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EFFICIENCY IMPROVEMENTS IN INFERENCE ON STATIONARY
AND NONSTATIONARY FRACTIONAL TIME SERIES1

BY P. M. ROBINSON

London School of Economics

We consider a time series model involving a fractional stochastic
component, whose integration order can lie in the stationary/invertible
or nonstationary regions and be unknown, and an additive deterministic
component consisting of a generalized polynomial. The model can thus
incorporate competing descriptions of trending behavior. The stationary input
to the stochastic component has parametric autocorrelation, but innovation
with distribution of unknown form. The model is thus semiparametric, and
we develop estimates of the parametric component which are asymptotically
normal and achieve anM-estimation efficiency bound, equal to that found
in work using an adaptive LAM/LAN approach. A major technical feature
which we treat is the effect of truncating the autoregressive representation in
order to form innovation proxies. This is relevant also when the innovation
density is parameterized, and we provide a result for that case also. Our
semiparametric estimates employ nonparametric series estimation, which
avoids some complications and conditions in kernel approaches featured in
much work on adaptive estimation of time series models; our work thus also
contributes to methods and theory for nonfractional time series models, such
as autoregressive moving averages. A Monte Carlo study of finite sample
performance of the semiparametric estimates is included.

1. Introduction. This paper obtains efficient parameter estimates in station-
ary or nonstationary, possibly fractional, time series. Consider a regression model
given by

yt = µT zt + xt , t ∈ Z,(1.1)

whereZ = {t : t = 0,±1, . . . }, zt is a deterministicq × 1 vector sequence,µ is
an unknownq × 1 vector,T denotes transposition,xt is a zero-mean stochastic
process andyt is an observable sequence. Any nonstationarity in the mean ofyt

would be due tozt , nonstationarity in variance toxt , but cases whenµT zt is a priori
constant andxt is stationary are also of interest.
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To describext , denote byB the back-shift operator, soBxt = xt−1, and denote
by � = 1− B the difference operator; formally, for all reald

�−d =
∞∑

j=0

�j(d)Bj , �j (d) = �(j + d)

�(d)�(j + 1)
,

with � denoting the gamma function such that�(d) = ∞ for d = 0,−1,−2, . . . ,

and�(0)/�(0) = 1. Assume the sequencext is given by

xt = �−m0v#
t , t ∈ Z,(1.2)

wherem0 is a nonnegative integer,

v#
t = vt1(t ≥ 1), t ∈ Z,(1.3)

for 1(·) the indicator function, and

vt = �−ζ0ut , t ∈ Z,(1.4)

for |ζ0| < 1
2, with ut a zero-mean covariance stationary process with absolutely

continuous spectral distribution function and spectral densityf (λ) that is at least
positive and finite for allλ.

The processvt is then also covariance stationary, having “long memory” for
ζ0 > 0, “short memory” forζ0 = 0 and “negative memory” forζ0 < 0. When
m0 = 0, we havext = v#

t = vt for t ≥ 1. Whenm0 ≥ 1, xt “integrates”v#
t , and

the truncation in (1.2) implies thatxt has variance that is finite, albeit evolving
with t . Puttingξ0 = m0 + ζ0, xt is well defined for

ξ0 ∈ S ⊂ {
ξ : −1

2 < ξ < ∞, ξ �= 1
2, 3

2, . . .
}
.(1.5)

The requirementξ0 > −1
2 excludes noninvertible processes, and the final qual-

ification in (1.5) excludesξ0 that cannot be reduced to the stationary/invertible
region (−1

2, 1
2) by integer differencing. Alternative definitions of nonstationary

fractionalxt are available, for example,�−ξ0u#
t .

Supposeξ0 is unknown;m0 may also be unknown. Supposeut is assumed to
have parametric autocorrelation,

f (λ) = σ 2
0

2π
|β(eiλ;ν0)|2, λ ∈ (−π,π],(1.6)

such that cov(u0, uj ) = ∫ π
−π f (λ)cos(jλ) dλ, j ∈ Z, β(s;ν) is a smooth given

function of complex-valueds and the column-vectorν ∈ V ⊂ R
p1−1, p1 ≥ 1,

satisfying

β0(ν) = 1, β(s;ν) �= 0, |s| ≤ 1, ν ∈ V,(1.7)

whereβj (ν) = ∫ π
−π β(eiλ;ν)cos(jλ) dλ, andν0 ∈ V and σ 2

0 > 0 are unknown.
Thenσ 2

0 is the variance of the one-step-ahead prediction error of the best linear
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predictor forut . For example,ut can be a standardly parameterized autoregressive
moving average (ARMA) process of autoregressive (AR) orderp11 and moving
average (MA) orderp12, such thatp1 − 1 ≤ p11 + p12 < ∞; whenν0 consists
precisely of the AR and MA coefficients we havep11 + p12 = p1 − 1; otherwise
the coefficients obey prior restrictions. We callvt a FARIMA(p11, ζ0,p12), andxt

a FARIMA(p11, ξ0,p12). Whereasvt is stationary, due to the truncation (1.2)xt is
nonstationary even whenξ0 < 1

2 (it could be called “asymptotically stationary”
then). The case whenxt = vt for all t ∈ Z, so xt is stationary, can be dealt
with similarly, but we impose the truncation in (1.2) for allm0 ≥ 0 for the
sake of a unified presentation. The setV is contained in the “stationary and
invertible region.” The casep1 = 1 meansν0 is empty, and ifβ ≡ 1, xt is a
FARIMA (0, ξ0,0). An alternative model forut is due to Bloomfield [4].

The main focus of the paper is estimation ofθ01 = (ξ0, ν
T
0 )T , and we restrict to

a specialized form ofzt in (1.1):

zt = (tτ1, . . . , tτq )T 1(t ≥ 1), τ1 < τ2 < · · · < τq,(1.8)

where theτj are real valued. Debate has centered on the origin—deterministic
or stochastic—of nonstationarity in time series. A notable feature is competition at
low frequencies, and given the fractional model forxt this is most neatly expressed
by (1.8). Some components ofzt may have negligible effect on fractionally
differencedyt . Denote byµj the j th element ofµ andT1 = {j : τj < ξ0 − 1

2},
T2 = {j : τj = ξ0}, T3 = {j : ξ0 − 1

2 ≤ τj < ξ0; τj > ξ0}, where any of these sets
can be empty. We cannot estimateµj for j ∈ T1, and do not discuss estimation of
µj for j ∈ T2. Write st = ∑

j∈T1
µj t

τj and forp2 = #T3 ≤ q introduce thep2 × 1
vectorsz2t andθ02, whosej th elements are the elements ofzt andµ whose index is
thej th largest element ofT3. It will be convenient to writez2t = (tχ1, . . . , tχp2)T ,
where theχj are appropriate elementsτj , and satisfy1

2 ≤ χ1 < · · · < χp2. We can
write (1.1) as

yt = st + µ∗tξ0 + θT
02z2t + xt ,(1.9)

whereµ∗ = 0 if τj �= ξ0 for all j .
We discuss estimation ofθ02, along withθ01. For this we require that theτj ,

j ∈ T3, are known. The boundary case ofT3, τj = ξ0 − 1
2, thus strictly impliesξ0

is known, but this provision is instead designed to cover a situation in which
τj < ξ0 − 1

2 for all j ∈ T1 is anticipated, withξ0 unknown, but in factτj =
ξ0 − 1

2 for somej . For θ1 = (ξ, νT )T ∈ S × V , introduce the functionα(s; θ1):

R × R
p1 → R, and considerα(s; θ(−)

1 ), whereθ
(−)
1 = (0, νT )T , such that

α(s; θ1) = (1− s)ξα
(
s; θ(−)

1

)
.(1.10)

Take α(s; θ(−)
1 ) = β(s;ν)−1 for |s| ≤ 1, ν ∈ V , and note that

∫ π
−π α(eiλ;

θ
(−)
1 ) dλ = 1, ν ∈ V . From (1.6) and (1.7),ut has one-sided AR representation

α
(
B; θ(−)

01

)
ut = σ0εt , t ∈ Z,(1.11)
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where θ
(−)
01 = (0, νT

0 )T , and theεt are uncorrelated with zero mean and unit
variance. Introduce square-summable coefficientsαj (θ1) in the expansion

α(s; θ1) =
∞∑

j=0

αj (θ1)s
j , |s| ≤ 1, ξ ∈ S, ν ∈ V,(1.12)

soα0(θ1) ≡ 1. For givenθ = (θT
1 , θT

2 )T , define the computable

et (θ) =
t−1∑
j=0

αj (θ1)(yt−j − θT
2 z2,t−j ),

(1.13)

Et(θ) = et (θ) − 1

n

n∑
t=1

et (θ), t ≥ 1,

the latter being proxies forσ0εt , with st ignored inet (θ) because it is anticipated to
have negligible effect, andµ∗tξ0 ignored in view of the mean-correction inEt(θ).

Given observationsyt , t = 1, . . . , n, define

Qρ(θ, θ3) = 1

n

n∑
t=1

ρ
(
Et(θ)/σ̃ ; θ3

)
,(1.14)

for an n1/2-consistent estimatẽσ of σ0, a given nonnegative functionρ :R ×
R

p3 ⇒ R and any admissible valueθ3 of an unknownp3 × 1 parameter
vector θ03; θ3 may be empty, as whenρ(s; θ3) = s2. Consider the estimate
(θ̄T

ρ , θ̄T
3ρ) = argmin�×�3 Qp(θ, θ3), for compact sets� ∈ R

p, �3 ∈ R
p3. One

anticipates (see, e.g., Martin’s [24] discussion ofM-estimates of ARMA models)
that under suitable conditions̄θρ, θ̄3ρ are asymptotically independent and the
asymptotic variance matrix of̄θρ depends onρ only through the scalar factor
H = ∫

ρ′(s)2g(s) ds/{∫ ρ′′(s)g(s) ds}2, where the prime indicates differentiation,
double-prime indicates twice differentiation and reference toθ03 is suppressed. If
integration by parts can be conducted, this and the Schwarz inequality indicate that
H ≥ J−1, defining the information

J =
∫

ψ(s)2g(s) ds(1.15)

and the score function

ψ(s) = −g′(s)/g(s).(1.16)

The lower bound is attained bȳθlogg , and the paper obtains estimates that
are efficient in the sense of having the same asymptotic variance asθ̄logρ . In
Theorem 2 of Section 3 we justify such an estimate on the basis of knowng(s; θ3).
If g is misspecified, not only will the estimate not be efficient but it may even be
inconsistent. Our main result is Theorem 1 of Section 3, which justifies efficient
semiparametric estimates, in which the density ofεt is nonparametric. These
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estimates are adaptive in the sense of Stone [28] and are described in the following
section. Section 4 describes a Monte Carlo study of finite sample behavior of the
semiparametric estimates. Section 5 attempts to place the work in perspective,
relative to the literature. Section 6 presents the main proof details, which use a
series of lemmas that make up Section 7. Some of these, such as Lemmas 1, 2, 7,
8, 13, 15 and 16, may be useful in other work. A principal technical feature is our
handling of the approximation of theσ0εt in (1.11) by theet (θ0) defined by (1.13),
a delicate matter in fractional models.

2. Semiparametric estimates. As in much adaptive estimation literature we
take an approximate Newton step from an initial consistent estimateθ̃ of θ0,
with the same rate of convergence asθ̄logg . This requires estimatingψ(s). We
employ an approach developed by Beran [2] and Newey [25]. Beran [2] proposed
a series estimate ofψ(s) [with respect to innovations in an AR(p) model] that
employs integration by parts. His estimate ofψ(s) was actually not a smoothed
nonparametric one because he fixed the number of terms,L, in the series.
Newey [25] allowedL to increase slowly withn, in adapting to error distribution
of unknown form in cross-sectional regression.

Let φ�(s), � = 1,2, . . . , be a sequence of given, continuously differentiable
functions. ForL ≥ 1, scalar ht , t = 1, . . . , n, and h = (h1, . . . , hn)

T , define
φ(L)(ht ) = (φ1(ht ), . . . , φL(ht ))

T , �(L)(ht ) = φ(L)(ht ) − n−1 ∑n
s=1 φ(L)(hs),

φ
′(L)(ht ) = (φ′

1(ht ), . . . , φ
′
L(ht ))

T and

W(L)(h) = n−1
n∑

t=1

�(L)(ht )�
(L)(ht )

T ,

w(L)(h) = n−1
n∑

t=1

φ′(L)(ht ),

â(L)(h) = W(L)(h)−1w(L)(h),

ψ(L)(ht ; â(L)(h)
) = â(L)(h)T �(L)(ht ).

