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NONPARAMETRIC REGRESSION PENALIZING DEVIATIONS
FROM ADDITIVITY?

BY M. STUDER, B. SEIFERT AND T. GASSER
University of Zurich

Due to the curse of dimensionality, estimation in a multidimensional
nonparametric regression model is in general not feasible. Hence, additional
restrictions are introduced, and the additive model takes a prominent place.
The restrictions imposed can lead to serious bias. Here, a new estimator
is proposed which allows penalizing the nonadditive part of a regression
function. This offers a smooth choice between the full and the additive model.
As a byproduct, this penalty leads to a regularization in sparse regions. If the
additive model does not hold, a small penalty introduces an additional bias
compared to the full model which is compensated by the reduced bias due to
using smaller bandwidths.

For increasing penalties, this estimator converges to the additive smooth
backfitting estimator of Mammen, Linton and Nielsé&mf. Statist. 27 (1999)
1443-1490].

The structure of the estimator is investigated and two algorithms are
provided. A proposal for selection of tuning parameters is made and the
respective properties are studied. Finally, a finite sample evaluation is
performed for simulated and ozone data.

1. Introduction. Let (X;,s;),i=1,...,n, be independent identically dis-
tributed random vectors with ; € [0, 1]¢. Define the response &is= r™¢(X ;) +
&;. The errors; have expectation zero and variarceand are independent &;.
The goal is to estimaté™®(x) given data( X ;, ¥;).

In thefull model, we assume only that the unknown regression function

r™Me(x) =E(Y|X = x)

is smooth. Specifically, we assume th#{€ is twice continuously differentiable as
we will use a local linear estimator. The rate of convergence of mean square error
is O (n=%“+4) [Stone (1980, 1982)].

Estimating in the full model suffers from the “curse of dimensionality.” This
leads to consideration of less general models. Iratititive model it is assumed
that the regression function has the special form

(1) rMe(x) = riggo + radei (D) + - 4 ragdga (xa).
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The rate of convergence @(n~%°) as ford = 1 [Stone (1985, 1986)].

Choosing the additive model may lead to serious bias due to neglecting the
nonadditive component of the regression function. Estimating the full model may,
however, lead also to a large bias since a large (optimal) bandwidth has to be used
to achieve the same rate for variance as for squared bias.

In this paper we introduce a parametric family of estimat@gs(R > 0) which
includes asymptotically optimal estimators for the full £ 0) and the additive
(R = o0) model asspecial cases. The aim is to offer acontinuous model choice
via the tuning parameter.

The philosophy behind additive modeling might be described as follows:
rather than assuming the strict validity of the additive assumption, one goes
for the additive part of the underlying regression function to avoid the curse of
dimensionality. The approach of this paper offers us more flexibility in case of
highly nonadditive functions: instead of switching to the full model (or tolerating
a large bias for the additive fit), one chooses a fit in between, which takes into
account part of the nonadditive structure.

Local linear estimation. For fixed x, let 8 = (Bo, ..., Bs) be the minimizer
of B

2
ln
) SR(B. x) = nZ(Y ﬂo—Zﬁk hk )Kh(x,,x)

i=1

where K, (X, X) = K(diag(h1, ..., ha) H(X; — X))/(h1 - -+ - hq) = 0 is the
kernel weight of the observatiaiX ;, ;) for the output pointx. The bandwidths
h1,...,hy are scale parameters We assume khat. ., h, are of the same order
andsetv = Yhq - ---- 4- The diagonal matrix with diagonal elements ..., iy
is denoted by dla@zl, ..., hg). The local linear estimator of™€(x) at output
point X is Ao.
Under usual regularity conditions, variance is proportionakits?)~1 and
squared bias is proportional f¢*. The optimal rate for the MSE ig—%/(4+4)
using a bandwidthz proportional ton~Y/“+®  The local linear estimator
achieves asymptotically the linear minimax risk when using spherically symmetric
Epanechnikov kernels. This optimality result was shown in Fan (1993] ferl
and in Fan, Gasser, Gijbels, Brockmann and Engel (1997) ferl. For finite
sample size, however, regularization is an issue [Seifert and Gasser (1996)], as
the variance is unbounded in sparse regions. As we will see later, our modeling
approach via the parametBrleads, as a byproduct, also to a regularization.
Mammen, Linton and Nielsen (1999) (referred to as MLN below) introduced a
backfitting estimator for the additive model which achieves the same asymptotics
as theoracle estimator, which is a univariate local linear estimator for data
(Xix Y, Z#krgggk(xi,,()). Consequently, it inherits the above mentioned

optlmallty. They evaluated a local linear estimator on a continuum (@d1]¢),
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using a vector of parameter functions(x) = (*r%(x),...,r%(x)). The first
function70(x) is theintercept (i.e., Bo for x) and the other functions astopes
(i.e.,B1, ..., Ba). MLN decompose (x) into additive (- ,4¢) and orthogonalf | )
components, and set the orthogonal component to zero:

Zaddzargmin/ dSSR(gadd(g),g)dx.
[0,1]

I add

h

The estimator7 ,qq has an interpretation as a projectioh. 7, of the local
linear 7 ;; to the additive subspace.

Instead of a projection we usepanalty R to shrink the orthogonal component
towards zero. Formally,

Eg=argmin[  SR(r(x), x)dx+Rlz I3
r [0,1)¢

For R = 0 we get the usual local linear estimator, and fo&= co we obtain the

additive estimator of MLN. For gener& we get a family of estimators connecting

7 5 With 7 549 With common additive patP.7 g = 7 aq¢

EXAMPLE. Let us now illustrate the benefit of a smooth choice between full
and additive models for some simulated data with known regression function and
random uniform design; see Figure 1.

