
The Annals of Statistics
2005, Vol. 33, No. 6, 2732–2757
DOI: 10.1214/009053605000000570
© Institute of Mathematical Statistics, 2005
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A general structural equation model is fitted on a panel data set that con-
sists of I correlated samples. The correlated samples could be data from cor-
related populations or correlated observations from occasions of panel data.
We consider cases in which the full pseudo-normal likelihood cannot be used,
for example, in highly unbalanced data where the participating individuals
do not appear in consecutive years. The model is estimated by a partial likeli-
hood that would be the full and correct likelihood for independent and normal
samples. It is proved that the asymptotic standard errors (a.s.e.’s) for the most
important parameters and an overall-fit measure are the same as the corre-
sponding ones derived under the standard assumptions of normality and in-
dependence for all the observations. These results are very important since
they allow us to apply classical statistical methods for inference, which use
only first- and second-order moments, to correlated and nonnormal data. Via
a simulation study we show that the a.s.e.’s based on the first two moments
have negligible bias and provide less variability than the a.s.e.’s computed
by an alternative robust estimator that utilizes up to fourth moments. Our
methodology and results are applied to real panel data, and it is shown that
the correlated samples cannot be formulated and analyzed as independent
samples. We also provide robust a.s.e.’s for the remaining parameters. Addi-
tionally, we show in the simulation that the efficiency loss for not considering
the correlation over the samples is small and negligible in the cases with ran-
dom and fixed variables.

1. Introduction. Latent variable analysis has been used widely in the social
and behavioral sciences as well as in economics, and its use in medical and busi-
ness applications is becoming popular. Path analysis, confirmatory factor analysis
and latent variable models are the most popular psychometric models, and are
all special cases of structural equation modeling (SEM). Additionally, in econo-
metrics special cases of structural equation modeling are simultaneous equations,
errors-in-variables models and dynamic panel data with random effects. In latent
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variable models, underlying subject-matter concepts are represented by unobserv-
able latent variables, and their relationships with each other and with the observed
variables are specified. The models that express observed variables as a linear func-
tion of latent variables are extensively used, because of their simple interpretation
and the existence of computer packages such as EQS [9], LISREL [18] and PROC
CALIS (SAS Institute [27]). The standard procedures in the existing computer
packages assume that all the variables are normally distributed. The normality and
linearity assumptions make the analysis and the interpretation simple, but their ap-
plicability in practice is often questionable. In fact, it is rather common in many
applications to use the normality-based standard errors and model-fit test proce-
dures when observed variables are highly discrete, bounded, skewed or generally
nonnormal. Thus, it is of practical and theoretical interest to examine the extent of
the validity of the normality-based inference procedures for nonnormal data and
to explore possible ways to parameterize and formulate a model to attain wide
applicability. In the structural equation analysis literature, this type of research
is often referred to as asymptotic robustness study. Most existing results on this
topic have been for a single sample from one population. This paper addresses the
problem for multiple samples or multiple populations, and provides a unified and
comprehensive treatment of the so-called asymptotic robustness. The emphasis
here is the suggestion that proper parameterization and modeling lead to practical
usefulness and to a meaningful interpretation. It is the first study that shows robust
asymptotic standard errors (a.s.e.’s) and overall-fit measures for correlated samples
with fixed factors for models with latent variables. Novel formulas are provided for
the computation of the a.s.e.’s for the means and variances of the fixed correlated
factors. Also, in the case of random correlated factors we prove that the a.s.e.’s of
the means for the factors are robust. The superiority of the suggested a.s.e.’s to the
existing robust a.s.e.’s that involve the computation of third and fourth moments is
shown numerically. In a simulation study, the proposed a.s.e.’s are shown to have
less variability than the robust a.s.e.’s computed by the so-called sandwich estima-
tor. Also, the simulation studies were conducted to verify the theoretical results,
assess the use of asymptotic results in finite samples, show the robustness of the
power for tests and demonstrate the efficiency of the method relative to the full-
likelihood estimation method that includes all the covariances of the variables over
populations. The proposed method can be applied to all correlated data that can be
grouped as a few correlated samples. In these correlated samples the observations
are independent; for example, in panel data the correlated samples could be the
occasions. The proposed methodology models variables within the samples and
it can ignore the modeling of the variables between the correlated samples when
it is impossible, for example, in highly unbalanced panel data in which the par-
ticipating individuals do not appear in consecutive years. An application with real
panel data from the Greek banking sector illustrates the importance of the proposed
methodology and the derived theoretical results. In this example, it is shown that
the correlated samples cannot be formulated and analyzed as independent samples.
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A general latent variable model for a multivariate observation vector ν
(i)
j

with dimension p(i) × 1 that is an extension of the models considered by
Anderson [3, 4], Browne and Shapiro [14] and Satorra [28–33] is

ν
(i)
j = β(i) + B(i)ξ

(i)
j ,

(1)

with ξ
(i)
j =

(
ζ

(i)
j

ε
(i)
j

)
and i = 1, . . . , I ; j = 1, . . . , n(i),

under the following set of assumptions. The model is extended with fixed and
correlated-over-populations latent variables.

ASSUMPTION 1.

(i) There are two cases:

Case A: The variable ζ
(i)
j is (a) random with mean vector µζ(i) and covariance

matrix �ζ(i) , (b) correlated over i (i.e., the measurements of the j th individual
of the i1th population are correlated with the corresponding measurements of the
j th individual of the i2th population, for j ≤ min{n(1), n(2)}) and (c) independent
over j (for each population the measurements of the observed individuals are in-
dependent).

Case B: The variable ζ
(i)
j is (a) fixed with limiting mean vector µζ(i) =

limn(i)→∞ ζ̄ (i) and limiting covariance matrix �ζ(i) = limn(i)→∞ Sζ (i) and (b) cor-
related over i [see comments in case A(b)].

(ii) There exists ε
(i)
j = (ε

(i)′
0j , ε

(i)′
1j , . . . , ε

(i)′
L(i)j

)′, where (a) ε
(i)
0j ∼ N(0,�

ε
(i)
0

),

(b) ε
(i)
�j (� = 1, . . . ,L(i)) are independent over i, � and j with mean 0 and covari-

ance matrix �
ε
(i)
�

and (c) ζ
(i)
j are independent with ε

(i)
�j (� = 0,1, . . . ,L(i)) over

i and j .
(iii) The intercepts β(i), the coefficients B(i) and the variance matrices of the

normally distributed errors �
ε
(i)
0

can be restricted. Thus, they are assumed to be
functions of a vector τ .

(iv) The mean vectors µζ(i) , the variance matrices �ζ(i) of the correlated fac-
tors and the variance matrices of the nonnormal vectors �

ε
(i)
�

(� = 1, . . . ,L(i)) are

assumed to be unrestricted.

A common approach to verifying the identification and fitting the model is to
assume hypothetically that all ξ

(i)
j ’s are normally distributed and to concentrate on

the first two moments of the observed vector ν
(i)
j . The issue for the so-called as-

ymptotic robustness study is to assess the validity of such procedures based on the
assumed normality, in terms of inference for unknown parameters, for a wide class
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of distributional assumptions on ξ
(i)
j . It turns out that the type of parameterization

used in the model, restricting the coefficient B(i)(τ ) but keeping the variances �
ε
(i)
�

of the nonnormal latent variables ε
(i)
�j unrestricted, plays a key role in the study.

The model, the notation and the assumptions are explained by the following
example.