With E(θ) = (E1(θ), . . . ,En(θ))T define

ψ̃
(L)
t (θ, σ ) = ψ(L)(Et(θ)/σ ; â(L)(E(θ)/σ )

)
,

where it will follow from our conditions that in a neighborhood ofθ0, σ0,
W(L)(E(θ)/σ ) is nonsingular with probability approaching 1 asn → ∞. We
then compute theψ̃(L)

t (θ̃ , σ̃ ). Following Beran [2] and Newey [25] we have
approximatedψ(εt ) by

∑L
�=1 a�{φ�(εt ) − Eφ�(εt )} [imposing the restriction

Eψ(εt ) = 0], noted that (under conditions to be given) integration by parts implies
E{φ(L)(εt )ψ(ε0)} = E{φ(L)(εt )}, estimated(a1, . . . , aL)T by a(L)(E(θ̃)/σ̃ ), and
thenψ(εt ) by ψ̃

(L)
t (θ̃ , σ̃ ).
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Define [see (1.10)–(1.13)]

e′
t (θ) = (∂/∂θ)et (θ) = (

e′
t1(θ)T , e′

t2(θ)T
)T

,

where

e′
t1(θ) = α′(B; θ1)(yt − θT

2 z2t ), e′
t2(θ) = −α(B; θ1)z2t ,

with

α′(s; θ1) = (∂/∂θ1)α(s; θ1) = (1− s)ξα
(
s; θ(−)

1

)
γ (s;ν),

(2.1)
γ (s;ν) = [

log(1− s),
{
(∂/∂ν)T α

(
s; θ(−)

1

)}/
α

(
s; θ(−)

1

)]T
.

Define

E′
t i (θ) = e′

t i (θ) − n−1
n∑

s=1

e′
si(θ), i = 1,2,

rLi(θ, σ ) =
n∑

t=1

ψ̃
(L)
t (θ, σ )E′

t i (θ), Ri(θ) =
n∑

t=1

E′
t i (θ)E′

t i (θ)T , i = 1,2,

JL(θ, σ ) = n−1
n∑

t=1

ψ̃
(L)
t (θ, σ )2.

Estimateθ01, θ02 by

θ̂i = θ̃i + {Ri(θ̃)JL(θ̃ , σ̃ )}−1rLi(θ̃ , σ̃ ), i = 1,2,(2.2)

respectively, for̃θ = (θ̃T
1 , θ̃T

2 )T .
As in [25] we restrict toφ�(s) satisfying

φ�(s) = φ(s)�,(2.3)

for a smooth functionφ(s). Examples are

φ(s) = s,(2.4)

φ(s) = s(1+ s2)−1/2.(2.5)

Our conditions requireL to increase very slowly withn, and allow the increase
to be arbitrarily slow; in practice, for moderaten, (2.2) might be computed for a
few small integersL, starting withL = 1. Recursive formulas are available, using
partitioned regression, such that the elements ofW(L)(E(θ̃)/σ̃ ), w(L)(E(θ̃)/σ̃ )

can be used in computing̃ψ(L+1)
t (θ̃ , σ̃ ).
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3. Main results. We introduce the following regularity conditions. Through-
out the paperC denotes a finite but arbitrarily large constant.

ASSUMPTION A1. The sequenceyt is generated by (1.1) withxt generated
by (1.2)–(1.4) and (1.11), where theεt are independent and identically distributed
(i.i.d.) with zero mean and variance 1, andzt is given by (1.8).

ASSUMPTIONA2. Either:

(a) Eε4
0 < ∞; or

(b) for someω > 0 the moment generating functionE(et |ε0|ω) exists for some
t > 0; or

(c) ε0 is almost surely bounded.

ASSUMPTIONA3. ε0 has densityg(s) that is differentiable and

0< J < ∞,

whereJ is defined in (1.15).

ASSUMPTION A4. The sentence including (1.6) and (1.7) is true,ν0 is an
interior point of V , and in a neighborhoodN of ν0, α(s; θ(−)

1 ) = β(s;ν)−1 is
thrice continuously differentiable inν for |s| = 1 and

∞∑
j=1

j3
{
|βj (ν0)| + sup

N

∣∣αj

(
θ

(−)
1

)∣∣ + sup
N

∣∣α(k)
j

(
θ

(−)
1

)∣∣

+ sup
N

∣∣α(k,�)
j

(
θ

(−)
1

)∣∣ + sup
N

∣∣α(k,�,m)
j

(
θ

(−)
1

)∣∣} < ∞,

for all k, �,m = 1, . . . , p1 − 1, whereαj (θ
(−)
1 ) is defined by (1.10), (1.12) and

α
(k)
j (θ

(−)
1 ) = (∂/∂νk)αj (θ

(−)
1 ), α

(k,�)
j (θ

(−)
1 ) = (∂/∂ν�)α

(k)
j (θ

(−)
1 ), α

(k,�,m)
j (θ

(−)
1 ) =

(∂/∂νm)α
(k,�)
j (θ

(−)
1 ), νk being thekth element ofν.

ASSUMPTIONA5. For all (p1 − 1) × 1 nonnull vectorsλ, λT {(∂/∂ν)α(eiλ;
θ

(−)
01 )}β(eiλ;ν0) �= 0 on a subset of(−π,π] of positive measure.

ASSUMPTIONA6.

0 < σ 2
0 < ∞.

ASSUMPTIONA7.

n1/2(θ̃1−θ01) = Op(1), Dn(θ̃2−θ02) = Op(1), n1/2(σ̃ 2−σ 2
0 ) = Op(1),
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where

Dn = diag
{
nχ1−ξ0+1/21

(
χ1 − ξ0 > −1

2

) + (logn)1/21
(
χ1 − ξ0 = −1

2

)
,

nχ2−ξ0+1/2, . . . , nχp2−ξ0+1/2}.
ASSUMPTIONA8. φ�(s) satisfies (2.3), whereφ(s) is strictly increasing and

thrice continuously differentiable and is such that, for someκ ≥ 0, K < ∞,

|φ(s)| ≤ 1(|s| ≤ 1) + |s|κ1(|s| > 1),(3.1)

|φ′(s)| + |φ′′(s)| + |φ′′′(s)| ≤ C
(
1+ |φ(s)|K)

.(3.2)

ASSUMPTIONA9.

L → ∞ asn → ∞(3.3)

and either:

(a)

lim inf
n→∞

(
logn

L

)
> 8{logη + max(logϕ,0)} � 7.05+ 8max(logϕ,0);(3.4)

or
(b)

lim inf
n→∞

(
logn

L logL

)
> max

(
8κ

ω
,

4κ(ω + 1)

ω

)
;(3.5)

or
(c)

lim inf
n→∞

(
logn

L logL

)
> 4κ,(3.6)

where

η = 1+ 21/2 � 2.414

and

ϕ = 1+ |φ(s1)|
φ(s2) − φ(s1)

,

[s1, s2] being an interval on whichg(s) is bounded away from zero.

REMARK 1. Parts (a), (b) and (c) of Assumption A2 increase in strength and
entail trade-offs with Assumptions A8 and A9. Whenκ = 0 in Assumption A8, so
φ(s) is bounded, (a) of Assumption A2 and (a) of Assumption A9 suffice; a finite
fourth moment seems hard to avoid in dealing with the deviationset (θ0) − σ0εt .
Part (b) of Assumption A2 holds withω = 1 for Laplaceεt and withω = 2 for
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Gaussianεt . We require (b) of Assumption A2 whenκ > 0 in Assumption A8,
soφ(s) can be unbounded, and also (b) of Assumption A9. If (c) of Assumption A2
holds, then a fortiori we can haveκ > 0 in Assumption A8, and can relax (b) of
Assumption A9 to (c).

REMARK 2. Assumption A3 is virtually necessary.

REMARK 3. Assumption A4 is stronger than necessary, but is chosen for
brevity of presentation and because it is readily checked for short memory and
invertible AR (α) and MA (β) filters arising in models of most practical interest,
such as ARMA and Bloomfield [4] models, and in any case conditions on the
short-memory component are of only secondary interest here. A property useful
in several places (see in particular Lemma 13 of Section 7) that is ensured
by Assumption A4 is as follows. A (possibly vector) sequenceαj , j ≥ 0, has
propertyPr(d), r ≥ 0, if

‖αj‖ ≤ C{log(j + 2)}r (j + 1)d−1,

‖αj − αj+1‖ ≤ C{log(j + 2)}r (j + 1)d−2, j ≥ 0,

where ‖ · ‖ denotes Euclidean norm. For|s| ≤ 1 and θ
(+)
1 = (ζ, νT )T , define

square-summableπj (θ
(+)
1 ) such that

π
(
s; θ(+)

1

) = (1− s)−ζ β(s;ν) =
∞∑

j=0

πj

(
θ

(+)
1

)
sj , |ζ | < 1

2, ν ∈ V.

Then, withθ+
01 = (ζ0, ν

T
0 )T , πj (θ

(+)
01 ) has propertyP0(ζ0), αj (θ

(+)
01 ) has property

P0(−ζ0) and (∂/∂/θ
(+)T
1 )αj (θ

(+)
01 ) has propertyP1(−ζ0). This follows from

Lemmas 11 and 12 of Section 7 on noting that, forα(s) = ∑∞
j=0 αj s

j , β(s) =∑∞
j=0 βj s

j , the coefficient ofsj in α(s)β(s) is
∑j

k=0 αkβj−k , that the coefficients

of sj in (1 − s)−d and− log(1 − s) are�j(d) andj−1, thatπ(1; θ(+)
01 ) = 0 for

ζ0 < 0, and thatα(1; θ(+)
01 ) = 0, (∂/∂/θ(+)T )α(1; θ(+)

01 ) = 0 for ζ0 > 0.

REMARK 4. Assumption A5 is an identifiability condition, violated if, for
example,ut is specified as an ARMA with both AR and MA orders overstated.
Assumption A5, with Assumption A4, implies that

�1 = 1

2π

∫ π

−π
γ (eiλ;ν0)γ (e−iλ;ν0)

T dλ

(3.7)

= 1

2π

∫ π

−π


 log|1− eiλ|2

2
∂

∂ν
log|β(eiλ;ν0)|





 log|1− eiλ|2

2
∂

∂ν
log|β(eiλ;ν0)|




T

dλ
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is positive definite, withγ given by (2.1).�1 is proportional to the inverse of the
limiting covariance matrix ofθ̂1. We define also the corresponding matrix with
respect toθ̂2,

�2 = σ 2
0

2π
β(1;ν0)

2

(3.8)

×
({2(χi − ξ0) + 1}1/2{2(χj − ξ0) + 1}1/2(χi − ξ0)(χj − ξ0)

(χi + χj − 2ξ0 + 1)(χi − ξ0 + 1)(χj − ξ0 + 1)

)
,

whenχ1 − ξ0 > −1
2, where the (i, j )th element of the matrix is displayed; because

((χi +χj −2ξ0+1)−1) is a Cauchy matrix (see [17], page 30), and the inequalities
in (1.8) hold,�2 is positive definite. The same is true whenτj − ξ0 = −1

2 for
somej , �2 being defined by replacing the(1,1)th element of the matrix in (3.8)
by 1, and the other elements in the first row and column by zero.

REMARK 5. The middle part of Assumption A7 is likely to be satisfied by the
least-squares estimate ofθ02, under similar conditions to ours. A substantial liter-
ature justifiesθ̃1 satisfying Assumption A7; typicallyθ ′

02z2t is assumed constant
a priori, but the results should go through more generally withxt replaced by least-
squares residuals. Various estimates ofθ01 (which we collectively call Whittle
estimates) have been shown to ben1/2-consistent and asymptoticallyN(0,�−1

1 )
when 0≤ ξ0 < 1

2 under Gaussianity ofxt (when they achieve the efficiency bound
of Section 1 and are as good as maximum likelihood estimates), and under more
general conditions (see, e.g., [6, 9, 11, 16]). The estimate minimizing (1.14) with
ρ(s) = s2 [usually withEt(θ) replaced byet (θ)] falls within this class. This esti-
mate (used by Li and McLeod [21] for fractional models and Box and Jenkins [5]
for ARMA ones) is sometimes called a conditional sum of squares (CSS) estimate
(though it is based on formulas for the truncated AR representation rather than for
the conditional expectation given the finite past record). Beran [1] argued that it has
the same desirable asymptotic properties forξ0 > 1

2, tying in with Robinson’s [26]
derivation of standard asymptotics for score tests, based on the same objective
function, for unit root and more general nonstationary hypotheses against frac-
tional alternatives. These authors employed a different definition of fractional non-
stationarity from ours, but for our definition Velasco and Robinson [29] established
the same properties for a Whittle estimate when−1

2 < ξ0 < 3
4, and for a tapered

version of this for−1
2 < ξ0 < ∞, though the tapering inflates asymptotic vari-

ance. They established consistency of their implicitly defined optimizer despite
lack of uniform convergence over an admissible parameter set that includes a wide
range of nonstationary values ofξ . Taking a Newton step from a previously es-
tablishedn1/2-consistent estimate avoids repeating this kind of work. Velasco and
Robinson’s [29] estimate ofσ 2

0 should satisfy the final part of Assumption A7
[with (a) sufficient within Assumption A2].
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REMARK 6. When κ = 0 in Assumption A8, then|φ(s)| ≤ 1 for all s,
under (3.1); there would be no gain in generality by specifyingφ to satisfy a larger
finite bound. Forκ > 0 we might takeφ(s) = sκ ; compare (2.4). The reason for
imposing different bounds onφ(s) over |s| ≤ 1 and|s| > 1 is to allow possibly
different rates of approach to zero and infinity. Assumption A8 is stronger than the
corresponding assumption of Newey [25], and is driven by the presence ofet (θ0)

for small t , when it does not approximateσ0εt ; we prefer this to trimming out
small t , which introduces further ambiguity. It is hard to think of reasons for
choosingφ that do not satisfy (3.1), (3.2), which imply power-law bounds onφ′(s),
φ′′(s) andφ′′′(s) ass → ∞.