Originally this realization of the data was used in Seifert and Gasser (2000) in
the context of locally ridging the local linear estimator. (Another 50 realizations
are summarized in Section 5.1.) Due to symmetry of the true regression function
[r€x1, x2) = r™&xy, x1)], there is no need to consider separate bandwidths
for each coordinate. Note that the smoothing windows have the same size in the
interior and at the boundary by choosing a larger bandwidth at the boundary [see
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FiG. 1. Smulated data using n = 200 random observations (a) (desigh n = 200) and regression
function (b) (true regression function) (range [9, 54], residual variance o2 = 25). Smoothing
windows are of constant size due to increased bandwidth at the boundary: (a) displays smoothing
windows for 7 =0.117and h» = 0.174at output points (0.55, 0.55) and (0, 0).



1298 M. STUDER, B. SEIFERT AND T. GASSER

Figure 1(a)]. We use a product Epanechnikov kernel. The output grid consists
of 50 x 50 points and the parameters are the minimizers of integrated squared
residuals (ISE); see Figure 3(a).

Even though the regression function is clearly nonadditive, penalizing the
nonadditive part leads to a remarkable improvement in optimal ISE fr8n 8
[Figure 2(a)] to 60 [Figure 2(d)]. A small penaltr stabilizes output points where
the local linear estimator is wiggly but has little effect in well-determined regions
[Figure 2(b) vs. 2(d)]. This illustrates another useful property of penalizing:
regularization of the local linear estimator.

Generalizing a method often improves goodness of fit, while parameter
selection becomes more difficult. Let us apply A&l@r selecting parameters
R and & [Hurvich, Simonoff and Tsai (1998)]. This criterion tries to find a
compromise between good fit and small complexity of the model (i.e., low trace of
hat matrix). Figure 3 shows that parameter selection is successful in this example.

Contents. The paper is organized as follows: Section 2 defines the proposed
estimator both in a discrete and in a continuous version. A computationally
efficient direct and an iterative algorithm are developed in Section 3. Properties
of the estimator are studied in Section 4. the penalized estimator is shown
to be a pointwise compromise between an additive and the local linear fit.
A decomposition into an additive part and an orthogonal remainder term is derived,
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Fic. 2. Comparison of different estimators. The local linear estimator is either heavily biased
(@ (h=0.174,R =0, ISE=8.3) or wiggly (b) (h =0.117,R = 0, ISE= 8.8). Additive estimation
(c) (h =0.197,R = o0, ISE=17)iseven worse. The penalized estimator (d) (» =0.117,R = 0.163,
ISE=6.0) is stabilized without oversmoothing: | SE isimproved by more than a quarter.



PENALIZED NONPARAMETRIC REGRESSION 1299
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FiG. 3. Comparison of ISE (a) [integrated squared error (ISE)] and AIC¢ (b) as a function of
bandwidth # (log-scale) and penalty R (HiR-scaJe). The global minimum of ISEisat (h = 0.117,
R =0.163).A contour line bounds a region of parameters outperforming the ordinary local linear
estimator (minimumat 2 = 0.174).

where only the nonadditive part involves shrinking. In addition to model flexibility,
the approach offers a regularization in sparse regions of the design. We then
justify the interpretation of the local linear and the additive estimators as special
cases ofr p for R — 0 or oo. The convergence of  to the MLN estimator

for R — oo is investigated. The data-adaptive simultaneous choid¢eaofd R is
analyzed to some extent. Section 5 is devoted to a simulation study. Furthermore,
the estimator is applied to the ozone dataset. A summary of the contents is
provided at the beginning of each section. Software is available on our homepage
www.biostat.unizh.ch.

2. Definition of the penalized estimator. A local linear estimator is evaluated
on a set of output points. For penalizing deviations from the additive model,
these output points should form a product space. In Section 2.1 we choose the
interval[0, 1]¢ as a continuous set of output points and start with definitions similar
to MLN. This choice is suitable for deriving theoretical properties. In practice the
continuous set of output points is approximated by an equidistant grid,

1 2 1 2
o 2 ot 2 )
mi—1 mp—1 mg—1 mg—1

as in Section 2.2.

2.1. Estimation on an interval. We will introduce a Hilbert spacef, || - ||+)
such that the local linear estimatar; corresponds to a projection of the
responseY to some subspacky C F.

MLN consider a subspacEaqq C Fru of additive functions and obtaif,yq by
projectingY to Faqg

We consider another noripn: ||z being the sum of - ||« and some penalty with
parameterR on the squared distance frafaqg. The penalized estimatary is the
projection with respect tf - |z of Y to Fq.
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Define the vector space ¢f + 1)(d + 1) functions
F={r=0"i=0,...,n;£=0,...,d)|r"*:[0,1]¢ > R}.

Let us define the projectiof, on ¥, which replaces’¢ by r%¢. In other words,
if 7 =%Por, theniit(x) =r%¢(x). The image ofP is denoted byFs. For
simplicity of notation, the index is omitted:

Fran={r =0 ....rHr 0,119 > R, £=0,...,d}.
The observations;, i =1,...,n, are coded ag y € ¥ by

Y; fori > 0and¢ =0,

ie
Lix) =
¥ (%) {O, otherwise.

Define the design-dependent semindrri. on & by

1 d Xik— Xk 2
i i i,
||z||§=f—§: rO(x) + Y R ()= | Kn(X, X) dX,
nia k=1 h

where K, (X ;, x) is the kernel weight of the observatigix ;, Y;) for the output
point x.
Hence, forr € Fy we have

2
1 d Xix—
(3) ||zy—zni:/—z[n—r°(x>—2rk<x)M] Kn(X;, X)dx
i k=1 hy

and the integrand corresponds to the minimization problem for the local linear
estimator. Consequently, we denote the minimizerhy

The interpretation of" ;; as projection ofr y to sy was developed by Mam-
men, Marron, Turlach and Wand (2001) and is quite useful when incorporating
constraints, that is, minimizing (3) for in a subset ofFy, .

Consider now an additive subspa€gyq C Ful

Fadd={r € Frulr(x) is additive
fork=1,...,d, r*(x) depends only omy}.

