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EFFICIENCY IMPROVEMENTS IN INFERENCE ON STATIONARY
AND NONSTATIONARY FRACTIONAL TIME SERIES!

By P. M. ROBINSON
London School of Economics

We consider a time series model involving a fractional stochastic
component, whose integration order can lie in the stationary/invertible
or nonstationary regions and be unknown, and an additive deterministic
component consisting of a generalized polynomial. The model can thus
incorporate competing descriptions of trending behavior. The stationary input
to the stochastic component has parametric autocorrelation, but innovation
with distribution of unknown form. The model is thus semiparametric, and
we develop estimates of the parametric component which are asymptotically
normal and achieve ai/-estimation efficiency bound, equal to that found
in work using an adaptive LAM/LAN approach. A major technical feature
which we treat is the effect of truncating the autoregressive representation in
order to form innovation proxies. This is relevant also when the innovation
density is parameterized, and we provide a result for that case also. Our
semiparametric estimates employ nonparametric series estimation, which
avoids some complications and conditions in kernel approaches featured in
much work on adaptive estimation of time series models; our work thus also
contributes to methods and theory for nonfractional time series models, such
as autoregressive moving averages. A Monte Carlo study of finite sample
performance of the semiparametric estimates is included.

1. Introduction. This paper obtains efficient parameter estimates in station-
ary or nonstationary, possibly fractional, time series. Consider a regression model
given by

(11) Yt = ,LLTZt + X, te Z,

whereZ = {t:t =0,41,...}, z, is a deterministiaGy x 1 vector sequencey is
an unknowng x 1 vector,T denotes transposition; is a zero-mean stochastic
process and; is an observable sequence. Any nonstationarity in the meap of
would be due t@,, nonstationarity in variance g, but cases when? z; is a priori
constant and; is stationary are also of interest.
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To describex;, denote byB the back-shift operator, sBx; = x;_1, and denote
by A =1 — B the difference operator; formally, for all real

I'(j+d)

A=) A@B, A= are

j=0
with " denoting the gamma function such thai/) = oo ford =0, -1, -2, ...,
andI"(0)/I'(0) = 1. Assume the sequenggis given by

(1.2) x; = ATM0y# teZ,
wheremg is a nonnegative integer,

(1.3) =010 > 1), teZ,
for 1(-) the indicator function, and

(1.4) v = A"y, teZ,

for |¢o] < % with u; a zero-mean covariance stationary process with absolutely
continuous spectral distribution function and spectral densiy) that is at least
positive and finite for alk.

The process); is then also covariance stationary, having “long memory” for
Zo > 0, “short memory” forgg = 0 and “negative memory” fotg < 0. When
mo = 0, we havex, = v = v, for r > 1. Whenmg > 1, x, “integrates”v¥, and
the truncation in (1.2) implies that, has variance that is finite, albeit evolving
with ¢. Puttingéo = mo + Zo, x; is well defined for

(1.5) fpeScCléi—3<E<oo,6#35,3,..).

The requiremengg > —% excludes noninvertible processes, and the final qual-
ification in (1.5) exclude$, that cannot be reduced to the stationary/invertible
region (—%, %) by integer differencing. Alternative definitions of nonstationary

fractionalx, are available, for example ~50u?.
Suppose&yg is unknown;mg may also be unknown. Supposggis assumed to
have parametric autocorrelation,

2
(1.6) F) =208 )2 Ae(-m 7,
2

such that coto, uj) = /", f(A)cosjr)dr, j € Z, B(s;v) is a smooth given
function of complex-valued and the column-vectopr € V ¢ RP11, py > 1,
satisfying

1.7) po(v) =1, Bsiv) #0, Isl=LveV,

where 8;(v) = /7. B(e*; v)cogjr)dr, andvg € V andog > 0 are unknown.
Thencrg is the variance of the one-step-ahead prediction error of the best linear
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predictor foru,. For exampley, can be a standardly parameterized autoregressive
moving average (ARMA) process of autoregressive (AR) opggrand moving
average (MA) ordempi, such thatps — 1 < p11 + p12 < 00; whenvg consists
precisely of the AR and MA coefficients we hawye; + p12 = p1 — 1; otherwise
the coefficients obey prior restrictions. We calla FARIMA(p11, ¢o, p12), andx;
a FARIMA(p11, &0, p12). Whereas); is stationary, due to the truncation (12)is
nonstationary even whefy < % (it could be called “asymptotically stationary”
then). The case whem, = v; for all 7 € Z, so x; is stationary, can be dealt
with similarly, but we impose the truncation in (1.2) for allg > O for the
sake of a unified presentation. The détis contained in the “stationary and
invertible region.” The case; = 1 meansyg is empty, and if8 =1, x; is a
FARIMA (0, &9, 0). An alternative model for, is due to Bloomfield [4].

The main focus of the paper is estimatiorgef = (£o, vg)T, and we restrict to
a specialized form of; in (1.1):
(1.8) =07 ) T1( > 1), <t <-- <1,
where ther; are real valued. Debate has centered on the origin—deterministic
or stochastic—of nonstationarity in time series. A notable feature is competition at
low frequencies, and given the fractional modelfpthis is most neatly expressed
by (1.8). Some components af may have negligible effect on fractionally
differencedy;. Denote by ; the jth element ofu and 71 = {j:7; < &0 — %},
To=1{j:1; =&}, Ta={j 60— 3 < 7; < &0; T; > £}, Where any of these sets
can be empty. We cannot estimate for j € 71, and do not discuss estimation of
wj for j € To. Write s, = 3 ;e ;% and for pa = #73 < g introduce thepz x 1
vectorszy, anddp2, whosejth elements are the elementgpndu whose index is
the jth largest element dfs. It will be convenient to writer, = (¢X1, ..., tXp2)T
where they; are appropriate elementg, and satisfy% <x1<---<xp,- We can
write (1.1) as

(1.9 Ve =8 + M*IEO + 9()Tzzzz + X,
wherep* =0 if t; #&o for all ;.
We discuss estimation @b, along withfg;. For this we require that the;,

J € 73, are known. The boundary case®, t; = &, — % thus strictly impliessg
is known, but this provision is instead designed to cover a situation in which
1; <& — 3 for all j € 71 is anticipated, with&y unknown, but in factr; =

g0 — 5 for some;. Foréy = (¢,v7)T € § x V, introduce the functiom(s; 61):
R x R”L — R, and considet (s; 6, ), wheres! ™ = (0, v7)”, such that

(1.10) als; 01) = (L—s)fa(s; 6,7).

Take oz(s;Qi_)) = B(s;v)~t for |s] <1, v e V, and note that/” a(e'*;
9{_)) dr=1,veV.From (1.6) and (1.7}, has one-sided AR representation

(1.11) o(B; GéI>)ut = o0&, teZ,
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where 65, = (0,v)7, and thes, are uncorrelated with zero mean and unit
variance. Introduce square-summable coefficients;) in the expansion

o
(1.12) als;0) =Y a;(01)s, Is|]<1,£eSveV,
j=0

soag(91) = 1. For givery = (6], 61)T, define the computable

t—1

e(0) = aj (1) (yi—j — 03 224 )),
(1.13) /=0

1 n
Ez(9)=ez(9)—;Ze¢(9), 1>1,
=1

the latter being proxies farge,, with s; ignored ine; (6) because it is anticipated to
have negligible effect, and*r% ignored in view of the mean-correction i} (9).
Given observations;, r =1, ..., n, define

1 n
(1.14) 0,(0,03) = ;Zp(Ez(G)/&Gs),
=1

for an n'/?-consistent estimaté of o, a given nonnegative functiop:R x
RP3 = R and any admissible valuéz of an unknown psz x 1 parameter
vector fpz; 63 may be empty, as whep(s; 63) = s2. Consider the estimate
or, 9_37[)) = argminyxe, 0 ,(0, 63), for compact set® € R?, @3 € R”3. One
anticipates (see, e.g., Martin’s [24] discussion\ffestimates of ARMA models)
that under suitable condition,, 63, are asymptotically independent and the
asymptotic variance matrix of, depends orp only through the scalar factor
H = [p'(s)%°g(s)ds/{[ p"(s)g(s) ds}? where the prime indicates differentiation,
double-prime indicates twice differentiation and referencéptds suppressed. If
integration by parts can be conducted, this and the Schwarz inequality indicate that
H > 91, defining the information

(1.15) 7= [ w60 ds
and the score function
(1.16) V(s)=—g'(s)/g(s).

The lower bound is attained b@{ogg, and the paper obtains estimates that
are efficient in the sense of having the same asymptotic varianéggs In
Theorem 2 of Section 3 we justify such an estimate on the basis of kpGw#s).

If g is misspecified, not only will the estimate not be efficient but it may even be
inconsistent. Our main result is Theorem 1 of Section 3, which justifies efficient
semiparametric estimates, in which the densityspfis nonparametric. These



1804 P. M. ROBINSON

estimates are adaptive in the sense of Stone [28] and are described in the following
section. Section 4 describes a Monte Carlo study of finite sample behavior of the
semiparametric estimates. Section 5 attempts to place the work in perspective,
relative to the literature. Section 6 presents the main proof details, which use a
series of lemmas that make up Section 7. Some of these, such as Lemmas 1, 2, 7,
8, 13, 15 and 16, may be useful in other work. A principal technical feature is our
handling of the approximation of thee, in (1.11) by thee, (6p) defined by (1.13),

a delicate matter in fractional models.

2. Semiparametric estimates. As in much adaptive estimation literature we
take an approximate Newton step from an initial consistent estimaié 6o,
with the same rate of convergence é@g. This requires estimating (s). We
employ an approach developed by Beran [2] and Newey [25]. Beran [2] proposed
a series estimate af (s) [with respect to innovations in an AIR) model] that
employs integration by parts. His estimateyofs) was actually not a smoothed
nonparametric one because he fixed the number of tefmsn the series.
Newey [25] allowedL to increase slowly withe, in adapting to error distribution
of unknown form in cross-sectional regression.