EXAMPLE 1. A two-population (I = 2) recursive system of simultaneous
equations with errors in the explanatory variables is considered. The model
is shown in (2). The system in (2) can be written in the matrix form ν

(i)
j =

α(i) + 
(i)ν
(i)
j + �(i)ζ

(i)
j + e(i)

j , which has the form of model (1) with β(i) =
(I(i) − 
(i))−1α(i),B(i) = (I(i) − 
(i))−1[�(i), I(i)] and ε

(i)
j = e(i)

j . The model is
also a special case of the LISREL model with no latent variables in the dependent
variables y(i), that is, y(i) = η(i), in the LISREL notation. The latent variables ζ

(1)
j

and ζ
(2)
j are correlated for each j = 1, . . . ,500, with correlation 0.4. That is, the

measurements of each individual from the second population are correlated with
the measurements of one individual from the first population. The first population
also has 500 individuals that are independent from all the individuals of the sec-
ond population. Note that the number of observed variables is different for the two
populations. Four measurements, x

(1)
j , y

(1)
1j , y

(1)
2j and y

(1)
3j , are taken from the first

population (p(1) = 4) and three measurements, x
(2)
j , y

(2)
1j and y

(2)
2j , are taken from

the second (p(2) = 3). For j = 1, . . . , n(i), with n(1) = 1000 and n(2) = 500,

x
(1)
j = ζ

(1)
j + e

(1)
0j , x

(2)
j = ζ

(2)
j + e

(2)
0j ,

y
(1)
1j = β1 + δ1ζ

(1)
j + e

(1)
1j , y

(2)
1j = β1 + δ1ζ

(2)
j + e

(2)
1j ,

(2)
y

(1)
2j = β2 + γ1y

(1)
1j + δ2ζ

(1)
j + e

(1)
2j , y

(2)
2j = β2 + γ1y

(2)
1j + δ2ζ

(2)
j + e

(2)
2j ,

y
(1)
3j = β3 + γ2y

(1)
2j + e

(1)
3j .

The parameters β1, β2, γ1, δ1 and δ2 do not depend on i. That is, they are
common for the two populations. These parameters belong to the vector τ . The
variables ζ

(1)
j and ζ

(2)
j can be fixed or nonnormal according to cases A and B of

Assumption 1. If all the errors are normal in accordance with the notation of As-
sumption 1, we have ε

(i)
0j = e(i)

j , while if e(i)
0j is normal and all the other errors

are nonnormal, then ε
(i)
0j = e

(i)
0j and ε

(i)
�j = e

(i)
�j for i = 1,2, j = 1, . . . , n(i) and

� = 1, . . . ,L(i) with L(1) = 3 and L(2) = 2. According to Assumption 1, only the
variances of the normal errors can be restricted to be the same over populations
and these variances belong to the vector τ .
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Further discussion about the model in (1) is given in Section 2. The model in (2)
of Example 1 is simulated in Section 4 and used as an example to explain the theory
in this paper.

Latent variable analysis of multiple populations was discussed by Jöreskog [17],
Lee and Tsui [20], Muthén [23] and Satorra [29, 30]. The so-called asymptotic
robustness of normal-based methods for latent variable analysis has been exten-
sively studied in the last 15 years. For exploratory (unrestricted) factor analysis,
Amemiya, Fuller and Pantula [2] proved that the limiting distribution of some
estimators is the same for fixed, nonnormal and normal factors under the assump-
tion that the errors are normally distributed. Browne [12] showed that the above
results hold for a more general class of latent variable models assuming finite
eighth moments for the factors and normal errors. Anderson and Amemiya [5],
and Amemiya and Anderson [1] extended the above results to confirmatory factor
analysis and nonnormal errors; they assumed finite second moments for the factors
and errors. Browne and Shapiro [14] introduced a general linear model and used
an approach based on the finite fourth moments that differs from that of Anderson
and Amemiya. Considering the model of Browne and Shapiro, Anderson [3, 4] in-
cluded nonstochastic latent variables and assumed only finite second moments for
the nonnormal latent variables. Latent variable models with mean and covariance
structures were studied by Browne [13] and Satorra [28]. Satorra [29–33] first
considered asymptotic robustness for linear latent models in multisample analy-
sis of augmented-moment structures. Additional studies on the asymptotic robust-
ness of latent variable analysis were conducted by Shapiro [37], Mooijaart and
Bentler [22] and Satorra and Bentler [35].

For the one-sample problem, asymptotic distribution-free (ADF) methods for
latent variable analysis were proposed to deal with nonnormal data (see, e.g.,
[8, 11, 23]). The ADF methods turned out to be problematic in practice, since the
fourth-order sample moments are very variable (see, e.g., [15, 24]). In this pa-
per mean and covariance structures are considered for a general multipopulation
model that contains fixed, normal and nonnormal variables; some of the nonnor-
mal variables are allowed to be correlated over populations. We use the approach
of Anderson and Amemiya [5] to show that the normal-based methods are applica-
ble for nonnormal and nonrandom data assuming finite second-order moments. We
also use extensively theory and notation from matrix analysis (see, e.g., [16, 21]).

Section 2 explains the suggested parameterization and the estimation procedure.
The theoretical results are derived and discussed in Section 3. Section 4 reports
results from simulation studies and that the proposed asymptotic standard errors
seem to be numerically more efficient than those derived by the sandwich esti-
mator. Our methodology and the theoretical results are applied and explained in
Section 5 by the fit of an econometric model with latent economic factors to real
data.
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2. Model, parameterization and procedure. In this paper we study the
model (1) introduced in Section 1. We consider I populations and we assume
that n(i) individuals are sampled from the ith population, i = 1, . . . , I , and that
p(i) measurements are taken from each sampled individual in the ith population.
Denote the multisample data set by ν

(i)
j , i = 1, . . . , I, j = 1, . . . , n(i), where ν

(i)
j

is the p(i) × 1 measurement vector from the j th individual in the ith population.
We consider a very general latent variable model that includes models widely used
in single population cases and covers a large class of distributional situations in
one form. To cover various distributional settings, it is convenient to assume that
the observed vector ν

(i)
j can be written as a linear combination of L(i) + 2 inde-

pendent latent vectors and that the latent vectors can be divided into three groups:
(1) a fixed or nonnormal vector that is correlated over populations ζ

(i)
j , (2) a ran-

dom vector ε
(i)
0j assumed to be normally distributed and (3) L(i) nonnormal vectors

ε
(i)
�j (� = 1, . . . ,L(i)). Note that the sample size n(i), the number of measured vari-

ables p(i) and the number of latent vectors L(i) generally differ over populations
(dependent on i). The generality of this model allows us to deal with cases where
slightly different variables are measured from different populations with possibly
different structures.

All normally distributed latent variables are included in ε
(i)
0j and their distribu-

tion may possibly be related through τ over populations i = 1, . . . , I . Other un-
specified or nonnormal random latent variables are divided into independent parts
� = 1, . . . ,L(i) with unrestricted covariance matrices. Case A of Assumption 1
with fixed ζ

(i)
j can represent a situation where the interest is in the model fitting

and estimation only for a given set of individuals and not for the populations. In
addition, the fixed ζ

(i)
j can be used in an analysis conducted conditionally on a

given set of ζ
(i)
j values. Such a conditional analysis may be appropriate when the

individuals j = 1, . . . , n(i) do not form a random sample from the ith population
and/or when a component of ν

(i)
j represents some dependency over I populations.