Define the additive estimataf,yq as the minimizer for € Faqqof ||ry — r ||§.
Projecting a Nadaraya—Watson estimator to an additive subspace was first
considered by Nielsen and Linton (1998) fdr= 2 and extended to higher
dimensions in MLN. The projected local linear estimaidyyg was introduced
by MLN and has attractive properties. Nielsen and Sperlich (2005) discuss
practical aspects of this estimator, which is called smooth backfitting there. These
include implementation, parameter selection by cross validation and finite sample
evaluation.
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Let us introduce further notation. Define thé-norm on# by

! b il 2
n+1ZZf[V (X)]°dx.

i=0¢=0

2
Izl =

Denote by#,qqthe | - ||2-orthogonal projection fronzy into Faqg.

More formally, we definer yqq= Padar. Via ro(x) = ¢4 [rO(x)dx_; —
d—1) [rO%x)dx andrk,(x) = [r*(x)dx_, where [---dx_; denotes the
integral with respect to all components gf exceptx;. Furthermore, letP, be
the|| - ||« projection from# (or Fu) to Faqq, see Appendix A.2.6.

Next, a penalty on the nonadditive part of is added to| - ||.. Define the
seminorm|| - ||g ON F:

2 2 2
Izl =Irlli + RICD — Padd Por I3,

where] is the identity. The penalized estimatoy, is defined as the minimizer of
2
12 d Xik—x
lry —rli% = / =3 [Y,- —r0(x) - Zrk(mM} Kin(X;, X)dx
i k=1 hi

+ R — Paddr 13

for r € Fy. For the penalty term we use the fact tiaf is the identity onFiy
and thatPyr y = 0. The latter was the reason for introducing the components with
i =0in ¥ . Properties ofr ; will be analyzed in Section 4.

(4)

REMARK ON THE CHOICE OF THE PENALTY IN(4). For any choice of the
penalty, the MLN estimator 444 Would be the additive part of ; with respect to
the norm| - ||, assuming invariance under addition of an elens&gtto r in (4);
see Proposition 4 in Section 4.2.

We used| - || for the penalty instead of - ||. because the latter is inferior in
gparse regions. Moreover, P, is not self-adjoint with respect - ||2.

2.2. Estimationonagrid. Now an approximation of (4) on a grid is derived.
Let the output grid

1 1 2 2 d d d
(ot e, b xoxfef L b 10,1
consist ofm; values for thekth coordinate and enumerate iis=m1 x --- x
mq output points byt ; = (tj1,...,tj4) for j =1,...,m. In order to get an
appropriate approximation of (4), the output grid has to be sufficiently dense and
has to increase with. Denote byg(f) e R?*1 the parameters of the local linear
estimator att ;. The parameter space for the local linear estimator on the output
grid is
Frun = {8 = col;(8'7)|8')) e RI*H} = R™H,



1302 M. STUDER, B. SEIFERT AND T. GASSER

where co}(g(”) denotes the column vector obtained by vertically stacking

Y, ..., B™. The accompanying norm is the Euclidean ndyj. The additive
subspace is defined as

Fada= {COlj(B7)13 ragq€ Fada: By” =raadt)}.
Let Pagg be the orthogonal projection frofy) to Fagg The local linear estimator
g(ﬂ” at output pointt ; is the minimizer of the sum of weighted squared residuals
SSR [see (2) in Section 1]. The simultaneous local linear estimator on the grid

minimizes the sum of SSR over all output poirits. Finally, we add a penalty
proportional to the squared distance of the parameters to the additive submodel,

(5) ERzaﬂrgFminZ SR(B, ) + RII(I — Pagd BII.
BeFun j=1

The penalized estimat@y, is the intercept oﬁ(;), thatis,7z(t ;) = [E(R{')]o.
An efficient algorithm will be presented in Section 3.2.

3. Dimension reduction and algorithms. In this section we derive algo-
rithms for calculating the local linear estimator with nonadditivity penalty on a
grid. In Section 3.2 we derive a formula for computiig, which avoids storing
and inverting large matrices. An iterative algorithm using these concepts is pro-
vided in Section 3.3. Modifications for largeare also discussed.

3.1. Notation and normal egquations. Define fork,x =1,...,d:

1 n
S0.0(X) ==Y Ku(Xi, X),
i1
12 Xik — Xk
Sok(X) = Sko(X) ==Y Kp(X;, x)———,
ni3 hy

Xi,k — Xk Xi,/( — Xk
hk h/{ ’

1 n
Skae(X) = ;mei, X)
i=1
and fork=1,...,d:

1 n
Lo(x) ==~ Kn(Xi, X)¥;,
i=1

12 Xix—
Li(x) = = 3 Kn(Xi, x) =2 "y,
ni3 hi
Denote byS(x) the(d + 1) x (d + 1) matrix with elementsSy ;(x) andL (x) =
Colp—o,....a(Le(X)).
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Let S = S(t;) and LY = L(t;). The normal equations ﬂ(’)
argminy SSR(B'7, t ;) for the local linear estimator at; are

S(J)ﬂ(’) L)
Similarly, for simultaneous local linear estimation on the whole grid we have
B, =col;(B\)), S=diag;(S"), L =col;(L") and

SBZI =L.
The normal equations for the penalized estimator (5) are
(6) (S+ R(I — Pagd)B , = L.

3.2. Dimension reduction. Simultaneous estimation on a grid requires a large
number of parameters. Dimension reduction is necessary for computation.

The normal equations (6) qu are ((S+ RIl) — RPadd)ﬁ = L. Because
S+ RI is a block-diagonal matrlx an®P54q has low rank, solvmg the normal
equations may be simplified using matrix algebra [Rao and Kleffe (1988), page 5,
and Appendix A.2.1 here]. We decompadBgyq into a productZ ' Z. Using the
abbreviatiorAg = R(S+ R1)~1, we obtain

(7) B.=(+ARZT{I —ZARZT}"Z)(S+RI)7L,

where{-}~ denotes any generalized inverse.

The matrix Z has rank &* + 1 — d, where m* = mq1 + --- + mg. In
Appendix A.1.2 an explicit choice foZ with dimension Z* x m(d + 1) is
given. The multiplicationZg consists mainly of &* sums of totally Zm

terms. Similarly, calculation oZAzZ T from Ak leads to(2d)%m summations.
Calculation ofA i from Sis of orderd®m operations.