Let ¢¢(s), £ =1,2,..., be a sequence of given, continuously differentiable
functions. ForL > 1, scalarh,, t = 1,...,n, andh = (hq,...,h,)T, define
¢ () = (p1(ho), . dL )T, @B (hy) = 9B (hy) — n 10 ¢ (hy),
¢ L (h) = @y(h), ..., 7. (h)T and

WEh)y =n"1>" 0B (h)eP ()T,
=1

wB )y =n"1Y "¢ Py,

=1
a Dy =wbDmy~tw® m),
v D (hy; aP (h)) =aP )T oD (hy).
With E6) = (E1(0), ..., E,(0))T define

Ui 0.0) =y P (E0)/0:aP (E©)/0),

where it will follow from our conditions that in a neighborhood 6§, og,

WL (E@®)/o) is nonsingular with probability approaching 1 as— co. We
then compute thel\™ (4, 5). Following Beran [2] and Newey [25] we have
approximatedyr (g;,) by Zﬁzlag{cbg(e,) — E¢¢(e;)} [imposing the restriction

E (&) = 0], noted that (under conditions to be given) integration by parts implies
E{pD (e (e0)} = E{p'D (e,)}, estimateday, ...,ar)” by a(E@)/5), and
theny (,) by 7" (8, 6).
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Define [see (1.10)—(1.13)]

el(0) = (3/06)e,(0) = (el1(0), e},

where

e1(0) =a'(B:01)(yi —0322),  €j5(0) = —a(B; 01)z2,
with

o (5361) = (8/30D)ar(s; 01) = (L — )¥ (5164 )y (53 v),
ey y(s;v) = [log(1—s), {(@/0v)  er(s: 01 7)} Jx(s: 07)]"
Define

n
E @) =e,;(0)—ntYy e(0), i=12
s=1

n n
ri0.0)=Y " ©@.0)E;©).  R©) =) E;@E;®), i=12
t=1 =1

§.0.0)=n"1Y 3" ©0.0)
=1

Estimatefos, o2 by
(2.2) 0 =0; + {Ri(0)§L0,6)) Yrpi(0,6), i=12

respectively, fod = (07 ,61)7.
As in [25] we restrict tap (s) satisfying

(2.3) pe(s) = ()",
for a smooth functiom (s). Examples are

(2.4) (s) =s,

(2.5) b(s) =s(1+s2)"Y2

Our conditions requird. to increase very slowly witl, and allow the increase
to be arbitrarily slow; in practice, for moderaie (2.2) might be computed for a
few small integerd., starting withZ = 1. Recursive formulas are available, using
partitioned regression, such that the elementsVéf) (E(9)/5), w'L (E(6)/5)
can be used in computin@,(LH) 0,6).
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3. Main results. We introduce the following regularity conditions. Through-
out the papeC denotes a finite but arbitrarily large constant.

AsSsUMPTIONAL. The sequence; is generated by (1.1) with, generated
by (1.2)—(1.4) and (1.11), where the are independent and identically distributed
(i.i.d.) with zero mean and variance 1, ands given by (1.8).

ASSUMPTIONAZ2. Either:

(@) Eeg < oo; Or

(b) for somew > 0 the moment generating functidf(e! ') exists for some
t > 0;or

(c) &g is almost surely bounded.

ASSUMPTIONA3. ¢o has density (s) that is differentiable and

0< g < oo,

whered is defined in (1.15).

ASSUMPTION A4. The sentence including (1.6) and (1.7) is trug,is an

interior point of V, and in a neighborhooav of vy, a(s;@f_)) =B(s;v)Lis
thrice continuously differentiable in for |s| = 1 and

ij"{mj(von +suple; (007)] + suda® (07|
] N N

+sufod (607 + sura " 61| < v,
N N
for all k,¢,m = 1,..., p1 — 1, wherea; (6,) is defined by (1.10), (1.12) and

o017 = @/v)e; 617, &0 617) = @/0voa V017, o017 =
(a/aum)aj."")(e){‘)), v being thekth element ofv.

ASSUMPTIONAS. For all (p1 — 1) x 1 nonnull vectorsy, A7 {(3/0v)a(e'*;
93?)}5(@*; o) # 0 on a subset of—x, 7] of positive measure.

ASSUMPTIONAG.

O<o*§<oo.

ASSUMPTIONATY.
nY2@1—001) = 0,(),  Dn(G2—602) = 0,(1),  n*3(E52—cd)=0,(),
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where
Dy = diag{n2=*21 (x1 — 0 > —3) + (logm) 7?1 (x1 — o= —3),
an—So-i-l/Z’ o nsz_EO‘i‘l/Z}‘
ASSUMPTIONAS8. ¢y (s) satisfies (2.3), whereé (s) is strictly increasing and
thrice continuously differentiable and is such that, for same0, K < oo,
(3.1) lp(s)l <1(ls| <D +[s|“0(ls| > 1),
(3.2) 18" ()] + 16" ()| + ¢ ()] < C(L+|p()]¥).

ASSUMPTIONAO.

(3.3) L — o0 asn — oo
and either:
(a)
.. (logn
(3.4) Ilnrn)lpof (T) > 8{logn + max(loge, 0)} ~ 7.05+ 8 maxlog ¢, 0);
or
(b)
I 4 1
(3.5) Iiminf< ogn ) ~ max{ . M);
n—oo \ LlogL 1) 1)
or
(©)
I
(3.6) Iiminf( ogn >>4;<,
n—oo \ LlogL
where
n=1+2Y2~2414
and

B2 IC]
bs2) — (1)

[s1, s2] being an interval on whicg(s) is bounded away from zero.

REMARK 1. Parts (a), (b) and (c) of Assumption A2 increase in strength and
entail trade-offs with Assumptions A8 and A9. Wheg= 0 in Assumption A8, so
¢ (s) is bounded, (a) of Assumption A2 and (a) of Assumption A9 suffice; a finite
fourth moment seems hard to avoid in dealing with the deviatip(g) — oos;.
Part (b) of Assumption A2 holds witlh = 1 for Laplaces; and withw = 2 for
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Gaussiare;. We require (b) of Assumption A2 when > 0 in Assumption A8,
S0¢ (s) can be unbounded, and also (b) of Assumption A9. If (c) of Assumption A2
holds, then a fortiori we can hawe> 0 in Assumption A8, and can relax (b) of
Assumption A9 to (c).

REMARK 2. Assumption A3 is virtually necessary.

REMARK 3. Assumption A4 is stronger than necessary, but is chosen for
brevity of presentation and because it is readily checked for short memory and
invertible AR (o) and MA (B) filters arising in models of most practical interest,
such as ARMA and Bloomfield [4] models, and in any case conditions on the
short-memory component are of only secondary interest here. A property useful
in several places (see in particular Lemma 13 of Section 7) that is ensured
by Assumption A4 is as follows. A (possibly vector) sequenge j > 0, has
property P, (d), r > 0, if

lajll < Cllog(j + 2} (j + DL,

llej —ajyall < Cllog(j +2Y G+ D%, j=0,
where || - || denotes Euclidean norm. Fas| < 1 ande(Jr> ¢, vHT, define
square-summabte; (6, ") such that
w(s;:607) = (1 — )¢ Bs: u)—Zn, O, gl<dvev.

j=0

Then, withearl: (0, v Hr, T (0(() ) has propertyPs(%o), o (9((, ) has property
Po(—¢o) and @/3/9{”) J(Gé ) has propertyP1(—¢p). This follows from
Lemmas 11 and 12 of Section 7 on noting that, d@s) = Foozjsf B(s) =
%2088, the coefficient of/ in a(s)B(s) is Z'k/:o axBj—k, that the coefficients
of s/ in (1—s)~¢ and—log(1 — s) are A;(d) and j 1, that(1; 65;”) = O for
to <0, and thatr(1; 65) = 0, (a/a/9<+>T)a(1 657y =0forgo > 0.

REMARK 4. Assumption A5 is an identifiability condition, violated if, for

example,u, is specified as an ARMA with both AR and MA orders overstated.
Assumption A5, with Assumption A4, implies that

1 b . .
Q= —/ y (€™ vo)y (e~ vo) T din
—JT

(3.7) 0|l — ei*|2 loal1l — ¢i|2 T
1 7 gl e’ og| e'|
= —f B o 9 o dx
2 Jox | 2-—log|B(e™; vo)l | [ 2--log|B(e™; vo)l
v ov
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is positive definite, withy given by (2.1).£21 is proportional to the inverse of the
limiting covariance matrix ob1. We define also the corresponding matrix with
respect t@y,

of

Qo= 2—/3(1; 10)2
JT

5 <{2(xl- — &) + BY2{2(x; — &0) + 1Y (i — £0) (1) — so)>
Xi +xj—20+D(xi —é0+D(x; — 60+ 1) ’

whenyi — & > —%, where the{, j)th element of the matrix is displayed; because
(i +xj— 250+ 1)~1) is a Cauchy matrix (see [17], page 30), and the inequalities
in (1.8) hold, 2 is positive definite. The same is true when— & = —% for
somej, Q22 being defined by replacing th@&, 1)th element of the matrix in (3.8)
by 1, and the other elements in the first row and column by zero.

(3.8)

REMARK 5. The middle part of Assumption A7 is likely to be satisfied by the
least-squares estimate @b, under similar conditions to ours. A substantial liter-
ature justifiesd, satisfying Assumption A7: typicallyj,zo, is assumed constant
a priori, but the results should go through more generally witteplaced by least-
squares residuals. Various estimate@f (which we collectively call Whittle
estimates) have been shown to/é2-consistent and asymptotically (0, Qfl)
when 0< & < % under Gaussianity of, (when they achieve the efficiency bound
of Section 1 and are as good as maximum likelihood estimates), and under more
general conditions (see, e.g., [6, 9, 11, 16]). The estimate minimizing (1.14) with
o(s) = s2 [usually with E; (9) replaced by, (6)] falls within this class. This esti-
mate (used by Li and McLeod [21] for fractional models and Box and Jenkins [5]
for ARMA ones) is sometimes called a conditional sum of squares (CSS) estimate
(though it is based on formulas for the truncated AR representation rather than for
the conditional expectation given the finite past record). Beran [1] argued that it has
the same desirable asymptotic propertiessfor % tying in with Robinson’s [26]
derivation of standard asymptotics for score tests, based on the same objective
function, for unit root and more general nonstationary hypotheses against frac-
tional alternatives. These authors employed a different definition of fractional non-
stationarity from ours, but for our definition Velasco and Robinson [29] established
the same properties for a Whittle estimate whe%] <& < %, and for a tapered
version of this for—% < & < oo, though the tapering inflates asymptotic vari-
ance. They established consistency of their implicitly defined optimizer despite
lack of uniform convergence over an admissible parameter set that includes a wide
range of nonstationary values &f Taking a Newton step from a previously es-
tablishedn1/2-consistent estimate avoids repeating this kind of work. Velasco and
Robinson’s [29] estimate (If'oz should satisfy the final part of Assumption A7
[with (a) sufficient within Assumption A2].
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REMARK 6. Whenx = 0 in Assumption A8, then¢(s)| < 1 for all s,
under (3.1); there would be no gain in generality by specifyirtg satisfy a larger
finite bound. Forc > 0 we might takep (s) = s*; compare (2.4). The reason for
imposing different bounds o#(s) over|s| <1 and|s| > 1 is to allow possibly
different rates of approach to zero and infinity. Assumption A8 is stronger than the
corresponding assumption of Newey [25], and is driven by the presengé&ef
for small ¢z, when it does not approximatey,; we prefer this to trimming out
small #, which introduces further ambiguity. It is hard to think of reasons for
choosingp that do not satisfy (3.1), (3.2), which imply power-law boundg6@),
¢ (s) andg”' (s) ass — oo.

