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THE TOPOGRAPHY OF MULTIVARIATE NORMAL MIXTURES1
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Multivariate normal mixtures provide a flexible method of fitting high-
dimensional data. It is shown that their topography, in the sense of their key
features as a density, can be analyzed rigorously in lower dimensions by use
of a ridgeline manifold that contains all critical points, as well as the ridges of
the density. A plot of the elevations on the ridgeline shows the key features of
the mixed density. In addition, by use of the ridgeline, we uncover a function
that determines the number of modes of the mixed density when there are two
components being mixed. A followup analysis then gives a curvature function
that can be used to prove a set of modality theorems.

1. Introduction.

1.1. The topography of a density. Fitting a mixture model offers a primary
data reduction through the number, location and shape of its components. How-
ever, in more complex settings we would like to know more about how the com-
ponents interact to describe an overall pattern of density. What, for example, is the
modal structure, or in a richer sense, the configuration of major features? The goal
of this paper is to develop new insights into the topography of multivariate normal
mixture densities, with the special aim of providing tools that are useful even in
high-dimensional data.

Description of a multimodal density is challenging even in one dimension. For
unimodal models, the density shape might be described through concepts like
skewness and kurtosis. When the density is multimodal, the emphasis is usually
shifted to the number and location of modes, since the modes are the dominant fea-
ture, and are themselves potentially symptomatic of underlying population struc-
tures. A common approach to multimodal data structures is to use a mixture model
because it provides a decomposition of the sampled population into a set of ho-
mogeneous components in a way that is consistent with the multimodal density
configuration.

However, the set of modes is not in one-to-one correspondence with the distinct
components. For example, in a univariate normal mixture model, two components
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can be similar enough that their mixture creates a single mode. If the population
is well described by such a two component but-unimodal density, the analyst can
construct two competing hypotheses. One is that the population has two homoge-
neous groups with normal shape, and the other is that there is just one group and it
has a unimodal but nonnormal shape. Knowledge of these competing hypotheses
could then lead to further scientific investigation.

Our purpose here is to describe the complex density shapes that can arise in a
multivariate data set. To do so, we will appeal to the language and imagery of the
earth’s topography. Suppose we wish to describe the main features of a contour
plot of a bivariate density f (x, y). We equate this to the problem of describing the
surface features of a land mass, where the elevation at a point (x, y) is equated with
the bivariate density f (x, y). The local maxima of the density are the peaks, and
their location, together with elevation, provides a first-order description of topogra-
phy. But in a richer sense, mountains are usually aggregated into mountain ranges,
in which the neighboring peaks are connected through ridges. The perceived sep-
aration of two neighboring peaks is then determined by the elevation at the lowest
point on this ridge, the saddlepoint between them.

Here we will show how to create such a description for a mixture of high-
dimensional normals or similar distributions, like multivariate-t . Our results are
closely related to ideas in Morse theory, which is the mathematical study of the
topology of surfaces based upon their differential structure [15, 16]. We will point
out these relationships along the way.

1.2. Relevant literature. The literature on determination of the number of
modes in normal mixture models has focused primarily on univariate mixtures.
In fact, there is a simple description of modality when one is mixing two univari-
ate components. de Helguero [5] determined necessary and sufficient conditions
for bimodality in the mixture of two univariate normals with equal variances and
mixing proportions. Later, conditions for bimodality in the mixture of univari-
ate normal distributions with unequal variance and unequal mixing proportions
were studied by Eisenberger [6], Behboodian [1] and Robertson and Fryer [20].
Kakiuchi [10] and Kemperman [11] addressed conditions for bimodality using
nonnormal component densities.

Moreover, for the mixture of univariate normals, Robertson and Fryer [20] de-
veloped explicit formulae that one can use to determine if there are one or two
modes, and further showed that there can be no more than two. This work, which
can be shown to be a corollary of one of our results (Theorem 3), shows that modal-
ity is determined not only by the separation between the normal components, but
also by the mixing proportion π , with values near 0 and 1 tending to suppress extra
modes.

Some approaches to understand the modal behavior of multivariate normal mix-
tures can be found in recent machine learning literature (see [3]), but their results
are limited to all components having the same covariance structure.
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1.3. Our results. At this stage let us develop our notation. We will denote
the dimension of the multivariate density by D and the number of components
of the mixture by K . All our topographical methods work for arbitrary D, but,
for dimensionality reasons, our primary focus will be on cases where the number
of components is K = 2 or 3. However, we also obtain a number of results for
arbitrary K. As long as K −1 is less than D, we can provide a dimension reduction
to the problem.

In particular, if K = 2, a tremendous dimension reduction is possible, from D

(arbitrary) down to one. In Section 2 we show that the problem of finding the
modes for K components can be reduced to examining the density values on a
(K − 1)-dimensional manifold of �D , which we call the ridgeline surface. Sur-
prisingly, the ridgeline surface does not depend on the mixing proportion π . We
then design graphical and analytical tools to describe the density on this manifold.
One of our key results is that this surface has a ridge-like property that enables one
to determine global features from those that are local to the ridgeline surface.

In Section 3 we demonstrate plots of the density on the ridgeline, which we
call elevation plots. One of the surprising results in our investigation is that, in
a mixture of two multivariate normals, the statement “a mixture of two normals
cannot have more than two modes” is false, unlike the univariate problem.

Next, in Section 4, we go into a deeper analysis of the modal structure. For
K = 2 we have constructed a function �(·) that does not depend on π , but whose
plot can be used to determine the number and location of modes for each value
of π . In Section 5 we develop a geometric analysis which shows that there ex-
ists a fundamental curvature function κ(·) whose zeroes determine the modality
potential of a pair of component densities. For D = 1 this can be used to prove
the Robertson and Fryer [20] results. For larger D this result can be used to prove
modality results for certain important special cases, such as equal or proportional
covariance matrices.