REMARK 7. The weakest of the conditions in Assumption A9, (a), can only
apply whenκ = 0 in Assumption A8, in which case logϕ > 0. Subject to this, the
hope is thats1 ands2 exist such thatϕ is arbitrarily close to 1, as wheng(s) > 0
for all s; then the strict inequality in (3.4) applies with logϕ = 0. The mysterious
constantη is due to approximatingW(L) in the proof in terms of the Cauchy matrix
with (i, j)th element

∫ 1
−1 ui+j−2 du (see Lemma 7 of Section 7). Sinceφ is defined

for negative and positive arguments, this seems more natural than Newey’s [25] use
of the Hilbert matrix(

∫ 1
0 ui+j−2 du) and affords some slight improvement over it

due to the many zero elements in this Cauchy matrix; following a similar proof
to that of Lemma 7 for the Hilbert matrix,η would be replaced byη2 � 5.828. In
fact, a constant such asη does not arise in Newey’s work because he is content
with a slightly stronger condition than any in Assumption A9,L logL/ logn → 0,
irrespective of whether or notφ is bounded, and without considering the impact of
boundedεt . This is because he accepts a bound of formLCL at several points of his
proof. Our slightly sharper bounds suggest that whenφ is bounded it is effectively
the denominator ofψ(L) (i.e., the inverse ofW(L)) that dominates, while whenφ is
unbounded the numerator dominates. In the former case, the slowL corresponds
to the notorious ill-conditioning of Cauchy–Hilbert matrices. One disadvantage of
a boundedφ is that a largerL might be needed to approximate an unboundedψ ,
though our slightly milder condition onL in Assumption A9(a) might help to
justify this. Another is that it excludes (2.4), which “nests” the Gaussian case,
though it would be possible to modify our theory to allow inclusion ofφ1(s) = s,
say, followed by polynomialφ� (2.3) using boundedφ such as (2.5). Though the
partly known nature of the bounds in Assumption A9 is interesting, and their
reflection of other assumptions is intuitively reasonable in a relative sense, not
only is the improvement over Newey’s rate slight, but even after guessingω andϕ,
no practical choices ofL in finite samples can be concluded; indeed the same
asymptotic bounds result if any fixed integer is added to or subtracted fromL. As
in much other semiparametric work, no information toward an optimal choice ofL

emerges; indeed, as in [25] there is no lower bound onL, and besides that it must
increase withn.
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THEOREM 1. Let Assumptions A1–A9 hold, such that when κ = 0 Assump-
tion A2(a) holds with Assumption A9(a),or when κ > 0 either Assumption A2(b)
holds with Assumption A9(b) or Assumption A2(c) holds with Assumption A9(c).
Then as n → ∞, n1/2(θ̂1 − θ01) and Dn(θ̂2 − θ02) converge in distribution to
independent N(0,J−1�−1

1 ), N(0,J−1�−1
2 ) vectors, respectively, where the lim-

iting covariance matrices are consistently estimated by {JL(θ̃ , θ̃ )R1(θ̃)/n}−1,
{JL(θ̃ , θ̃ )D−1

n R2(θ̃)D−1
n }−1, respectively.

To place Theorem 1 in perspective and to further balance the focus on Whittle
estimation in the long-memory literature, we also consider the fully parametric
case, whereg(s; θ3) is a prescribed parametric form, as described after (1.14),
on the basis of which definêθ3 = argmin�3 Qlogg(θ̃; θ3), and, withψ(s; θ3) =
−(∂/∂s)g(s; θ3)/g(s; θ3),

Jn(θ, σ, θ3) = n−1
n∑

t=1

ψ
(
Et(θ)/σ ; θ3

)2
,

ri(θ, σ, θ3) =
n∑

t=1

ψ
(
Et(θ)/σ ; θ3

)
E′

t i (θ), i = 1,2,

and redefinêθi , i = 1,2, of (2.2) as

θ̂i = θ̃i + {Ri(θ̃)Jn(θ̃ , σ̃ , θ̂3)}−1ri(θ̃ , σ̃ , θ̂3), i = 1,2.

We introduce the following additional assumptions.

ASSUMPTIONA10. �3 is compact andθ03 is an interior point of�3.

ASSUMPTION A11. For all θ3 ∈ � − {θ03}, g(s; θ3) �= g(s; θ03) on a set of
positive measure.

ASSUMPTION A12. In a neighborhoodN of θ03, logg(s; θ3) is thrice
continuously differentiable inθ3 for all s and∫ ∞

−∞

{
sup
N

∣∣g(k)(s; θ3)
∣∣ + sup

N

∣∣g(k,�)(s; θ3)
∣∣ + sup

N

∣∣g(k,�,m)(s; θ3)
∣∣}ds < ∞,

whereg(k), g(k,�), g(k,�,m) represent partial derivatives ofg with respect to thekth,
thekth and�th, and thekth, �th andmth elements ofθ3, respectively.

ASSUMPTION A13. �3 = E{(∂/∂θ3) logg(εt ; θ03)(∂/∂θT
3 ) logg(ε0; θ03)} is

positive definite.
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THEOREM 2. Let Assumptions A1, A2(a), A3–A7 and A10–A13 hold.
Then as n → ∞, n1/2(θ̂1 − θ01), D

1/2
n (θ̂2 − θ02) and n1/2(θ̂3 − θ03) converge

in distribution to independent N(0,J−1�−1
1 ), N(0,J−1�−1

2 ) and N(0,�−1
3 )

vectors, respectively, where the limiting covariance matrices are consistently
estimated by {Jn(θ̃ , σ̃ , θ̂3)R1(θ̃)/n}−1, {Jn(θ̃ , σ̃ , θ̂3)D

−1
n R2(θ̃)D−1

n }−1 and

{
n−1

n∑
t=1

[
(∂/∂θ3) logg

(
Et(θ̃)/σ̃ ; θ̂3

)][
(∂/∂θT

3 ) logg
(
Et(θ̃)/σ̃ ; θ̂3

)]}−1

,

respectively.

The proof (which entails an initial consistency proof for the implicitly
defined extremum estimatêθ3) is omitted because it combines relatively standard
arguments with elements of the proof of Theorem 1, notably concerning the
et (θ0) − σ0εt issue. Our treatment of this would also lead to a theorem for
M-estimates ofθ0 minimizing (1.14) in whichρ(s) is a completely specified
function, not necessarily logg(s), but we omit this to conserve on space, and
because the efficiency improvement of the paper’s title would in general not be
achieved.

Theorems 1 and 2 suggest locally more powerful (Wald-type) tests onθ01
than those implied by CLTs for Whittle estimates. For example, the hypothesis
of short memory,ξ0 = 0, can be efficiently tested, as can, say, the significance
of AR coefficients in a FARIMA(p11, ξ0,0), for any unknownξ0 > −1

2. We can
also efficiently investigate the question of relative success of deterministic and
stochastic components in describing trending time series. For example, we can
apply the theorems to testθ02 = 0, or, with p2 = 1, p2 = tτ , test ξ0 = τ + 1

2
against the one-sided alternativeξ0 > τ + 1

2 [see the discussion after (1.9)]; in
the first case rejection implies a significant deterministic trend, and in the latter,
a dominant stochastic one. Tests based onθ̂2 are in general more powerful than
those based on least squares (see [31]) or generalized least squares (see [7]).

4. Finite sample performance. A small Monte Carlo study was carried out
to investigate the success of our semiparametric estimates in small and moderate
samples. Along with the value ofn, major influential features seem likely to be the
form of g(s), the value ofξ0 and the choice ofφ andL.

We focused on the simple FARIMA(0, ξ0,0) model foryt (knowingµT z0 ≡ 0)
for:

(i) ξ0 = −0.25 (antipersistent),
(ii) ξ0 = 0.25 (stationary with long memory),
(iii) ξ0 = 0.75 (nonstationary but mean-reverting),
(iv) ξ0 = 1.25 (nonstationary, non-mean-reverting).
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For εt we considered the following distributions [the scalings referred to
producing var(εt ) = 1]:

(a) N(0,1),
(b) 0.5N(−3,1) + 0.5N(3,1),
(c) (scaled) 0.05N(0,25) + 0.95N(0,1),
(d) (scaled) Laplace,
(e) (scaled)t5.

These were mostly chosen for the sake of consistency with other Monte Carlo
studies of adaptive estimates. The benchmark case (a), and the two (symmetric and
asymmetric) mixed normal distributions (b) and (c), were used by Kreiss [19] in a
stationary AR model, with kernel estimates ofψ , and by Newey [25] (in a cross-
sectional regression model). Ling [22] used (b) in a FARIMA(0, ξ0,0) model with
kernel estimates ofψ . Kreiss [19] also used (d). The point of (e) is that it only just
satisfies the minimal fourth moment condition onεt , Assumption A2(a). Kernel
approaches, from [3] and [28] for location and regression models for independent
observations, through Kreiss [19], Drost, Klaassen and Werker [8] and Koul and
Schick [18] for short-memory time series models, and Hallin, Taniguchi, Serroukh
and Choy [15], Hallin and Serroukh [14] and Ling [22] for long-memory ones,
have been popular in the adaptive estimation literature. Besides requiring choice
of a kernel and bandwidth (analogous to ourφ andL), they typically involve one
or more forms of trimming, in part due to the presence of a kernel density estimate
in the denominator of the estimate ofψ(s), and sometimes sample splitting and
discretization of the initial estimate. Theorem 1 of course implies semiparametric
efficient estimates using series estimation for short-memory models. Forφ we
used both (2.4) and (2.5), and triedL = 1,2,3,4, with n = 64 and 128. For
ξ̃ = θ̃ andσ̃ 2 Velasco and Robinson’s [29] estimates were employed, with a cosine
bell taper; this is sufficient to satisfy Assumption A7 for allξ0 considered, albeit
unnecessary whenξ0 = ±0.25.

We report the Monte Carlo relative efficiency measure MSE(ξ̂ )/MSE(ξ̃ ) (where
ξ̂ = θ̂ ) on the basis of 1000 replications. Tables 1–5 present results for distributions

TABLE 1
εt ∼ N(0,1)

φ(s) = s φ(s) = s(1 + s2)−1/2

L 1 2 3 4 1 2 3 4

−0.25 0.62 0.62 0.62 0.62 0.66 0.67 0.63 0.65
ξ0 0.25 0.47 0.48 0.51 0.61 0.49 0.52 0.53 0.60

0.75 0.46 0.49 0.53 0.62 0.50 0.54 0.55 0.60
1.25 0.47 0.50 0.52 0.61 0.52 0.53 0.52 0.56

For all tables, Monte Carlo MSE(ξ̂ )/MSE(ξ̃ ) with n = 64 and 1000 replications.
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TABLE 2
εt ∼ 0.5N(−3,1) + 0.5N(3,1)

φ(s) = s φ(s) = s(1 + s2)−1/2

L 1 2 3 4 1 2 3 4

−0.25 0.92 0.92 0.83 0.90 0.94 0.93 0.82 0.83
ξ0 0.25 0.90 0.91 0.89 0.93 0.91 0.91 0.88 0.89

0.75 0.90 0.91 0.89 0.94 0.90 0.92 0.89 0.89
1.25 0.88 0.89 0.88 0.92 0.89 0.89 0.87 0.87

TABLE 3
εt ∼ (scaled ) 0.5N(0,25) + 0.95N(0,1)

φ(s) = s φ(s) = s(1 + s2)−1/2

L 1 2 3 4 1 2 3 4

−0.25 0.71 0.71 0.62 0.77 0.81 0.76 0.63 0.70
ξ0 0.25 0.84 0.76 0.65 0.74 0.77 0.67 0.60 0.54

0.75 0.85 0.79 0.70 0.79 0.80 0.78 0.69 0.63
1.25 1.01 0.96 0.81 0.82 0.91 0.83 0.74 0.68

TABLE 4
εt ∼ (scaled ) Laplace

φ(s) = s φ(s) = s(1 + s2)−1/2

L 1 2 3 4 1 2 3 4

−0.25 1.07 0.85 0.92 0.96 1.04 0.90 0.60 0.61
ξ0 0.25 0.89 0.60 0.58 0.87 0.78 0.62 0.65 0.67