REMARK 7. The weakest of the conditions in Assumption A9, (a), can only
apply wherk = 0 in Assumption A8, in which case lgg> 0. Subject to this, the
hope is that1 ands exist such thap is arbitrarily close to 1, as whegi(s) > 0
for all s; then the strict inequality in (3.4) applies with lpg= 0. The mysterious
constant; is due to approximating/’ (“) in the proof in terms of the Cauchy matrix
with (i, j)th element/®; u+/~2 du (see Lemma 7 of Section 7). Singés defined
for negative and positive arguments, this seems more natural than Newey’s [25] use
of the Hilbert matrix(folu"ﬂ‘zdu) and affords some slight improvement over it
due to the many zero elements in this Cauchy matrix; following a similar proof
to that of Lemma 7 for the Hilbert matrix, would be replaced by? ~ 5.828. In
fact, a constant such asdoes not arise in Newey’s work because he is content
with a slightly stronger condition than any in Assumption A9pgL/logn — 0O,
irrespective of whether or ngtis bounded, and without considering the impact of
bounded;. This is because he accepts a bound of féfth at several points of his
proof. Our slightly sharper bounds suggest that whésnbounded it is effectively
the denominator o, % (i.e., the inverse o (1)) that dominates, while whepis
unbounded the numerator dominates. In the former case, thelstmwresponds
to the notorious ill-conditioning of Cauchy—Hilbert matrices. One disadvantage of
a bounded is that a largei. might be needed to approximate an unboundged
though our slightly milder condition o in Assumption A9(a) might help to
justify this. Another is that it excludes (2.4), which “nests” the Gaussian case,
though it would be possible to modify our theory to allow inclusiorefs) = s,
say, followed by polynomiad, (2.3) using boundeé¢ such as (2.5). Though the
partly known nature of the bounds in Assumption A9 is interesting, and their
reflection of other assumptions is intuitively reasonable in a relative sense, not
only is the improvement over Newey'’s rate slight, but even after guessarmgly,
no practical choices ol in finite samples can be concluded; indeed the same
asymptotic bounds result if any fixed integer is added to or subtractediftaks
in much other semiparametric work, no information toward an optimal choiée of
emerges; indeed, as in [25] there is no lower bound.pand besides that it must
increase witha.
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THEOREM 1. Let Assumptions A1-A9 hold, such that when « = 0 Assump-
tion A2(a) holds with Assumption A9(a), or when « > 0 either Assumption A2(b)
holds with Assumption A9(b) or Assumption A2(c) holds with Assumption A9(c).
Then as n — oo, nt/ 2(91 — 6o1) and D, (02 — o) converge in distribution to
independent N (0, g1 1), N(0, g1, 1) vectors, respectively, where the lim-
iting covariance matrices are consistently estimated by {g;(,6)R1(6)/n}~1,
{§L(6,0) D, R2(6) D71y, respectively.

To place Theorem 1 in perspective and to further balance the focus on Whittle
estimation in the long-memory literature, we also consider the fully parametric
case, whereg (s; 03) is a prescribed parametric form, as described after (1.14),
on the basis of which defing; = argming, Q|ogg(5; 63), and, withy (s; 03) =
—(9/9s)g(s;63)/g(s; 63),

9n(0,0,69) =n"13 W (E(6)/0; 63)°,

=1

ri(0,0,03) =Y Y (E(0)/0;03)E;;(6), i=12,
=1

and redefing;, i = 1, 2, of (2.2) as
0;=0i +{Ri(0)n(0.5.09)} 'ri(0,6,03), i=12
We introduce the following additional assumptions.

ASSUMPTIONAL1O0. @3 is compact andps is an interior point of93.

ASSUMPTIONALLl. For allds € ® — {6p3}, g(s; 03) # g(s; 6p3) on a set of
positive measure.

ASSUMPTION Al2. In a neighborhoodV of 6p3, logg(s; 83) is thrice
continuously differentiable i3 for all s and

0
/ {Suq(g(k)(s; 03)| + Sudg(k’g)(s; 03)| + Sudg(k’g’m)(s; 03)|}ds < 00,
—ocol W N N

whereg®, g0 o(k.t.m) represent partial derivatives gfwith respect to théth,
thekth and¢th, and thekth, £th andmth elements obs, respectively.

ASSUMPTIONAL3. Q3= E{(3/363)l0gg(e;; 903)(8/8937)Iogg(eo; 6p3)} is
positive definite.
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THEOREM 2. Let Assumptions Al, A2(a), A3-A7 and A10-A13 hold.
Then as n — oo, nY2(61 — 6o1), DY?(@s — 602) and n2(d5 — og) converge
in distribution to independent N (0, 771, N(0, g5 and N (0, 231
vectors, respectlvely, where the I|m|t|ng covariance matrices are consistently
estimated by (g, (0, 5., 63) R1(6)/n} 2, {9 (0.6, 63) D, X R2(6) D1}~ and

-1

n~1> [(3/063) logg(E(6)/5; 63)][(3/863 ) logg(E,(0)/5:03)] ¢ .
=1

respectively.

The proof (which entails an initial consistency proof for the implicitly
defined extremum estimatg) is omitted because it combines relatively standard
arguments with elements of the proof of Theorem 1, notably concerning the
e;(00) — ope; issue. Our treatment of this would also lead to a theorem for
M-estimates ofdp minimizing (1.14) in whichp(s) is a completely specified
function, not necessarily lag(s), but we omit this to conserve on space, and
because the efficiency improvement of the paper’s title would in general not be
achieved.

Theorems 1 and 2 suggest locally more powerful (Wald-type) test8ppn
than those implied by CLTs for Whittle estimates. For example, the hypothesis
of short memorygg = 0, can be efficiently tested, as can, say, the significance
of AR coefficients in a FARIMAp11, &, 0), for any unknowrgp > —3 1 We can
also efficiently investigate the question of relative success of determlnlstlc and
stochastic components in describing trending time series. For example, we can
apply the theorems to tesbh, = O, or, with po = 1, po» =7, testég =17 + %
against the one-sided alternatige > t + % [see the discussion after (1.9)]; in
the first case rejection implies a significant deterministic trend, and in the latter,
a dominant stochastic one. Tests based.oare in general more powerful than
those based on least squares (see [31]) or generalized least squares (see [7]).

4. Finite sample performance. A small Monte Carlo study was carried out
to investigate the success of our semiparametric estimates in small and moderate
samples. Along with the value af major influential features seem likely to be the
form of g(s), the value ofg and the choice ap andL.

We focused on the simple FARIMA, £, 0) model fory, (knowingu” zo = 0)
for:

() & = —0.25 (antipersistent),

(ii) & = 0.25 (stationary with long memory),
(i) & = 0.75 (nonstationary but mean-reverting),
(iv) & = 1.25 (nonstationary, non-mean-reverting).
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For ¢, we considered the following distributions [the scalings referred to
producing vafe;) = 1]:

(@) N (O, 1),

(b) 0.5N(—3,1) +0.5N(3,1),

(c) (scaled) M5N (O, 25) 4+ 0.95N (0, 1),
(d) (scaled) Laplace,

(e) (scaled)s.

These were mostly chosen for the sake of consistency with other Monte Carlo
studies of adaptive estimates. The benchmark case (a), and the two (symmetric and
asymmetric) mixed normal distributions (b) and (c), were used by Kreiss [19] in a
stationary AR model, with kernel estimatesypf and by Newey [25] (in a cross-
sectional regression model). Ling [22] used (b) in a FARIN/ o, 0) model with
kernel estimates af . Kreiss [19] also used (d). The point of (e) is that it only just
satisfies the minimal fourth moment condition gn Assumption A2(a). Kernel
approaches, from [3] and [28] for location and regression models for independent
observations, through Kreiss [19], Drost, Klaassen and Werker [8] and Koul and
Schick [18] for short-memory time series models, and Hallin, Taniguchi, Serroukh
and Choy [15], Hallin and Serroukh [14] and Ling [22] for long-memory ones,
have been popular in the adaptive estimation literature. Besides requiring choice
of a kernel and bandwidth (analogous to guand L), they typically involve one

or more forms of trimming, in part due to the presence of a kernel density estimate
in the denominator of the estimate ¢f(s), and sometimes sample splitting and
discretization of the initial estimate. Theorem 1 of course implies semiparametric
efficient estimates using series estimation for short-memory modelsp ko

used both (2.4) and (2.5), and trigd= 1, 2, 3, 4, with » = 64 and 128. For

£ =0 andé2 Velasco and Robinson’s [29] estimates were employed, with a cosine
bell taper; this is sufficient to satisfy Assumption A7 for &lconsidered, albeit
unnecessary whejfy = +0.25.