Finally, Section 6 provides interpretation of our results, possible ways of gen-
eralizing these results and lists some unanswered questions on the topography of
multivariate normal mixtures.

2. The ridgeline manifold. A K-component mixture of D-dimensional nor-
mals can be represented by the probability density function

g(x) = π1φ(x;µ1,�1) + π2φ(x;µ2,�2) + · · · + πKφ(x;µK,�K),
(1)

x ∈ �D,

where πj is the mixing proportion of component j , πj ∈ [0,1], ∑K
j=1 πj = 1, and

φ(x;µ,�) is the density of a multivariate normal distribution with mean µ and
variance �. We will sometimes use φj (x) as shorthand notation for φ(x;µj ,�j ),
and call φj the j th component density.
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Our goal in this section is to show that, for any D-dimensional, K-component
normal mixture, we can define a (K − 1)-dimensional surface, which is guaran-
teed to include all the critical points (modes, antimodes and saddlepoints) of the
D-dimensional mixture density. We will then show that plotting the density val-
ues in this (K − 1)-dimensional space is completely informative about the main
topographic features of the density in D-dimensional space.

2.1. The (K − 1)-dimensional ridgeline manifold. To find this manifold, we
examine the structure of the critical points of g (i.e., all values of x where the first
derivative of g is equal to 0). First we need to introduce some terminology:

DEFINITION 1. The (K − 1)-dimensional set of points

SK =
{
α ∈ �K :αi ∈ [0,1],

K∑
i=1

αi = 1

}
(2)

will be called the unit simplex. The function x∗(α) from SK into �D defined by

x∗(α) = [α1�
−1
1 + α2�

−1
2 + · · · + αK�−1

K ]−1

(3)
× [α1�

−1
1 µ1 + α2�

−1
2 µ2 + · · · + αK�−1

K µK ]
will be called the ridgeline function. It will sometimes be written as x∗

α . The image
of this map will be denoted by M and called the ridgeline surface or manifold. If
K = 2, it will be called the ridgeline, as it is a one-dimensional curve.

For K = 2 the ridgeline can be represented as

x∗(α) = [ᾱ�−1
1 + α�−1

2 ]−1[ᾱ�−1
1 µ1 + α�−1

2 µ2],(4)

where α ∈ [0,1] and ᾱ = 1 − α. As α varies from 0 to 1, the image of the func-
tion x∗(α) defines a curve from µ1 to µ2.

REMARK 1. Note that the ridgeline function x∗(α) and, hence, the mani-
fold M, depend on the means and variances of the component densities, but not
the mixing proportions πj .

We next show that all the modes and saddlepoints of the full density g(x) must
occur in M. We will later show how their exact location depends on the values of
the πj ’s.

THEOREM 1. Let g(x) be the density of a K-component multivariate normal
density as given by (1). Then all of g(x)’s critical values and, hence, modes, anti-
modes and saddlepoints, are points in M.

PROOF. See the Appendix. �
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The ridgeline surface has a simple structure if the component variances �i are
equal. The following result can be found in [3].

COROLLARY 1. If �i = �, then the convex hull of the means µj of the com-
ponent densities contains all critical points of the density g.

PROOF. The manifold M equals the convex hull. �

To illustrate the ridgeline curve, we consider the following simple example:

EXAMPLE 1 (Two components, three modes, unequal variance). The mixture
density with D = 2 and K = 2, and the parameters

µ1 =
(

0
0

)
, �1 =

(
1 0
0 0.05

)
,

µ2 =
(

1
1

)
, �2 =

(
0.05 0

0 1

)
, π1 = π2 = 1

2 .

Figure 1 shows the contours of the density given in Example 1. Overlaid on the
contour plot is the ridgeline curve, showing how it passes through the three modes
and saddlepoints of the density g.

REMARK 2. Morse theory is used in the analysis of terrains [4] and water-
sheds [17], albeit with varying terminology. One can define a “critical net” or “wa-
tershed” as a map that describes the terrain through the location of the critical

FIG. 1. Contour plot and ridgeline curve (- - - - -) for the mixture density given in Example 1.



THE TOPOGRAPHY OF MIXTURES 2047

points in its elevation function, together with one-dimensional curves called “sep-
aratrices” that connect these critical points. A flow line represents the path taken
by water under gravity, and a separatrix is defined to be a flow line that connects
two critical points. The flow line from a local maximum to a saddlepoint therefore
creates a division of the terrain into two “catchment basins,” as flow lines do not
cross. Mathematically, a flow line is a line of steepest descent (or ascent when re-
versed), so that the flow line is always moving in the direction of the gradient. It
is therefore always moving orthogonally to the elevation contours. For K = 2 our
ridgeline curve has properties similar to the separatrices, as we shall show, but is
not one itself. In particular, the separatrices for a mixture of two normals depend
on the value of π , but the ridgeline curve does not.

2.2. The ridgeline elevation plot. The next step in our analysis is to consider
the diagnostic properties of the elevation plot, which is a plot of the ridgeline
elevation function defined by

h(α) = g(x∗(α)).

We start by considering the case where K = 2, so α is one-dimensional. Fig-
ure 2(a) shows the elevation plot of the distribution of Example 1. One might hope
that the number and location of the modes and antimodes of the elevation plot
might indicate to us the number and location of the modes and saddlepoints of the
original density. We will make this rigorous through further analysis in the next
subsection.

