 ×
[∑nν

k=1 Yνi(k)] converges in law to a standard normal random variable.

The proof is in the Appendix.

PROPOSITION 4.4. Let B = ⋃
s∈A{s}×Fs ∈ C(S)×F with all s distinct. We

write

Pd,m(B|S × F )(ω) = ∑
s∈A

p(s,ω)IFs (ω), ω ∈ �.(4.5)

Then the right hand-side of (4.5) is the conditional probability measure on (S ×
�, C(S) × F ) given the σ -field S ×F . The result is also valid if we replace
everywhere F by FN = σ(YN,XN,ZN) or by σ(ZN).

An outline of the proof is given in the Appendix.

5. Convergence in the product space and asymptotic independence. In
this section we establish results that enable us to determine the limiting distrib-
ution of a combination of sample estimators and super-population statistics. Let
θ̂ ∈ R

� be a sample estimator as in Remark 4.2. We define

F(t,ω) = p
({s ∈ S : θ̂ (s,ω) ≤ t},ω)

, t ∈ R
�.

THEOREM 5.1. We consider a sequence of product spaces and sample esti-
mators as in Definition 4.3 and Remark 4.2, indexed by ν ≥ 1. Let λν , λ ∈ R

� be
random vectors defined on (�,F ,P ). We have:
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(i) If λν → λ in the law of the model (P), then λν → λ in the law of the product
space.

(ii) If Fν(t,ω) → F(t,ω) in probability P for all points of continuity t ∈ R
�

of F(t,ω), then F(t,ω) is a bounded random variable in the model space, and the
product-space distribution of θ̂ν converges to F(t) = ∫

� F(t,ω)dP (ω). In par-
ticular, if θ̂ν(·,ω) is design-consistent a.s. ω, then it is consistent in the product
space.

(iii) Assume that λν → λ in the law of the model and Fν(t,ω) → F(t) in prob-
ability P as ν → ∞ for all points of continuity t ∈ R� of F(t), where F(t) is a
nonstochastic distribution function. Then the joint distribution function of (θ̂ν, λν)

converges to the product of the two limiting distributions. The random variables θ̂ν

and λν are said to be asymptotically independent.

The proof is given in the Appendix. Note that when the limiting design-based
distribution is normal with mean zero, we only require that the limiting variance be
nonstochastic in the model. This last condition would follow if we imposed simple
conditions in the super-population model, as we did in Proposition 3.1.

REMARK 5.1. The design-based distribution of the sample estimator θ̂N

(viewed as a random variable in the product space) is a version of its conditional
distribution in the product space given S × FN . This follows if we take sets of
the form B(t) = {(s,ω) : θ̂ (s,ω) ≤ t}, t ∈ R

�, in Remark 4.1 and use (A.5) in the
Appendix.

EXAMPLE 5.1 (The ratio estimator of the finite population mean). We assume
a one-stage super-population model composed of L disjoint strata of Nh i.i.d. r.v.s
(Yhi,Zhi), i = 1, . . . ,Nh, with mean µh = Em(Yh1) and variance σ 2

h = Vm(Yh1),
h = 1, . . . ,L. Let µN = 1

N

∑L
h=1 Nhµh be the parameter of interest, N = N1 +

· · · + NL and 
N = 1
N

∑L
h=1 Nhσ

2
h . The finite population mean is

�YN = 1

N

L∑
h=1

Nh∑
i=1

Yhi.

Consider a stratified one-stage PPSWR design with the notation of Example 2.1. At
each draw k = 1, . . . , nh, the units are selected in the sample sh with probabilities
phi , which are functions of Zhi , i = 1, . . . ,Nh, h = 1, . . . ,L. The ratio estimator
of the finite population mean is

ȳR = (1/N̂)

L∑
h=1

∑
i∈sh

yhi/nhphi, N̂ =
L∑

h=1

∑
i∈sh

1/nhphi.

Let n = n1 + · · · + nL, nh ≥ 1 and N → ∞, n → ∞. We aim to obtain the
asymptotic normality of

√
n(ȳR − µN) as N → ∞. Here we construct a prod-

uct space with the unconditional model probability measure P rather than Pz
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(defined after Definition 4.3). We decompose
√

n(ȳR − µN) into two terms, as
in (1.1), and apply Theorem 5.1. The CLT for

√
N(�YN − µN) with limiting vari-

ance 
m = limN
1
N

∑L
h=1 Nhσ

2
h , 
m < ∞, follows if we assume Liapunov’s con-

dition (Theorem 27.3 in [2]),
L∑

h=1

NhEm|Yh1 − µh|2+δ = o(N1+δ/2
1+δ/2
m ) as N → ∞, for some δ > 0.