_ We report the Monte Carlo relative efficiency measure NESEMSE(E) (where
& = 0) onthe basis of 1000 replications. Tables 1-5 present results for distributions

TABLE 1
e ~N(O1
$(s)=s $(s) =s(L+s52)71/2
L 1 2 3 4 1 2 3 4

—0.25 0.62 0.62 0.62 0.62 0.66 0.67 0.63 0.65

& 0.25 0.47 0.48 0.51 0.61 0.49 0.52 0.53 0.60
0.75 0.46 0.49 0.53 0.62 0.50 0.54 0.55 0.60

125 0.47 0.50 0.52 0.61 0.52 0.53 0.52 0.56

For all tables, Monte Carlo MSI@)/MSE(.%) with n = 64 and 1000 replications.
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TABLE 2
g ~05N(=3,1)+05N@G, 1)

P(s)=s $(s) =s(145%)71/2
L 1 2 3 4 1 2 3
—-0.25 0.92 0.92 0.83 0.90 0.94 0.93 0.82 0.83
& 0.25 0.90 0.91 0.89 0.93 0.91 0.91 0.88 0.89
0.75 0.90 0.91 0.89 0.94 0.90 0.92 0.89 0.89
1.25 0.88 0.89 0.88 0.92 0.89 0.89 0.87 0.87
TABLE 3
& ~ (scaled) 0.5N (0, 25) + 0.95N (0, 1)
d(s)=s $(s) =s(145%)~1/2
L 1 2 3 4 1 2 3
—-0.25 071 0.71 0.62 0.77 0.81 0.76 0.63 0.70
& 0.25 084 0.76 0.65 0.74 0.77 0.67 0.60 0.54
0.75 085 0.79 0.70 0.79 0.80 0.78 0.69 0.63
1.25 101 0.96 0.81 0.82 0.91 0.83 0.74 0.68
TABLE 4
& ~ (scaled) Laplace
o(s)=s ¢(s) =s(1+s%)71/2
L 1 2 3 4 1 2 3
-0.25 107 0.85 0.92 0.96 1.04 0.90 0.60 0.61
& 0.25 089 0.60 0.58 0.87 0.78 0.62 0.65 0.67
0.75 056 0.52 0.55 0.81 0.51 0.53 0.53 0.54
1.25 028 0.23 0.23 0.86 0.32 0.26 0.28 0.38
TABLE 5
g ~ (scaled) 15
() =s $(s) =s(1+s2)~2
L 1 2 3 4 1 2 3
—-0.25 058 0.54 0.53 0.65 0.55 0.53 0.55 0.60
& 0.25 056 0.56 0.57 0.74 0.51 0.54 0.55 0.58
0.75 058 0.58 0.62 0.75 0.51 0.56 0.57 0.61
1.25 063 0.61 0.60 0.69 0.54 0.55 0.52 0.53
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(a)—(e), respectively, in cage= 64 only; generally asymptotic behavior was better
approximated when = 128. Fore;, ~ N(0, 1), £ is efficient wheng (s) = s for

all L > 1, the efficiency improvement achieved in Table 1 for 1 being due

to the tapering ir€; as anticipated, the unnecessarily complicaiedased on
larger L makes matters somewhat worse. One expects relative efficiency to be
roughly constant acrosg. The deviating results fofg = —0.25 and&g = 1.25
sometimes found in the tables are largely due to the following computational
policy. The grid search to locate was confined to the intervgl-0.4, 1.75],

and for the extreméy someé fell on the boundary (especially the lower one),
while we correspondingly trimmed < —0.4 andé > 1.75 to £ = —0.4 and

£ = 1.75, respectively. This led to some underestimation of bias and variance,
and consequent distortion of relative efficiency. However, there is considerable
stability acrossp in the symmetric mixed normal case (Table 2), and also small
improvement with increasind., but slight deterioration wher. = 4 for the
unboundedp (s) = 5. We find this also in the asymmetric mixed normal case
(Table 3), though for the boundeds) = s(1+ s2)~1/2, mainly the improvement
continues toL = 4, and its magnitude, at each increasd.ofs notable. For the
Laplace distribution (Table 4) there is notable sensitivit§gtdhough increasing

tends to improve efficiency, at least upfio= 3. For thets distribution (Table 5)

only small improvements, if any, were recorded aftee 1, as is not surprising

for this small sample size, as asymptotic relative efficiency8stbe deterioration

with ¢(s) = s at L = 4 is also not surprising due to the heavy tails. The results
taken as a whole seem fairly encouraging, especially as the truncation (1.13) in
computing residuals, which looms large in the theoretical component of this paper,
would be expected to have some finite sample effect onour fractional setting.

5. Final comments. In various stationary, short-memory time series models,
Kreiss [19], Drost, Klaassen and Werker [8], Koul and Schick [18] and others
developed local asymptotic normality (LAN) and local asymptotic minimaxity
(LAM) theory of Le Cam [20] and Hajek [12] to establisfin-consistent, as-
ymptotically normal and asymptotically efficient estimates, and, further, adaptive
estimates that achieve the same properties in the presence of nonpargmetric
A similar approach was followed by Hallin et al. [15], Hallin and Serroukh [14]
and Ling [22] in the case of stationary and nonstationary fractional models.
LAN theory commences from a log-likelihood ratio, but in view of the difficulty
in constructing likelihoods in a general non-Gaussian setting, the latter authors
commenced not from the likelihood fon, ..., y, but from a “likelihood” for
v1, ..., ¥, and the infinite set of unobservable variabdgs: < 0, in terms of the
densityg of &, or a “conditional likelihood” forys, ..., y, given theg;, t <0,
or they,, r < 0. We do not employ such constructions and do not establish local
optimality properties. However, the -estimate efficiency bound we achieve is of
course the same as the asymptotic variance resulting from a LAM/LAN approach.
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Another motivation for our more elementary efficiency criterion is to allow
space to focus on the main technical difficulty distinguishing asymptotic distri-
bution theory for fractional models from that for short-memory ones. This is due
to the need to approximate the truncated AR transfarms ¢, (6p) [see (1.13)]
by scaled innovationsge;. Consider a simplified version of the problem in which
y; = x; a priori, sof = 01, and defineS, = ¢, — ops;. In the following section (re-
lying heavily on Lemmas 13 and 14 of Section 7) we find tB#t;|” < Cr~"/2,

r > 2, given a sufficient moment condition @p. This property is useful in our
proof thate, can be replaced byoe, in 4 (E (6g)/o0) (see Lemma 19). In some
cases it is possible to show that the upper bound provides a sharp rate. Consider
the stationary FARIMAQ, &, 0) (cf. [14]), where 0< & = ¢p < % andx; = vy,
t € Z. Noting that co¥xo, x;) > j%0=1/C, a; (&) > j=50~1/C for j > 0,
x X
E@) =Y aj(Eo)a (%) COV(x;, xi)

j=t k=t

oo 0
> c1 ZZ j—fo—lk—fo—lu _ k|2r§0—1
j=t k=t
1<|j—k|=t

oo I+]

ZC—].IZSQ—IZ Z (jk)—fo—l

j=tk=t+1

2t

Z C—1t2§0—12j—§0(t _|_ j)_%_O_l
j=t

>t

(This contrasts with the exponential rate occurring with ARMA models.) In this
stationary FARIMAQ, &g, 0),

-1
& = Zaj(éo)xt—j — 00¢¢
j=0

—1
(5.1) =Y a;(E)vi—j — 00

Jj=0

o
=—- Zaz+j (f;'o)v:—j-
j=t
In our “asymptotically stationary” version of the FARIMB, &p, 0), also with
O0<§ < % we havex, = x?, but again (5.1) results, from (1.4), (1.10), (1.11)
and Lemma 5 of Section 7. In this connection, note that for geiggraling [22]
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tookx, = A—’”va’-i- v, 1(¢ < 0) in place of our (1.2), but this different prescription
of x; for r < 0 makes no difference i@, which depends o, for s > 1 only.

The above upper bound fdf|s,|", combined with the Schwarz inequality, is
insufficient to deal completely with the replacementepfby ope;, even when
Y is smooth. Staying with the casg = x; a priori, the proofs of Theorems
1 and 2 entail establishing asymptotic normality of a quantity of the form=
n=Y2y" W (e)hs, whereh, is {e;, s < t —1}-measurable and has finite variance;
c1, is called a “central sequence” by Hallin et al. [15] [see their (2.15) and (3.11)]
and Hallin and Serroukh [14] [see their (2.4)]. Asymptotic normalitycsf =
n~1/2 Y 1_1 ¥ (g)h, follows straightforwardly from a martingale CLT. This leaves
the relatively difficult task of showing that,, — c2, = 0,(1). In fact, our proof
does not directly considet;, — c¢2, because we do not assunjeis smooth;
we instead approximate the by the ope; within the smooth estimate of
and then appeal to mean square approximationy@¢f;) by its least-squares
projection on thep(et)‘, ¢=1,...,L,asL — oo, as in [25]. However, for this,

Sy =n"Y2Y" 8k, [i.e., c1, — c2, With ¥ (x) replaced by] is relevant, and the
sharper the bound we obtain for it the weaker some other conditions can be; we
obtains, = 0,((logn)%/?n=1/?).

The same kind of issue arises in theory for Whittle estimation. For short-
memory stationary processes, wiifi= 0, Hannan [16] established the CLT for
various Whittle estimates. His proof does not work under stationary long memory,
O<é&< % due to the bad behavior of the periodogram and spectral density at low
frequencies. However, in this case Fox and Taqqu [9], Dahlhaus [6] and Giraitis
and Surgailis [11] delicately exploited a kind of balance between these quantities in
order to establish CLTs. The CSS estimate minimiZiffty  ¢?(9) [see Remark 5
in Section 3 concerning (1.14)] is not one of those considered by these authors, but
its CLT requires showing, = 0,(1), which entails similar challenge to results
they established for the somewhat different quadratic forms arising from their
parameter estimates. Our results for replacipdy ope; can be employed to
provide a proof of asymptotic normality of the CSS version of the Whittle estimate.
Whittle and adaptive estimation are both areas in which asymptotic results are
gualitatively the same across short and long memory, but sufficient methods of
proof significantly differ.

6. Proof of Theorem 1. The consistency of the covariance matrix estimates
is implied by the proof of the CLT. By far the most significant features of this are
accomplished in the lemmas in the following section. Their application is mostly
relatively straightforward, and is thus described here in abbreviated form. For
notational convenience we now writg = o and augment as6 = (67 , 6, 03)T.