REMARK 3. The elevation plot carries an inherent visual distortion relative to
the original density plot. This distortion arises because the distance between two

FIG. 2. Ridgeline elevation for the bivariate normal mixture of Example 1 along the ridgeline
path x∗(α), expressed as a function of (a) parameter α and (b) the arclength L(α). Three local
maxima representing the three modes of the density are visible near α = 0, 0.5 and 1 in (a), which
corresponds to L(α) = 0, 1 and 2 in (b).
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α values, say α1 and α2, may not accurately reflect the distances between x∗(α1)

and x∗(α2) as measured along the ridgeline. For example, the saddlepoints in the
contour plot of Figure 1 have a distance from the endpoints that is not well repre-
sented on the α-scale in Figure 2(a). For K = 2 this distortion can be corrected by
replacing the α scale with L(α), the arclength of the ridgeline path x∗(α) from 0
to α [see Figure 2(b)].

REMARK 4. Theorem 1 can be easily generalized to other families of multi-
variate distributions. If a density characterized by parameters (µ,�) depends on x
only as a decreasing function of the Mahalonobis distance (x − µ)′�−1(x − µ),
then the ridgeline manifold is exactly the same as given here. An example of this
type is the multivariate t distribution (see [13, 18]).

2.2.1. Ridgeline-like properties. We now verify that the modes and antimodes
in the ridgeline elevation plots, such as in Figure 2, necessarily correspond to
modes and saddlepoints in the original density. Recall that in terrain analysis [4]
a separatrix is the line connecting the highest points along a ridge and separating
drainage basins from one another. We have already indicated that our ridgelines
are not true separatrices. However, confirmation that the ridgeline elevation plot is
fully informative about the main features of g arrives by showing that the ridge-
line surface has local properties similar to a separatrix. This section is devoted to
making this idea mathematically precise.

If a person walks from peak A to peak B along a separatrix path, then this pas-
sage would be characterized by the fact that to the left and right, perpendicularly,
the ridge falls away into two drainage basins. In other words, one stands at a local
maximum in elevation of the mountain cross-section perpendicular to the path. Be-
cause of this, any time one reaches a point along the path that is locally maximal in
elevation relative to the other points on the path, it must also be a local maximum
to the entire nearby surface. By the same logic, when one reaches a local minimum
along the path, it must be a saddlepoint to the surface. In this way one can infer the
nature of the critical points on the whole surface from just the elevations along the
path.

The motivation for our analysis arises from the following geometric property
of the ridgeline curve x∗(α) when K = 2. Consider any contour {x :φ1(x) = c} of
the first component density. This forms an ellipse. Provided that µ2 is not inside
this ellipse, one can create a contour of the second component, say {x :φ2(x) = d},
such that the two ellipses intersect at a single point x0. One can show that x0 is
necessarily a point on the ridgeline curve, and, in fact, all points on the ridgeline
curve are the “kissing points” of two such ellipses. Now, consider any point x that
is on the hyperplane separating the two ellipses, but is not x0. Since it is in neither
ellipse, it must have a smaller density value under φ1 and φ2 than x0 does. But
this means that g(x) < g(x0), regardless of the value of π . That is, x0 is a local
maximum relative to all points in the hyperplane. In fact, it must be a maximum
relative to all points not in the two ellipses, independently of the value of π .
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It is also clear (from its above geometric description) that the local direction of
the ridgeline path never lies in the hyperplane. Hence, if the derivative of the ele-
vation along this path becomes zero at a point, there is a full rank set of directions
in which the directional derivatives are zero and, hence, the gradient is zero at this
point, making it a critical point.

To make this argument precise and to extend it to the multivariate case, we need
to develop some notation. If K = 2, so that α is a scalar, the derivative vector
d(α) = dx(α)/dα of the ridgeline points in the direction of the curve’s travel. If
K > 2, then α is a vector, and the K − 1 derivative vectors of x(α) with respect
to α1, . . . , αK−1, written d1, . . . ,dK−1, represent a basis for the space of possible
directions of travel within the ridgeline surface. Using (3), these can be found as

dj = S−1
α (vj − vK),

where for fixed α we have defined the matrix Sα = ∑
αj�

−1
j and vectors vj =

�−1
j (x∗(α) − µj ). We next define a linear subspace of vectors that are orthogonal

to the surface’s direction vectors dj in an appropriate sense,

W = {w : w′Sαdj = 0 ∀ j = 1, . . . ,K − 1}.
THEOREM 2. If w ∈W, then along the path {x(α) + δw : δ ∈ �} the func-

tion g(x) takes its maximum value at δ = 0.

PROOF. See the Appendix. �

COROLLARY 2. Every critical point α of h(α) corresponds to a critical
point x(α) of g(x). A critical point α of h(α) gives a local maximum of g(x) if
and only if it is a local maximum of h(α). If D > K − 1, so that the h(α) plot is
a true dimension reduction, then g(x) has no local minima, only saddlepoints and
local maxima. In general, for D ≥ K − 1, at a critical point of h(α) whose second
derivative matrix has m negative eigenvalues the function g(x) will have a criti-
cal point whose second derivative matrix has an additional D − K + 1 negative
eigenvalues corresponding to the dimension of the orthogonal directions w.

PROOF. The directional vectors, together with their orthogonal comple-
ment W, span the space, and we know that the W vectors are all directions of
local maximization. �

3. Some illustrative examples. Before we proceed further with the theory,
we present some examples to illustrate the theory and methods developed to this
point. We also use them to motivate the next set of theoretical developments.