Let 
d , the limiting design variance of
√

n(ȳR − �YN), that is, 
d = limn(1/N) ×
(n/N)

∑
h(

∑
i e

2
hi(ω)/nhphi − e2

h(ω)/nh), be positive definite, where ehi(ω) =
yhi(ω) − �YN(ω) and eh(ω) = ∑

i ehi(ω) are the residuals, i = 1, . . . ,Nh, h =
1, . . . ,L. Note that C2 implies that N̂ is consistent. The CLT for

√
n(ȳR − �YN)

with asymptotic variance 
d follows as in [31] by assuming conditions (C1) to
(C3) in the Appendix applied to the residuals of a first stage sampling design,
where M = N , and by Slutsky’s theorem. Theorem 5.1 can then be applied if we
assume that 
d is nonstochastic.

6. Sample estimators derived from an estimating equation (EE). In this
section we describe a methodology to derive the asymptotic normality of the
root θ̂N ∈ R

� of the sample estimating equation when centred about the super-
population parameter θ0 ∈ R

�. We combine existing asymptotic results in both the
design and super-population probability as in Theorem 5.1.

Let (�,F ,P ) and (YNν,XNν,ZNν) represent a super-population as in Defin-
ition 3.1 associated with a design space as in Definition 2.3. The first stage sample
size is denoted by nν . In what follows we omit the index ν and we set N → ∞,
n → ∞ as ν → ∞. We first define a finite population estimating equation (EE)
estimator and then an EE for the sample space.

DEFINITION 6.1. Let g represent a continuously differentiable function de-
fined on R

p+k+�. We consider functions of the form

GN(θ,ω) = [1/α(N)]
N∑

i=1

g
(
Yi(ω),Xi(ω), θ

)
,(6.1)

where ω ∈ �, θ ∈ R
�, g ∈ R

�, α(N)/N = 0(1) as N → ∞. A finite population EE
is defined by

GN(θ,ω) = 0.(6.2)

A finite population EE estimator is defined as a solution θN of (6.2), when such a
solution exists and is unique. For ω ∈ � fixed, θN is a finite population parameter.

DEFINITION 6.2. Let ĜN(θ,ω) be a design-consistent estimator of GN(θ,ω).
A sample EE is defined by

ĜN(θ,ω) = 0.(6.3)



2802 S. RUBIN-BLEUER AND I. SCHIOPU KRATINA

A sample EE estimator θ̂N is defined as a solution of the sample EE in (6.3).

Yuan and Jennrich [30] (see also [3]) set general conditions for the existence,
strong consistency and asymptotic normality of EE estimators which require in-
dependent but not necessarily i.i.d. random vectors g(Yi,Xi, θ), i = 1, . . . ,N .
We can apply their results to clustered data models with cluster totals gi(θ) =∑Mi

j=1 g(Yij ,Xij , θ), which are stochastically independent. The cluster sizes Mi ,
i = 1, . . . ,N , stay bounded as the number N of clusters goes to infinity. Theo-
rem 6.1 shows that the sample EE estimator (around the model parameter) is as-
ymptotically normal in the law of the product space. Conditions 1–3 were given by
Yuan and Jennrich [30] for the existence and consistency of θN and the asymptotic
normality of

√
N(θN − θ0). Conditions 1, 4 and 5 below imply the existence and

design-consistency of θ̂N and the design-asymptotic normality of
√

n(θ̂N − θN).

THEOREM 6.1. Consider a sequence of super-populations composed of N

independent random vectors associated to design spaces as in Definition 3.1. Let
f = limn n/N ≥ 0 as n → ∞. Note that we do not require that f = 0. We assume
the following conditions.

1. GN(θ0) → 0 with probability one.
2. There is a compact neighborhood B(θ0) of θ0 on which, with probability one, all

GN(θ) are continuously differentiable and the Jacobians ∂GN(θ)/∂θ converge
uniformly in θ to a nonstochastic limit J (θ) which is nonsingular at θ0.