We also abbreviate)"; ; to >, and E;(6p), E(6o), E;i(6o) t0 E;, E, Ey,
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respectivelyj = 1, 2. By the mean value theorem, foe 1, 2,
R (9) 1
IR

R(e) 1[
SLij(0; —60j) +rLi (o) |,
gL(Q) ]lZJ:#l Lij 0j Li\U0

where, with [Sz;1(0), S1i2(0), S£i3(0)] = (3/3607)r1:(8), each row ofS;; is
formed from the corresponding row &f;;(6) by replacingé by 6 such that
16 — 6ol < 16 — 6oll where Al = {tr(AT A)}/2. Write D1, = D3, = n'/?,
Dy, = D,, and defineV = {6 : || D;,(0; —00))|| < 1,i =1, 2, 3}. The result follows
if

él‘—(gol':{]pi+ SLll}(éi_OOi)

6.1)  suplDMRi(©) — Ri@o)}D B0, i=1.2,
N
(6.2) s;puD;f{Sw(e) SLij (00)} DM 5 0, i=12 ;=123
(6.3) SUpI.L(6) — F1.(00)] 4o,
(6.4) D 'Ri(bo)D 5 i,  i=12
{Ri(60)F1.(B0)} " S1ij(B0) B —1,1(i = ),

(6.5)

i=12 =123,
(6.6) 91.(60) > 4.

n_1/2r1 d <2 0

©) o |4V (070" 40,)):
(6.8) D;;MrLio) — i) 5 0, i=1,2,
where

ri=>Y_Y(e)ey,  r2= Z V(&) E5,
1t

with &/, = (3/005 0T ) (B; 017) Joo = y (B; vo)e;.

The most difficult and distinctive problems occur in (6.8) fet 1, which faces
thee, — ope, problem, as well as the increasifgin the presence of normalization
only by Dl_nl. The first of these aspects is also in (6.1) and (6.4), and both are
in (6.2), (6.3), (6.5) and (6.6), but the normalizations make (6.4)—(6.6) much
easier to deal with and the proof details are otherwise relatively standard, albeit
lengthy. The same may also be said for (6.1)—(6.3), except for the approximation
of the fractional differenceA®o by A¢ for |&€ — &| < n~/2, bearing in mind
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that “nonstationary” values of, &y are permitted. The basic steps in proving
(6.1)—(6.3) are illustrated by the least complicated case (6.1). By elementary
inequalities it suffices to show that syp, ||lenl(e;l.(9) — e;i(eo))||2—p>0,
i=1,2. Write & = a(B;07), o/ = o/(B;0)) with ap, af, denoting these
quantities atv = vg. Fori = 2, it suffices to apply Lemmas 1, 2, 3 and (with

m = &) 4, the jth elements ofwg(A% — A%)z5, and (o — ag)A%0zy, being,
respectively,0 (n~Y2(logr)t*i—%) and O (n~1/2¢xi—%0) uniformly in &, noting
thatéo > —3 and x; > & — 3 implies x; > —1 andéo < x; + 1. Fori = 1, the
terms inzy, are dealt with similarly, while Lemmas 1-4 give, for exampi(g(,AE —
A% (s; + p*10) = O(n~Y2(logt)?) and (&' — ap) A%(s; + p*1%0) = O (n~/?)
uniformly in /. In the above we apply first Lemma 3, then Lemma 1 and then
Lemma 2, noting that in case (ii) of Lemma 1 must be used (either for a leading
term or remainder) the coefficient of in the expansion of- log(1 — s), and thus

of (—log(1 — s))", is positive for allj > 1, so for nonnegative sequenggsh;,,

such thatg, < h,, we have(—logA) g;| < |(—logA) x;|. So far as contributions

from x; are concerned, from Lemma5
t—1
supl (e’ —a) A%l = 3 {suplr; — a1 1A% 1+ Idog ) auf 1),
j=0

where o, ap; are the jth Fourier coefficients ot’, «;. By the mean value

theorem and Lemma 6 this has second mom@at—1). The same result holds
for af(AS — A%0)x, after takingm = mg in Lemma 4, noting that its supremum
over.V is bounded by

; 1/2
Cn~ Y2y A%x, || + Cn=Y?||(log A)ap A%, || + Cn—l(z w2 j)
j=1

and applying Lemmas 5 and 6. The proof of (6.1) is readily completed.

Before coming to (6.8), we briefly discuss (6.7). Consider varidfes-
Y2 (DY) DT, v = AT(EUUT)~Y2U for a (p1 + p2) x 1 vector A
such tha”a = 1. We haveEV =0, EV? = 1, sinceEyr(sg) = 0 ande/, is
independent of;, so (6.7) follows from Theorem 2 of [27] if

—1/2, —1/2,/ T
(69) ;[D;lE;ZMD;lEéz] %[ 0 @)

Y w D {n e 1P1(I1v (en)ep |l = 8n*?)
t

(6.10) )
+ 1D EL 121 (1 (60) D L E, ) = 8)} 50

for anys > 0. The proof of (6.9) follows from Lemmas 1 and 3 and approximating
sums by integrals, while that of (6.10) follows from stationarity and finite variance
of ¥ (e;) ande;, and the slowly changing characterzf.
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We prove (6.8) only fori = 1, the casei = 2 involving some of the
same steps but being much easier. DeflB€)(s) = ¢L)(s) — E¢pD(e)),
W = E{ED) () ED (g)T}. It follows from Lemma 8 thatw &) is nonsin-
gular, and thence we defind?) = W1y @) wherew™ = E{¢/D) ()} =
E{¢pD (e,)¥ (&)}, by integration by parts, as in [2] and as justified under our con-
ditions by Lemma 2.2 of [25]. Defining alsp®) (g;; a')) = a DT 2L (¢,), we
have

4 2
n Y2 rpao) —rb =) Y Aij — An,
i=1j=1

where
Aij = n—l/ZZ Bl’[Cj[

t

and
By =¥ (&),
By =y (er;aD) =y (o)),
Bz = v P (e 4P (e)) — v D (e,; aD),
By = 9" (60, 00) — y P (e 0P (o)),
C1, = 00¢)7, Cy = E;{1 — 00¢;1.

Sinces;, is {es, s < r}-measurable anE||361||2 < C||R21]| < oo, while By, has
zero meanE||A21/|? < CEB3,— 0 asL — oo from [10], pages 74-77, and [25],
Lemma 2.2, since the moments @f(sg) characterize its distribution under
Assumptions A2 and A8.

Before discussing othet;; define

ta =1+ E{le:|“L(le;| > D},

for a > 0, and the following sequences:

pur = CL if a =0,
= (CL)*/®  if a > 0 and Assumption A2(b) holds
=ct if « > 0 and Assumption A2(c) holds

suppressing reference ;. to the arbitrarily large constait; and also
7= (Iog L)n?*1(p < 1) + (Llog L)n* 1(p = 1) + (log L) (ng)*"1.(p > 1),

for L > 1.
Write Az1 = (b1, — bopban){aP(e) — aP) — bo,bza'l), where by, =
n_l/ZUOZz 8;13(L)(SI)T1 bon = n_lzt 5;11 bz, = n_l/ZUOZz E(L)(gt)T- We
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haveE|¢ (¢0)|” < u«r, and thus from Lemma 9

L
E|b1al? + Ellbaa|1? < C Y (Ellepnll® + DE$* (e0) < pacc.
=1

Sinceby, = 0,(n~Y?logn) from Lemma 17, we deduce from Lemma 10 that

Loacpmr 1/2
(610) AS]_: O<W(|Ogn +L1/2,04,£L7TL)).

Before imposing Assumption A9, we estimatg;, which can be written
(6.11) n_1/200|:2 el {® D) (E, Joo) — CD(L)(S,)}:|&(L)(E/00)
t
(6.12) +n 260 el P ()" {a'P (E /o) — aP ().
t

The square-bracketed quantity in (6.11) has norm bounded by

I 2, 1/2 L 2,1/2
(6.13) (Z > ei8u ) +n > e, {Z(Zah> } :
(=11l ¢ t (=1 t
wheredy; = ¢o(E;/o0) — ¢e(gr). We have
(6.14) Ser = py(en)ds + 3¢y (E)d?,

Wherelé[ — Sll < |dt|, dt = E[/O'O — &, NOW€t = a(B, 001)(S[ + M*téo —i—x;), al’ld
from Lemma 5 [see also (1.13)]

o
o (B; 6ov)x; = a(B; 651 )vf = o0e — Y arr (051 )v—j = ooer + dus,
j=0
where
00 J
du=—3 jitrj. Aji = Z“kﬂ(eéir))ﬁj—k(e&r))’
j=1 k=0

where B;(651) is the coefficient ofs/ in a(s;65)~L. Since a(B; o)s; =
o(t=Y2) and a(B; 6o = a(1;65 )& + 1) + 0¢~Y from Lemma 1, it
follows that

(6.15) dy =di; + do+ dz + o(17Y?),

whered, =n~1 Y% 5(X, Aji)e—j, d3=n"1Y, &. From Lemmas 13, 14 and 18,
for 2 < r < 4 under Assumption A2(a) and > 4 under Assumptions
A2(b) and A2(c),

(6.16) Eldy|" < (CryZ 1Pyl
(6.17) El\da|" + Elda|" < (Cr)¥n™"2pl/",
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wherer, is the smallest even integer such that r.. Returning to (6.13), we
have

(6.18) Ze;m < ;silw(e»—wz(eo)}czh

(6.19) + ;szlw,@(e»—E¢2<w>}”(|dﬂ+|d3|>
(6.20) + |E¢y(£0)| Xl:g;ldlt

(6.21) + |E¢y(20)] ;ezl (Id2| + |d3])

(6.22) + ;g;mg(a)czf .

Now

19,(5)| = €1’ (5)p* ()]
(6.23) < Ce(L+ 19KV ads| <) + Is[<CDa(s| > 1))
< cefi(s) < 1) + s[5 > D),

and since; is independent of/.dy,, the right-hand side of (6.18) is

o ({E¢é<so>2}1/ZZ<Ens;,~||4Edi‘,>1/2) = 0p(enzp4x)109n),
t

using (6.16). The same bound applies to (6.19)—(6.21), proceeding similarly and
using respectively (6.17), Lemma 16, and (6.17) with Lemma 17; note that it is the
second factor in (6.20) which leads to the main work in handling the quasity
discussed in Section 5. So far as (6.22) is concerned, note that as in (6.23),

67 ()] < CL2{1(s| < D)+ |s[“ 2017 > D),
so0 by thec,-inequality ([23], page 157) (6.22) is bounded by

(624)  CYTUEN el {df, + df e T 4y O
t

+ 2N el 1 (dr — di)P(L+ e <)
t

(6.25)
+ |dt - d1t|K(Z+K)+2}-
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By (6.16) and Holder's and Jensen’s inequalities, (6.24) has expectation bounded
by

1/2
CKZ+1E2:MK(Z+K) Iogn + Z(Eldlllz’((£+K)+4) /
t

< C(CO* ;% logn,

r¢ being the smallest integer such that- 2« (¢ 4+ K) + 4. From (6.14) and (6.17),
(6.25) is of smaller order in probability. It follows from Lemma 9 that

(i AL

2\ 1/2
1/2
) = 0,((CL)*t+2p)/2 1ogn).
=1l t

By a similar but easier proof, the second term in (6.13) has the same bound, and
by Lemmas 10 and 19,

(6.11)= 0, ((CLY*L+3pp prpn~Y?logn).
Next, from similar but simpler arguments to those above,

1/2

n~1/2 = 0,(p,.7 logn).