3.1. Elevation plots for K = 2. Let us return to Figure 1. It appears from the
contour shapes that there are three modes, all lying on the ridgeline. This shows
that the multivariate normal case has a very different, and more complex, modal



2050 S. RAY AND B. G. LINDSAY

structure than the univariate. (Carreira-Perpiñán and Williams [3] also give an ex-
ample in which there are three modes.) From Figure 2 we can see clearly that there
are indeed three modes. (Note: the modes that appear to be at the endpoints actually
occur a slight distance from the ends, although it is not visible in this resolution.)
We also can see that the central mode is dominant, and the minima (corresponding
to saddlepoints in Figure 1) are relatively shallow. Note that the contour plot in
Figure 1 is not available unless D = 2, but the elevation plot works for any D.

This example above opens up a natural question regarding the existence of an
upper bound to the number of modes in a two component mixture of multivariate
normals. We have constructed another example where we can find four modes in
three dimensions.

EXAMPLE 2 (Two components, four modes, unequal variance). For K = 2
and D = 3, let the parameters be

µ1 =

 0

0
0


 , �1 =


 1 0 0

0 1 0
0 0 0.05


 ,

µ2 =

 1/

√
2

2
1/

√
2


 , �2 =


 0.05 0 0

0 1 0
0 0 1


 , π1 = π2 = 1

2 .

Figure 3 is the ridgeline elevation plot of the mixture in Example 2. It has four
modes, although they are not clearly visible from the plot in Figure 3(a). We can
more clearly see them in Figures 3(b) and 3(c), which show the ridgeline elevation
plot for narrower ranges of values. Determination of the exact location in α of
the modes can be done numerically using any nonlinear optimization software
(we used the nlm function in R). In our case we found that the four modes are
located at α = 0.00084,0.137,0.863 and 0.99916.

These examples raise the question: can we create further mathematical tools
that will guide us in the determination of the number and location of modes? The
answer is yes, but before tackling this we consider elevation plots in a higher di-
mension.

3.2. Elevation plots for K = 3. For K = 3 the dimension of α and, hence,
the ridgeline surface, is two, so we suggest using a contour plot of h(α) in the α
coordinate system to look for critical points of the density.

To distinguish between the contour plot of an original density (possible only
when D ≤ 2) and its contour described along the ridgeline surface (available for
arbitrary D), we will denote the former as the density contour and the latter as the
ridgeline contour.

A distance-preserving way to represent the simplex S3 in �2 is as an equilateral
triangle. The vertices of the triangle correspond to the three equidistant points e1 =
(1,0,0), e2 = (0,1,0) and e3 = (0,0,1) of the simplex. Each point in the triangle
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FIG. 3. Ridgeline elevation plot of density of Example 2. (a) For the whole range of α, (b) magnified
for α ∈ (0,0.0002) and (c) magnified for α ∈ (0.1,0.16).

corresponds to a point (α1, α2, α3), where αj equals the length of the perpendicular
dropped to the side opposite to the vertex ej . We will use the symbol αj at the
corner ej because the distance from the opposing baseline gives the αj value. At
the corner itself, αj equals one.

We plot the ridgeline contours on this triangle. We have shown that the number
of peaks on the contour plot is exactly the number of modes of the 3-component
normal. We can also find exact positions of the modes by determining the sim-
plicial coordinates α, then computing x∗(α); these locations will depend on the
values of π that are used in g.

EXAMPLE 3 (Three components, three modes, equal variance). For K = 3,
D = 2, let the covariance matrix be common and the parameters be

µ1 =
(

0
0

)
, µ2 =

(
0
3

)
, µ3 =

(
3
0

)
,

� =
(

1 0
0 1

)
, π1 = π2 = π3 = 1

3 .
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FIG. 4. Ridgeline contour plot of the density of Example 3.

Figure 4 shows the modality surface contour plot of Example 3. The three peaks
along the three corners of the triangle are easily visible. In fact, these three modes
lie very close to the corners, which implies that the three modes of the density g are
close to the three means of the component densities. Of course, for this example
one could have done a contour plot of g itself because D = 2.

Now we move on to an unequal variance example.

EXAMPLE 4 (Three components, five modes, unequal variance). For K = 3,
D = 2, let the parameters be

µ1 =
(

0
0

)
, µ2 =

(
1
1

)
, µ3 =

(
2
2

)
,

�1 = �3 =
(

1 0
0 0.05

)
, �2 =

(
0.05 0

0 1

)
, π1 = π2 = π3 = 1

3 .

If we carefully look at the ridgeline contour plot of Figure 5(a), we can find five
modes, which can be verified from its density contour plot in Figure 5(b). The five
modes are (i) near α3 = 1, (ii) near α1 = 1, (iii) near the centroid (one with height
of the contour being 0.23), (iv) near α1 = α2 = 0.5 and (v) near α2 = α3 = 0.5. In
this example, although Figures 5(a) and 5(b) carry the same modal information,
we can see rather dramatically that the ridgeline contour plot distorts the distances
and angles between the modes relative to the density plot.

EXAMPLE 5 (Iris data). Next, we consider a three component mixture model
fit to Fisher’s iris data [7]. This is the dataset made famous by Fisher, who used
it to illustrate principles of discriminant analysis. Data on four variables, namely,
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FIG. 5. (a) Ridgeline contour plot and (b) density contour plot of the three component mixture
density of Example 4 with five modes.

Petal width, Petal length, Sepal width and Sepal length, were collected on flowers
of three iris species: Setosa, Verginica and Versicolor. Each species had 50 obser-
vations.

Since D = 4, direct contour plotting of g is not available. The mixture models
we used are the maximum likelihood fits to the data set assuming unequal vari-
ance. Examining the ridgeline contour plot in Figure 6(a), we conclude that the
three component fit actually corresponds to three different modes, the modes be-
ing near the mean for each component, which corresponds to the three vertices in
the simplex of Figure 6(a).