3.
√

NGN(θ0) ⇒ N(0,
m) in the law of the super-population.
4. There is a compact neighborhood B(θ0) of θ0 on which ∂ĜN(θ)/∂θ con-

verge uniformly in the design probability to a nonstochastic (in design) limit
which coincides with J (θ) at θ0 for almost every ω ∈ �. Note that if ĜN(θ) =∑

i∈s cigi(θ), ci independent of θ and {GN(θ), N ≥ 1} are continuously differ-
entiable, then {ĜN(θ), N ≥ 1} are also continuously differentiable.

5.
√

nĜN(θN) ⇒ N(0,
d) in the law of the design as n → ∞ for almost every
ω ∈ �, where the variance–covariance 
d is nonstochastic in the super-
population. Let J = J (θ0) and 
 = J−1[
d + f 
m]J−1. Then we have, in
the law of the product space,

√
n(θ̂N − θ0) ⇒ N(0,
).(6.4)

Estimation of 
 from the sample data depends on the particular design under
consideration for the estimation of 
d , and on both the model assumed for the
variance–covariance structure of the super-population and the sampling design for
the estimation of 
m (see Example 6.1). The Jacobian matrix J = J (θ0) can be
estimated consistently by (∂ĜN/∂θ)(θ̂N): this follows from Assumptions 2 and 4
and the consistency of θ̂N [from (6.4)]. The proof of Theorem 6.1 is in the Appen-
dix.
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REMARK 6.1. Korn and Graubard [14] propose direct estimators of the
variance–covariance of the sample mean under different super-population mod-
els and sampling designs. See also Rubin–Bleuer [21]. In Example 6.1 we assume
a two-stage super-population model and design to estimate 
.

In Example 6.1, (i) we establish a model for the super-population variance-
covariance structure so that we can estimate the model variance matrix 
m from the
sample data and (ii) we examine the design conditions for the asymptotic normality
of

√
nĜN(θN) to hold in the finite population.

EXAMPLE 6.1 (General EE sample estimator under a stratified two-stage super-
population model and design). Assume the stratified two stage super-population
model of Example 3.1 with the addition of the auxiliary information given by Xhij

(h, i and j as in Example 3.1) and the two-stage design of Example 2.1. In this
example, we construct separate consistent estimators within each stratum and so
we need to assume that nh → ∞ and Nh → ∞, h = 1, . . . ,L.

Let the finite population EE, given by

GN(θ) = 1

M

L∑
h=1

Nh∑
i=1

ghi(θ),

with ghi(θ) = ∑Mhi

j=1 g(Yhij ,Xhij , θ), satisfy the first three conditions of Theo-

rem 6.1. Now let ĜN(θ) be the sample estimator of GN(θ), where ĜN(θ) re-
places θ̂N in Example 2.1. Assume M/N → m < ∞ as N → ∞. Also assume
nh/Nh = ch constant as Nh → ∞, for all h = 1, . . . ,L.

(i) Assume that the second stage observations ghij (θ) are i.i.d. r.v.s with means
µhi and variances σ 2

hi , j = 1,2, . . . ,Mhi . Furthermore, (µhi, σ
2
hi) are i.i.d. r.v.s,

where the µhis have model variances Vm(µhi) = γh, and the σ 2
his have model

expectations Em(σ 2
hi) = σ 2

h , i = 1,2, . . . ,Nh, h = 1, . . . ,L. Thus,

Vm

(√
NGN(θ)

) = (N/M)

L∑
h=1

{
Whσ

2
h + γh

(
Nh∑
i=1

M2
hi/Mh

)}
(6.5)

with Wh =
Nh∑
i=1

Mhi/M, h = 1, . . . ,L.

To obtain a (model) consistent estimator of Vm(
√

NGN(θ)), it is enough to get
consistent or asymptotically unbiased estimators of σ 2

h and γh, h = 1, . . . ,L. These
can be written as quadratic functions of the finite population values ghij = ghij (θ)

and, thus, they are finite population parameters:

σ̃ 2
h = 1

Nh

Nh∑
i=1

{
Mhi∑
j=1

g2
hij − g2

hi/Mhi

}/
(Mhi − 1), h = 1, . . . ,L,
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and

γ̃h = 1

Nh − 1

{
Nh∑
i=1

{
ghi

Mhi

}2

− 1

Nh

(
Nh∑
i=1

ghi/Mhi

)2}
, h = 1, . . . ,L,

where σ̃ 2
h and γ̃h, h = 1, . . . ,L, are model unbiased, as well as model consistent.