For example, the I populations may actually correspond to a single population
at I different time points. With ζ

(i)
j being latent and fixed, the limits of the un-

observable sample mean, µζ(i) , and of the sample covariance matrix, �ζ(i) , are
assumed to be unknown and unrestricted. All β(i)(τ ) and B(i)(τ ) are expressed in
terms of τ , which represents known or restricted elements and allows functional
relationships over I populations. Even though τ also appears in �

ε
(i)
0

(τ ), the ele-

ments of τ are usually divided into two groups: one for �
ε
(i)
0

(τ ), and another for

β(i)(τ ) and B(i)(τ ). Assumption 1(iii) and (iv) provide a particular identifiable
parameterization for the model in (1). For the single population case with I = 1,
various equivalent parameterizations have been used in practice. Some place re-
strictions on covariance matrices (e.g., by standardizing latent variables) and leave
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the coefficients unrestricted. The parameterization that leaves the covariance ma-
trices (and possibly some mean vectors) of latent variables unrestricted and that
places identification restrictions only on the coefficients and intercepts is referred
to as the errors-in-variables parameterization. For the single population case,
a parameterization with restricted covariance matrices generally has an equiv-
alent errors-in-variables parameterization, and the two parameterizations with
one-to-one correspondence lead to an equivalent interpretation. The one-sample
asymptotic robustness results have shown that the asymptotic standard errors for
the parameters in the errors-in-variables formulation computed under the normal-
ity assumption are valid for nonnormal data, but that the same does not hold un-
der parameterization with restricted covariance matrices. For the multisample, the
model in (1), we will show that the errors-in-variables type parameterization given
in Assumption 1 provides asymptotic robustness. However, for the multisample
case there are other reasons to consider the parameterization specified in Assump-
tion 1(iii) and (iv). As mentioned earlier, a multipopulation study is conducted
because the populations are thought to be different, but certain aspects of the struc-
ture generating data are believed to be common over populations. Suppose that the
same or similar measurements are taken from different populations. For example,
a similar set of psychological tests may be given to a number of different groups,
for example, two gender groups, groups with different occupations or educational
backgrounds, groups in varying socioeconomic or cultural environments, or differ-
ent time points in the growth of a group. The subject matter or scientific interest
exists in making inferences about some general assertion that holds commonly for
various populations. Such interest is usually expressed as relationships among la-
tent (and observed) variables that hold regardless of the location and variability
of the variables. Then a relevant analysis is to estimate and test the relationships,
and to explore the range of populations for which the relationships hold. The pa-
rameterization in Assumption 1(iii) and (iv) with unrestricted �

ε
(i)
�

and generally

structured B(i)(τ ) corresponds very well with the scientific interest of the study,
and allows an interpretation consistent with the practical meaning of the problem.
Note that �

ε
(i)
�

, i = 1, . . . , I, � = 1, . . . ,L(i), are unrestricted covariance matrices

and do not have any relationships over i or �, and that β(i)(τ ) and B(i)(τ ) can have
known elements and elements with relationships over i and �. On the other hand,
the covariance matrix �

ε
(i)
0

of the normal latent vector ε
(i)
0j can have restrictions or

equality over populations through τ . This gives the generality of the model in (1)
with only one normal latent vector, because a block diagonal �

ε
(i)
0

corresponds to

a number of independent subvectors in the normal ε
(i)
0j . In addition, the possibility

of restrictions on �
ε
(i)
0

over populations can also be important in applications. For

example, if the same measurement instruments are applied to different samples,
then the variances of pure measurement errors may be assumed to be the same
over the samples. However, the normality assumption for pure measurement errors



SAMPLES WITH LATENT VARIABLES 2739

is reasonable in most situations, and such errors can be included in ε
(i)
0j . Assump-

tion 1(iv) and (v) do not rule out latent variable variances and covariances with
restrictions across populations, but do require the latent variables with restricted
variances to be normally distributed. This requirement is not very restrictive in
most applications, as discussed above, but it is needed to obtain the asymptotic
robustness results given in the next section. The general form of β(i)(τ ) and in-
clusion of the fixed latent vector allow virtually any structure for the means of
the observed ν

(i)
j . Hence, the errors-in-variables type parameterization in Assump-

tion 1(iii) can solve the identification problem, provide a general and convenient
way to represent the subject-matter theory and concepts, and produce asymptotic
robustness results presented in the next section.

For the multisample data ν
(i)
j in (1), let ν̄(i) and S(i)

ν be the sample mean vector
and sample covariance matrix (unbiased) for the ith population, i = 1, . . . , I . It is
assumed that the sample covariance matrices S(i)

ν are nonsingular with probabil-
ity 1. Define

c(i) =
(

ν̄(i)

vec
(
S(i)

ν

))
, c =


 c(1)

...

c(I )


 .(3)

We consider model fitting and estimation based only on c, because such pro-
cedures are simple and have some useful properties. Also note that Assump-
tion 1 does not specify a particular distributional form of observations beyond
the first two moments and specifies no particular correspondence or relationship
between samples. Let θ be a dθ × 1 vector containing all unknown parameters
in E(c) = γ (θ) under the model in (1) and Assumption 1, and let θ = (τ ′, υ ′)′,
where τ and υ contain the parameters mentioned in Assumption 1(iv) and (v), re-
spectively. That is, τ contains parameters that can be restricted, while υ contains
the parameters that cannot be restricted over populations. Under the model in (1)
and Assumption 1, we compute the expected means

µ(i)
ν (θ) = E

(
ν̄(i)) and �(i)

ν (θ) = E
(
S(i)

ν

)
.

For the estimation of θ , we consider an estimator

˘

θ obtained by minimizing over
the parameter space

Q(θ) =
I∑

i=1

n(i){tr
[
S(i)

ν �(i)−1
ν (θ)

] − log
∣∣S(i)

ν �(i)−1
ν (θ)

∣∣ − p(i)

(4)
+ [

ν̄(i) − µ(i)
ν (θ)

]′
�(i)−1

ν (θ)
[
ν̄(i) − µ(i)

ν (θ)
]}

.

The obtained estimator

˘

θ is a slight modification of the normal maximum like-
lihood estimator (MLE). The exact normal MLE can be obtained if [(n(i) −
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1)/n(i)]S(i)
ν is used in place of S(i)

ν . Asymptotic results are equivalent for the two
estimators. We consider

˘

θ because it can be computed with existing computer
packages. The form of Q(θ) corresponds to the so-called mean and covariance
structure analysis, but the existing covariance structure computer packages with-
out mean structure can be used to carry out the minimization of Q(θ) using a
certain technique (see, e.g., the EQS and LISREL manuals). Note that other esti-
mation techniques that are asymptotically equivalent to MLE can be used, such as
minimum distance, which is actually a generalization of the generalized method of
moments. In the next section, asymptotic distribution results for

˘

θ are derived for
a broad range of situations.

3. Theoretical results. The main results of this paper are presented in Theo-
rem 1. We now define a set of assumptions for the model in (1) that assumes normal
and independent variables over populations under the same parameterization as in
Assumption 1.

ASSUMPTION 1B.

(i) For all i and j (i = 1, . . . , I ; j = 1, . . . , n(i)) ζ
(i)
j ∼ N(µζ(i) ,�ζ (i)) and are

independent.
(ii) For all � = 0,1, . . . ,L(i), ε

(i)
� ∼ N(0,�

ε
(i)
�

).

(iii) The matrices β(i),B(i) and �
ε
(i)
0

can be restricted and are assumed to be

functions of a vector τ .
(iv) The matrices µζ(i) ,�ζ (i) and �

ε
(i)
�

, � = 1, . . . ,L(i), are assumed to be un-

restricted.

Theorem 1 shows similarities and differences of the limiting results for the two
different sets of Assumptions 1 and 1B.

THEOREM 1. Assume that the model in (1) holds under Assumption 1. In ad-
dition we make the following assumptions:

ASSUMPTION 2. There exists limnm→∞(n(i)/n) = r(i), where nm = min{n(1),

. . . , n(I)} and n = ∑I
i=1 n(i).

ASSUMPTION 3. (∀ ε > 0)(∃ δ > 0) � |γ (θ) − γ (θ0)| < δ ⇒ ‖θ − θ0‖ < ε,
where ‖x‖ = √

x′x and θ0 is the limiting true value of θ .

ASSUMPTION 4. For all i = 1, . . . , I, β(i)(τ ), B(i)(τ ) and �
ε
(i)
0

(τ ) are twice

continuously differentiable in the parameter space of τ . The columns of the matrix
∂γ (θ0)/∂τ ′ are linearly independent.
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THEOREM 1 (cont.).