0.75 0.56 0.52 0.55 0.81 0.51 0.53 0.53 0.54
1.25 0.28 0.23 0.23 0.86 0.32 0.26 0.28 0.38

TABLE 5
εt ∼ (scaled ) t5

φ(s) = s φ(s) = s(1 + s2)−1/2

L 1 2 3 4 1 2 3 4

−0.25 0.58 0.54 0.53 0.65 0.55 0.53 0.55 0.60
ξ0 0.25 0.56 0.56 0.57 0.74 0.51 0.54 0.55 0.58

0.75 0.58 0.58 0.62 0.75 0.51 0.56 0.57 0.61
1.25 0.63 0.61 0.60 0.69 0.54 0.55 0.52 0.53
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(a)–(e), respectively, in casen = 64 only; generally asymptotic behavior was better
approximated whenn = 128. Forεt ∼ N(0,1), ξ̂ is efficient whenφ(s) = s for
all L ≥ 1, the efficiency improvement achieved in Table 1 forL = 1 being due
to the tapering inξ̂ ; as anticipated, the unnecessarily complicatedξ̂ based on
larger L makes matters somewhat worse. One expects relative efficiency to be
roughly constant acrossξ0. The deviating results forξ0 = −0.25 andξ0 = 1.25
sometimes found in the tables are largely due to the following computational
policy. The grid search to locatẽξ was confined to the interval[−0.4,1.75],
and for the extremeξ0 someξ̃ fell on the boundary (especially the lower one),
while we correspondingly trimmed̂ξ < −0.4 and ξ̂ > 1.75 to ξ̂ = −0.4 and
ξ̂ = 1.75, respectively. This led to some underestimation of bias and variance,
and consequent distortion of relative efficiency. However, there is considerable
stability acrossξ0 in the symmetric mixed normal case (Table 2), and also small
improvement with increasingL, but slight deterioration whenL = 4 for the
unboundedφ(s) = s. We find this also in the asymmetric mixed normal case
(Table 3), though for the boundedφ(s) = s(1+ s2)−1/2, mainly the improvement
continues toL = 4, and its magnitude, at each increase ofL, is notable. For the
Laplace distribution (Table 4) there is notable sensitivity toξ0, though increasingL
tends to improve efficiency, at least up toL = 3. For thet5 distribution (Table 5)
only small improvements, if any, were recorded afterL = 1, as is not surprising
for this small sample size, as asymptotic relative efficiency is 0.8; the deterioration
with φ(s) = s at L = 4 is also not surprising due to the heavy tails. The results
taken as a whole seem fairly encouraging, especially as the truncation (1.13) in
computing residuals, which looms large in the theoretical component of this paper,
would be expected to have some finite sample effect onξ̂ in our fractional setting.

5. Final comments. In various stationary, short-memory time series models,
Kreiss [19], Drost, Klaassen and Werker [8], Koul and Schick [18] and others
developed local asymptotic normality (LAN) and local asymptotic minimaxity
(LAM) theory of Le Cam [20] and Hájek [12] to establish

√
n-consistent, as-

ymptotically normal and asymptotically efficient estimates, and, further, adaptive
estimates that achieve the same properties in the presence of nonparametricg.
A similar approach was followed by Hallin et al. [15], Hallin and Serroukh [14]
and Ling [22] in the case of stationary and nonstationary fractional models.
LAN theory commences from a log-likelihood ratio, but in view of the difficulty
in constructing likelihoods in a general non-Gaussian setting, the latter authors
commenced not from the likelihood fory1, . . . , yn but from a “likelihood” for
y1, . . . , yn and the infinite set of unobservable variablesεt , t ≤ 0, in terms of the
densityg of εt , or a “conditional likelihood” fory1, . . . , yn given theεt , t ≤ 0,

or theyt , t ≤ 0. We do not employ such constructions and do not establish local
optimality properties. However, theM-estimate efficiency bound we achieve is of
course the same as the asymptotic variance resulting from a LAM/LAN approach.
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Another motivation for our more elementary efficiency criterion is to allow
space to focus on the main technical difficulty distinguishing asymptotic distri-
bution theory for fractional models from that for short-memory ones. This is due
to the need to approximate the truncated AR transformset = et (θ0) [see (1.13)]
by scaled innovationsσ0εt . Consider a simplified version of the problem in which
yt = xt a priori, soθ = θ1, and defineδt = et − σ0εt . In the following section (re-
lying heavily on Lemmas 13 and 14 of Section 7) we find thatE|δt |r ≤ Ct−r/2,
r ≥ 2, given a sufficient moment condition onεt . This property is useful in our
proof thatet can be replaced byσ0εt in â(L)(E(θ0)/σ0) (see Lemma 19). In some
cases it is possible to show that the upper bound provides a sharp rate. Consider
the stationary FARIMA(0, ξ0,0) (cf. [14]), where 0< ξ0 = ζ0 < 1

2 andxt = vt ,
t ∈ Z. Noting that cov(x0, xj ) ≥ j2ξ0−1/C, αj (ξ0) ≥ j−ξ0−1/C for j > 0,

E(δ2
t ) =

∞∑
j=t

∞∑
k=t

αj (ξ0)αk(ξ0)cov(xj , xk)

≥ C−1
∞∑

j=t

∞∑
k=t

1≤|j−k|≤t

j−ξ0−1k−ξ0−1|j − k|2ξ0−1

≥ C−1t2ξ0−1
∞∑
j=t

t+j∑
k=t+1

(jk)−ξ0−1

≥ C−1t2ξ0−1
2t∑

j=t

j−ξ0(t + j)−ξ0−1

≥ (Ct)−1.

(This contrasts with the exponential rate occurring with ARMA models.) In this
stationary FARIMA(0, ξ0,0),

δt =
t−1∑
j=0

αj (ξ0)xt−j − σ0εt

=
t−1∑
j=0

αj (ξ0)vt−j − σ0εt(5.1)

= −
∞∑
j=t

αt+j (ξ0)vt−j .

In our “asymptotically stationary” version of the FARIMA(0, ξ0,0), also with
0 < ξ0 < 1

2, we havext = x#
t , but again (5.1) results, from (1.4), (1.10), (1.11)

and Lemma 5 of Section 7. In this connection, note that for generalξ0, Ling [22]
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tookxt = �−m0v#
t +vt1(t ≤ 0) in place of our (1.2), but this different prescription

of xt for t ≤ 0 makes no difference toet , which depends onxs for s ≥ 1 only.
The above upper bound forE|δt |r , combined with the Schwarz inequality, is

insufficient to deal completely with the replacement ofet by σ0εt , even when
ψ is smooth. Staying with the caseyt = xt a priori, the proofs of Theorems
1 and 2 entail establishing asymptotic normality of a quantity of the formc1n =
n−1/2 ∑n

t=1 ψ(et )ht , whereht is {εs, s ≤ t −1}-measurable and has finite variance;
c1n is called a “central sequence” by Hallin et al. [15] [see their (2.15) and (3.11)]
and Hallin and Serroukh [14] [see their (2.4)]. Asymptotic normality ofc2n =
n−1/2 ∑n

t=1 ψ(εt )ht follows straightforwardly from a martingale CLT. This leaves
the relatively difficult task of showing thatc1n − c2n = op(1). In fact, our proof
does not directly considerc1n − c2n because we do not assumeψ is smooth;
we instead approximate theet by the σ0εt within the smooth estimate ofψ
and then appeal to mean square approximation ofψ(εt ) by its least-squares
projection on theφ(εt )

�, � = 1, . . . ,L, asL → ∞, as in [25]. However, for this,
Sn = n−1/2 ∑n

t=1 δtht [i.e., c1n − c2n with ψ(x) replaced byx] is relevant, and the
sharper the bound we obtain for it the weaker some other conditions can be; we
obtainSn = Op((logn)3/2n−1/2).

The same kind of issue arises in theory for Whittle estimation. For short-
memory stationary processes, withξ0 = 0, Hannan [16] established the CLT for
various Whittle estimates. His proof does not work under stationary long memory,
0< ξ0 < 1

2, due to the bad behavior of the periodogram and spectral density at low
frequencies. However, in this case Fox and Taqqu [9], Dahlhaus [6] and Giraitis
and Surgailis [11] delicately exploited a kind of balance between these quantities in
order to establish CLTs. The CSS estimate minimizing

∑n
t=1 e2

t (θ) [see Remark 5
in Section 3 concerning (1.14)] is not one of those considered by these authors, but
its CLT requires showingSn = op(1), which entails similar challenge to results
they established for the somewhat different quadratic forms arising from their
parameter estimates. Our results for replacinget by σ0εt can be employed to
provide a proof of asymptotic normality of the CSS version of the Whittle estimate.
Whittle and adaptive estimation are both areas in which asymptotic results are
qualitatively the same across short and long memory, but sufficient methods of
proof significantly differ.

6. Proof of Theorem 1. The consistency of the covariance matrix estimates
is implied by the proof of the CLT. By far the most significant features of this are
accomplished in the lemmas in the following section. Their application is mostly
relatively straightforward, and is thus described here in abbreviated form. For
notational convenience we now writeθ3 = σ and augmentθ asθ = (θT

1 , θT
2 , θ3)

T .
We also abbreviate

∑n
t=1 to

∑
t , and Et(θ0), E(θ0), Eti(θ0) to Et,E,Eti ,
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respectively,i = 1,2. By the mean value theorem, fori = 1,2,

θ̂i − θ0i =
{
Ipi

+ Ri(θ̃)−1

JL(θ̃)
S̄Lii

}
(θ̃i − θ0i )

+ Ri(θ̃)−1

JL(θ̃)

{ 3∑
j=1,j �=i

S̄Lij (θ̃j − θ0j ) + rLi(θ0)

}
,

where, with [SLi1(θ), SLi2(θ), SLi3(θ)] = (∂/∂θT )rLi(θ), each row ofS̄Lij is
formed from the corresponding row ofSLij (θ) by replacingθ by θ̄ such that
‖θ̄ − θ0‖ ≤ ‖θ̃ − θ0‖ where ‖A‖ = {tr(AT A)}1/2. Write D1n = D3n = n1/2,
D2n = Dn and defineN = {θ :‖Din(θi −θ0i )‖ ≤ 1, i = 1,2,3}. The result follows
if

sup
N

‖D−1
in {Ri(θ) − Ri(θ0)}D−1

in ‖ p→ 0, i = 1,2,(6.1)

sup
N

‖D−1
in {SLij (θ) − SLij (θ0)}D−1

jn ‖ p→ 0, i = 1,2, j = 1,2,3,(6.2)

sup
N

|JL(θ) − JL(θ0)| p→ 0,(6.3)

D−1
in Ri(θ0)D

−1
in

p→ �i, i = 1,2,(6.4)

{Ri(θ0)JL(θ0)}−1SLij (θ0)
p→ −Ipi

1(i = j),
(6.5)

i = 1,2, j = 1,2,3,

JL(θ0)
p→ J,(6.6) [

n−1/2r1
D−1

n r2

]
d→ N

(
0,

[
J�1 0

0 J�2

])
,(6.7)

D−1
in {rLi(θ0) − ri} p→ 0, i = 1,2,(6.8)

where

r1 = ∑
t

ψ(εt )ε
′
t1, r2 = ∑

t

ψ(εt )E
′
t2,

with ε′
t1 = (∂/∂θ

(+)T
1 )α(B; θ(+)

1 )/σ0 = γ (B;ν0)εt .
The most difficult and distinctive problems occur in (6.8) fori = 1, which faces

theet −σ0εt problem, as well as the increasingL, in the presence of normalization
only by D−1

1n . The first of these aspects is also in (6.1) and (6.4), and both are
in (6.2), (6.3), (6.5) and (6.6), but the normalizations make (6.4)–(6.6) much
easier to deal with and the proof details are otherwise relatively standard, albeit
lengthy. The same may also be said for (6.1)–(6.3), except for the approximation
of the fractional difference�ξ0 by �ξ for |ξ − ξ0| ≤ n−1/2, bearing in mind
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that “nonstationary” values ofξ , ξ0 are permitted. The basic steps in proving
(6.1)–(6.3) are illustrated by the least complicated case (6.1). By elementary

inequalities it suffices to show that supN
∑

t ‖D−1
in (e′

t i (θ) − e′
t i (θ0))‖2 p→0,

i = 1,2. Write α = α(B; θ(−)), α′ = α′(B; θ(−)) with α0, α
′
0 denoting these

quantities atν = ν0. For i = 2, it suffices to apply Lemmas 1, 2, 3 and (with
m = ξ0) 4, the j th elements ofα0(�

ξ − �ξ0)z2t and (α − α0)�
ξ0z2t being,

respectively,O(n−1/2(log t)tχj−ξ0) andO(n−1/2tχj−ξ0) uniformly in N , noting
that ξ0 > −1