Any pair of design-consistent or asymptotically design-unbiased estimators σ̂ 2
h and

γ̂h of the respective finite population parameters σ̃ 2
h and γ̃h can replace σ 2

h and
γh, h = 1, . . . ,L, in (6.5) to yield an asymptotically unbiased estimator of 
m =
limN Vm(

√
NGN(θ)) in the product space.

(ii) To obtain the asymptotic normality of
√

nĜN(θN), we express ĜN(θN) as
the sum of n = n1 + · · · + nL independent, zero mean random vectors Zhk(θN),

ĜN(θN) = ĜN(θN) − GN(θN), ĜN(θN) =
L∑

h=1

Wh

1

nh

nh∑
k=1

Zhk(θN)

with Wh = Mh/M , Zhk(θN) = ∑Nh

i=1 ĝhi(θN)I k
hi/Mhi − ∑Nh

i=1 ghi(θN)/Mh, where
ĝhi(θN) denotes the second stage unbiased sample estimator of ghi(θN).

The design-based CLT for
√

nĜN(θN) with positive definite 
d = limn n ×∑L
h=1 W 2

hVd(Zk1(θN))/nh follows from conditions (C1)–(C3) in the Appendix,
with θ̂ k

h replaced by Zhk(θN).
As in Proposition 3.1, one can give conditions in the super-population so that

a Liapunov-type condition holds in the design space and the asymptotic design
variance 
d exists and is nonstochastic (condition 5 of Theorem 6.1). The super-
population conditions required for the latter are more complex than those stated in
Proposition 3.1, but they can be specified in the same way. We do not spell them
out here.

APPENDIX

Yung and Rao [31] designs conditions for the asymptotic normality of the
sample mean.

(C1) n1+δ ∑L
h=1

∑nh

k=1 Ed |Whθ̂
k
h/nh|2+δ = O(1) as n → ∞, θ̂ k

h as in Exam-
ple 2.1.

(C2) (n/M)maxh,i,j mhiwhij = O(1) as n → ∞, where mhi are the second stage
sample sizes and whij are the sampling weights.

(C3) 
N
d (ω) = nVd(θ̂N) → 
d positive definite as n → ∞, θ̂N as in Example 2.1.

PROOF OF PROPOSITION 3.1. Since if Em|X| is finite, then |X(ω)| is finite
a.s. ω, condition M1 implies (1/N)

∑L
h=1

∑Nh

i=1 |Yhi |2+δ = O(1) a.s. ω. (C′
1) fol-

lows from the boundedness of two terms once we take N = 2 and p = 2 + δ

in the inequality Ed |(1/N)
∑N

k=1 Xk|p ≤ (1/N)
∑N

k=1 Ed |Xk|p (see (7), page 95
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of [5]). Since |�Yh|2+δ = |Ed [θ̂ k
h ]|2+δ ≤ Ed |θ̂ k

h |2+δ , we only need to show that, for
all k = 1, . . . , nh, h = 1, . . . ,L,

∑L
h=1 WhEd |θ̂ k

h |2+δ = O(1) a.s. ω as N → ∞.

At the k-draw we select one cluster, so Ed |θ̂ k
h |2+δ = ∑Nh

i=1 |Yhi(ω)/Mhi |2+δphi =∑Nh

i=1 |Yhi(ω)|2+δM−1−δ
hi M−1

h . Since N ≤ M ,
∑L

h=1 WhEd |θ̂ k
h |2+δ ≤ (1/N) ×∑L

h=1
∑Nh

i=1 |Yhi |2+δ , which is O(1) when (M1) holds. �

PROOF OF REMARK 4.3. Under SRS we have Pd,m(Yi(k)(s,ω) ≤ a) =
(1/N)

∑N
i=1 P(Yi(ω) ≤ a), k = 1, . . . , n. For n ≥ 2, k 
= �, k, � = 1, . . . , n, under

SRSWOR we have

Pd,m

(
Yi(k)(s,ω) ≤ a, Yi(�)(s,ω) ≤ b

)
(A.1) = 1/[N(N − 1)]∑

i

∑
i 
=j

P
(
Yi(ω) ≤ a

)
P

(
Yj (ω) ≤ b

)
,

and under SRSWR we have

Pd,m

(
Yi(k)(s,ω) ≤ a,Yi(�)(s,ω) ≤ b

)
= (1/N2)

{∑
i

∑
i 
=j

P
(
Yi(ω) ≤ a

)
P

(
Yj (ω) ≤ b

)
(A.2)

+ ∑
i

P
(
Yi(ω) ≤ min(a, b)

)}
.