(i) Then

V(τ )
G = V(τ )

NI ,

where V(τ )
G and V(τ )

NI are the asymptotic covariance matrices of �τ under the gen-
eral Assumption 1 and under the standard Assumption 1B, respectively (the initials
NI stand for normality and independence over populations and G stands for the
general set of Assumptions 1). The matrix V(τ )

G is the part of the matrix V(θ)
G that

is the asymptotic covariance matrix for the estimated vector θ .
(ii) For the asymptotic covariance matrices for the mean vectors �µζ(i) , (1) in

case A of Assumption 1 with fixed ζ
(i)
j ,

V
(µ

ζ(i) )

G = V
(µ

ζ(i) )

NI − �ζ(i)(5)

holds, and (2) in case B of Assumption 1 with random ζ
(i)
j ,

V
(µ

ζ(i) )

G = V
(µ

ζ(i) )

NI(6)

holds.
(iii) For the asymptotic covariance matrices for vec(

�
�ζ(i)), (1) in case A of

Assumption 1 with fixed ζ
(i)
j ,

V
(vec(�

ζ(i) ))

G = V
(vec(�

ζ(i) ))

NI − 2

n(i)

(
�ζ(i) ⊗ �ζ(i)

)
(7)

holds, and (2) in case B of Assumption 1 with random ζ
(i)
j and assuming that ζ

(i)
j

have finite fourth moments,

V
(vec(�

ζ(i) ))

G = V
(vec(�

ζ(i) ))

NI + 1

n(i)
Var

[
vec

(
ζ (i)ζ (i)′)] − 2

n(i)

(
�ζ(i) ⊗ �ζ(i)

)
(8)

holds.

(iv) The function Q(θ), defined in (4), evaluated on its minimum

˘

θ converges

to a chi-square distribution, Q(

˘

θ)
d−→χ2

q , with q = ∑I
i=1[p(i) + p(i)(p(i) + 1)/

2] − dθ .

PROOF OF THEOREM 1. For the proof we need the following three lemmas.

LEMMA 1. Assume that the model in (1) holds. If Assumptions 1, 2 and 3 hold,
then as nm → ∞,

˘

θ
p−→ θ0.(9)
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PROOF. From Assumption 1 and the law of large numbers, c
p−→γ (θ0),

which implies Q(θ0)
p−→0. Since Q(θ) > 0 ∀ θ and

˘

θ minimizes Q, we have

Q(

˘

θ)
p−→0. From the last result and Assumption 2 we get γ (

˘

θ)
p−→γ (θ0), and (9)

holds from Assumption 3. �

LEMMA 2. Let θ̄n = (τ ′
0, υ

′
n)

′, where τ0 is the true value of τ and υn contains
the vectors ζ̄ (i), vec(Sζ (i) ) and vec(S

ε
(i)
�

), � = 1, . . . ,L(i), for all i = 1, . . . , I .

(i) Then, under the model and the assumptions considered in Lemma 1, and
under Assumption 4,

√
n(

˘

θ −θ̄n) = A0
√

n[c − γ (θ̄n)] + op(1),(10)

where A0 is free of n(i) and

A0 = (J′
0�

−1
0 J0)

−1J′
0�

−1
0 ,(11)

where J0 = J(γ (θ0)) is the Jacobian of γ (θ) evaluated at θ0, �−1
0 = �−1(θ0) =

[r(1)�(1)−1(θ0)] ⊕ · · · ⊕ [r(I )�(I)−1(θ0)] and �(i)−1(θ) = �(i)−1(θ) ⊕ {1
2 ×

[�(i)−1(θ) ⊗ �(i)−1(θ)]}.
Recall that the ratios r(i) were defined in Assumption 2 and c was defined in (3).

The symbol ⊕ is the direct sum for matrices.
(ii) Also,

Q(

˘

θ) = n[c − γ (θ̄n)]′M0[c − γ (θ̄n)] + op(1)(12)

with M0 = �−1
0 (I − A0).

PROOF. (i) From Taylor’s expansion and Lemma 1 it turns out that there exists
θ∗ on the line segment between

˘

θ and θ̄n such that

J′[Q(

˘

θ)] = J′[Q(θ̄n)] + H[Q(θ∗)](

˘

θ −θ̄n),(13)

where J and H are the Jacobian and Hessian matrices, respectively. Now for the
Jacobian and Hessian matrices we proved that

J′[Q(θ̄n)] = −2J′
0�

−1
0 [c − γ (θ̄n)] + op(n−1/2

m ),(14)

H[Q(θ∗)] p−→2J′
0�

−1
0 J0.(15)

The result in (10) follows if we use (14), (15) and the fact that J[Q(

˘

θ)] = 0 in (13).
(ii) After doing several matrix modifications, we get the quadratic form

Q(

˘

θ) = n[c − γ (

˘

θ)]′�−1(

˘

θ)[c − γ (

˘

θ)] + op(1).(16)
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Also, there exists θ∗ on the line segment between

˘

θ and θ̄n such that

γ (

˘

θ) − γ (θ̄n) = J[γ (θ∗)](

˘

θ −θ̄n).(17)

From (17) and (10) we get that

c − γ (

˘

θ) = [I − J0A0][c − γ (θ̄n)] + op

(
1√
n

)
,(18)

and the result follows from (16) and (18). �

LEMMA 3. (i) For the model in (1) under Assumption 1 it holds that

c − γ (θ̄n) = Ew,(19)

where E is a constant matrix, w consists of the subvectors w(i), i = 1, . . . , I ,
and w(i) consists of the subvectors ε̄(i),vec(S

ε
(i)
0 ε

(i)
0

) and vec(Sx(i)y(i) ) for all

x(i) and y(i) such that x(i) �= y(i), i = 1, . . . , I, and x(i),y(i) = ζ (i), ε
(i)
0 , ε

(i)
1 , . . . ,

ε
(i)

L(i) .
(ii) The limiting distribution of

√
nw is the same under Assumptions 1 and 1B.

PROOF. (i) We proved that the components of c − γ (θ̄n) are written in the
form

ν̄(i) − µ(i)
ν (θ̄n) = B(i)

[
0

ε̄(i)

]
,(20)

Sν(i) − �ν(i)(θ̄n) = B(i)

[
0 Sζ (i)ε(i)

Sε(i)ζ (i) Sε(i)ε(i) − Dε(i)

]
B ′(i),(21)

where Dε(i) = 0 ⊕ S
ε
(i)
1

⊕ · · · ⊕ S
ε
(i)

L(i)

. The result in (19) follows by noting in

(20) and (21) that the components of c − γ (θ̄n) are products of constant matri-
ces (functions of B(i)) and the subvectors of w(i), and also using the property
vec(ABC) = (C′ ⊗ A)vec(B).

(ii) Note that the matrix Sε(i)ε(i) − Dε(i) does not depend on S
ε
(i)
� ε

(i)
�

for � =
1, . . . ,L(i). Also note that within the populations for each (i) the subvectors of√

nw(i) are independent and their limiting distributions do not depend on the
nonnormality of the latent variables and on the fixed latent variables in case A
(see [4], Theorem 5.1). Now between the populations, the limiting covariance be-
tween w(i) and w(m) for i �= m is 0 despite the correlation of ζ

(i)
j and ζ

(m)
j for

each j . This holds because the limiting covariance between
√

nvec(Sζ (i)ε(i) ) and√
nvec(Sζ (m)ε(m)) is 0 since the errors are assumed to be independent over popula-

tions. �
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Now we return to the proof of Theorem 1. For (i) Lemmas 2(i) and 3(i) show
that

√
n(�τ − τ0) is a linear combination of

√
nw and thus the result follows from

Lemma 3(ii).
For cases (ii) and (iii) we use the respective equations

√
n
(�µζ(i) − µ0

ζ (i)

) = √
n
(�µζ(i) − ζ̄ (i)) + √

n
(
ζ̄ (i) − µ0

ζ (i)

)
,(22)

√
nvec

(�
�ζ(i) −�0

ζ (i)

) = √
nvec

(�
�ζ(i) −Sζ (i)

) + √
nvec

(
Sζ (i) − �0

ζ (i)

)
,(23)

where µ0
ζ (i) and �0

ζ (i) are the true values of the corresponding parameters. In both

(ii) and (iii), for case A with fixed factors, we need the limiting distributions of the
first vectors in the second parts of (22) and (23). For case B with random factors,
we need the limiting distributions of the vectors in the first parts of (22) and (23).
Since the procedure is the same for (ii) and (iii), we explain the proof only for part
(iii). So for case A in (23) we compute the limiting covariance matrices of all three
vectors under the Assumption 1B,