FIG. 6. Ridgeline contour plot of (a) Example 5 and (b) Example 6.
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EXAMPLE 6 (Egyptian skull data). This data consists of four measurements:
Maximal breadth, Basibregmatic height, Basialveolar length and Nasal height
of male Egyptian skulls from five different time periods (4000 BC, 3300 BC,
1850 BC, 200 BC, 150 AD). Thirty skulls were measured from each time pe-
riod [21].

Here we analyze the three earliest time periods and fit a three component
normal mixture with unequal variances. Examining the ridgeline contour plot
[Figure 6(b)], we observe that the three components, pertaining to the three time
periods, produce a single mode.

REMARK 5. More expressive detail for the two-dimensional plots of this sec-
tion could have been obtained by displaying the critical net of the density using, for
example, the approximation techniques of Danovaro et al. [4]. This would show
the maxima, saddlepoints and separatrices over the manifold region based on eval-
uating the elevation at a finite network of points.

4. The �-plot. Until this point we have focused on graphical techniques that
are based on displaying the elevation of the density on the ridgeline. These tech-
niques are quite elementary, and carry full information about the location and rela-
tive heights of the modes and saddlepoints. We now turn to a technique that focuses
instead on the location of the modes and saddlepoints and not their elevations. By
doing so, we can gain important insights into how the number and location of the
modes depend on the values of π for a given fixed set of component densities. For
this section we will consider only the case K = 2. We will treat the component
parameters as fixed throughout the analysis.

Recall the ridgeline curve x∗(α) for K = 2, defined in (3). If x∗(α) is a critical
value of h(α), then it satisfies

h′(α) = πφ1(x∗(α))′ + π̄φ2(x∗(α))′ = 0,

where prime “′” denotes differentiation with respect to α. Also, recall that, for
fixed component parameters, the value of α completely specifies the vector x∗(α)

independently of π . For notational ease, any function of the D-dimensional vec-
tor x(α) will be written as the same function of the scalar α, for example, φ1(α)

and φ1(x(α)) are the same. Solving the last displayed equation for π , and turning
it into a function of α, we get

�(α) = φ′
2(α)

φ′
2(α) − φ′

1(α)
.

It follows that if α corresponds to a critical value for the density g, then it solves
the “pi-equation”

�(α) = π.(5)
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This gives us a recipe for finding the critical points of the density g, given a par-
ticular choice of π : first, we solve for the set of α that satisfy the pi-equation (5),
and then, from these α-solutions, calculate the critical points x∗(α). If we have a
unimodal density for a given π, there must be one and only one solution to the
pi-equation, which corresponds to the mode of the density. A bimodal density will
have three π -critical points, the first and the third (in the order of magnitude) cor-
responding to the two modes.

To aid in finding solutions to the pi-equation, we describe �(α) on α ∈ [0,1].
We first claim that

�(0) = 0, �(1) = 1, �(α) ∈ [0,1].
To show this, first notice that φ1(α) increases on the range α ∈ [0,1) because
φ′

1(α) > 0; also φ′
1(1) = 0. On the other hand, φ2(α) is decreasing on range α ∈

(0,1] as φ′
2(α) < 0 and φ′

2(0) = 0. This establishes the result.
We can also derive the following simple calculation formula for �(α):

1

�(α)
= φ′

2(α) − φ′
1(α)

φ′
2(α)

= 1 + α

ᾱ

φ1(α)

φ2(α)
,(6)

which can be verified by routine calculus.
As an example, let us examine the �-plot of the two component bivariate nor-

mal mixture with three modes given in Example 1. As the mixing proportion in
Example 1 is π = 0.5, we would draw a horizontal line across the (α,�(α))

plot (Figure 7) at height π = 0.5. This line crosses the curve five times at
(α = 0(approx.), 0.004, 0.5, 0.996, 1(approx.)). Among these, α = 0(approx.), 0.5,
1(approx.) correspond to the three modes, as was verified by the ridgeline elevation
plot (see Figure 2).

The same �-plot can also be used to determine the number of modes of g as π

varies but the component densities remain unchanged. For example, if the means

FIG. 7. �-plot of Example 1. - - - - - denotes mixing proportion π = 0.5. The ranges of π for which
the distribution has two and three modes are given by the light band and dark band, respectively.
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and variances are unchanged in Example 1, there will be three modes if and only if
0.256 < π < 0.744 (dark band in Figure 7). Moreover, if π < 0.0225 or π > 0.975
(the unshaded region), then we will have a unimodal density; for all other π ’s, we
will have a bimodal density (light band).

Similarly, for Example 2 we can find the range of mixing proportions for which
the distribution will have one, two, three or four modes by examining the plots in
Figures 8(a) and 8(b). There is a narrow range, π ∈ (0.49974,0.50026), for which
the parameters generate a distribution with four modes. The number of modes is
at least two if π ∈ (0.25,0.75) and at least three if π ∈ (0.489,0.511).

When K > 2, �-plots can be used to examine the modal structure of each pair
of component densities, where the mixing proportions in the paired mixture is de-
termined by the relative weight in the whole mixture. To illustrate, we re-examine
(i) Example 4, (ii) Example 5 and (iii) Example 6. The ridgeline contour plots
of the above examples were already presented in Section 3. Now we present the
pairwise �-plots of the three components fit for each dataset (Figure 9).