Under SRSWOR let P(Yi ≤ a) = p(a) for all i = 1, . . . ,N . Then Pd,m(Yi(k)(s,

ω) ≤ a) = p(a), k = 1, . . . , n, and the right-hand side in (A.1) is p(a)p(b),
which proves pairwise independence in the product space. Overall independence is
proved similarly. If the Y ’s are not identically distributed, we show dependence via
a counterexample. Let P(Y1 ≤ a) = p1 and P(Yi ≤ a) = p2 for i = 2,3, . . . ,N .
If we take N = 2, we have P(Yi(k) ≤ a) = [p1 + p2]/2, k = 1,2, and P(Yi(1) ≤ a,
Yi(2) ≤ a) = p1p2. Independence holds only when p1 = p2. Under SRSWR de-
pendence in the product space follows from (A.2). For discrete Y ’s,

Pd,m

(
Yi(k)(s,ω) = a, Yi(�)(s,ω) = b

)
(A.2′)

= (1/N2)

{∑
i

∑
i 
=j

P
(
Yi(ω) = a

)
P

(
Yj (ω) = b

)}
, a 
= b.

�

PROOF OF PROPOSITION 4.2. For s0 ∈ S, k 
= �, k, � = 1, . . . , n, we have, by
Proposition 4.1, part (ii),

P
(
Yi(k)(s,ω) ≤ a|s0

) =
N∑

i=1

P(Yi ≤ a)I k
i (s0)
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and

P
(
Yi(k)(s,ω) ≤ a, Yi(�)(s,ω) ≤ b|s0

)
(A.3)

=
N∑

i=1

N∑
j=1

P(Yi ≤ a, Yj ≤ b)I k
i (s0)I

�
j (s0).

In the WOR case we have I k
i (s0)I

�
i (s0) = 0 for every k 
= �, i = 1, . . . ,N , and

these terms disappear in the double sum, yielding independence. For samples
s0 ∈ S for which I k

i (s0)I
�
i (s0) = 1 for some i, the double sum above contains

nonzero terms where i = j . The terms corresponding to the repeated labels in the
product of the two distributions are different from their counterpart terms in the
joint distribution:

N∑
i=1

P(Yi ≤ a)P (Yi ≤ b)I k
i (s0)I

�
i (s0)


=
N∑

i=1

P
(
Yi ≤ min(a, b)

)
I k
i (s0)I

�
i (s0) for continuous Y ’s

and
N∑

i=1

P(Yi = a)P (Yi = b)I i
k(s0)I

�
i (s0)


=
N∑

i=1

P(Yi = a,Yi = b)I k
i (s0)I

�
i (s0) for discrete Y ’s.

�

PROOF OF PROPOSITION 4.3. Under P(·|sν) the Yνi(k), i = 1, . . . ,Nν , ν ≥ 1,
are i.i.d. r.v.s with mean zero and constant variance. That they are identically dis-
tributed like the original Y ’s follows by (A.3), and independence follows from
Proposition 4.2 for SRSWOR. As in Theorem 27.2 of [2], (27.9) holds, which
implies the Lindeberg condition and proves the result. �

PROOF OF PROPOSITION 4.4. We prove that, for each ω ∈ �, the right-hand
side of (4.5) is a probability measure on the product space, and that, for each
measurable set B in the product space, it is a version of the conditional probability
of B given S × F ([5], page 223). The first statement follows from the additivity
of p and the σ -additivity of the indicator functions. To prove the second, we note
first that p(s, ·) is F -measurable. Then it suffices to show that, on the elementary
rectangles B = s0 × F0, we have∫

S×F
p(s0,ω)IF0(ω)dPd,m = Pd,m

(
B ∩ (S × F)

)
, F ∈ F .
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The left-hand side above equals
∑

s∈S

∫
F∩F0

p(s0,ω)p(s,ω)dP by (4.2).
By Definition 2.3(ii), the sum above equals∫

F∩F0

p(s0,ω) dP = Pd,m({s0} × F ∩ F0). �

PROOF OF THEOREM 5.1. Let t ∈ R
�. We first omit indexing the populations.