Formula (7) leads to a feasible algorithm because the dimension of the matrices
to be inverted is relatively small compared with (6).

An oblique projection. Let us define an oblique projection in order to simplify
formula (7):

Psr=Z"{(1—ZZ")+Z(1 —AR)ZT} Z(I — AR).

In Appendix A.2.1 we show thaPs r is the orthogonal projection frorfy
to Faga With respect to the inner produgt, (I — Ag)B). In particular, (I —

AR)Ps g is symmetric anng(l —AR)(I —Psg) =0.
Becausd — Az = (S+ RI)"!SandSB, = L, we substitutaS+ RI)~1L
in (7) by (I — Ag)B,, and obtain

®) B,=ArPsrB,+(—ARB,.
See Proposition 1 in Section 4.1 for interpretation.
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Modification for large R. For largeR, | — Ay is of orderR~1 and Psr is
hence numerically unstable. Becaugg — Ag) = (I + R~1S)~1Sis suitable for
large R, we modifyPs g by multiplying both termg — A by R.

Note thatAr = (I + R~1S)~L. Formula (8) for larger then becomes

B,=(RYU+ARZT((1 -22T) + Z(ArSZ ) Z)AgL.

3.3. Iterative calculation of the penalized estimator. We provide in addition an
iterative algorithm for the penalized estimator. This avoids inversion of the matrix

| —ZARZ" and even its calculation. _
We use the fact tha?adng = Ps,Rﬁl, holds (Proposition 2, Section 4.1) to

calculatePs g8, iteratively via (8),
BY T = ArPasBly + (1 — AR)B,.
Only the additive party [! of B'z’ is iterated:

(9) y O =ZARZz Ty 4 Z( - AR)B,,.

wherey 9] = ZE[;]. Finally, set
B.=ArZ y™+(1-ApB,.

Uniqueness of (5) implies that— ZARZ T is positive definite [proof in Studer
(2002), Appendix B.1]. Accordingly, we have exponential convergence due to
fixed point iteration and contraction; see Table 1. In case of nonuniqueness of
B . the algorithm still converges (see Appendix A.2.2).

The squared difference between the mterceptg(i% and B in Table 1
diminishes quickly and is negligible far> 3 compared with the I ISE The starting
value wasB'p' = 0.

Modification for large R. Algorithm (9) converges becauseArZ' is a
contraction. The eigenvalues Afz are, however, increasing witR andAg has
the identityl as limit for R — oo. Therefore convergence is slower for lagand
does not work forR = co.

For largeR, we chooser > 0 such thateS < | and use

(10) ZB ,=Z(I —aR( —AR)Z"ZB , +aZR(I —Ap)B,,
for iterations instead of (9).

TABLE 1
Convergence of iterations for the estimator 7 in Figure 2(d)

a 0 1 2 3 4 5 ISE

ILB" — B plintercepll?> 463 155 08 0.1 002 0.008 6.0
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Generalizations. The derivations for (7) assume only ti#at Z is a projection.
Hence, ifFaqq is replaced by another subspdeg, say, andZ is modified such
thatZ " Z is the orthogonal projection frofffsy to Fsun, then the above algorithms
remain valid. Generalization from local linear to local polynomial estimation is
achieved by corresponding modification®and L .

Implementation is simplified by the fact that need not have full rank. For
the iterative algorithm (9), moreover, there is no need to calculate the nzatrix
explicitly. For example, ifFsyp corresponds to using bivariate interaction terms
in the additive model or postulating the same regression function for subgroups,
multiplication byZ, ZT andZAzZ " can be implemented efficiently.

4. Properties of the estimator. In this section, we evaluate the effect of
the nonadditivity penalty on the estimator. Both on a grid (Section 4.1) and on
an interval (Section 4.2), the penalized estimator turns out to be a pointwise
compromise between the local linear and soalépendent) additive estimator.
The compromise depends on how well the local linear estimator is determined
locally. This is an attractive property as it leads to automatic regularization in
sparse regions (provided that the additive estimator is well determined). The
additive part ofr  is studied using two different norms (Propositions 3 and 4).

Later on, we focus on the smoothness of the model choice via the penalty
parameterR for fixed n. Continuity in R for R € (0, co0) is obvious and the
casesR = 0 andoo are investigated in Section 4.4. We investigate the rate of
convergence of ; to 7,44 depending on whether or nof!® is additive. In both
cases we find a rate fat such that]| 7 ; — 7 aqdl3 is of smaller order than=4/5.

In Section 4.5 we consider the data-adaptive choick ahdx. In Section 4.6 we
see that in the case of fixed uniform desi@gh< 4) 7 with data-adaptiver is
equivalent tor .44 for additive functions.

4.1. Properties of the estimator on a grid. We investigate the effect of the
penalty on estimation at one output point: the penalized estimator is a kind of
convex combination between a local linear and an additive estimator. Furthermore,
the local linear estimator may be decomposed into a sum of additive and residual
components. The penalized estimator is the sum of the additive part and shrunken
residuals, which are orthogonal to the additive part.

In Section 3.2 an oblique projectid?s g was introduced, leading to

o~

B .=ArPskB,+ (1 —ARB,

in (8). Recall that\ g = diag; (R(S'/’ + RI) 1) is block-diagonal with eigenvalues
between zero and 1. Let us see what (8) implies for one output point. Denote
by (Ps, Rﬂ )(J) the components oPs, Rﬁ corresponding to output poirtt;,

formally PS,REH = col;j((Ps.rB,)'7).
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PrROPOSITION1. The penalized estimator E(Rj) is a pointwise compromise
between some (R-dependent) additive fit (Ps z8,)/) and the local linear fit BY):

BY = (s + RI)—l{R(pSRE”)(j) +SDB.

In sparse regions the local linear estimator is unstable [Seifert and Gasser
(1996)], becaus&'/) may be nearly singular. The above formula indicates that
penalizing solves this problem as a byproduct, because the additive p@(ﬁ‘()of
is stable under weaker conditions. This regularization property is illustrated in
Figure 2(b) versus 2(d). When all eigenvaluesSbf’ are large, the effect of a
small penaltyR vanishes.