FIG. 8. �-plot of Example 2. The range of π for which the mixing distribution has two modes is
given by the light band; with three modes it is given by the medium band; with four modes it is given
by the dark band. The first two bands are visible from sub-plot (a), whereas the two darker bands are
more clearly visible in sub-plot (b), which is magnified for π ∈ (0.499,0.501).
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FIG. 9. �-plots of pairs of component densities in the three-component mixture densities of (i) Ex-
ample 4, (ii) Example 5 and (iii) Example 6, for component pairs (a) {1,2}, (b) {2,3}, (c) {3,1},
respectively, along with the appropriate mixing proportion represented by the horizontal line in each
plot.

For the pairwise �-plots of Example 4 [Figure 9(i)], we observe that, while
comparing pairs {1,2} and {2,3}, the horizontal line crosses the �-curve five
times, implying the presence of three modes. Similarly, examining the pairwise
plots for the iris data [Figure 9(ii)], we see that each of the pairwise components is
bimodal. Moreover, the plot tells us that the three components are well separated
from each other for almost every set of mixing proportions. But, looking at the
plots for the Egyptian skull data [Figure 9(iii)], we can easily note that all the plots
imply that the pairwise components exhibit a single mode.

5. Analytic tools for detecting modality.

5.1. The curvature function. We have seen that the � function determines the
modality structure of the mixture model as it depends on π. Our next step is to look



2058 S. RAY AND B. G. LINDSAY

more deeply into the properties of this function. Now if � is strictly increasing
in α, there will be exactly one solution to the pi-equation, and so the mixture
densities are unimodal across all values of π . Multiple solutions in α of the pi-
equation can only arise if �(α) oscillates up and down as α increases. In particular,
a careful analysis shows that � is increasing at a mode of h(α), and decreasing
where h(α) has a local minimum. Therefore, the number and location of the �(α)

critical points are informative about the number and location of the modes of the
mixture density.

Referring back to Section 4, the number of up-down oscillations of � is deter-
mined by the zeroes of

�′(α) = −φ′′
2 (α)φ′

1(α) − φ′′
1 (α)φ′

2(α)

(φ′
2(α) − φ′

1(α))2 .(7)

In general, to determine the sign changes of �′, we can use any function of α

with the same numerator φ′′
2 (α)φ′

1(α) − φ′′
1 (α)φ′

2(α), provided the denominator is
a positive function of α. In this paper we will use the curvature function κ(α)

defined by

κ(α) = φ′′
2 (α)

φ2(α)

φ′
1(α)

φ1(α)
− φ′′

1 (α)

φ1(α)

φ′
2(α)

φ2(α)
.(8)

We use κ(α) as it results in a simple expression for any distribution belonging to
the exponential family. We will call it the curvature function because its zeroes
occur at the zeroes in curvature of the curve given by (φ1(α),φ2(α)). It is closely
related to the mixture curvature measures given by Lindsay [12].

5.2. Properties of the curvature function κ(α). We now study the role of the
curvature function κ(α) more closely.

Based on our description of �, it is clear that, at the first zero, α1, of κ , the
function � has a maximum, at the next α2 a minimum, and so forth. Thus, if we
calculate the values of �(αj ) = πj , then we can determine from them the ranges
of π in which we will have modes and antimodes. If the function κ(α) does not
change its sign in the range α ∈ [0,1], then the density is unimodal for all π . If
κ(α) has exactly two zeroes at α1 and α2, then, for π between �(α2) and �(α1),
the mixture will have two modes, and otherwise there will be just one; and so forth.

In our next result, we develop a simple expression for the curvature. Recall that
we defined Sα = ᾱ�−1

1 + α�−1
2 .

THEOREM 3. Let g(x) be the mixture of two multivariate normal densities.
Then

κ(α) = [p(α)]2[1 − αᾱp(α)],(9)

where p(α) = (µ2 − µ1)
′�−1

1 S−1
α �−1

2 S−1
α �−1

2 S−1
α �−1

1 (µ2 − µ1).
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PROOF. Given in the Appendix. �

Now, using the above theorem, since p(α) is always positive, it is clear that the
zeroes of κ(α) are the same as the zeroes of (1 − αᾱp(α)). For notational ease, let
us denote

q(α) = 1 − αᾱp(α).

By calculation, q(0) = q(1) = 1 and, hence, κ takes positive values at the two
extremes α = 0 and 1. Thus, there are an even number of sign changes of the
function κ(α) in the range [0,1], as also indicated by the nature of �.

In some special cases one can analytically describe the zeroes of κ(α). In the
corollaries which follow we show that our curvature result can be used to duplicate
some of the univariate results found in the literature, and we extend them to certain
multivariate situations.

COROLLARY 3. In the equal variance case (�1 = �2), q(α) reduces to a
quadratic expression

q(α) = 1 − α(1 − α)(µ2 − µ1)
′�−1(µ2 − µ1).

q(α) and, hence, κ(α) have two roots iff (µ2 − µ1)
′�−1(µ2 − µ1) > 4, in which

case the mixture will be bimodal if and only if π ∈ (π1, π2), where

1

πi

= 1 + αi

ᾱi

φ1(αi)

φ2(αi)

and the αi are the two solutions in [0,1] of q(α) = 0.

PROOF. Straightforward calculation. �

The above corollary is the generalization of the conditions for bimodality given
for the univariate equal variance normal mixture density in [1, 5, 6]. We can also
replicate, in the multivariate case, the unequal variance results for univariate den-
sities, provided we make a proportional variance assumption. For this we need the
following lemma.

LEMMA 1. For the proportional variance case (�2 = σ 2�1), the zeroes of
κ(α) in the range [0,1] are the same as the zeroes in [0,1] of the following cubic
in α:

q1(α) = (
σ 2(1 − α) + α

)3 − α(1 − α)µ2σ 2,(10)

where µ2 = (µ2 − µ1)
′�−1

1 (µ2 − µ1).