Let

B(t) = {(s,ω) : θ̂ (s,ω) ≤ t} = ⋃
s∈S

{s} × Fs

with

Fs = {ω ∈ � : θ̂ (s,ω) ≤ t} ∈ F .

By Remark 4.1, Pd,m(B(t)) = ∑
s∈S

∫
� p(s,ω)IFs (ω)dP . Note that

F(t,ω) = p
({s : θ̂ (s,ω) ≤ t},ω) = ∑

s∈S

p(s,ω)IAω(s),(A.4)

where Aω = {s ∈ S : θ̂ (s,ω) ≤ t} ∈ C(S). For each (s,ω) the indicator function
of Fs coincides with the indicator function of Aω,

IFs (ω) = IAω(s).(A.5)

Using (A.5) in (A.4) and the formula for Pd,m(B(t)), we have

Pd,m(B(t)) =
∫
�

F(t,ω)dP and

(A.6)
Pd,m

(
B(t) ∩ E

) =
∫
�∩E

F(t,ω)dP, E ∈ F .

(i) This follows from P(λν ≤ u) = Pd,m(S ×{λν ≤ u}) and
∑

s∈S p(s,ω) = 1
for all ω ∈ �.

(ii) Fν(t,ω) converges in probability to F(t,ω) at points of continuity t .
Since 0 ≤ Fν(t,ω) ≤ 1, the bounded convergence theorem (Theorem 16.5 of [1],
page 180) implies ∫

�
Fν(t,ω)dP − F(t) → 0 as ν → ∞.(A.7)

(A.6) and (A.7) yield (ii),

P ν
d,m(Bν(t)) =

∫
�

Fν(t,ω)dP → F(t) as ν → ∞.
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(iii) Consider the indicator function Iν(u,ω) = I{ω : λν(ω)≤u}(ω). Using (A.6)
with Eν(u) = Sν × {ω :λν(ω) ≤ u}, the joint distribution function of (θ̂ν, λν) can
be expressed as

P ν
d,m{(s,ω) : (θ̂ν, λν) ≤ (t, u)} = Pd,m

(
Bν(t) × Eν(u)

) =
∫
�

Iν(u,ω)Fν(t,ω)dP,

and if H denotes the distribution function of λ, we have, for points of continuity t ,
u of F and H ,∫

�
Iν(u,ω) · Fν(t,ω)dP − F(t)H(u)

=
∫
�

Iν(u,ω)
(
Fν(t,ω) − F(t)

)
dP + F(t)

∫
�

(
Iν(u,ω) − H(u)

)
dP.

All functions are bounded by one, so the first term of the right-hand side converges
to zero by the bounded convergence theorem since, by hypothesis, Fν(t, ·) − F(t)

converges to zero in probability P at points of continuity t of F . The second term
also converges to zero by hypothesis. �

PROOF OF THEOREM 6.1. For simplicity we assume that f = n/N for all n:
√

n(θ̂N − θ0) = √
n(θ̂N − θN) + √

f
√

N(θN − θ0).(A.8)

Assumptions 1–3 imply the asymptotic normality of the second term on the right-
hand side of (A.8), in the law of the model (see [30]). This and Theorem 5.1(i)
imply convergence in the law of the product space. Next we observe that θ̂N ex-
ists and θ̂N − θN → 0 in design probability as n → ∞ for almost every ω ∈ �.
Indeed, the ĜN(θ) are continuously differentiable and design consistency implies
that ĜN(θ) converges to G(θ) (the limit of GN(θ) in [30]) in design probability.
Hence, we can apply to ĜN(θ) the techniques of Theorems 1 and 2 of [30], and,
thus, Assumptions 1 and 4 imply that θ̂N → θ0 in the design probability. Since the
above mentioned theorems also imply θN → θ0 a.s. in the model probability P ,
we have θ̂N − θN → 0 in the design probability a.s. ω. Conditions 4 and 5 im-
ply asymptotic normality of the first term in the right-hand side of (A.8). This, in
turn, implies convergence in the product space, by Theorem 5.1(ii). The two terms
in (A.8) are not stochastically independent in general. Theorem 5.1(iii) and As-
sumption 5 imply the “asymptotic independence” of the terms and the asymptotic
normality of the sum. �
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