We derive now a decomposition (ﬁ into an additive component and an
orthogonal remainder term. Formula (_Sfis equivalent to

(12) B=PsrB,+(—Ar)(—Psg)B,,.
Only the nonadditive part involves shrinking.

ProposITION2. Thefollowing relations hold:
PaddB , =PskB, and (I —PagdB ,=( —Ar)(I —Psr)B,,.
The proof is in Appendix A.2.3.

4.2. Properties of the estimator on an interval. Now we will show that
Propositions 1 and 2 hold not only on a grid but also on an interval. Proposition 4
states that the additive part 8f; with respect to?, is 7 444 independent oR.

Define the symmetric, continuous operafQr. Fun — Ful, r — F by

7O(x) So.0(X)r%(x) + -+ Soa(x)rd(x)

M) \Si0(0r%(x) + - 4 Saa(x)ri(x)

(see Section 3.1). We have by construction 1h_aj|¢§ =(r,8«r)2. Letr; € Fu
with r,‘i(g) = Ly(x). The normal equations for 7, the minimizer of (3) in
Section 2.1, are

8ryy=rp.
Thenormal equations for 7 5, the minimizer of (4), are
(12) (5*+R(3—5)add))z1e=KLE’S*EIJ-

Let ». g denote the orthogonal projection frofify to Faqd With respect
to the norm|| - ||g. According to MLN, £, g is continuous with probability
tending to 1 forn — oo, under regularity conditions for the design density and
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kernel [Conditions MLN:B1 and MLN:B2in Appendix A.1.1]. In particular, the
bandwidth/ is of ordern—1/° or larger [Condition C%]. An explicit formula for
Py R IS given in (26), Appendix A.2.4.

Then7  may be decomposed similarly to (8) and Proposition 1:

(13) Tr=1{(8«+ RNIRP, g + (8 + R 1807

Note that(8, + RJ) 14, is apointwise (in x) matrix multiplication. Furthermore,
(8« + R7)~13, and (8, + RJ)~1R sum toJ and have eigenvalues between zero
and 1. Hence, (13) indicates that (x) is some kind of convex combination of
T andP. r7 ;-

Similarly to Proposition 2, the above formula may be rewritten as

(14) Tr={Per~+ B+ RNI8,(0— P r))T

PropPosITION3. Thefollowing relations hold:
Paddl g = P, rT ;@A (J — Padd T g = (85 + RI) 18,0 - P, R)T -

In Section 4.4 we will see thaPadd? g — 7 aqq IS O(R™Y), for fixed n. The
R-dependence of the additive pafqqr x can be avoided when using the oblique
projection, instead:

PROPOSITION4. PyT p = T aqqh0lds.

This means that the MLN estimater,y4is the additive part of ; with respect
to the norm| - ||. Both proofs can be found in Appendix A.2.4.

4.3. Bounding 8, and £ g. If Soo(Xx) is a uniformly consistent density
estimator, the operatoss. and P, g are shown to be bounded. This property will
be used in Section 4.4.

Let || 84 l2,sup denote the supremum norm é6f based on the Euclidean norm
on Fgy. Here, we want to find upper bounds 8.2 sup that is, a uniform
bound for the maximum eigenvalue 8fx). Because the kernel is bounded with
compact support by Condition MLN:B1, the maximal eigenvalues@f) is of
order Sp,0(Xx). Note thatSp o(x) is a kernel density estimator gf. We are thus
interested in uniform boundedness from above 6% ) = So0.0(X).

Silverman (1978) derived uniform consistency of kernel density estimators for
d = 1. We will use a result of Gao (2003), which asserts uniform consistency for
density estimators fazontinuous densities on R? and bandwidth# satisfying

nh4
—_ %
log(h—1)
By Condition CH+ these conditions are satisfied far< 4. Ford > 5, the

condition (15) is not satisfied for the optimal bandwidtn ~1/° of the additive
model. We thus lose flexibility in the model choice when (15) is assumed.

(15) h—0 and 00 asn — oo.



1308 M. STUDER, B. SEIFERT AND T. GASSER

PROPOSITION5. Under Conditions MLN:B1, MLN:B2’ and (15), [|8«l2,sup
is uniformly bounded with probability tending to 1 for n — oo.

Note that for fixedn, this norm is always bounded because of Condi-
tion MLN:B1. The R-dependent projectios, g may be bounded uniformly iR
using Proposition 5 and Lemma 2 in Section 4.4:

LEMMA 1. Under Conditions MLN:B1, MLN:B2’ and C1+ N(15),
| Ps,rll2,sup= Op (1), uniformlyin R.

The proofs are in Appendix A.2.5.

4.4. The additive and full models as special cases. Here we justify the
interpretation of7;; and 7,49 as special cases of; for R =0 and R =
oo, respectively. This is appreciated becausg and 7,44 are known to be
asymptotically optimal for the respective situations. The rate of convergence of
7 g 10 T aqqfor R — oo depends on the supremum normdgfand whether or not
the regression function is additive.

We will start with the convergence 6f, to 7, for R | 0. Consider the case
where S(x)~1 is uniformly continuous inx. This is a sufficient condition for
bounded variance of 7 ;; and represents therefore tivell-behaved cases. In this
case,d, has a continuous inverse and the limit ®f for R | 0 is 7. Let us
mention that uniform continuity is a stronger assumption than uniquenesg.of
Uniform continuity means that for any € % with || 7 |2 = 1 the norm|| r || is
bounded away from zero, whereas uniqueness needs onfpazero norm. If 7 ;; is
not well determined, a small positive penalty provides the desired regularization.

Mammen, Linton and Nielsen (1999) showed thatatiditive estimator

Pagg=argmin|ry — r
r € Fadd
is asymptotically oracle optimal under Conditions MLN:B1-B4and C1 for
additive regression functions as in (1). Let us therefore examine the convergence
of 7 g t0 7 5qqfOr R — co. Decompose via

- 2 o 2 2
(16) 17 g — Taddlz = 1T — Padd T g5 + | Padd? g — T addl5-

For bounds of the first term of the sum, see Lemma 4 below.