2 andχj ≥ ξ0 − 1
2 implies χj > −1 andξ0 < χj + 1. For i = 1, the

terms inz2t are dealt with similarly, while Lemmas 1–4 give, for example,α′
0(�

ξ −
�ξ0)(st + µ∗tξ0) = O(n−1/2(log t)2) and (α′ − α′

0)�
ξ0(st + µ∗tξ0) = O(n−1/2)

uniformly in N . In the above we apply first Lemma 3, then Lemma 1 and then
Lemma 2, noting that in case (ii) of Lemma 1 must be used (either for a leading
term or remainder) the coefficient ofsj in the expansion of− log(1− s), and thus
of (− log(1 − s))r , is positive for allj ≥ 1, so for nonnegative sequencesgt , ht ,
such thatgt ≤ ht , we have|(− log�)rgt | ≤ |(− log�)rxt |. So far as contributions
from xt are concerned, from Lemma 5

sup
N

‖(α′ − α′
0)�

ξ0xt‖ ≤
t−1∑
j=0

{
sup
N

‖α′
j − α′

0j‖
}
{|�ζ0v#

t−j | + |(log�)�ζ0v#
t−j |},

where α′
j , α′

0j are thej th Fourier coefficients ofα′, α′
0. By the mean value

theorem and Lemma 6 this has second momentO(n−1). The same result holds
for α′

0(�
ξ − �ξ0)xt after takingm = m0 in Lemma 4, noting that its supremum

overN is bounded by

Cn−1/2‖α′
0�

ξ0xt‖ + Cn−1/2‖(log�)α′
0�

ξ0xt‖ + Cn−1

(
t∑

j=1

v2
t−j

)1/2

and applying Lemmas 5 and 6. The proof of (6.1) is readily completed.
Before coming to (6.8), we briefly discuss (6.7). Consider variatesU =

(n−1/2rT
1 , (D−1

n r2)
T )T , V = λT (EUUT )−1/2U for a (p1 + p2) × 1 vector λ

such thatλT λ = 1. We haveEV = 0, EV 2 = 1, sinceEψ(ε0) = 0 andε′
t1 is

independent ofεt , so (6.7) follows from Theorem 2 of [27] if

∑
t

[
n−1/2ε′

t1
D−1

n E′
t2

][
n−1/2ε′

t1
D−1

n E′
t2

]T
p→

[
�1 0
0 �2

]
,(6.9)

∑
t

ψ(ε2
t )

{
n−1‖ε′

t1‖21
(‖ψ(εt )ε

′
t1‖ ≥ δn1/2)

(6.10)
+ ‖D−1

n E′
t2‖21

(‖ψ(εt )D
−1
n E′

t2‖ ≥ δ
)} p→0

for anyδ > 0. The proof of (6.9) follows from Lemmas 1 and 3 and approximating
sums by integrals, while that of (6.10) follows from stationarity and finite variance
of ψ(εt ) andε′

t1 and the slowly changing character ofz2t .
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We prove (6.8) only fori = 1, the casei = 2 involving some of the
same steps but being much easier. Define�(L)(s) = φ(L)(s) − Eφ(L)(εt ),
W(L) = E{�(L)(εt )�

(L)(εt )
T }. It follows from Lemma 8 thatW(L) is nonsin-

gular, and thence we definea(L) = W(L)−1w(L) wherew(L) = E{φ′(L)(εt )} =
E{φ(L)(εt )ψ(εt )}, by integration by parts, as in [2] and as justified under our con-
ditions by Lemma 2.2 of [25]. Defining alsōψ(L)(εt ;a(L)) = a(L)T �(L)(εt ), we
have

n−1/2{rL1(θ0) − r1} =
4∑

i=1

2∑
j=1

Aij − A11,

where
Aij = n−1/2

∑
t

BitCjt

and

B1t = ψ(εt ),

B2t = ψ̄(L)(εt ;a(L)) − ψ(εt ),

B3t = ψ(L)(εt ; â(L)(ε)
) − ψ̄(L)(εt ;a(L)),

B4t = ψ̃
(L)
t (θ0, σ0) − ψ(L)(εt ; â(L)(ε)

)
,

C1t = σ0ε
′
t1, C2t = E′

t1 − σ0ε
′
t1.

Sinceε′
t1 is {εs, s < t}-measurable andE‖ε′

01‖2 ≤ C‖�1‖ < ∞, while B2t has
zero mean,E‖A21‖2 ≤ CEB2

20 → 0 asL → ∞ from [10], pages 74–77, and [25],
Lemma 2.2, since the moments ofφ(ε0) characterize its distribution under
Assumptions A2 and A8.

Before discussing otherAij define

µa = 1+ E{|εt |a1(|εt | > 1)},
for a > 0, and the following sequences:

ρaL = CL if a = 0,

= (CL)aL/ω if a > 0 and Assumption A2(b) holds,

= CL if a > 0 and Assumption A2(c) holds,

suppressing reference inρaL to the arbitrarily large constantC; and also

πL = (logL)η2L1(ϕ < 1) + (L logL)η2L1(ϕ = 1) + (logL)(ηϕ)2L1(ϕ > 1),

for L > 1.
Write A31 = (b1n − b2nb3n){â(L)(ε) − a(L)} − b2nb3na

(L), where b1n =
n−1/2σ0

∑
t ε

′
t1�

(L)(εt )
T , b2n = n−1 ∑

t ε
′
t1, b3n = n−1/2σ0

∑
t �

(L)(εt )
T . We
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haveE|φ(ε0)|r ≤ µκr , and thus from Lemma 9

E‖b1n‖2 + E‖b3n‖2 ≤ C

L∑
�=1

(E‖ε′
01‖2 + 1)Eφ2�(ε0) ≤ ρ2κL.

Sinceb2n = Op(n−1/2 logn) from Lemma 17, we deduce from Lemma 10 that

A31 = O

(
Lρ2κLπL

n1/2 (logn + L1/2ρ
1/2
4κLπL)

)
.(6.10)

Before imposing Assumption A9, we estimateA41, which can be written

n−1/2σ0

[∑
t

ε′
t1

{
�(L)(Et/σ0) − �(L)(εt )

}]
â(L)(E/σ0)(6.11)

+ n−1/2σ0
∑
t

ε′
t1�

(L)(εt )
T {

â(L)(E/σ0) − â(L)(ε)
}
.(6.12)

The square-bracketed quantity in (6.11) has norm bounded by(
L∑

�=1

∥∥∥∥∥
∑
t

ε′
t iδ�t

∥∥∥∥∥
2)1/2

+ n−1

∥∥∥∥∥
∑
t

ε′
t i

∥∥∥∥∥
{

L∑
�=1

(∑
t

δ�t

)2}1/2

,(6.13)

whereδ�t = φ�(Et/σ0) − φ�(εt ). We have

δ�t = φ′
�(εt )dt + 1

2φ′′
� (ε̄t )d

2
t ,(6.14)

where|ε̄t − εt | ≤ |dt |, dt = Et/σ0 − εt . Now et = α(B; θ01)(st + µ∗tξ0 + xt ), and
from Lemma 5 [see also (1.13)]

α(B; θ01)xt = α
(
B; θ(+)

01

)
v#
t = σ0εt −

∞∑
j=0

αt+j

(
θ

(+)
01

)
v−j = σ0εt + d1t ,

where

d1t = −
∞∑

j=1

λjtεt−j , λjt =
j∑

k=0

αk+t

(
θ

(+)
01

)
βj−k

(
θ

(+)
01

)
,

where βj (θ
(+)
01 ) is the coefficient ofsj in α(s; θ(+)

01 )−1. Since α(B; θ0)st =
o(t−1/2) and α(B; θ01)t

ξ0 = α(1; θ(−)
0 )�(ξ0 + 1) + O(t−1) from Lemma 1, it

follows that

dt = d1t + d2 + d3 + o(t−1/2),(6.15)

whered2 = n−1 ∑∞
j=0(

∑
t λjt )ε−j , d3 = n−1 ∑

t εt . From Lemmas 13, 14 and 18,
for 2 ≤ r ≤ 4 under Assumption A2(a) andr > 4 under Assumptions
A2(b) and A2(c),

E|d1t |r ≤ (Cr)2r t−r/2µr/r+
r+ ,(6.16)

E|d2|r + E|d3|r ≤ (Cr)2rn−r/2µr/r+
r+ ,(6.17)
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wherer+ is the smallest even integer such thatr ≤ r+. Returning to (6.13), we
have ∥∥∥∥∥

∑
t

ε′
t1δ�t

∥∥∥∥∥ ≤
∥∥∥∥∥
∑
t

ε′
t1{φ′

�(εt ) − Eφ′
�(ε0)}d1t

∥∥∥∥∥(6.18)

+
∥∥∥∥∥
∑
t

ε′
t1{φ′

�(εt ) − Eφ′
�(ε0)}

∥∥∥∥∥(|d2| + |d3|)(6.19)

+ |Eφ′
�(ε0)|

∥∥∥∥∥
∑
t

ε′
t1d1t

∥∥∥∥∥(6.20)

+ |Eφ′
�(ε0)|

∥∥∥∥∥
∑
t

ε′
t1

∥∥∥∥∥(|d2| + |d3|)(6.21)

+
∥∥∥∥∥
∑
t

ε′
t1φ

′′
� (ε̄t )d

2
t

∥∥∥∥∥.(6.22)

Now

|φ′
�(s)| = �|φ′(s)φ�−1(s)|

≤ C�
(
1+ |φ(s)|K){1(|s| ≤ 1) + |s|κ(�−1)1(|s| > 1)}(6.23)

≤ C�
{
1(|s| ≤ 1) + |s|κ(�−1+K)1(|s| > 1)

}
,

and sinceεt is independent ofε′
t id1t , the right-hand side of (6.18) is

Op

(
{Eφ′

�(ε0)
2}1/2

∑
t

(E‖ε′
t i‖4Ed4

1t )
1/2

)
= Op

(
�µ

1/2
2κ(�+K) logn

)
,

using (6.16). The same bound applies to (6.19)–(6.21), proceeding similarly and
using respectively (6.17), Lemma 16, and (6.17) with Lemma 17; note that it is the
second factor in (6.20) which leads to the main work in handling the quantitySn

discussed in Section 5. So far as (6.22) is concerned, note that as in (6.23),

|φ′′
� (s)| ≤ C�2{1(|s| ≤ 1) + |s|κ(�−1+2K)1(|s| > 1)

}
,

so by thecr -inequality ([23], page 157) (6.22) is bounded by

Cκ�+1�2
∑
t

‖ε′
t1‖

{
d2

1t + d2
1t |εt |κ(�+K) + |d1t |κ(�+K)+2}(6.24)

+ Cκ�+1�2
∑
t

‖ε′
t1‖

{
(dt − d1t )

2(1+ |εt |κ(�+K))
(6.25)

+ |dt − d1t |κ(�+K)+2}.



EFFICIENT ESTIMATION IN TIME SERIES 1823

By (6.16) and Hölder’s and Jensen’s inequalities, (6.24) has expectation bounded
by

Cκ�+1�2

{
µκ(�+K) logn + ∑

t

(
E|d1t |2κ(�+K)+4)1/2

}

≤ C(C�)2κ��2µ1/2
r�

logn,

r� being the smallest integer such thatr� ≥ 2κ(�+K)+4. From (6.14) and (6.17),
(6.25) is of smaller order in probability. It follows from Lemma 9 that

(
L∑

�=1

∥∥∥∥∥
∑
t

ε′
t1δ�t

∥∥∥∥∥
2)1/2

= Op

(
(CL)2κL+2ρ

1/2
2κL logn

)
.

By a similar but easier proof, the second term in (6.13) has the same bound, and
by Lemmas 10 and 19,

(6.11)= Op

(
(CL)2κL+3ρ2κLπLn−1/2 logn

)
.

Next, from similar but simpler arguments to those above,

n−1/2

∥∥∥∥∥
∑
t

ε′
t1�

(L)(εt )
T

∥∥∥∥∥ = Op(ρ
1/2
2κL logn).

Application of Lemma 9 indicates that (6.12) is

Op

(
ρ2

2κLπ2
L

(
L2n−1/2 logn + (CL)4κL+3n−1(logn)2)).

Thus

A41 = Op

(
ρ2κLπL

(
ρ2κLπLL2 + (CL)2κL+3

(6.26)
+ ρ2κLπL(CL)4κL+3n−1/2)n−1/2 logn

)
.

Comparison of (6.10) and (6.26) indicates thatA31 is dominated byA41, whose
behavior under Assumption A9 we thus now consider. Takeκ = 0. From Lemma 9,
under Assumption A9(a)

A41 = Op(L4π2
Ln−1/2 logn)

= Op

(
exp

[
logn

{
4 logL + log logn + 2 logπL

logn
− 1

2

}])
,

which isop(1) if limsup logπL/ logn < 1
4, as is clearly implied by (3.4). Now take

κ > 0 under Assumption A2(b). From Lemma 9, under Assumption A9(b)

A41 = Op

((
L4κL/ω+2 + L2κL(1+1/ω)+3)n−1/2 logn

) = op(1),



1824 P. M. ROBINSON

on proceeding as before. Under Assumption A2(c), Lemma 9 and Assump-
tion A9(c) give

A41 = Op

(
(CL)2κLn−1/2 logn

) = op(1).