28;1<D(L)(8t)T
t

Application of Lemma 9 indicates that (6.12) is
0,(p3. 72 (L?n~Y?logn + (CLY*E3n~1(logn)?)).
Thus

(6 26) A41= OP('OZKLJTL(IOZKLT[LLZ—F(CL)ZKL+3
| + p2eLmL(CLY* 0™~ 2 logn).

Comparison of (6.10) and (6.26) indicates tHAaj is dominated by 41, whose
behavior under Assumption A9 we thus now consider. kake0. From Lemma 9,
under Assumption A9(a)

Aqr= 0,(L*72n~?logn)

_o, (exp[logn{mogL + loglogn + 2logm, B }}])
logn 2

whichiso, (1) iflimsuplogrm; /logn < 711, asis clearly implied by (3.4). Now take
x > 0 under Assumption A2(b). From Lemma 9, under Assumption A9(b)

A41= Op((L4KL/w+2+ L2KL(1+l/w)+3)n—l/2logn) :0[)(1)’
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on proceeding as before. Under Assumption A2(c), Lemma 9 and Assump-
tion A9(c) give

Aq1= 0,((CLY* n=Y2logn) = 0,(1).
To consider Ao, we can proceed as earlier to write
E}y —¢&,1=D1y + D2+ D3+ (112 log?),

where
© o -
Dy =~ heij, D2="_1Z<Z*jt)8—j» Dg=n""3 eps.
j=1 j=0\ 1 !

and 7, = Y_o(3/00 P a1 (05) 81 (6T). Using (7.23) and (7.24) of
Lemma 13, we deduce thak ;| < C(logr)jr=¢0~1, j < ¢, and |ij| <
C(logr)jo~Imaxj—%,r=%), j > r, and then proceeding as in Lemma 14, that
Y5043, < Crtlog?t, Y32 o(X)_1 Aj1)? < Cnlog? n. Noting thatE (3, ¥ (e,) x
Dy)? < CY,ED?, using also Lemma 17 and proceeding as in the proof
for (6.11), it follows thatd12 = 0, (n~Y/2log®?n).

The remainder of the proof of (6.8) with= 1 deals in similar if easier ways
with quantities already introduced and is thus omitted

7. Technical lemmas. To simplify lemma statements, we take it for granted
that, where needed, Assumptions A1-A9 hold.

Part (i) of the following lemma is only needed to show thatin (1.9)
contributes negligibly, in particular when it includes< & — 1.

LEMMA 1. (i) For w, =" withy > —land ¢ € (-3, + 1),

At — F'y+1
" Ty—£+1)

ast — oo, wherem istheinteger suchthaté — 1 <m <&.
(i) For w, = (logt)"t”,r > 0,& > —3,

o e > 0)),

Afw# = O (M- Db+ a5 oo,

for any § > 0.

PrROOFE (i) The proof wher¢ is a nonnegative integer is straightforward, so
we assume this is not the case. We have
o0
(7.1) Y j*Aj(—&) =0, j=0,....,m,
j=0
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whenm > 0 and¢ > 0, (1— )¢ and its firstn derivatives ins being zero at = 1.
With a; = Ar(—y),

t—1
ASwf =" Aj (=)t — j)”
j=0

t—1 [e'e)
=173 A=E) Y (/)
j=0 k=0
(7.2)

==Y =0 *a Y A (=E)1m = 0)
k

j=t
" t—1

+17 Y = a Y A (-8,
k j=0

where 34 = Yo, Y = X maxm+10) @nd we apply (7.1). By Stirling's
approximation

jo !
I'(=§)

<Cj572,  j=1,

(7.3) \A,-(—g) -

so (7.2) differs from

1% / o0
F(t—é) {‘ > —h e} m =0

(7.4) ¢ =

/7 t—1
+Y =y jk—f—l}
k j=0
by
/ 00 " -1
(75 O (ﬂ St K > R 2 0+ 17 > Kl Y jk—f—z).
k j=t k j=0

Now

t—1
Yo it =t A-a)+ 0™,  a<l,
=0

(7.6) B
Y=t e -+ 0™,  a>L
j=t
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Thus (7.5) is

(l)’ £— 125 |1k| L1L0m > 0)

"

|lam+1] |a|
gy —m—10m+1] (> —1 N
+ E (m )+ Zk—g—l

- 0(;?‘5—1{2 lax|1(m > 0)
k

1
+ Z<’< + ) Yag] + 7 YappaLm = —1)}>,

whered )" = 372 1 axm12.0)- The first sum in braces is finite becausend theuy
are, while the second sum is finite becaligg < Ck~v~1. Thus sincey > —1,
(7.5)isO (7 ~"1) for £ > 0andO(t¥ %) for &£ < 0. Applying (7.6) again, (7.4) is
ty_g i a y— S 1
+ O(t ),
(=8 k-4
and the leading term i" (y + 1)/ ' (y — & 4+ 1)}¢¥ ¢, from [30], page 260.
(i) We have

-1
Awi=3"Aj(=5)flogt — NY (¢ = )7

j=0
Noting thatA ; (—&) = 0(j~*~1) and (7.1) holds wittk = 0 for £ > 0,

Y Aj(=&){logt — HY (t — )7 ~ (ogt) 1" Y Aj(—§) = 0" 1s7F)

j=0 j=0

for s = o(¢), 1 > 0. On the other hand,
t—1
Y Aj(=E){log(t — HY (¢ — j)Y| < Cs~EL(logr)” ZJ
j=s+1 j=1

The sum on the right-hand side @&(:117) for y > —1, O((logt)) for y = —1
andO(1) for y < —1. Thus choosing = 17%2/¢+D s, > 0, produces the result.
O

LEMMA 2. For w, =¥ and anyinteger r > 0,ast — oo
(7.7)  (=logA) w} ~ (logt)"t¥ for y > —1,

= 0(r *(logr) H1(y < —1) + (logn)1(y = —1)})
fory < -1

(7.8)
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PROOFE Suppose (7.7) is true for a givenThen ag — oo

t—1
(7.9) (—logA)wf~ (—logA)(ogn wf=>" jHlogt — H}Y (t — j)".
j=1

The difference between this and

t—1
(7.10) (logs)" > j =t — j)”
j=1

is bounded byC (log#)"~1 times

t—1 t—1
> i Hlogr —log(r — Hic — HY <Y jHlogl— j/0l¢ — )Y .
j=1 j=1

Splitting this into sums ovef € [1, [¢/2]] andj € [[t/2] + 1, t — 1], it is seen that
the first of these is bounded by

t—1
Y -y =crr,
j=1
since|log(l — x)| < x for x € (O, %), while the second is bounded by
r—1

Ct1Y " log(j/0)lj¥ < Ct” logt.
=1

The difference between (7.10) and

t—1
(7.11) logt)'t " j~t
=1

is bounded by
t—1

Clogn)'t” Y j =L~ j/0)Y =1 = Clogn)'t.
j=1

Then (7.11)~ (logt)" 1" ast — oco. Fory < —1, we can write
t—1
(—loga) wf=3"al"(t - j).
=1

wherea_g.r) = 0({log(j + 1} —1j~1). Splitting the sum as before, the first one is

O((logt)"t?) and the second i® ((logr)"~1r~1) for y < —1 andO((logr)"t 1)
fory=-1. O

In the following four lemmas(¢*) is taken to be a function with absolutely
convergent Fourier series, ahgd= (27)~1 [7_b(e'*)el/* da.
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LEMMA 3. For w; =17,

b(B)w? ~b()t”  ast — oo.

PROOF.  The left-hand side equals >/ b; + ¥4 b;{(t — j)Y —17}. The
first term differs byo(z¥) from b(1)t¥, and the second is bounded by

r—1 N2 !
crr Y[t (1-2) | oty jibyl =ot)
j=0

t i
from the Toeplitz lemma. O

LEMMA 4. For a sequence w, such that w, =0, ¢t <0, and any integer r, as
§—%o
(log A)" (A% — A%)b(B)w; = (log A)" T ARb(B)w, (5 — £o)

P 1/2
+o<{zmmw,_,~>2> (S—Eo)z)

j=1

(7.12

for m € (§0 — 3, &0+ 3).

PROOF By the mean value theorem the left-hand side of (7.12) is
(log A T ARb(B)w, (& — &) + 3(log A) *2b(B) Afw, (£ — £0)°.

for |€ — &| < |& — &o|. The last term can be Writte%]z;_:]icj' A"w;_ (& — £0)2,
wherec_j is the coefficient ofs/ in the Taylor expansion o{lo_g(l — )Y t2 x
(1 —5)5~™. From Stirling’'s approximationg; ~ (logj)"+2j"m=$~1 as j — oc.
Now m — &€ <m — & + |€ — &|. The right-hand side of this is less thénif
|E€ —&p| < % —m + &, where the right-hand side of the latter inequality is positive.

Thus for|é — &| small enoughm — & — 1 < —%. Thean?ichZ. < oo forall r, so
the proof is completed by the Cauchy inequaliti/

LEMMA 5. For real & and mg defined by (1.2),
(7.13) ASb(B)x, = AS~0b(B)VY, teZ.
PrROOFE The left-hand side of (7.13) is
ASbh(B)A~™0vp# = ASTMOp (B, te’. O

The next lemma gives a uniform bound for the variance of a process that is only
“asymptotically stationary.”



EFFICIENT ESTIMATION IN TIME SERIES 1829

LEMMA 6. For all r > 0, and ¢g defined by (1.4),
(7.14) E{(—logA)" A%b(L)v#)? < C < o0.