V
(vec(�

ζ(i) ))

NI = V2 + 2

n(i)

(
�ζ(i) ⊗ �ζ(i)

)
.(24)

From Lemmas 2(i) and 3 it follows that the first vector of the second part of (23)
has the same limiting distribution under Assumption 1 with fixed factors and under

Assumption 1B. Thus V2 = V
(vec(�

ζ(i) ))

G and the result follows by solving (24) for

V
(vec(�

ζ(i) ))

G .
Now for case B in (iii) we compute the limiting covariance matrices under As-

sumption 1B and under Assumption 1, and we get, respectively,

V
(vec(�

ζ(i) ))

NI = V∗
NI + 2

n(i)

(
�ζ(i) ⊗ �ζ(i)

)
,(25)

V
(vec(�

ζ(i) ))

G = V∗
G + 1

n(i)
Var

[
vec

(
ζ (i)ζ (i)′)].(26)

Again, from Lemmas 2 and 3 it follows that V∗
G = V∗

NI. The result follows by
solving (25) for V∗

NI and substituting the result in (26).
(iv) Lemmas 2(ii) and 3(i) show that Q(

˘

θ) is a quadratic function of
√

nw, and

the result follows from Lemma 3(ii) and the known result that Q(

˘

θ)
d→χ2

q under
Assumption 1B. �

Theorem 1(i) and (iv) actually extend Theorem 1, proved by Satorra [33] for
independent groups, to correlated populations and it can be applied to any type of
correlated data that can be grouped into a few groups with uncorrelated data (e.g.,
in panel data by grouping the occasions).
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To derive large sample results for

˘

θ minimizing (4) under the model in (1) and
Assumption 1, we consider the case where all n(i) increase to infinity at a common
rate and use nm as the index for taking a limit in Assumption 2. Assumption 3
is a standard identification condition used in Lemma 1. Note that the true value
of θ in case A of Assumption 1 with fixed variables depends on n(i), since it con-
tains ζ̄ (i) and Sζ (i) . Thus, we denote the limit of the true value as θ0. Lemma 1
gives the consistency of the estimator

˘

θ that minimizes (4) for the model in (1).
Hence, under very weak distributional specifications in Assumption 1, the esti-
mator

˘

θ is consistent for the limiting true value θ0. In fact, it is clear from the
proof that the consistency of

˘

θ holds for any general mean and covariance struc-

ture model γ (θ) = E(c) satisfying c
p→γ (θ0). To characterize the limiting behav-

ior of

˘

θ in more detail, especially for the assessment of the so-called asymptotic
robustness properties, it is convenient to consider an expansion of

˘

θ , not around the
true value or the limiting true value θ0, but around some other quantity θ̄n defined
in Lemma 2 that depends on the unobservable sample moments of the nonnormal
latent variables ζ (i) and ε

(i)
� (� = 1, . . . ,L(i)). Thus, the limiting true value υ0 that

consists of the true covariance matrices of the random latent variables is replaced
in θ̄n by υn that consists of the unobservable sample moments. While statistical in-
ference is to be made for the true value of θ, θ̄n with an artificial quantity υn plays
a useful role in assessing the property of �τ in

˘

θ , as well as in characterizing the
limiting distribution of the whole

˘

θ without specifying any moments for ζ (i) and
ε
(i)
� (� = 1, . . . ,L(i)) higher than second order. To obtain an expansion of

˘
θ around

θ̄n, we need some smoothness conditions for β(i)(τ ),B(i)(τ ) and �
ε
(i)
0

(τ ), and the

full-column rank of the Jacobian matrix J[γ (θ0)] that are stated in Assumption 4.
Since the linear independence of the columns of J[γ (θ0)] associated with the υ

part of θ is trivial, we need to assume only that the τ part of the model is spec-
ified without redundancy. Thus in Assumption 4 we just assume that ∂γ (θ0)/∂τ ′
is of full-column rank and Lemma 2 expresses the leading term of

√
n(

˘

θ −θ̄n)

in terms of c − γ (θ̄n). Note that the use of θ̄n in Lemma 2 produces an expan-
sion of

˘

θ around θ̄n with the existence of only second moments of ζ (i) and ε
(i)
�

(� = 1, . . . ,L(i)). It can be shown from the proof that the expansion in Lemma 2

holds for the general model γ (θ) = E(c) and for any θ̄n with θ̄n
p→ θ0 provided that√

n[c − γ (θ̄n)] converges in distribution. However, the special choice of θ̄n for the
model in (1) makes the result of Lemma 2 practically meaningful. Lemma 3 is
actually the key tool in the proof that shows asymptotic robustness. It expresses√

n[c − γ (θ̄n)] in terms of
√

nw, which has the same limiting distributions under
Assumptions 1 and 1B. Thus, the main difficulty in the proof of Theorem 1(i) is
to express

√
n(�τ − τ0) in terms of a vector

√
nw whose limiting distribution does

not depend on the existence of fixed, nonnormal and correlated-over-population
variables. Similarly, we proved Theorem 1(iv) by expressing Q(

˘

θ) as a quadratic
function of

√
nw. The formulas in (5) and (7) in Theorem 1 show what corrections
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should be made when we have fixed variables in order to get correct asymptotic
standard errors for �µζ(i) and vec(

�
�ζ(i)). These results are novel even for the case

with one population. The formula (6) in Theorem 1(ii)(2) shows that the asymp-
totic standard errors for �µζ(i) are robust. Equation (8) in Theorem 1(iii)(2) gives

the limiting covariance matrix for vec(
�
�ζ(i)) when ζ (i) are random. Formula (8)

involves the computation of fourth-order cumulants of the latent variables ζ (i) in
practice. This is possible in practice and we obtain satisfactory results when we
use the errors-in-variables parameterization and have normal errors. For instance,
in Example 1 for the model in (2) with normal errors the fourth-order cumulants
for ζ (i) are equal to the fourth-order cumulants of the observed variables for x(i),
since the fourth-order cumulants of the normal errors are equal to 0. This tech-
nique was used in our simulation study and the results are illustrated in the next
section. Note that in most practical cases the measurement errors follow a normal
distribution.

Although the paper refers to the multisample case the same theory and method-
ology can be applied to longitudinal data. That is, two different applications, cor-
related populations and panel data, can be considered by fitting the same kind of
modeling and applying the results presented in this paper. A similar method de-
veloped for longitudinal data, known as the general estimating equation (GEE)
method, was proposed by Liang and Zeger [19]. The GEE method was proposed
for generalized linear models with univariate outcome variables. In this paper sev-
eral response variables are observed and their relationships are explained by a few
latent variables within the time points. It can be shown that a special case of the
GEE method, using the identity matrix as the “working” correlation matrix, is a
special case of the model considered in this paper. This can be done by treating the
outcome variable and the covariates of the generalized linear models as observed
variables in the model considered in this paper and setting latent variables equal
to covariates by fixing error variances equal to zero. Thus, the results presented in
this paper can be also applied to simpler models such as generalized linear models
for longitudinal data. On the other hand, the use of a “working” correlation matrix
as the one used in the GEE method, could be also used in this methodology in
order to increase the efficiency of the method.

Now we define a generalized version of the so-called sandwich estimator used
by the GEE method for generalized linear models with the identity matrix as the
“working” correlation matrix, and also used by Satorra [28–33] for latent variable
models. We generalize this matrix for correlated populations and we are going to
compare it with our proposed matrix V(θ)

G defined in Theorem 1 theoretically and
numerically. A generalized version of the sandwich (S) estimator is

V(θ)
S = A0E(Sd)A′

0,(27)
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where A0 is defined in (11) and E(Sd) is the expected mean of the sample matrix
Sd that involves third- and fourth-order sample moments defined as

Sd =




1

n(11)
S(11)

d · · · 1

n(1I )
S(1I )

d

...
. . .