PROOF. See the Appendix. �

With the machinery we have now developed, we can offer a simplified proof
of the results of Robertson and Fryer [20], while extending those results to higher
dimensions.



2060 S. RAY AND B. G. LINDSAY

COROLLARY 4. Let g be the mixture of two normal densities with means
µ1 and µ2 and variances �1 and �2 = σ 2�1.

(a) The density of f is unimodal for any mixing proportion π if

(µ2 − µ1)
′�−1

1 (µ2 − µ1) ≤ 2(1 − σ 2 + σ 4)
3/2 − (2σ 6 − 3σ 4 − 3σ 2 + 2)

σ 2 .

(b) If the parameters do not satisfy the above condition, f is bimodal if and
only if π ∈ (π1, π2), where

1

πi

= 1 + αi

ᾱi

φ1(αi)

φ2(αi)

and the αi are the two solutions in [0,1] of(
σ 2(1 − α) + α

)3 − α(1 − α)σ 2(µ2 − µ1)
′�−1

1 (µ2 − µ1) = 0.

PROOF. See the Appendix. �

6. Conclusion. In this paper we have developed some powerful tools for un-
derstanding the topography of a multivariate normal mixture model. The tools are
especially powerful in the case K = 2, where we can reduce our problem from
D dimensions down to one. In any problem one can produce simple plots to in-
vestigate the key features of the density. In certain cases we can even describe
analytically the number of modes and their locations.

In the process of doing this analysis, we have not discussed how these new
results might be used for statistical purposes. We think the possibilities are rich.
For example, consider the clustering problem. If we fit a mixture of normals to
high-dimensional data, we can associate the components with clusters of data [14].
However, we might also be interested in the information about how well separated
two clusters are. A ridgeline elevation plot of their estimated densities will show
if they are close enough to each other to form a single mode, in which case we are
unlikely to think of them as well separated.

In a model with many components, one might define two components to be
linked if they together form a single mode, and then use a map of the linkages to
identify how the clusters are associated with each other. (We could also link them
if the “mountain passes” are high relative to the peaks.) This could also lead one
to a more compact description of the data structure through the construction of
supercomponents consisting of linked components, then describing the model as a
mixture of a smaller number of supercomponents.

We also note that there are still a number of open mathematical questions. For
example, can we find the zeroes of the curvature function κ analytically in any im-
portant special case other than the ones that are given here? Of this we are doubtful.
However, finding exact formulae does not seem so important, as we believe it is
possible to produce an elementary numerical algorithm to find these points.
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In this paper we have reduced the dimension of the mixture modality problem
to min(K − 1,D). It was pointed out by a referee that this is exactly the same
dimension reduction as occurs in discriminant analysis [2, 7–9, 19], where one
wishes to discriminate between K populations on the basis of D measurements.
We think this is an important insight, and that, by using discriminant functions,
it will be possible to link our mixture modality study with the area of discriminant
analysis in a way that is mutually beneficial.

Through a number of examples in this paper, we have shown that the topography
of a multivariate mixture is not like the univariate, as the number of modes can
be significantly more than the number of components. As a second question, one
might ask if there exists an upper bound for the number of modes, one that can be
described as a function of K , the number of components, and D, the dimension of
the multivariate mixture.

Finally, our results are most effective for K = 2. It would therefore be useful to
establish relationships between the modality structure of the pairs of densities in a
mixture and the overall modality of the entire mixture.

NOTE. Datasets and their parameter estimates used in this paper are available
for download at www.stat.psu.edu/˜surajit/topography/.

APPENDIX: PROOFS

A.1. Proof of Theorem 1. Suppose that ∇g(x∗) = 0, so x∗ is a critical point.
Then we have

0 = π1φ1(x∗)∇φ1(x∗)
φ1(x∗)

+ π2φ2(x∗)∇φ2(x∗)
φ2(x∗)

+
(A.1)

· · · + πKφK(x∗)∇φK(x∗)
φK(x∗)

.

If we let

αi = πiφi(x∗)
π1φi(x∗) + π2φ2(x∗) + · · · + πKφK(x∗)

,(A.2)

then, obviously, 0 ≤ αi ≤ 1 and
∑K

i=1 αi = 1. Further, note that

∇φ(x∗;µ,�)

φ(x∗;µ,�)
= −�−1(x∗ − µ).

Thus, we have, from equation (A.1), that for every critical value x∗ there exists an
α such that

α1�
−1
1 (x∗ − µ1) + α2�

−1
2 (x∗ − µ2) + · · · + αK�−1

K (x∗ − µK) = 0.(A.3)

Solving this equation for x∗ gives the theorem.
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A.2. Proof of Theorem 2. First, we note the geometric importance of the
vectors vj . We know that the point x(α) lies in one of the elliptical contours of the
density φj . At this point the gradient in x of the density φj (x) is proportional to vj ,
and so vj is orthogonal to the contour. Thus, if we were to start at x(α) and travel
in any direction w orthogonal to vj , our path is in the support hyperplane to the
elliptically shaped upper set {x :φj (x) ≥ φj (x∗(α))}. Using the fact that the ellipse
is convex, our path lies outside the ellipse, and so in the set {x :φj (x) < φj (x(α))},
except for equality at x = x∗(α). That is, the point x∗(α) is a local maximum
to φj (x) along any path orthogonal to vj .