PROOF The left-hand side of (7.14) is

7 |t=1 2 00 2
(7.15) / 11— e*|720f () da < C(Z |c,~|)

i
> cje
~7lj=0 j=0

for o > 0 sincell—e*| =20 (1) is integrable¢; being thejth Fourier coefficient

of [{—log(1 — ¢} (1 — e*)%]b(e*). The jth Fourier coefficient of the factor

in braces isO((log j)" j—%~1), so since theéb; are summable so are the. For

20 < 0|1 —¢*|~2%0 (1) is bounded, so the left-hand side of (7.15) is bounded by

280c12.<oo. O

LEMMA 7. Let S, bethem x m matrix with (j, k)th element (j, k > 1),
1.
/ W24 = 2(j + k — 1)~ M(j + k even).
-1
Then for m sufficiently large,

-1 o8 1 2m om
w5 2oy 8+ gl (20 —1) -

PrROOE ltis clear that, likeS,,, S,;l must have(J, k)th element that is zero
for all odd j + k. This immediately ensures the necessary property that even rows
(columns) ofS,, are orthogonal to odd rows (columns) @,1;1. It then suffices
to study the two square matricds,, andS, ,, formed from, respectively, the odd
and even rows and columns §f. These exclude only and all zero elements,pf
and Snjl is them x m matrix whose(2j — 1, 2k — 1)th element is the&; + k)th

element ofS; ., whose(2;, 2k)th element is the(j, k)th element ofS; ., and
whose other elements are all zero. Thus it suffices to conS@fgrand Sz";, and

indeed ttS;,%) = tr(Sy ;) +tr(S5 ). We takem to be even; details for odd are
only slightly different and since we want a result only for largethis outcome
will clearly be unaffected.

S1.m and S, are both Cauchy matrices (see, e.g., [17], page 36), having
(j, k)th element of the fornta; +ax)~ 1, in particular(j +k — %)_1, (j+k— %)‘1,
respectively. From Knuth [17], page 36, tlith diagonal elements cﬂ‘lf;, 52_,31
are, respectively, lzlz(j)/(4j -3), 2U22(j)/(4j — 1), where we define, for real

Hlﬁifm/Z(i +5— 3/2)2
[Ti<i<my2,izs G — )

ngigm/z(i +s5— 1/2)2
[Mi<i<my2,iz; @ —9)

Ui(s) =

Ua(s) =
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Thus
m/2

(s, =2>_{@4j —3UE() + 4j — D UE())
j=1

1
24+ 2| — 2(;
5{ + 3 log(2n 3)}1;?3/2%(])

+{2+1I0 (Zm 1>} max UZ2(j)
372993 T3/ 8, 20

Fors € (O,m/2—1)

Ur(s) —Ur(s +1) = Ul(s){l _(s+m/2-1/2)(m/2 —s) }

(s —1/2)s
The factor in braces is2 m(m — 1) /{2s(2s — 1)}, which is negative fos < s(m)
and positive fors > s(m), wheres(m) = 3 + {2m(m — 1) + 1}1/2/4~m//8 as
m — o0o. Thus, asn — oo

(/2 +1/4/8)m — 1/2)
T(n/v/8—1/20(m/v8)((1/2—1/v/8)ym + 1)
Applying Stirling’s approximation, that is,

T'(am + b) ~ 2m)Y 2= (qm)@m+b=1/2

7.16 max Uji(j) ~
(7.16) L max 1(J)

asm — oo, and noting that

{ (14 2~ 1/2y12 1292712

1/2 12
(1 _ 2_1/2)1_2—1/2 } =1 + 2 s

(7.16) is (27) "1™ (1 + o(1)). In the same way it can be seen tHai(s) is
maximized at2m(m + 1) + 1}/2/4 — 3 ~ m/+/8, whence ma j <2 Ua(j) ~
(27)~" ™ (14 o(1)) also. The proof is then routinely completed]

Denote byi(A) the smallest eigenvalue of the matrix

LEMMA 8. AsSL — oo,

AW = 0(y).

PrRoOOE The method of proof, given Lemma 7, is similar to one in [25], but
we obtain a refinement. Defing™ (s) = (1, ¢ L (s)")T, WP = E{¢\"(e,) x
¢ (e)T}, so wd) = pwH pT  where theL x (L + 1) matrix P consists
of the lastL rows of the (L + 1)-rowed identity matrix. Them (W) >

AWIYLPPTY = AW If (=1, 1) C ($(s1), ¢ (s2)) (Which impliesg < 1),



EFFICIENT ESTIMATION IN TIME SERIES 1831

then [sincep’(s) is bounded ortst, s2)] A(W{™) = A(Sz11)/C = tr(s; 1)1/,
where we uses,, defined as in Lemma 7, which can then be applied. Otherwise,
w'" exceeds, by a nonnegative definite matrix,

A _ 1
717y L [P, gy {M}A/ WDy DT gy AT

¢ (s1) C -1
whereu™ = (1, u, ..., u")T andA is the lower-triangular matrix witki, j)th el-

ement(;j)¢(s1)"‘f{¢(s2) —¢(s1)}/ 7L, j <i. The smallest eigenvalue of (7.17)
is no less tharC~ ¢ (s2) — ¢ (s1)}A(AAT)A(SL11). Now A(AAT) > [[A~H] 72,
where by recursive calculatioh ! is seen to be lower-triangular with, j)th el-
ementa’/ = (7)) {=¢(s0)) ~/{(s2) — p(s0)* ™, j <i. Thus

Lyl/ i L+l/ i \2 L+1
LaEEDY (Z a’fz) <) (Z |a’f|> <> 9™
i=1\j=1 i=1 \j=1 i=1

This is bounded byl — ¢?)~1for ¢ <1, by L + 1 forp = 1 and by(¢? — 1)~ x
P’ LtDforp > 1. O

LEMMA 9. Fora=>0,b>0,

L

(7.18) > Mat+b < PaL-
=1

PROOF Incase:r =0, ora > 0 but Assumption A2(c) holds, this is trivial. For
a > 0 under Assumption A2(b), monotonic nondecreasgpfin reala implies
that the left-hand side of (7.18) is bounded by

[aL+b] (a/k)L
CL x
¢ Z Mt = (T) E(e'*F)
=1
for anyr € (0, 1), and by Assumption A2(b) there exists sudhat this is bounded
by PalL- O

LEMMA 10. Asn — o0,

(7.19) la® | = 0Lp3limL),

A L 1 1/2
[a® @) —a| =0 (mpzﬁﬂdl + Ll/zp‘*@”))‘

PROOE Write
Al (e) —a) = {W(L)(e)_l _ W(L)_l}w(L)(s) + W(L)—l{w(L)(g) _ w(L)}.
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From (6.23), the Schwarz inequality and Lemma 9

L L
Jw® |2 =" AEW c0¢' et} < CLEY nacwrk) < LPpacL-
(=1 e=1

Similarly, and from independence of thg

L
E|lw® () —wP|? <n71Y 2E{ ()¢ He))? < (L2/n) paer.
=1

L
E[WwP(e) WD PP <n 133" E{¢p(0)2 ) < (L/n)pact-
k=1

Now apply Lemma 8. [J

LEMMA 11. For j >O0leta; = A (d)ford <land|f;| < C(j+1)~3. Then
the sequence Zi:oa j—kBk, j = 0, has property Po(d).

PrROOF. By Stirling’s approximationy; has propertyPq(d), whence the proof
is completed by splitting sums arourid2 and elementary bounding of each.]

LEMMA 12. For j > Olet thesequence;, j > 0, have property Po(—d) and
for d > 0let 3272 p; = 0. Thenfor |d| < 1 the sequence

J
yi=> (+1-kbta,  j=0,
k=0

has property P1(—d).

PROOF We give the proof only ofy; — yj+1| < C{log(j + 1)}j7?2, the
proof of |y;| < C{log(j + 1)}j~?~1 being similar and simpler. We have

J
vi—vim= o AG+1-0 =G +2-0 N - G+1- )Tz,
k=0

J
+ Y (G +1-k Yo — o),
k=j+1

where j = [j/2]. The second term is bounded hyj—¢=2 and the third
by C(logj)j~?=2. Ford < 0 the first term is bounded bg;~?~2 and ford =0

by C(logj)j—?=2. Ford > 0 we apply summation by parts to this first term and
Y% oaj = 0 to obtain the bound'j ~~2 again. [
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LEMMA 13. Let the sequence «;, j > 0, have property Po(—d) and the
sequence B;, j > 0, have property Po(e), and let

o0
Z|aj|<oo ifd =0,
j=0
o0

(7.20) Y IBjl<oo  ife=0,
j=0

o0
Z,szo ife<O.
=0

Thenfor |d| < 1, |e] < 1itfollowsthat for all j > 0,7 > 0,

J
D akyiBik

k=0
(7.22) <Cjtmaxj Y, j>t

(7.21) <cjer 41, j<t,

If instead «; has property P1(—d) and (7.20)is not imposed,

(7.23) < C(log 1y jerd1, J<t,

j
> o Bi—k
k=0

(7.24) <Clog*tjjtmaxi 4 17,  j>t.

PrROOF We prove only (7.21) and (7.22), the proof of (7.23) and (7.24)
being very similar but notationally slightly more complex and less elegant. Write
Sab = Y0 _, o1k Bj—k- We have

J
S0/l <t gl =it ex0.
k=0

This proves (7.21) for > 0 and alld. On the other hand, with = [j/2],
summation by parts gives

j—1 k j
11 = D 1Bj—k = Bj—k—1l D _lewril + 18, ;1 D letril
k=0 i=0 k=0

j
(7.25) <Crm iy G kR et
k=0

<cje i, d>0,alle,
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while

(7.26) 1S:., | <C@+ )4 tje<cjem? 1 alld;e>0.