To consider A12, we can proceed as earlier to write

E′
t1 − ε′

t1 = D1t + D2 + D3 + (t−1/2 logt),

where

D1t = −
∞∑

j=1

λ̃t εt−j , D2 = n−1
∞∑

j=0

(∑
t

λ̃j t

)
ε−j , D3 = n−1

∑
t

ε′
t1,

and λ̃j t = ∑j
k=0(∂/∂θ

(+)T
1 )αk+t (θ

(+)
01 )βj−k(θ

(+)
01 ). Using (7.23) and (7.24) of

Lemma 13, we deduce that|λ̃j t | ≤ C(logt)j ζ0t−ζ0−1, j ≤ t , and |λ̃j t | ≤
C(logt)j ζ0−1 max(j−ζ0, t−ζ0), j > t , and then proceeding as in Lemma 14, that∑∞

j=0 λ̃2
j t ≤ Ct−1 log2 t ,

∑∞
j=0(

∑n
t=1 λ̃j t )

2 ≤ Cn log2 n. Noting thatE(
∑

tψ(εt )×
D1t )

2 ≤ C
∑

t ED2
1t , using also Lemma 17 and proceeding as in the proof

for (6.11), it follows thatA12 = Op(n−1/2 log3/2 n).
The remainder of the proof of (6.8) withi = 1 deals in similar if easier ways

with quantities already introduced and is thus omitted.�

7. Technical lemmas. To simplify lemma statements, we take it for granted
that, where needed, Assumptions A1–A9 hold.

Part (ii) of the following lemma is only needed to show thatst in (1.9)
contributes negligibly, in particular when it includesτ1 ≤ ξ0 − 1.

LEMMA 1. (i) For wt = tγ with γ > −1 and ξ ∈ (−1
2, γ + 1),

�ξw#
t = �(γ + 1)

�(γ − ξ + 1)
tγ−ξ + O

(
tγ−ξ−1 + tγ−m−11(ξ > 0)

)
,

as t → ∞, where m is the integer such that ξ − 1< m ≤ ξ .
(ii) For wt = (log t)r tγ , r ≥ 0, ξ > −1

2,

�ξw#
t = O

(
tmax(γ,−1)−ξ+d)

as t → ∞,

for any δ > 0.

PROOF. (i) The proof whenξ is a nonnegative integer is straightforward, so
we assume this is not the case. We have

∞∑
j=0

jk�j (−ξ) = 0, j = 0, . . . ,m,(7.1)
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whenm ≥ 0 andξ > 0, (1− s)ξ and its firstm derivatives ins being zero ats = 1.
With ak = �k(−γ ),

�ξw#
t =

t−1∑
j=0

�j(−ξ)(t − j)γ

= tγ
t−1∑
j=0

�j(−ξ)

∞∑
k=0

ak(j/t)k

(7.2)

= −tγ
′∑
k

(t − k)−kak

∞∑
j=t

j k�j (−ξ)1(m ≥ 0)

+ tγ
′′∑
k

(t − k)−kak

t−1∑
j=0

jk�j (−ξ),

where
∑′

k = ∑m
k=0,

∑′′
k = ∑∞

k=max(m+1,0) and we apply (7.1). By Stirling’s
approximation ∣∣∣∣�j(−ξ) − j−ξ−1

�(−ξ)

∣∣∣∣ ≤ Cj−ξ−2, j ≥ 1,(7.3)

so (7.2) differs from

tγ

�(−ξ)

{
−

′∑
k

(t − k)−kak

∞∑
j=t

j k−ξ−11(m ≥ 0)

(7.4)

+
′′∑
k

(t − k)−kak

t−1∑
j=0

jk−ξ−1

}

by

O

(
tγ

′∑
k

t−k|ak|
∞∑
j=t

j k−ξ−21(m ≥ 0) + tγ
′′∑
k

t−k|ak|
t−1∑
j=0

jk−ξ−2

)
.(7.5)

Now

t−1∑
j=0

j−α = t1−α/(1− α) + O(t−α), α < 1,

(7.6) ∞∑
j=t

j−α = t1−α/(α − 1) + O(t−α), α > 1.
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Thus (7.5) is

O

(
tγ−ξ−1

′∑
k

|ak|
ξ + 1− k

1(m ≥ 0)

+ tγ−m−1 |am+1|
ξ − m

1(m ≥ −1) + tγ−ξ−1
′′′∑
k

|ak|
k − ξ − 1

)

= O

(
tγ−ξ−1

{ ′∑
k

|ak|1(m ≥ 0)

+
′′∑
k

(k + 1)−1|ak| + Ctγ−m−1|am+1|1(m ≥ −1)

})
,

where
∑′′′

k = ∑∞
k=max(m+2,0). The first sum in braces is finite becausem and theak

are, while the second sum is finite because|ak| ≤ Ck−γ−1. Thus sinceγ > −1,
(7.5) isO(tγ−m−1) for ξ > 0 andO(tγ−ξ ) for ξ < 0. Applying (7.6) again, (7.4) is

tγ−ξ

�(−ξ)

∞∑
k=0

ak

k − ξ
+ O(tγ−ξ−1),

and the leading term is{�(γ + 1)/�(γ − ξ + 1)}tγ−ξ , from [30], page 260.
(ii) We have

�ξw#
t =

t−1∑
j=0

�j(−ξ){log(t − j)}r (t − j)γ .

Noting that�j(−ξ) = O(j−ξ−1) and (7.1) holds withk = 0 for ξ > 0,
s∑

j=0

�j(−ξ){log(t − j)}r (t − j)γ ∼ (log t)r tγ
s∑

j=0

�j(−ξ) = O(tγ+δ1s−ξ )

for s = o(t), δ1 > 0. On the other hand,∣∣∣∣∣
t−1∑

j=s+1

�j(−ξ){log(t − j)}r (t − j)γ

∣∣∣∣∣ ≤ Cs−ξ−1(log t)r
t∑

j=1

jγ .

The sum on the right-hand side isO(t1+γ ) for γ > −1, O((log t)) for γ = −1
andO(1) for γ < −1. Thus choosings = t1−δ2/(ξ+1), δ2 > 0, produces the result.

�

LEMMA 2. For wt = tγ and any integer r > 0, as t → ∞
(− log�)rw#

t ∼ (log t)r tγ for γ > −1,(7.7)

= O
(
t−1(log t)r−1{1(γ < −1) + (log t)1(γ = −1)})

(7.8)
for γ ≤ −1.
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PROOF. Suppose (7.7) is true for a givenr . Then ast → ∞

(− log�)r+1w#
t ∼ (− log�)(log t)rw#

t =
t−1∑
j=1

j−1{log(t − j)}r (t − j)γ .(7.9)

The difference between this and

(logt)r
t−1∑
j=1

j−1(t − j)γ(7.10)

is bounded byC(logt)r−1 times
t−1∑
j=1

j−1{log t − log(t − j)}(t − j)γ ≤
t−1∑
j=1

j−1| log(1− j/t)|(t − j)γ .

Splitting this into sums overj ∈ [1, [t/2]] andj ∈ [[t/2] + 1, t − 1], it is seen that
the first of these is bounded by

t−1
t−1∑
j=1

(t − j)γ ≤ Ctγ ,

since| log(1− x)| ≤ x for x ∈ (0, 1
2), while the second is bounded by

Ct−1
t−1∑
j=1

| log(j/t)|jγ ≤ Ctγ logt.

The difference between (7.10) and

(log t)r tγ
t−1∑
j=1

j−1(7.11)

is bounded by

C(logt)r tγ
t−1∑
j=1

j−1|(1− j/t)γ − 1| ≤ C(logt)r tγ .

Then (7.11)∼ (logt)r+1tγ ast → ∞. Forγ ≤ −1, we can write

(− log�)rw#
t =

t−1∑
j=1

a
(r)
j (t − j)γ ,

wherea
(r)
j = O({log(j + 1)}r−1j−1). Splitting the sum as before, the first one is

O((log t)r tγ ) and the second isO((log t)r−1t−1) for γ < −1 andO((logt)r t−1)

for γ = −1. �

In the following four lemmasb(eiλ) is taken to be a function with absolutely
convergent Fourier series, andbj = (2π)−1 ∫ π

−π b(eiλ)eijλ dλ.
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LEMMA 3. For wt = tγ ,

b(B)w#
t ∼ b(1)tγ as t → ∞.

PROOF. The left-hand side equalstγ
∑t−1

j=0 bj + ∑t−1
j=0 bj {(t − j)γ − tγ }. The

first term differs byo(tγ ) from b(1)tγ , and the second is bounded by

Ctγ
t−1∑
j=0

|bj |
∣∣∣∣1−

(
1− j

t

)γ ∣∣∣∣ ≤ Ctγ−1
t∑

j=0

j |bj | = o(tγ )

from the Toeplitz lemma. �

LEMMA 4. For a sequence wt such that wt = 0, t ≤ 0, and any integer r , as
ξ → ξ0

(log�)r(�ξ − �ξ0)b(B)wt = (log�)r+1�ξ0b(B)wt(ξ − ξ0)
(7.12)

+ O

({
t∑

j=1

(�mwt−j )
2

}1/2

(ξ − ξ0)
2

)

for m ∈ (ξ0 − 1
2, ξ0 + 1

2).

PROOF. By the mean value theorem the left-hand side of (7.12) is

(log�)r+1�ξ0b(B)wt(ξ − ξ0) + 1
2(log�)r+2b(B)�ξ̄wt(ξ − ξ0)

2,

for |ξ̄ − ξ0| ≤ |ξ − ξ0|. The last term can be written12
∑t−1

j=1 cj�
mwt−j (ξ − ξ0)

2,

wherecj is the coefficient ofsj in the Taylor expansion of{log(1 − s)}r+2 ×
(1 − s)ξ̄−m. From Stirling’s approximation,cj ∼ (logj)r+2jm−ξ̄−1 as j → ∞.
Now m − ξ̄ ≤ m − ξ0 + |ξ − ξ0|. The right-hand side of this is less than1

2 if
|ξ − ξ0| < 1

2 −m+ ξ0, where the right-hand side of the latter inequality is positive.
Thus for|ξ − ξ0| small enough,m − ξ̄ − 1< −1

2. Then
∑∞

j=1 c2
j < ∞ for all r , so

the proof is completed by the Cauchy inequality.�

LEMMA 5. For real ξ and m0 defined by (1.2),

�ξb(B)xt = �ξ−m0b(B)v#
t , t ∈ Z.(7.13)

PROOF. The left-hand side of (7.13) is

�ξb(B)�−m0v#
t = �ξ−m0b(B)v#

t , t ∈ Z. �

The next lemma gives a uniform bound for the variance of a process that is only
“asymptotically stationary.”
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LEMMA 6. For all r ≥ 0, and ζ0 defined by (1.4),

E{(− log�)r�ζ0b(L)v#
t }2 ≤ C < ∞.(7.14)

PROOF. The left-hand side of (7.14) is
∫ π

−π

∣∣∣∣∣
t−1∑
j=0

cj e
ijλ

∣∣∣∣∣
2

|1− eiλ|−2ζ0f (λ)dλ ≤ C

( ∞∑
j=0

|cj |
)2

(7.15)

for ζ0 > 0 since|1−eiλ|−2ζ0f (λ) is integrable,cj being thej th Fourier coefficient
of [{− log(1 − eiλ)}r (1 − eiλ)ζ0]b(eiλ). The j th Fourier coefficient of the factor
in braces isO((logj)rj−ζ0−1), so since thebj are summable so are thecj . For
ζ0 ≤ 0 |1− eiλ|−2ζ0f (λ) is bounded, so the left-hand side of (7.15) is bounded by∑∞

0 c2
j < ∞. �

LEMMA 7. Let Sm be the m × m matrix with (j, k)th element (j, k ≥ 1),∫ 1

−1
uj+k−2 du = 2(j + k − 1)−11(j + k even).

Then for m sufficiently large,

tr(S−1
m ) < (2π)−2

[
8

3
+ 1

2
log

{
(2m − 3)

(
2m

3
− 1

)}]
η2m.

PROOF. It is clear that, likeSm, S−1
m must have(j, k)th element that is zero

for all oddj + k. This immediately ensures the necessary property that even rows
(columns) ofSm are orthogonal to odd rows (columns) ofS−1

m . It then suffices
to study the two square matricesS1,m andS2,m formed from, respectively, the odd
and even rows and columns ofSm. These exclude only and all zero elements ofSm,
andS−1

m is them × m matrix whose(2j − 1,2k − 1)th element is the(j + k)th
element ofS−1

1,m, whose(2j,2k)th element is the(j, k)th element ofS−1
2,m, and

whose other elements are all zero. Thus it suffices to considerS−1
1,m andS−1

2,m, and

indeed tr(S−1
m ) = tr(S−1

1,m) + tr(S−1
2,m). We takem to be even; details form odd are

only slightly different and since we want a result only for largem this outcome
will clearly be unaffected.