...
1

n(I1)
S(I1)

d · · · 1

n(II)
S(II )

d




with

S(ik)
d = 1

n(ik) − 1

n(ik)∑
j=1

(
d(i)

j − d̄(i))(d(k)
j − d̄(k))′

and

d(i)
j =

(
ν

(i)
j

vec
[(

ν
(i)
j − ν̄(i)

)(
ν

(i)
j − ν̄(i)

)′]
)

,

where i, k = 1, . . . , I, j = 1, . . . , n(i), and n(ik) denotes the number of correlated
individuals between the ith and the kth populations. Note that the form of the
matrix V(θ)

S in (27) can be derived from Lemma 2. Equation (12) in Lemma 2
also holds if we replace θ̄n by the true value of θ , and the result follows by not-
ing that Var[c − γ (θ0)] = E(Sd). Theorem 1 actually gives an alternative form
of some of the parts of the matrix V(θ)

S . The parts of the matrix V(θ)
G defined in

Theorem 1 are actually theoretically exactly the same as the corresponding parts
of the matrix V(θ)

S . In practice, the matrix A0 = A(θ0) is estimated by

˘

A0 = A(

˘

θ)

and the matrix E(Sd) is estimated by Sd . Despite the fact that the two matrices
V(θ)

G and V(θ)
S are theoretically equal in practice, the asymptotic standard errors

(a.s.e.’s) computed by the matrix V(θ)
G have less variability than the a.s.e.’s com-

puted by the matrix V(θ)
S . This happens because the estimation of V(θ)

S involves
third- and fourth-order moments that are more variable than the second moments
of the matrix V(θ)

G . The matrix V(θ)
G involves fourth moments only in the formula

of Theorem 1(iii)(2), but these moments do not affect the computation of the other
a.s.e.’s. This advantage of using the matrix V(θ)

G is shown in the simulation study
in the next section.

4. Simulation study. We simulate the model in (2) of Example 1. A sam-
ple from both populations was generated 1000 times. The simulation was
done twice: once with fixed ζ (i) and once with random ζ (i) (cases A and B
of Assumption 1, respectively). In both cases, ζ

(1)
j and ζ

(2)
j are related (cor-

related over populations) and were generated as linear combinations of chi-
square random variables with 10 degrees of freedom. In case A, a sample
of (ζ

(1)
j , ζ

(2)
j ) was generated with sample means, variances and covariance
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ζ̄ (1) = 4.95, ζ̄ (2) = 9.95, s2
ζ (1) = 1.97, s2

ζ (2) = 1.95 and sζ (1)ζ (2) = 1.36, respectively,

and the set of (ζ
(1)
j , ζ

(2)
j ) was used in all 1000 Monte Carlo samples. In

case B, 1000 independent samples were generated for {ζ (1)
j , j = 1, . . . ,1000; ζ (2)

j ,

j = 1, . . . ,500}. The true means, variances and covariance of ζ
(1)
j and ζ

(2)
j are

µζ(1) = 5,µζ (2) = 10, σ 2
ζ (1) = 2, σ 2

ζ (2) = 2 and σζ (1)ζ (2) = 1.4. Note that the above
means and variances are estimated, but the covariance σζ (1)ζ (2) is not, in accordance
with the estimation method that we suggest. Note that we suggest this method for
several populations with quite unbalanced data. In this study it is easy to use the
full likelihood and estimate the covariance σζ (1)ζ (2) , but this is not always true in
more complicated studies. By not estimating some of the covariances between the
two populations, we lose some efficiency, for example, we obtain larger a.s.e.’s.
We discuss the efficiency of the method in more detail later in this section.

In both cases A and B, 1000 samples were generated for independent e
(i)
� , i =

1,2, � = 0,1, . . . ,L(i), with L(1) = 3 and L(2) = 2. The errors e
(i)
0j , i = 1,2, are

normally distributed with mean 0 and unknown variance σ 2
e
(i)
0

, while all the other

errors e
(i)
�j for i = 1,2, � = 1, . . . ,L(i), were generated from a chi-square distrib-

ution with 10 degrees of freedom, χ2
10, with adjusted mean 0 and variance σ 2

e
(i)
�

.

The variance for e
(i)
0j is common for the two populations, σ 2

e0
= σ 2

e
(1)
0

= σ 2
e
(2)
0

. In

both cases with fixed and random ζ
(i)
j , the true values for the error variances are

σo2
e
(i)
0

= σo2
e
(i)
1

= 0.1 and σo2
e
(i)
2

= σo2
e
(i)
3

= 0.2, and the true value for the vector τ is

τ 0 = (1,2,−1,−0.1,0.1,−0.01,1,0.1). The parameters of τ are shown in the
first column of the first part of Table 1. In accordance with the notation of this pa-
per, the vector θ = (τ ′, υ ′)′, where υ contains σ 2

e
(i)
�

(i = 1,2, � = 1, . . . ,L(i)) and

the means and variances of ζ
(i)
j (i = 1,2). To estimate θ , we use normal MLE by

minimizing (4) despite the appearance of fixed and nonnormal variables, and when
we estimate the parameters, we are pretending that we do not know the true values
of the parameters.

Some of the results in the simulation study are shown in the first part of Table 1.
Columns 2, 4 and 6 show results from case A with fixed ζ

(i)
j , while columns 3,

5 and 7 show results from case B with random ζ
(i)
j . Columns 2 and 3 of Table 1

compare the a.s.e.’s (Gse) computed by the matrix V(τ )
G in Theorem 1(i) with the

Monte Carlo standard errors (MCse). All the ratios are 1 or very close to 1 and
this means that the proposed a.s.e.’s have very small bias. Bias exists because we
use the a.s.e.’s as estimates for the true s.e.’s of the parameters in finite samples.
Actually, Lemma 1 proves that the bias converges to 0 as the sample sizes increase
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TABLE 1
Results from the sumulation study∗

Efficiency of the method
Bias of Gse Variability of Gse relative to the full likelihood

Gse
MCse

SMCse
GMCse

PL−MCse
FL−MCse

Parameters τ Fixed Random Fixed Random Fixed Random

β1 1.01 1.01 1.63 1.56 0.99 1.03
β2 1.01 0.99 1.78 1.68 1.01 1.05
β3 0.97 1.00 1.84 1.50 1.00 1.06
γ1 1.00 0.99 1.44 1.47 1.00 1.04
γ2 0.97 0.99 2.02 1.56 1.01 1.05
δ1 1.00 1.00 1.65 1.57 1.00 1.03
δ2 1.00 0.98 1.60 1.44 1.02 1.06
σ 2
e0

0.99 0.99 2.68 1.56 1.00 1.03
Results for γ1 under different distribution assumptions—degrees of freedom for

ζ
(i)
j ∼ χ2(d1) and e

(i)
k,j ∼ χ2(d2)

d1 d2
1 1 1.00 1.00 1.59 1.69 1.01 1.09
3 3 1.00 1.01 1.55 1.43 1.01 1.07
3 10 0.99 0.98 1.48 1.41 1.01 1.07

10 3 0.99 1.00 1.51 1.51 1.01 1.04

∗ Monte Carlo standard errors (MCse) for the estimated parameters in τ versus the proposed a.s.e.’s

(Gse) of �τ , computed by V(τ )
G defined in Theorem 1. Comparison between the MCse for Gse

(GMCse) and the MCse for the a.s.e.’s computed by the sandwich estimator, V(θ)
S , given in (27)

(SMCse). MCse computed under the full likelihood (FL) and under the partial likelihood (PL). Re-

sults are shown for cases A and B of Assumption 1 with fixed and random ζ
(i)
j .

to infinity. In this study, for sample sizes n(1) = 1000 and n(2) = 500, the bias is
negligible.

Now we compute Monte Carlo standard errors for the a.s.e.’s computed by the
matrix V(θ)

G (GMCse) and for the a.s.e.’s computed by the matrix V(θ)
S (SMCse),

defined in (27). The ratio (SMCse)/(GMCse) compares the variability of the two
different estimates of the a.s.e.’s. This ratio is computed for the parameters in τ

and the results are shown in columns 4 and 5 of Table 1 for both cases with fixed
and random ζ

(i)
j . All the ratios are significantly larger than 1 and this fact indicates

that the a.s.e.’s computed by the sandwich estimator V(θ)
S have larger variability

than the a.s.e.’s computed by our suggested estimator V(θ)
G .