+lj

This proves (7.22) fodd > 0,e > 0 sincej¢ 41 < je=1t=4 j >t Fore <0

SOj Z{aj ktt — Oj—f— 141} Z Bi — o Z Bi

i=k+1 k=j+1

since}-%2 B; = 0. This is bounded by {s—¢=2j¢+1 4 ~4=1je} < Cjer—4~ for
j <t,toprove (7.21) foe < 0 and alld. Fore < 0 and alld

j—ji-1

j+1] 2: o ji—k P

j—ji-2

o o0
=— > (@jfr—k —Ujrr—k=1) Y Bi—o 54 > B

k=0 i=k+1 k=j—j

and this is bounded b {(r + j)~4=2j¢t 4 (r + j)=4-1j¢} < cje~ 1<, which
with (7.25) proves (7.22) fad > 0, ¢ < 0. Finally, ford < 0 and alle
J
Z Ajyi—kBr
k=j-J
which with (7.26) completes the proof of (7.22)]

S Cje_d_l,

1S5 =

LEMMA 14. For [¢o| < 3,

(7.27) }:A? <cr

(7.28) i(ikﬁ) <Cn.

j=0\r=1

PrROOE In this and subsequent proofs we drop the zero subscript fipm
We omit the proof forz =0 as it is simple. From Lemma 13

o t o
YOAE < CrTETRN E L O P maxnTE ).
j:l j:l j=t

The first sum is bounded bg:#** and the second bg: =% ¥°% , j¥~2 < Cr~*
when¢ > 0 and byC 352, =2 < Cr~t whent < 0, to prove (7.27). Foy <n
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and¢ #0
J n
Y | =Y maxi 4L+ ¢ Y et
t =1 t=j+1
< cmaxl, (j/n)°).
Forj>n

<Cjy max(j ¢, 178 < Cmax(n/j, (n/j)).
=1

> A

t

Thus

S(20) =3 (Sm) ¢ 5 (S0)

j=0\ t j=0\ t j=n+1\ t
o
<Cn+Cn? %3 j&2<Cn, ¢ >0,
j=n

n o0
§Cn_2¢2j2§+n22j_2§Cn, ¢ <0,
j=1 j=n
to prove (7.28). O

Define
hjg=Y t+ )l jk=1.
t

LEMMA 15. ForO<gg<3andj > 1,
(7.29) hjr < Cj~Y2min(j~Y2 kY2, 1<k<n,
(7.30) < Cj ko Yo min iY?, nt?),  k>n.
For —3 <¢o<Oandj>1,
hjr < Cmin(j Y2 =12 1 Liogk),
(7.31)
O<£<%+§o,1§k<n,

(7.32) < Ck~tmin(n/j, logn), k>n.

ProoF It follows from Lemma 13 that for k¥ k <n,

k n
(7.33) hjx <CKS 2 e+ Hrtmaxk 4 ) + CEEY 4 T
=1 t=k
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Suppose& > 0. The first term on the right-hand side is bounded by

k
Ci Y < j=zk,
t=1

k
Cj AT 2 < oY, <k
t=1

The second term on the right-hand side of (7.33) is bounded by

n
Ci Y < j=k
t=k

n
CiYE N 1532 <cjo™M3,  j<k
t=k

This proves (7.29). Let < 0. The first term on the right-hand side of (7.33) is
bounded by

k
Ck™ 1Yt + jH)~t < cmin(i 7t k~togk)
=1

and the second by

oo
Ck{j—l/z—e Zt—{—S/Z-‘rS < Cj—l/z—é‘k—l/2+8’ J > k,
t=k

n
CK Y 2 <ck ™t j <k
1=k

This proves (7.31). Fdt > n (7.30) and (7.32) are readily deduced from

hjx <CKE Y+ 1 >0+ Ca ) (e + ) Mg <0). -
t t

LEMMA 16. For [¢o| < %

o0
Doein Y hjrej
=0

t

2

E < C(logn)3.

PROOF  Writing y (s; vo) = Z?io y;s/, the expression within the norm is

-1 o0 o
(7.34) SO vivje—j Y hwe—x+ DY Hjre_jex,
k=0

t o j=1-t J.k=0
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where Hj, = >, vj++Ake- The squared norm of the first term has expectation
bounded by

-1 00
ZZ( > Vst 11 Vet ||) (Z xsmk).
st \j=max(l—s,1—1) k=0

For s <t the first bracketed factor i®((r — s + 1)~tlogn) becausel|y;| <
C(j + 1)~1, while the second one is bounded by

N t
Cr L1y 2 et Y 2t maxi 4L s79)
j=1 Jj=s+1

o0
+C Y T Pmax Tl s max L)

j=t+1
<C{s~ 5511 > 0) + 551 <0) + (s1) V21 =0)}
< C(st)~V2.
We have
t [t/2] t
Z(t -5+ 1)_ls_l/2 < Z (t—s+ 1)_ls_l/2 + Z (t—s+ 1)_1s_l/2
s=1 s=1 s=[t/2]

< C(ogn)~1/?,

C(logn) 3 (logr)t~* < C(logn)>.
t

Next, since|H x| < Ch i, the squared norm of the second term on the right-hand
side of (7.34) has expectation bounded by

oo
C ZZ(k?k +hjjhik + hjchg).
k=0

We apply Lemma 15 to complete the proof. Eos 0

00 n k n oo
DX MH=CY Y GHTIHCY Y

J,k=0 k=1j=1 k=1 j=k
0o n 0o 00
+ Cnl—Z{ Z Z j—1k2g—2 + Cn2—2§ Z Z j—2k2§—2
k=n j=1 k=n j=n
< C(logn)?,

o0 n o0
Yohjy=Cd Tttt S < Clogn
=0 =1

j=n
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and

[e.e] n k , ~
SN hjkhi <C YN (G 4+ Cnt2E 3TN Y2

J-k=0 k=1j=1 k=1j=k
o0
+Cn?E YN (2
Jj.k=n
< C(logn)?.
For¢z <0

o0

n k n oo
PIPILAE=D DD - LR D DD DY Rl S

J.k=0 k=1j=1 k=1j=k

oo n o0
+Clogn)? > S kT2 +Cn?Y ] > (jk) 72
k=n j=1 J.k=n

< C(logn)3,

[e.e] n o
Sthjj<cy jt+cn) j7><Clogn,
j=0 j=1 j=n

[ee) n k
YN hjhiy <CY Y TR logk

j. k=0 k=1j=1
n (e.¢] e.¢]
_|_ C |Ogn Z Z j—1/2—ek—1/2+aj—l _|_ CHZZZ(JIC)_Z
k=1j=n Jk=n

< C(logn)?.

LEMMA 17.
4
E < C(Iogn)4n2.

28;1
t

PRoOE We have

;8§1=n§<§%)81 + i( Ji Vi)g—f-

j=1\i=1 j=0\i=j+1
Thus
4 n—1jn—j |2\ 2 oo || j+n 2\ 2
E|Y e sc(z S ) +c(z S )
t j=1lli=1 j=olli=j+1
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Since
n—j n—j n
Youl =Y ml=cYy itt<cClogn, 1<j<n,
i=1 i=1 i=1
jtn jtn
> yf=c Y it<Clogn, 1<j<n,
i=j+1 i=j+1
<Cn/j, j=n,

the proof is readily completed.(]

LEMMA 18. For any sequencec;, j > 0,andanyr > 1,if u, < oo,

00 r 00 r/2
> it 5<Cr)2’<2c§-) Wi
j=0 Jj=0

where r isthe smallest even integer such that r4 > r.

E

PROOFE For r < 2 the proof follows by Jensen’s inequality and direct
calculation. For > 2 the Marcinkiewicz—Zygmund inequality indicates that

00 r 00 r/2
2.2

Y ocie) EC”E(ZCJS—j> ’

j=0 j=0

whereC, = {18-%2(r — 1)~1/2}" (see [13], page 23). By the-inequality (7.35)

is bounded by
r/2 00 r/2
“(2) |
j=0

00 r/4 00 r/2
Z c?(sgj — 1)2 + (Z ci) }
j=0 j=0

For 2 < r < 4 the first expectation in the last line is bounded by

00 r/4 00 r/4 00 r/2
4, 2 2 4.4 2 /4
j= j= j=

For r > 4 we instead apply the,-inequality to that expectation, and then the
Marcinkiewicz—Zygmund inequality again, and so on, eventually bounding (7.35)

by

(7.35) E

Crzr/2—1{E

[ee]
PIACHTEY
j=0

< CrZr/z_l[Cr/zE

00 r/2
CrCrj2Crja---Ca- or/2 or/4 or/8 . 1(2 c?) “ZH'
j=0
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The result follows on noting that- r/2. p1/4... ;) Yr <2 212 .21/4...1 < 2,
212 454, .yl > 1andj/(j —1) <2forall j>2. O

LEMMA 19. Asn — o0
|a(E fo0) = a™ ()| = Op(ppep it (L2n Y2 + (€LY 0 logn)).

PROOFE Because the proof is similar to details in Section 3 we sketch it. It
turns out thaf WL (E /og) 1 — W) ()" 1}w L) (E /o) dominatesw (&) ()1 x
{wD(E Jog) —wP)(e)}, so we look only at the formelt.W L) (E /og) — WL (g) ||
is bounded by

(7.36) Cn_l[ZLZ{ (Z aktagt)z + (th ¢k(s,)5z,>2Hl/2

k,t=1 1
(incorporating a term due to the mean-correction, which is of smaller order).
Using (6.14),

(7.37) Y d(eNdu =Y du(e)i(edi + 3 Y dilendy (E)d?.
t t t

We have
2

E|Y {px(edy(er) — E¢r(e0)dy(e0)}dy | < CE{di(e0)d(e0)}? Y EdS,
t t

< CCuc(ere+k) logn.

Replacingdy; by d; — d1; gives no greater bound, by virtue of (6.15) and (6.17).
On the other hand,

2 2
{E¢r(e0)¢)(20)} Zdt Op(tnziatz,rs xyn™?)

because ", E; =0 implies)_, d; = >, &;. Next

Z¢k(8t)¢ (&)d} <CKE+1€22|¢]{(8;)|(1+|8 <KD g <KD g2,

Proceeding as in Section 6, this dEp((CE)Z"“ZMKW,Z logn), wherer; is the
smallest even integer exceedin¢f + K) + 2. It follows that

L 2
ZZ(Z ¢k(8z)5ez> = 0,(p5. 1 (L?n + (CLY*L T4 (logn)?)).

ko=1 \ t
Also

L 2,1/2 L L
[ (z(m)} S YR <Y Y
k t t
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and by proceeding as before this &,((CL)*t+2py. logn). The proof is
completed by application of Lemmas 8 and 10J

Acknowledgments. |thank Fabrizio lacone for carrying out the computations
reported in Section 4, and two referees for numerous comments which have led to
an improved presentation.
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