S1,m and S2,m are both Cauchy matrices (see, e.g., [17], page 36), having
(j, k)th element of the form(aj +ak)

−1, in particular,(j +k− 3
2)−1, (j +k− 1

2)−1,
respectively. From Knuth [17], page 36, thej th diagonal elements ofS−1

1,m, S−1
2,m

are, respectively, 2U2
1 (j)/(4j − 3), 2U2

2 (j)/(4j − 1), where we define, for reals,

U1(s) =
∏

1≤i≤m/2(i + s − 3/2)2∏
1≤i≤m/2,i �=s(i − s)

,

U2(s) =
∏

1≤i≤m/2(i + s − 1/2)2∏
1≤i≤m/2,i �=j (i − s)

.
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Thus

tr(S−1
m ) = 2

m/2∑
j=1

{(4j − 3)−1U2
1 (j) + (4j − 1)−1U2

2 (j)}

≤
{

2+ 1

2
log(2m − 3)

}
max

1≤j≤m/2
U2

1 (j)

+
{

2

3
+ 1

2
log

(
2m

3
− 1

3

)}
max

1≤j≤m/2
U2

2 (j).

For s ∈ (0,m/2− 1)

U1(s) − U1(s + 1) = U1(s)

{
1− (s + m/2− 1/2)(m/2− s)

(s − 1/2)s

}
.

The factor in braces is 2−m(m− 1)/{2s(2s − 1)}, which is negative fors < s(m)

and positive fors > s(m), wheres(m) = 1
4 + {2m(m − 1) + 1}1/2/4 ∼ m/

√
8 as

m → ∞. Thus, asm → ∞

max
1≤j≤m/2

U1(j) ∼ �((1/2+ 1/
√

8)m − 1/2)

�(m/
√

8− 1/2)�(m/
√

8)�((1/2− 1/
√

8)m + 1)
.(7.16)

Applying Stirling’s approximation, that is,

�(am + b) ∼ (2π)1/2e−am(am)am+b−1/2

asm → ∞, and noting that

{
(1+ 2−1/2)1+2−1/2

22−1/2

(1− 2−1/2)1−2−1/2

}1/2

= 1+ 21/2,

(7.16) is (2π)−1ηm(1 + o(1)). In the same way it can be seen thatU2(s) is
maximized at{2m(m + 1) + 1}1/2/4− 1

4 ∼ m/
√

8, whence max1≤j≤m/2 U2(j) ∼
(2π)−1ηm(1+ o(1)) also. The proof is then routinely completed.�

Denote byλ(A) the smallest eigenvalue of the matrixA.

LEMMA 8. As L → ∞,

λ
(
W(L))−1 = O(πL).

PROOF. The method of proof, given Lemma 7, is similar to one in [25], but
we obtain a refinement. Defineφ(L)

+ (s) = (1, φ(L)(s)T )T , W
(L)
+ = E{φ(L)

+ (εt ) ×
φ

(L)
+ (εt )

T }, so W(L) = PW
(L)
+ P T , where theL × (L + 1) matrix P consists

of the last L rows of the (L + 1)-rowed identity matrix. Thenλ(W(L)) ≥
λ(W

(L)
+ )λ(PP T ) = λ(W

(L)
+ ). If (−1,1) ⊂ (φ(s1), φ(s2)) (which impliesϕ ≤ 1),
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then [sinceφ′(s) is bounded on(s1, s2)] λ(W
(L)
+ ) ≥ λ(SL+1)/C ≥ tr(S−1

L+1)
−1/C,

where we useSm defined as in Lemma 7, which can then be applied. Otherwise,
W

(L)
+ exceeds, by a nonnegative definite matrix,

C−1
∫ φ(s2)

φ(s1)
u(L)u(L)T du =

{
φ(s2) − φ(s1)

C

}
A

∫ 1

−1
u(L)u(L)T duAT ,(7.17)

whereu(L) = (1, u, . . . , uL)T andA is the lower-triangular matrix with(i, j)th el-
ement

(i−1
j−i

)
φ(s1)

i−j {φ(s2) − φ(s1)}j−1, j ≤ i. The smallest eigenvalue of (7.17)

is no less thanC−1{φ(s2) − φ(s1)}λ(AAT )λ(SL+1). Now λ(AAT ) ≥ ‖A−1‖−2,
where by recursive calculationA−1 is seen to be lower-triangular with(i, j)th el-
ementaij = (i−1

j−i

){−φ(s1)}i−j {φ(s2) − φ(s1)}1−i , j ≤ i. Thus

‖A−1‖2 =
L+1∑
i=1

(
i∑

j=1

aij2

)
≤

L+1∑
i=1

(
i∑

j=1

|aij |
)2

≤
L+1∑
i=1

ϕ2(i−1).

This is bounded by(1−ϕ2)−1 for ϕ < 1, byL+ 1 for ϕ = 1 and by(ϕ2 − 1)−1 ×
ϕ2(L+1) for ϕ > 1. �

LEMMA 9. For a ≥ 0, b ≥ 0,

L∑
�=1

µa�+b ≤ ρaL.(7.18)

PROOF. In casea = 0, ora > 0 but Assumption A2(c) holds, this is trivial. For
a > 0 under Assumption A2(b), monotonic nondecrease ofµa in real a implies
that the left-hand side of (7.18) is bounded by

C

[aL+b]∑
�=1

µκ� ≤
(

CL

t

)(a/κ)L

E
(
et |ε0|κ )

for anyt ∈ (0,1), and by Assumption A2(b) there exists sucht that this is bounded
by ρaL. �

LEMMA 10. As n → ∞,∥∥a(L)
∥∥ = O(Lρ

1/2
2κLπL),

(7.19) ∥∥â(L)(ε) − a(L)
∥∥ = O

(
L

n1/2ρ
1/2
2κLπL(1+ L1/2ρ

1/2
4κLπL)

)
.

PROOF. Write

â(L)(ε) − a(L) = {
W(L)(ε)−1 − W(L)−1}w(L)(ε) + W(L)−1{w(L)(ε) − w(L)}.
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From (6.23), the Schwarz inequality and Lemma 9

∥∥w(L)
∥∥2 =

L∑
�=1

�2{E{φ′(ε0)φ
�−1(ε0)}}2 ≤ CL2

L∑
�=1

µ2κ(�+K) ≤ L2ρ2κL.

Similarly, and from independence of theεt ,

E
∥∥w(L)(ε) − w(L)

∥∥2 ≤ n−1
L∑

�=1

�2E{φ′(ε0)φ
�−1(ε0)}2 ≤ (L2/n)ρ2κL,

E
∥∥W(L)(ε) − W(L)

∥∥2 ≤ n−1
L∑∑

k,�=1

E
{
φ(ε0)

2(k+�)} ≤ (L/n)ρ4κL.

Now apply Lemma 8. �

LEMMA 11. For j ≥ 0 let αj = �j(d) for d ≤ 1 and |βj | ≤ C(j +1)−3. Then

the sequence
∑j

k=0 αj−kβk , j ≥ 0, has property P0(d).

PROOF. By Stirling’s approximationαj has propertyP0(d), whence the proof
is completed by splitting sums aroundj/2 and elementary bounding of each.�

LEMMA 12. For j ≥ 0 let the sequence αj , j ≥ 0, have property P0(−d) and
for d > 0 let

∑∞
j=0 αj = 0. Then for |d| < 1 the sequence

γj =
j∑

k=0

(j + 1− k)−1αk, j ≥ 0,

has property P1(−d).

PROOF. We give the proof only of|γj − γj+1| ≤ C{log(j + 1)}j−d−2, the
proof of |γj | ≤ C{log(j + 1)}j−d−1 being similar and simpler. We have

γj − γj+1 =
j̃∑

k=0

{(j + 1− k)−1 − (j + 2− k)−1}αk − (j + 1− j̃ )−1α
j̃+1

+
j∑

k=j̃+1

(j + 1− k)−1(αk − αk+1),

where j̃ = [j/2]. The second term is bounded byCj−d−2 and the third
by C(logj)j−d−2. For d < 0 the first term is bounded byCj−d−2 and ford = 0
by C(logj)j−d−2. For d > 0 we apply summation by parts to this first term and∑∞

j=0 αj = 0 to obtain the boundCj−d−2 again. �
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LEMMA 13. Let the sequence αj , j ≥ 0, have property P0(−d) and the
sequence βj , j ≥ 0, have property P0(e), and let

∞∑
j=0

|αj | < ∞ if d = 0,

∞∑
j=0

|βj | < ∞ if e = 0,(7.20)

∞∑
j=0

βj = 0 if e < 0.

Then for |d| < 1, |e| < 1 it follows that for all j > 0, t > 0,∣∣∣∣∣
j∑

k=0

αk+tβj−k

∣∣∣∣∣ ≤ Cjet−d−1, j ≤ t,(7.21)

≤ Cje−1 max(j−d, t−d), j > t.(7.22)

If instead αj has property P1(−d) and (7.20)is not imposed,∣∣∣∣∣
j∑

k=0

αk+tβj−k

∣∣∣∣∣ ≤ C(logr+1 t)j et−d−1, j ≤ t,(7.23)

≤ C(logr+1 j)je−1 max(j−d, t−d), j > t.(7.24)

PROOF. We prove only (7.21) and (7.22), the proof of (7.23) and (7.24)
being very similar but notationally slightly more complex and less elegant. Write
Sab = ∑b

k=a αt+kβj−k . We have

|S0j | ≤ t−d−1
j∑

k=0

|βk| ≤ Cjet−d−1, e ≥ 0.

This proves (7.21) fore ≥ 0 and all d. On the other hand, with̃j = [j/2],
summation by parts gives

|S0j̃
| ≤

j̃−1∑
k=0

|βj−k − βj−k−1|
k∑

i=0

|αt+i | + |β
j−j̃

|
j̃∑

k=0

|αt+k|

≤ Ct−d

{ j̃∑
k=0

(j − k)e−2 + je−1

}
(7.25)

≤ Cje−1t−d, d ≥ 0,all e,
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while

|S
j̃+1,j

| ≤ C(t + j̃ )−d−1je ≤ Cje−d−1 all d; e ≥ 0.(7.26)

This proves (7.22) ford ≥ 0, e ≥ 0 sinceje−d−1 ≤ je−1t−d , j > t . Fore < 0

S0j = −
j−1∑
k=0

{αj−k+t − αj−k−1+t }
∞∑

i=k+1

βi − αt

∞∑
k=j+1

βi,

since
∑∞

j=0 βj = 0. This is bounded byC{t−d−2je+1 + t−d−1je} ≤ Cjet−d−1 for
j ≤ t , to prove (7.21) fore < 0 and alld. Fore < 0 and alld

S
j̃+1,j

=
j−j̃−1∑

k=0

αj+t−kβk

= −
j−j̃−2∑

k=0

(αj+t−k − αj+t−k−1)

∞∑
i=k+1

βi − α
t+j̃−1

∞∑
k=j−j̃

βk,

and this is bounded byC{(t + j̃ )−d−2je+1 + (t + j̃ )−d−1je} ≤ Cje−1t−d , which
with (7.25) proves (7.22) ford ≥ 0, e < 0. Finally, ford < 0 and alle

|S0j̃
| =

∣∣∣∣∣
j∑

k=j−j̃

αj+t−kβk

∣∣∣∣∣ ≤ Cje−d−1,

which with (7.26) completes the proof of (7.22).�

LEMMA 14. For |ζ0| < 1
2,

∞∑
j=0

λ2
j t ≤ Ct−1,(7.27)

∞∑
j=0

(
n∑

t=1

λjt

)2

≤ Cn.(7.28)

PROOF. In this and subsequent proofs we drop the zero subscript fromζ0.
We omit the proof forζ = 0 as it is simple. From Lemma 13

∞∑
j=1

λ2
j t ≤ Ct−2ζ−2

t∑
j=1

j2ζ + C

∞∑
j=t

j2ζ−2 max(j−2ζ , t−2ζ ).

The first sum is bounded byCt2ζ+1 and the second byCt−2ζ ∑∞
j=t j

2ζ−2 ≤ Ct−1

whenζ > 0 and byC
∑∞

j=t j
−2 ≤ Ct−1 whenζ < 0, to prove (7.27). Forj < n
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andζ �= 0 ∣∣∣∣∣
∑
t

λjt

∣∣∣∣∣ ≤ Cjζ−1
j∑

t=1

max(j−ζ , t−ζ ) + Cjζ
n∑

t=j+1

t−ζ−1

≤ C max
(
1, (j/n)ζ

)
.

For j ≥ n∣∣∣∣∣
∑
t

λjt

∣∣∣∣∣ ≤ Cjζ−1
n∑

t=1

max(j−ζ , t−ζ ) ≤ C max
(
n/j, (n/j)1−ζ )

.