Now, as to the efficiency of the method, we computed the a.s.e.’s under the full
likelihood (FL) and under the partial likelihood (PL) given in (4). The ratio of the
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two a.s.e.’s,

efficiency = PL − MCse

FL − MCse
,(28)

is given for all the parameters in τ in the last two columns of Table 1. These
ratios actually show the efficiency of the method relative to the FL. In both cases
the efficiency is very satisfactory since the ratios are close to 1. The efficiency
loss is very small for case A with fixed ζ

(i)
j and relatively small for case B with

random ζ
(i)
j .

In the second part of Table 1, we make the nonnormal distributions more skewed
to the right by changing the degrees of freedom, d1, and d2, for ζ

(i)
j ∼ χ2(d1) and

e
(i)
k,j ∼ χ2(d2). All the results remain the same for case A with fixed ζ

(i)
j and the

only difference in case B with random ζ
(i)
j is that the efficiency ratio of the method

relative to the full likelihood (last column) becomes larger but remains smaller than
1.10 even in the extreme case with 1 degree of freedom for both d1 and d2. Thus,
the derived asymptotic standard errors give satisfactory results for distributions
with very long tails that often appear in applications (e.g., in finance and banking).

For the parameters µζ(1) ,µζ (2) , σ 2
ζ (1) and σ 2

ζ (2) we used the formulas in (5), (6),
(7) and (8) provided in Theorem 1(ii) and (iii) and we derived results similar to the
previous ones. It should be pointed out that the sandwich estimator does not pro-
vide correct a.s.e.’s for case A with fixed ζ

(i)
j for the parameters µζ(1) ,µζ (2) , σ 2

ζ (1)

and σ 2
ζ (2) . Our novel formulas in (5) and (7) show what corrections should be made

in order to obtain the correct a.s.e.’s in this case. The a.s.e.’s are evaluated at the

estimated value of θ,

˘

θ . Note that all the a.s.e.’s are functions of θ except the ones
for �σ 2

ζ (1) and �σ 2
ζ (2) (elements of the matrix

�
�ζ(i) in Theorem 1) that require fourth

moments (or cumulants) for ζ
(i)
j . In general, the fourth-order cumulants, ψ , are

prescribed by the following property: if x = y + z with y and z independent ran-
dom variables, then ψx = ψy + ψz. Thus, in the model used in the simulation, it

holds that ψx(i) = ψζ(i) +0, since the errors, e(i)
0j , are assumed to be normal, having

fourth-order cumulants equal to 0. Thus, the sample fourth-order cumulants of x(i)

were used for the computation of the a.s.e.’s for �σ 2
ζ (1) and �σ 2

ζ (2) .
The a.s.e.’s can be used for hypothesis testing of the parameters. The power of

the tests is also robust when the sample sizes are quite large due to the applicability
of the multivariate central limit theorem. In the above simulation study, we use, as
an example, H0 : δ1 = 0 versus H1 : δ1 < 0 in case A with fixed ζ

(i)
j . Using level of

significance α = 0.05, H0 is rejected when z < −1.645 where z =

˘

δ1 /�σ 2
δ1

. Thus,
the expected power (EP) is approximately

EP(δ∗
1) = �

(
−1.645 + δ∗

1

MCse for δ1

)
= 0.956,(29)
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where the � function is the standard cumulative normal distribution and we com-
pute the power for the actual value of δ1, δ

∗
1 = −0.01. We also compute the simu-

lated power (SP) as

SP = # of times that [

˘

δ1 /(a.s.e. of

˘

δ1)] < −1.645

1000
= 0.967.(30)

Thus, the results support the robustness of power for nonnormal and correlated
populations. The power for overall-fit measures was investigated by Satorra and
Saris [36] and Satora [34] in structural equation models.

The robustness of the chi-square test statistic is shown in Table 2 for case A with
fixed ζ

(i)
j . The mean and the variance of the 1000 simulated values of Q(

˘

θ) in (4)
are close to the expected 6 and 12, respectively. Also, the simulated percentiles in
the second row are close to the expected ones given in the first row of Table 2. For
similar studies using simpler models, see [30, 32, 33] and [25].

In summary, the model in (1) with the errors-in-variables parameterization can
formulate the multipopulation analysis in a meaningful fashion. The correspond-
ing statistical analysis under the pseudo-normal-independence model gives a sim-
ple and correct way to conduct statistical inferences about the parameter vector τ

without specifying a distributional form or dependency structure over populations.
In practice, τ contains all the parameters of direct interest. The asymptotic co-
variance matrix and standard errors can be readily computed using existing proce-
dures, and provide a good approximation in moderately sized samples. The pro-
posed a.s.e.’s have smaller variability than the variability of the robust sandwich
estimator, provide high efficiency relative to the full-likelihood method and can
be used for hypothesis testing with robust power. For instance, in the simulation
study for one of the most important parameters, δ1, in case A with fixed ζ

(i)
j , the

variability ratio is 1.65 (see Table 1), the efficiency ratio is 1.00 (see Table 1) and
the power of the test H0 : δ1 = 0 versus H1 : δ1 < 0 is 0.967. That is, if the standard
deviation of our proposed a.s.e. for δ1 is 1, then the standard deviation of the a.s.e.
for δ1 computed by the robust sandwich estimator is 1.65. Also, our proposed a.s.e.
for δ1 is close enough to the a.s.e. for δ1 using the full likelihood, and the power
of the test is very high, 0.967, and very close to the expected power, 0.960.

TABLE 2
Monte Carlo mean, variance and percentiles for the chi-square test statistics with 6

degrees of freedom

Mean = 6 Variance = 12 10% 25% 50% 75% 90% 95% 99%

6.0 11.7 9.2 23.6 49.7 75.9 90.5 96.3 98.9
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5. Application. An application for model (1), estimated by minimizing (4),
and for Theorem 1 is presented by analyzing a data set from the Bank of Greece
with annual statements for the period 1999–2003. We examine the relationship be-
tween asset risk and capital in the Greek banking sector. As capital, we use total
capital over total bank assets (capital-to-asset ratio). The variable for total capital
includes core capital (tier I) plus supplementary capital (tier II) minus deductions
such as holdings of capital of other credit and financial institutions. As measures
for asset risk, we use the two main components of risk-weighted assets which re-
flect credit and market risk. There is a two-way direction effect between capital
and asset risk, and these relationships can be analyzed in a multivariate setting
with simultaneous equations; see [7] for the life insurance industry. Baranoff, Pa-
padopoulos and Sager [6] compared the effect of two measures for asset risk to
capital structure by approaching latent variables for the risk factors via a dynamic
structural equation model, and they pointed out the differences between large and
small companies. They fitted latent variable models on a balanced data set concen-
trating on companies for which data for all years are available. In such balanced
cases we ignore companies that have been bankrupt or have been merged with
other companies, and new companies that started after the first year. In many stud-
ies, researchers are interested in examining such companies and fit latent variables,
such as macroeconomic and risk factors or measurement errors, in a highly unbal-
anced data set. Papadopoulos and Amemiya [26] discussed the disadvantages of
the existing methods for unbalanced data. The methodology proposed in this paper
is appropriate for highly correlated, nonnormal and unbalanced data. Also, Theo-
rem 1 ensures robust asymptotic standard errors and overall-fit measures.

In this paper we analyze first differences of the logarithmic (ln) transformation,
which actually approximate percentage changes, in order to avoid spurious regres-
sion, nonstationarity and cointegration to some extent. The explicit form of the
model is

� ln
(

capital

assets

)(t)

j

= β1ζ
(t)
j + ε

(t)
1j ,

� ln
(

credit risk

assets

)(t)

j

= β2ζ
(t)
j + ε

(t)
2j ,

(31)
t = 2000, . . . ,2003, j = 1,2, . . . , n(t),

� ln
(

market risk

assets

)(t)

j

= β3ζ
(t)
j + ε

(t)
3j .