Recall thatPaqdr r = P« rT ;; holds by Proposition 3. Similar to the modifica-
tions for larger in Section 3.2, we introduce an alternative formulafrg7
[defined in (26), Appendix A.2.4],

~ — — -1 — —
(17) Paddl g = (Paddd + R™18,0 7 8. Padd) 5, , Paddd + R 1807 r .,

where (---)|7,4 indicates that the expression is an operator &g Define
Sadd= (Padd8x Padd) | F,qq SOIVING the normal equations far,yq leads to

- -1
T add= Sagq’add’ 1 -



PENALIZED NONPARAMETRIC REGRESSION 1309

The right-hand side is equal to the right-hand sideffdr  for R~ = 0.
If R—1||5>,<||2,sup tends to zero, we may use a Taylor approximation and obtain
| Padd” g — Taddl2 = Op (R85 ]l2,sup); Se€ Lemmas 2 and 3.

LEMMA 2. Under Conditions MLN:B1, MLN:B2’ and C1+, 8444 COnverges
for n — oo to an operator with continuous inverse.
Hence, 4.4 is continuous with probability tending to 1 for n — oo and

|| 8 2cfl 2.sup i uniformly bounded in n, ¥n > 7, with probability tending to 1 for
n— oo.

The proof is given in Appendix A.2.6. Uniqueness ©fqq IS equivalent to
7 agdl« > O for all r agq€ Fadd— {0}. Lemma 2 states thdtr aydll«/ Il 7 agdll2 1S
bounded away from zero with probability tending to 1.

LEMMA 3. Under Conditions MLN:B1, MLN:B2’, MLN:B3’ and C1+ we
obtain for fixed n (i.e., conditional on the data)

SUp|PagdJ — (I + R4 ™) r ()] = O(R™)
and || Paddr 7 |2 isfinite.
For increasing n, we obtain

sgpw)add(ﬂ — T+ R 0™, (x| = 0p(R7Y 841 2.5up)-

Furthermore,

| Paddr 1 ll2= Op (D).
A proof is given in Appendix A.2.6.

LEMMA 4. Thefollowing bound holds:

19 — Padd T 115 < 2R |84 ll2.supll 7y — Faddl<I T & — Fagdl2-
Under Condition MLN:B3’ we have
n finite, for fixedn (and Y),

2 2
r — 7T < — = . .
Iy = Taqdli = ; i { Op(1),  forincreasingn.

See Appendix A.2.6 for a proof. Using (16) we obtain:

THEOREM 1. Assume Conditions MLN:B1, MLN:B2’, MLN:B3’ and C1+.
For fixed n,

I7 g — Faddlz= O(R™
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holds with probability tending to 1 for increasing n. Formally, this means
Pllimsupg_, o RIIT g — Faddl2 < 00] "= 1.
Forn — oo

~ = -1
17 — Taddlz = Op (R 8«ll2.sup-

Note that this holds also fononadditive regression functions. For additive
regression functions we obtain a better bound; see Theorem 2.

Applying Proposition 5 to Theorem 1, féro n~1/° (Condition C1)d < 4 and
R™1=0(n=?%), we get||7 g — Faqdl3 = op(n=*°). For h o« n=Y/%> andd > 5,
| 8+112,sup IS Not bounded by a constant aRdneeds to converge faster to to
achieve equivalence. Alternatively, one might use a larger bandwidth. (Without
proof.)

THEOREM2. Assume ConditionsMLN:B1-B4',d < 4,h oc [n~Y/5, n= Y/ 4+
and an additiveregression function (1). Then

1
I1Fp—7 ||z=0p(—>.
k™ ~add R/nhd

For h «« n~Y® and additive regression function® ! = o(n=@-1/10) s
sufficient to obtain equivalence @fz and7 5qq The proof is in Appendix A.2.6.

4.5. Data-adaptive parameter selection. We consider the simultaneous choice
of the tuning parameter® and h. In the case of an additive regression
function r"U¢, the first-order bias off , is independent ofR and parameter
selection is asymptotically equivalent to the classical variance/bias compromise.
Hencei «n~Y%andR — co. The rate ofR is investigated in Section 4.6.

Asymptotically, we have only to consider the cas#¥® = additive or full
model, and the question is then whettieis able to identify these cases.

We consider parameter selection criteria that depend on fitted values at design
linearly on Y , whereM  is called “hat matrix.”

In practice, the estimator is computed on a grid and we need s@enpolation
to obtain estimates at the design points. Define

B (X)) =(S(Xi)+ RI) HS(X 1B, (X1) + R(Ps rB ) (X))}

where (PS,RE”)(X,-) denotes the interpolated value a&; of the additive
part PS,RE”. Therefore,Y = CO|i([ER(li)]o) is a linear combination of¥ and
construction oM y is obvious.
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We consider the following criteria:

AIC(R, h) = log(6?) + 2tr(M g) /n,

32

(1—tr(Mg)/n)?’
14+tr(Mg)/n
1—{trMg)+2)/n’

whered2 = 1| Y — Mg Y |2 and t(Mg) denotes therace of Mg, which is
interpreted aglegrees of freedom. AIC and GCV are classical model selection
criteria [see, e.g., Hastie and Tibshirani (1990)], and AMias introduced by
Hurvich, Simonoff and Tsai (1998). These criteria are justified gy only
when (15) is satisfied. As we want to analyze the abilityRoto identify the
additive model with its optimal bandwidth (Condition C1), we will assuine 4
throughout this section. Moreover, we will assume fhat*] < co.

Let us compare the criteria & %tr(M R))

GCV(R, h) =

AICc(R, h) =log(G?) +

AIC =1log(G?) + 27,

‘52 ‘53
log(GCV) = log(G?) + 2(, + > + 3 4. )
(n— l)n

AICc—1=10gE%) + —— +23 ——— ot e 2)/<+1

k>1
~10gG2) +2(t + 2+ 3+ 0.