Thus
∞∑

j=0

(∑
t

λjt

)2

=
n∑

j=0

(∑
t

λjt

)2

+
∞∑

j=n+1

(∑
t

λjt

)2

≤ Cn + Cn2−2ζ
∞∑

j=n

j2ζ−2 ≤ Cn, ζ > 0,

≤ Cn−2ζ
n∑

j=1

j2ζ + n2
∞∑

j=n

j−2 ≤ Cn, ζ < 0,

to prove (7.28). �

Define

hjk = ∑
t

(t + j)−1|λkt |, j, k ≥ 1.

LEMMA 15. For 0< ζ0 < 1
2 and j ≥ 1,

hjk ≤ Cj−1/2 min(j−1/2, k−1/2), 1 ≤ k ≤ n,(7.29)

≤ Cj−1kζ0−1n1/2−ζ0 min(j1/2, n1/2), k ≥ n.(7.30)

For −1
2 < ζ0 ≤ 0 and j ≥ 1,

hjk ≤ C min(j−1/2−εk−1/2+ε, k−1 logk),
(7.31)

0< ε < 1
2 + ζ0,1≤ k < n,

≤ Ck−1 min(n/j, logn), k ≥ n.(7.32)

PROOF. It follows from Lemma 13 that for 1≤ k ≤ n,

hjk ≤ Ckζ−1
k∑

t=1

(t + j)−1 max(k−ζ , t−ζ ) + Ckζ
n∑

t=k

(t + j)−1t−ζ−1.(7.33)
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Supposeζ > 0. The first term on the right-hand side is bounded by

Cj−1kζ−1
k∑

t=1

t−ζ ≤ Cj−1, j ≥ k,

Cj−1/2kζ−1
k∑

t=1

t−ζ−1/2 ≤ C(jk)−1/2, j ≤ k.

The second term on the right-hand side of (7.33) is bounded by

Cj−1kζ
n∑

t=k

t−ζ−1 ≤ Cj−1, j ≥ k,

Cj−1/2kζ
n∑

t=k

t−ζ−3/2 ≤ C(jk)−1/2, j ≤ k.

This proves (7.29). Letζ ≤ 0. The first term on the right-hand side of (7.33) is
bounded by

Ck−1
k∑

t=1

(t + j)−1 ≤ C min(j−1, k−1 logk)

and the second by

Ckζ j−1/2−ε
∞∑
t=k

t−ζ−3/2+ε ≤ Cj−1/2−εk−1/2+ε, j ≥ k,

Ckζ
n∑

t=k

t−ζ−2 ≤ Ck−1, j ≤ k.

This proves (7.31). Fork ≥ n (7.30) and (7.32) are readily deduced from

hjk ≤ Ckζ−1
∑
t

(t + j)−1t−ζ1(ζ > 0) + Ck−1
∑
t

(t + j)−11(ζ ≤ 0).
�

LEMMA 16. For |ζ0| < 1
2,

E

∥∥∥∥∥
∑
t

ε′
t1

∞∑
j=0

λjtε−j

∥∥∥∥∥
2

≤ C(logn)3.

PROOF. Writing γ (s;ν0) = ∑∞
j=0 γj s

j , the expression within the norm is

∑
t

−1∑
j=1−t

γt+j ε−j

∞∑
k=0

λktε−k +
∞∑∑

j,k=0

Hjkε−j ε−k,(7.34)
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where Hjk = ∑
t γj+tλkt . The squared norm of the first term has expectation

bounded by

∑
s

∑
t

( −1∑
j=max(1−s,1−t)

‖γs+j‖‖γt+j‖
)( ∞∑

k=0

λskλtk

)
.

For s ≤ t the first bracketed factor isO((t − s + 1)−1 logn) because‖γj‖ ≤
C(j + 1)−1, while the second one is bounded by

Ct−ζ−1s−ζ−1
s∑

j=1

j2ζ + Ct−ζ−1
t∑

j=s+1

j2ζ−1 max(j−ζ , s−ζ )

+ C

∞∑
j=t+1

j2ζ−2 max(j−ζ , s−ζ )max(j−ζ , t−ζ )

≤ C{s−ζ tζ−11(ζ > 0) + sζ t−ζ−11(ζ < 0) + (st)−1/21(ζ = 0)}
≤ C(st)−1/2.

We have
t∑

s=1

(t − s + 1)−1s−1/2 ≤
[t/2]∑
s=1

(t − s + 1)−1s−1/2 +
t∑

s=[t/2]
(t − s + 1)−1s−1/2

≤ C(logt)t−1/2,

C(logn)
∑
t

(log t)t−1 ≤ C(logn)3.

Next, since|Hjk| ≤ Chjk , the squared norm of the second term on the right-hand
side of (7.34) has expectation bounded by

C

∞∑∑
j,k=0

(h2
jk + hjjhkk + hjkhkj ).

We apply Lemma 15 to complete the proof. Forζ > 0

∞∑∑
j,k=0

h2
jk ≤ C

n∑
k=1

k∑
j=1

(jk)−1 + C

n∑
k=1

∞∑
j=k

j−2

+ Cn1−2ζ
∞∑

k=n

n∑
j=1

j−1k2ζ−2 + Cn2−2ζ
∞∑

k=n

∞∑
j=n

j−2k2ζ−2

≤ C(logn)2,

∞∑
j=0

hjj ≤ C

n∑
j=1

j−1 + n1−ζ
∞∑

j=n

jζ−2 ≤ C logn
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and
∞∑∑

j,k=0

hjkhkj ≤ C

n∑
k=1

k∑
j=1

(jk)−1 + Cn1/2−ζ
n∑

k=1

∞∑
j=k

j ζ−2k−1/2

+ Cn2−2ζ
∞∑∑

j,k=n

(jk)ζ−2

≤ C(logn)2.

For ζ ≤ 0

∞∑∑
j,k=0

h2
jk ≤

n∑
k=1

k∑
j=1

(k−1 logk)2 + C

n∑
k=1

∞∑
j=k

j−1−2εk−1+2ε

+ C(logn)2
∞∑

k=n

n∑
j=1

k−2 + Cn2
∞∑∑

j,k=n

(jk)−2

≤ C(logn)3,

∞∑
j=0

hjj ≤ C

n∑
j=1

j−1 + Cn

∞∑
j=n

j−2 ≤ C logn,

∞∑∑
j,k=0

hjkhkj ≤ C

n∑
k=1

k∑
j=1

j−1/2+εk−3/2−ε logk

+ C logn

n∑
k=1

∞∑
j=n

j−1/2−εk−1/2+εj−1 + Cn2
∞∑∑

j,k=n

(jk)−2

≤ C(logn)2. �

LEMMA 17.

E

∥∥∥∥∥
∑
t

ε′
t1

∥∥∥∥∥
4

≤ C(logn)4n2.

PROOF. We have

∑
t

ε′
t1 =

n−1∑
j=1

(n−j∑
i=1

γi

)
εj +

∞∑
j=0

( j+n∑
i=j+1

γi

)
ε−j .

Thus

E

∥∥∥∥∥
∑
t

ε′
t1

∥∥∥∥∥
4

≤ C

(
n−1∑
j=1

∥∥∥∥∥
n−j∑
i=1

γi

∥∥∥∥∥
2)2

+ C

( ∞∑
j=0

∥∥∥∥∥
j+n∑

i=j+1

γi

∥∥∥∥∥
2)2

.
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Since ∥∥∥∥∥
n−j∑
i=1

γi

∥∥∥∥∥ ≤
n−j∑
i=1

‖γi‖ ≤ C

n∑
i=1

i−1 ≤ C logn, 1 ≤ j < n,

∥∥∥∥∥
j+n∑

i=j+1

γi

∥∥∥∥∥ ≤ C

j+n∑
i=j+1

i−1 ≤ C logn, 1≤ j ≤ n,

≤ Cn/j, j ≥ n,

the proof is readily completed.�

LEMMA 18. For any sequence cj , j ≥ 0, and any r ≥ 1, if µr+ < ∞,

E

∣∣∣∣∣
∞∑

j=0

cj ε−j

∣∣∣∣∣
r

≤ (Cr)2r

( ∞∑
j=0

c2
j

)r/2

µr/r+
r+ ,

where r+ is the smallest even integer such that r+ ≥ r .

PROOF. For r ≤ 2 the proof follows by Jensen’s inequality and direct
calculation. Forr > 2 the Marcinkiewicz–Zygmund inequality indicates that

E

∣∣∣∣∣
∞∑

j=0

cj ε−j

∣∣∣∣∣
r

≤ CrE

( ∞∑
j=0

c2
j ε

2−j

)r/2

,(7.35)

whereCr = {18r3/2(r − 1)−1/2}r (see [13], page 23). By thecr -inequality (7.35)
is bounded by

Cr2
r/2−1

{
E

∣∣∣∣∣
∞∑

j=0

c2
j (ε

2−j − 1)

∣∣∣∣∣
r/2

+
( ∞∑

j=0

c2
j

)r/2}

≤ Cr2
r/2−1

{
Cr/2E

∣∣∣∣∣
∞∑

j=0

c4
j (ε

2−j − 1)2

∣∣∣∣∣
r/4

+
( ∞∑

j=0

c2
j

)r/2}
.

For 2< r ≤ 4 the first expectation in the last line is bounded by{
E

∞∑
j=0

c4
j (ε

2−j − 1)2

}r/4

≤
( ∞∑

j=0

c4
jEε4

0

)r/4

≤
( ∞∑

j=0

c2
j

)r/2

µ
r/4
4 .

For r > 4 we instead apply thecr -inequality to that expectation, and then the
Marcinkiewicz–Zygmund inequality again, and so on, eventually bounding (7.35)
by

CrCr/2Cr/4 · · ·C2 · 2r/2 · 2r/4 · 2r/8 · · ·1
( ∞∑

j=0

c2
j

)r/2

µr/r+
r+ .
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The result follows on noting thatr · r1/2 · r1/4 · · · r1/r < r2, 21/2 · 21/4 · · ·1 < 2,
21/2 · 41/4 · · · r1/r > 1 andj/(j − 1) ≤ 2 for all j ≥ 2. �

LEMMA 19. As n → ∞∥∥â(L)(E/σ0) − â(L)(ε)
∥∥ = Op

(
ρ

3/2
2κLπ2

L

(
L2n−1/2 + (CL)4κL+3n−1 logn

))
.

PROOF. Because the proof is similar to details in Section 3 we sketch it. It
turns out that{W(L)(E/σ0)

−1 − W(L)(ε)−1}w(L)(E/σ0) dominatesW(L)(ε)−1 ×
{w(L)(E/σ0)−w(L)(ε)}, so we look only at the former.‖W(L)(E/σ0)−W(L)(ε)‖
is bounded by

Cn−1

[
L∑∑

k,�=1

{(∑
t

δkt δ�t

)2

+
(∑

t

φk(εt )δ�t

)2}]1/2

(7.36)

(incorporating a term due to the mean-correction, which is of smaller order).
Using (6.14),∑

t

φk(εt )δ�t = ∑
t

φk(εt )φ
′
�(εt )dt + 1

2

∑
t

φk(εt )φ
′′
� (ε̄t )d

2
t .(7.37)

We have

E

∥∥∥∥∥
∑
t

{φk(εt )φ
′
�(εt ) − Eφk(ε0)φ

′
�(ε0)}d1t

∥∥∥∥∥
2

≤ CE{φk(ε0)φ
′
�(ε0)}2

∑
t

Ed2
1t

≤ C�2µ2κ(k+�+K) logn.

Replacingd1t by dt − d1t gives no greater bound, by virtue of (6.15) and (6.17).
On the other hand,

{Eφk(ε0)φ
′
�(ε0)}

∑
t

dt = Op

(
�µ

1/2
2κkµ

1/2
2κ(�+K)n

1/2)
because

∑
t Et = 0 implies

∑
t dt = ∑

t εt . Next∣∣∣∣∣
∑
t

φk(εt )φ
′′
� (ε̄t )d

2
t

∣∣∣∣∣ ≤ Cκ�+1�2
∑
t

|φk(εt )|(1+ |εt |κ(�+K) + |dt |κ(�+K))d2
t .

Proceeding as in Section 6, this isOp((C�)2κ�+2µκkµr� logn), wherer� is the
smallest even integer exceedingκ(� + K) + 2. It follows that

L∑∑
k,�=1

(∑
t

φk(εt )δ�t

)2

= Op

(
ρ2

2κL

(
L2n + (CL)4κL+4(logn)2)).

Also {
L∑∑

k,�=1

(∑
t

δk�δ�t

)2}1/2

≤
L∑

�=1

∑
t

δ2
�t ≤

L∑
�=1

∑
t

φ′
�(ε̄t )

2d2
t ,



EFFICIENT ESTIMATION IN TIME SERIES 1841

and by proceeding as before this isOp((CL)4κL+2ρ2κL logn). The proof is
completed by application of Lemmas 8 and 10.�

Acknowledgments. I thank Fabrizio Iacone for carrying out the computations
reported in Section 4, and two referees for numerous comments which have led to
an improved presentation.
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