The above model is a confirmatory factor analytic model with one underlying fac-
tor, ζ

(t)
j , that explains the relationships of the three observed variables, and it is a

simple case of model (1). The parameter β1 is fixed equal to 1, for identification
reasons, and this actually assigns the latent factor, ζ (t)

j , to have the same units as the



SAMPLES WITH LATENT VARIABLES 2753

TABLE 3
Results for the coefficients βk, k = 1,2,3, of model (31) for several cases: for all available data
(column 2) and for data that arise by restricting one of the observed variables to be significantly

positive (> 0.05) (columns 3, 5 and 7) or be negative (< −0.05) (columns 4, 6 and 8)∗

Without Restrictions on Restrictions on Restrictions on
restrictions capital-to-asset ratio credit risk ratio market risk ratio

All > 0.05 < −0.05 > 0.05 < −0.05 > 0.05 < −0.05
n = 68 n = 23 n = 39 n = 37 n = 18 n = 26 n = 41

β1 0.96 0.53 0.47 0.61 1.00 0.82 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
(—) (—) (—) (—) (—) (—) (—)

β2 0.45 0.36 0.57 0.16 −0.03 0.54 0.58
0.46 0.68 1.21 0.25 −0.03 0.66 0.58

(1.95) (1.58) (0.43) (0.94) (−0.13) (2.18) (4.57)
β3 0.48 1.00 0.16 1.00 0.54 0.73 0.51

0.50 1.88 0.34 1.64 0.54 0.89 0.51
(1.98) (3.00) (0.56) (4.69) (2.74) (2.37) (3.76)

∗For each cell we report the standardized (first row; see [10] for a definition) and the unstandardized
(second row) coefficients, and the value of the z test [unstandardized coefficient over its asymptotic
standard error (a.s.e.)]. The sum of the sample sizes for the four years, n(2000) +n(2001) +n(2002) +
n(2003), appears in the third row for each case.

corresponding observed variable. The variables ζ
(t)
j , ε

(t)
2j and ε

(t)
3j are assumed to

follow nonnormal distributions, since the observed variables have long tails, which
is very common for financial variables. These variables also have unrestricted vari-
ances over time due to the heteroskedasticity over time of the observed variables.
By viewing ε

(t)
1j as measurement error, then as a smooth and invariant latent vari-

able over time it is assumed to follow a normal distribution with equal variances
over time. Also, we assume that the autocorrelation of the observed variables is
explained by the autocorrelation of ζ

(t)
j and that the errors ε

(t)
kj , k = 1,2,3, are in-

dependent over time, which is a common assumption when we analyze differences
and applications in this analysis. In general, if there is still autocorrelation after
taking the first differences, we can try second differences, and so on.

Frequently, in finance and banking we are interested in examining the relation-
ship between asset risk and capital ratio, particularly when the asset risk increases
or decreases significantly. In these cases the restricted variables of asset risk have
truncated distributions, in addition to their long tails, and the issue of robustness
of standard methods to such nonnormal data becomes very important and neces-
sary. Especially in the cases with restricted variables, the already unbalanced data
lose the appearance of the banks in consecutive years, since they do not satisfy the
required condition every year. Therefore, it is very difficult and in many, if not all,
applications it is impossible to model the time series structure. Then methodolo-
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TABLE 4
Pattern of missing data for the case with differences of the ln’s for market risk ratio < −0.05∗

Group Number of banks 2000 2001 2002 2003

1 2 0 0 0 2
2 1 0 0 1 0
3 2 0 0 2 2
4 4 0 4 0 4
5 1 0 1 1 0
6 3 0 3 3 3
7 1 1 0 1 0
8 1 1 0 1 1
9 1 1 1 0 1

10 1 1 1 1 0
11 1 1 1 1 1
Total number of banks 18 5 11 11 14

∗In the last four columns the nonzero numbers indicate that for the corresponding group (num-
bered in column 1) the number of banks stated in column 2 appears in these particular years
labelled in row 1. The nonzero numbers in columns 2–6 are the same in each row.

gies that focus on modeling relationships between variables within the occasions,
such as the proposed model in (1), become very attractive and useful.

Table 3 shows results for model (31) using the proposed methodology for all
data and for data arising by restricting one of the observed variables. For more de-
tails, see the explanation in Table 3. Table 4 shows the explicit pattern of missing
values for the case with market asset risk less than −0.05. Thus, if we try to refor-
mulate the four correlated samples as independent samples based on the missing
pattern of the banks, then we end up with 11 independent samples that have very
small sample sizes—smaller than four—and most of them having just one obser-
vation. Therefore, the analysis of balanced data is not possible since there is only
one bank that appears in all four years that satisfies the required restriction. Also,
the analysis of time series structure is not possible, since all samples that have
banks appearing in any two or more consecutive years have sample sizes less than
three. The methodology suggested in this paper can be applied to four correlated
samples with observations from the four years, respectively. The sample sizes for
the four years are 5, 11, 11 and 14 from 2000, 2001, 2002 and 2003, respectively,
and the sum of the four samples is 41 (see the last row in Table 4). According to
our methodology, we analyze 41 observations from banks that appear in at least
one year. In this case, there are 18 different banks that appear in some of the four
years. It should be noted that the estimated parameters of interest, β2 and β3, be-
long to the vector τ and thus, according to Theorem 1(i), their asymptotic standard
errors can be computed by the covariance matrix V(τ )

NI . The computation of V(τ )
NI

involves moments only of first and second order, and this issue is very important
especially when the sample size, as in this example, is small. Only the asymptotic
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covariance matrix V
(vec(�

ζ(i) ))

G , defined in (8), requires fourth-order moments for
its computation, and for its use we need larger sampler sizes than the sample sizes
of this example. Thus, we can fit panel data models of moderate sample sizes rel-
ative to the number of estimated parameters and make statistical inference for the
most important parameters without using moments of order higher than two in the
analysis.

Also, in the case with all banks (with no restriction on any observed variable),
there are 20 different banks that provide data for some of the four years, creating
a very unbalanced data set with only 12 banks appearing in all four years. As
Table 3 shows in this case, if we add the banks that appear every year, then we
have a total of 68 observations from the 20 banks. Actually, these 68 observations
were analyzed in four correlated samples, giving consistent estimates, and correct
and efficient asymptotic standard errors relative to the sandwich estimator, despite
the nonnormality and autocorrelation of the variables, according to Theorem 1.

The standardized coefficients in Table 3, in the case without restrictions on the
observed variables (column 2), indicate that the latent factor, ζ

(t)
j , is strongly as-

sociated with the capital-to-asset ratio, 0.96, and has almost the same degree of
correlation with the two measures for asset risk, 0.45 and 0.48. The results signif-
icantly change when we restrict one of the observed values on significantly posi-
tive or negative. When we restrict the capital-to-asset ratio on positive values, the

factor ζ
(t)
j coincides with market risk, and gives a stronger and significant corre-

lation with capital-to-asset ratio than the one with credit risk. The results found
by restricting capital-to-asset ratio on negative values are not statistically signif-
icant. When we restrict the credit risk ratio on positive and on negative values,
the factor ζ

(t)
j coincides with market risk and capital-to-asset ratio, respectively,

and is significantly correlated with capital-to-asset ratio and market risk, respec-
tively, 0.61 and 0.54, and not with the other variable. Comparing the results from
the last two columns to the results of column 2, we observe that the standardized
coefficients for β2 and β3 are higher in these columns than the ones in column 2.
Also note that in column 7 the market risk gives a much higher standardized co-
efficient, 0.73, than the credit risk, 0.54, and indicates the strongest relationship
between capital-to-asset ratio and asset risk. All in all, as expected, the capital-
to-asset ratio is always positively correlated to both credit and market asset risk.
Also, the results change when we restrict one of the observed variables to be pos-
itive or negative, and thus it is worthwhile. Even though the panel data are highly
unbalanced and additionally lose their consecutive appearance over the years, our
methodology can be applied and can provide correct statistical inference.
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