All are of the form log?) plus some penalty against undersmoothing; see Hardle,
Hall and Marron (1988). As the penalty increases from AIC to(®g@V) and
further to AICc, minimizing these criteria leads to increasingly more smoothing
(decreasingtmin): According to Hurvich, Simonoff and Tsai, AW avoids

the large variability and the tendency to undersmooth of GCV and classical
AIC observed when estimatingandwidths for ¢ = 1. Note that AIC has its
global minimum at interpolatioriz = 0, R = 0), leading to62 =0 andt = 1.
Undersmoothing, however, contradicts the aim of this paper and is avoided by
assuming o< [n =5, n=/@4+dD] and R > Rmin(h). The lower boundRmin(h) is
chosen to bound the variance®f by the optimum rate 4 (“+4)_This condition
does not rule out the asymptotically optimal additive estima®r= oo, h «

n~1/5). Thenttr(M ) — 0 asn — oo andi—i —1is Op(%).
Hence, we may use the approximation (®8) = log(c?) + g—i —1+0p(d).
Define the Taylor approximation of AIC log(c2),

G2 2
AICT = — — 1+ =tr(Mp).
o n
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The expected value of ; is for additive regression functions

- pa(K) &, 92
E(m):(rgggouwr > Zh,%a Zgggk(xk),
k=1
(18)

hlaimrgggl(xl), e "ai gdgd(xd>> +o0,(h?).
The leading terms are ifiagqg and hence unchanged under multiplicationfyr,
and thev p (1) terms remain small enough because of Lemma 1. Accorditigly,
MR)rt;gg O(h?1), and the first-order terms of the bias ¥f are independent
of R.

Next, we need to ensure that, is not degenerate. Using (14) in Section 4.2,
we choose some small constdtin, > 0, assume thak > Rmin, and consequently
(8++ RJ)~18, 7, is stable (ridge regression). With probability tending td;ddis
continuous (Lemma 2), that i§,,qqis Stable. If boths, and$_, are bounded, we
do not have to worry about stability o?, g7 ;; (see also the proof of Lemma 1).
Therefore,||M£MR||sup: Op(1). Obviously, When&:1 is continuous, we need
not assume tha? > Rmin.

Therefore —, <(| —Mp)e, (I —Mg) rite) = Op(f) which isop (%) for h

asin Condmon C%. Note thato2tr(Mg) = E[(e, Mg &)]. Hence

1
ACT (5 lle 1P~ 1)
no

1 2 1 true
ZWE[HMRQ” ]+P”(I Mgr)r add”

1 2
+W(1_E)[”MR§“2+2<§’MR§>]+0P<ﬁ>,

where(1-E)[(e,Me)|=(e,Me)—E[(e,Me)].

LEMMA 5. For E[¢%] < oo, var((e,Mge)) = O(E[|IMg ¢ ||2]). Moreover, if
IM ;M gllsup= Op (1), thenvar([M g & |?) = Op(E[|M g & ||2]).

BecauseE(|[M ke ||) is of order ~¢ and h—l for R =0 and R = oo,
respectively, the standard deviation(@f— E)[- - -] is of smaller order. The proof

is given in Appendix A.2.7.
The leading terms of Alg — (le e ||2 — 1) are a variance/bias compromise

1
E[||MR€||]+ ||<| M) r'ieiI%,

which is minimized forR = oo andh « n_1/5. Consequently for AIE:
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__ PrRoPOSITION 6. Under tAhe assumptions of Theorem 2 and E[¢%] < oo,
h achievesthe rate n=1/> and R — oo (with probability tending to 1).

If the true regression function is nonadditive, aRy% 0 induces a bias of
order O(1), that is, an AIG — (-3 [|> — 1) of O(1). On the other hand, in
well-behaved cases (continuogs?), the optimal AIG — (- - -) of the local linear
estimator is of ordeD (n=4“+d)  |eading toR — 0 andh « n~Y @+ in these
cases.

4.6. Investigating the rate of R for AICT. Data-adaptive parameter selection
is studied for fixed uniform design and additive regression functions; in this case,
the penaltyR is large enough such that, — 7 4qq becomes negligible.

As seen before, we can restrict ourselves to the gase:~Y°> and R — oo.
In order to simplify the structure cif,?(li), we assume é&ixed uniform design:
S(X;) is diagonal and constant in the interior. Furthermore, we ignore boundary
effects andr-dependency o, g. This allows us to simplify (13) as

1 R
(19) (_1) = 1+ R 11(_1) + 1+ Rradd(_t)

By (19) we haveM z = AMy; + (1 — A)Magg With A = 1. Hence, AIG is a
polynomial of degree 2 in,

1 2
AICT=A2{ Mg P+~ Maae |2~ 5 (M. Macae) |
2 2 ,
+x{ SELMir e, Magse )] — — [Magae |
2
+—2<1—1E>[<g,|v|ug>+<Mug,Maddg>—<g,|v|addg>]}
I M true 0 h2f 1 2 1
#1200 M 82 4+ 0p (1) + (e -

1 2
+ —IMadae [+ —5 (1 -E)[(e, Maddgﬂ}.
no no

In Appendix A.2.8 we show that the dominating terms )5f and A are
LE[Myel?] o 7 and(1—E)(e. My &) = Op(-17), respectively, leading

t0 Amin ~ —(L—E)(e, My &)/E[2|My & 2] = Op (h¥/?).

PROPOSITION7. Under the assumptions of Theorem 2, fixed uniform design
and E[¢4] < oo, weobtain R~ = 0p(n4/19) for AICT.

(See Appendix A.2.8 for a proof.) By TheoremRgrows fast enough to ensure
17k = Taddl3 = 0p(n=*3).
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Note that the rate of the minimum is not affected by bhgyr-dependent terms.
Accordingly, assuming?, g = £, is not critical.

Comparison of AICc and AICT. By (19), t(tMg) = Atr(My) + (1 — 1) x
tr(M agg) iS monotone decreasing iR, because (asymptotically)>1%tr(M”) >
1tr(Madd) If we add( tr(M g2t (¢ > 0) to AICT, Amin becomes smaller.