Now, suppose that w satisfies the assumptions of the theorem. It follows from
the form of dj that

w′(vj − vK) = 0.(A.4)

However, due to the definition of x(α) we also have
∑

αj vj = 0, and so
∑

αj (vj −
vK) = −vK . Putting this together with (A.4) shows that w′vK = 0, and so w′vj = 0
for j = 1, . . . ,K . That is, w is orthogonal to every vj , and so, by the first paragraph
every component of the mixture density g(x) is locally maximized along the given
line {x(α) + δw : δ ∈ �} at δ = 0, and, hence, so is g(x).

A.3. Proof of Theorem 3. For simplicity of calculation, we will reuse the
notation vj introduced in Section 2.2.1. Also, let us denote the first and the second
derivatives of a vector x with respect to the scalar α by ẋ and ẍ, respectively.
We will also use the same notation for the first and the second derivatives of the
likelihood function.

The equation defining x∗, which is

ᾱ�−1
1

(
x∗(α) − µ1

) + α�−1
2

(
x∗(α) − µ2

) = 0,

can be written as

ᾱv1 + αv2 = 0(A.5)


⇒ v1 = −α

ᾱ
v2.(A.6)

Differentiating (A.5) w.r.t. α, we get

ᾱ�−1
1 ẋ∗(α) − v1 + α�−1

2 ẋ∗(α) + v2 = 0(A.7)


⇒ (ᾱ�−1
1 + α�−1

2 )ẋ∗(α) = v1 − v2
(A.8)

= v1

α
[using (A.6)].

Taking lj (x) = log(φj (x)) for j = 1,2, the curvature κ(α), given by (8), can be
calculated via

φ̇j

φj

= l̇j and
φ̈j

φj

= l̈j + [l̇j ]2.
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It can be shown that

l̇1 = −ẋ∗(α)v1, l̇2 = ᾱ

α
ẋ∗(α)v1,

l̈1 = −ẍ∗(α)v1 − ẋ∗(α)v̇1, l̈2 = ᾱ

α
ẍ∗(α)v1 + ᾱ

α
ẋ∗(α)v̇1 − ẋ∗(α)v1

1

α2 .

After simplification,

κ(α) =
(

ẋ∗(α)v1

α

)2[
1 − ẋ∗(α)v1

α
αᾱ

]
.

Writing in terms of the original parameters,

ẋ∗(α)v1

α
= (µ2 − µ1)

′�−1
1 S−1

α �−1
2 S−1

α �−1
2 S−1

α �−1
1 (µ2 − µ1) = p(α).

REMARK 6. Note that p(α) function is symmetric in the component labels,
as it should be, because one can show by direct calculation that

�−1
1 S−1

α �−1
2 = �−1

2 S−1
α �−1

1 .

A.4. Proof of Lemma 1. �2 = σ 2�1 ⇒ Sα = �−1
1 ((1−α)+ α

σ 2 ). Using this
relation,

q(α) = 1 − α(1 − α)
(µ2 − µ1)

′�−1
1 �1�

−1
2 �1�

−1
2 �1�

−1
1 (µ2 − µ1)

((1 − α) + α/σ 2)3

= 1 − α(1 − α)
(µ2 − µ1)

′�−1
1 (µ2 − µ1)

σ 4((1 − α) + α/σ 2)3

= 1 − α(1 − α)
µ2σ 2

(σ 2(1 − α) + α)3

= 1

(σ 2(1 − α) + α)3 q1(α).

Since (σ 2(1 − α) + α)3 is positive in [0,1], the zeroes of q(α) and q1(α) are the
same in that range.

A.5. Proof of Corollary 4. We first prove part (a). Using Lemma 1, we know
that the zeroes of κ(α) are the same as the zeroes of the cubic q1(α) = (σ 2(1−α)+
α)3 −α(1−α)µ2σ 2. Now, q1(α) has more than two real zeroes iff the discriminant
of q1(α) is nonnegative. This condition is equivalent to

s(µ) = µ4σ 2 − µ2(−4σ 6 + 6σ 4 + 6σ 2 − 4) − 27σ 2(σ 2 − 1)
2 ≥ 0,

that is,

s(µ) = µ4σ 2 + 2µ2(σ 2 − 2)(σ 2 + 1)(2σ 2 − 1) − 27σ 2(σ 2 − 1)
2 ≥ 0.(A.9)
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Now s(µ) is a quadratic in µ2 and, among its two zeroes only one is positive. The
positive zero is given by

µ2
0 = 2(1 − σ 2 + σ 4)

3/2 − (2σ 6 − 3σ 4 − 3σ 2 + 2)

σ 2 .

Also note that s(0) < 0. Thus, s(µ) is positive when µ2 > µ2
0. Now applying The-

orem 3 and Lemma 1, in the proportional variance case we find that g is unimodal
if

(µ2 − µ1)
′�−1

1 (µ2 − µ1)
(A.10)

≤ 2(1 − σ 2 + σ 4)
3/2 − (2σ 6 − 3σ 4 − 3σ 2 + 2)

σ 2 .

Note that this condition is exactly the condition Robertson and Fryer [20] derived
for the univariate case.

Now we prove part (b). We have already noted that the change of curvature of
the �(α) occurs at the same place as the solutions to κ(α) = 0, which in turn are
the roots of the cubic equation q1(α) = 0 for the proportional variance case. Let
α1 and α2 be the two roots of

q1(α) = (
σ 2(1 − α) + α

)3 − α(1 − α)µ2σ 2 = 0

lying between 0 and 1. Thus, the range of π for which the density is bimodal can
be obtained from the range of α for which κ(α) < 0, which is the interval (α1, α2).
Using the relation in (6), the range of π can be derived as being the open inter-
val (π1, π2), such that

1

πi

= 1 + αi

ᾱi

φ1(αi)

φ2(αi)
for i = 1,2.
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