Hence, AIG [with Iog(&z) replaced by log?) + 2 — 1] choosesR at least
as large as Alg. However, this effect is asymptotlcally negligible as the leading
terms are unchanged.

5. Finite sample evaluation. For the example in Section 1, we compared
the penalized estimator with thecal linear (R = 0) and theadditive (R = o0)
estimator and obtained a lower integrated squared error (ISE) for the penalized
estimator. As seen in Figure 3, data-adaptive choice (specified in Section 4.5)
of the parameter® and % is successful: the theoretical improvement due to
generalization holds also in practice. In Section 5.1, we will see whether this holds
for other situations. Furthermore, we will investigate how the estimator performs
in the special case of an additive model; see Section 5.2. Finally (Section 5.3), we
apply our estimator to the ozone dataset already analyzed by Hastie and Tibshirani
(1990).

5.1. Nonadditive regression function. We will examine 50 realizations of the
same kind as in Section 1. Later on, we summarize the effect of a nonuniform
design density and a larger sample size.

In the example in Section 1, the optimal penalty parameter is larger than zero
and the penalized estimator outperforms the local linear estimator when using
optimal parameters. The optimal parameters are approximated sufficiently well
by AICc.

Here we generate 50 realizations of the data as follows: the design consists of
200 random observation$;, uniform in[0, 1]2. The respons; is r'™e(X ;) +&;,
wherert™€is shown in Figure 1(b)I = (1,1 ']:

(20) rUUe(x) = 15,321 X~1/H1I? | 35,~128IX=G/HLI* | p5,~2x—(1/2)1?

ande; is normally distributedq = 5).

In order to find the optimal parameters for each realization of the design, we
calculated the ISE for different paiiR, ) [see Figure 3(a)] and performed a
grid search. Actually(HiR, log,o(h)) is equidistant with resolutio(0.01, 0.005).
Similarly, we find the minimizers of Alg and GCV.

The simulation is summarized by 50 realizations of ISE evaluated for the
penalized, the local linear and theadditive estimator usingoptimal and data-
adaptive parameters.
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Let us introduce some notation. The global minimunRdpt, Zopy) is ISE0pY).

The minimum of the local linear estimator = #99 instead of O for numerical
reasons) is IS®pt R = 0) and the minimum of the additive estimatoR &
9999 instead obo) is ISE(opt, R = oc0). Data-adaptive parametet®aic, haic)
are obtained by finding the minimizer of A{C(Section 4.5) on a grid. The
corresponding ISE is denoted by IGHC). Analogously, we write ISRAIC, R =
0) for the local linear and ISRAIC, R = o) for the additive estimator.

Table 2 and Figure 4 summarize the results of this evaluation. Given the optimal
parameter values foR andh, penalized estimation has clearly the potential for
improvement compared to fitting the full model with a median percentage gain of
17% [item (a) of Table 2 and Figure 4]. This relative gain is larger for realizations
with a small ISE. The additive estimator is not competitive and will hence not be
shown.

To be able to achieve these gains in practice, we need a good method for
parameter selection. The corrected Akaike criterion Ai€ such a method, and
is moreover computationally attractive. When comparing (c) of Table 2 with (a),
we see that the performance based on estim&tehd 2 is almost as good as
that based on optimal parameters. Item (b) shows that data-adaptive parameter
selection via Al is attractive: a median increase in relative ISE of only 10% has
to be tolerated.

Interestingly, application of the full model with optimal bandwidths is clearly
inferior to using the penalized estimator with data-driven parameter selection [see
item (d)].

Other situations. The above simulation was also carried out for mamuni-
formdesignson [0, 1]2,

fikrx2) =34+ F(xa+x2) and fa(r1, x2) =3 — 3(x1+x2).

TABLE 2
Quantiles for ideal relative gain due to penalizing (a), for loss due to AlIC ¢ selection (b),
for relative gain (loss) due to penalizing for data-adaptive parameters (c),
for relative difference between data-adaptive penalized and optimal
full estimator (d) and for Ropt (€)

Model defined in (20) min 10% med 90% max

@ 'SE(°pt,’§§((’gr;)'SE(°pt) 18%  49% 17%  49% 65%
(b)  SEAG R 02%  11% 10%  24% 66%
() PSEACGRSSEAC 80w 13% 16%  47%  149%
(d) ([SEORLRZDISEAIC) 5096 —97% 11%  27% 51%

TSE(opY
(e) Ropt 0.03 006 012 025 032
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(a) (b)

1.6

1.4

1.0
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T T T T

14

FiG. 4. Comparison of | SE performance for the nonadditive regression function (20). Relative gain
due to penalizing depending on ISE(opt) (a) [y = ISE(opt, R = 0) /ISE(op?) vs. x = ISE(opt)], effect
of AIC selection (b) [y = ISE(AIC) vs. x = ISE(opt)], comparison of penalized vs. full modeling,
parameters data-driven (c) [y = ISE(AIC, R = 0) vs. x = ISE(AIC)], comparison of penalized mod-
eling ( parameters data-adaptive) with full modeling (optimal bandwidth) (d) [y = ISE(opt R = 0)
vs. x = ISE(AIC)].

Both are linear inx1 + x2) and have rang€.5, 1.5). Density f1 is preferred over

f» because of the high peak##® at (0.75, 0.75). This is reflected by the optimal
penaltyRqpt: compared with the uniform desigyi; needs a larger anf a smaller
penalty; see Table 3(e). Similarly, the ideal relative gain due to penalizing is larger
for f1 and smaller forfy, item (a). Again, the performance remains almost as
good when selecting parametatsand’ via AlCc [see item (c)]. The penalized
estimator with AlG-selected parameters is better than the local linear estimator
with optimal parameters; however, for densjythe difference becomes smaller.
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TABLE 3
For different design densities we compare the medians of the same
guantitiesasin Table 2

Model defined in (20) f1 unif fo 400
(a) ISE(opt, R=0)—ISE(opt)

19% 17% 6% 12%

ISE(or)t)
(b) A e 10%  10%  43%  45%
(c) SEACKERSEAD) 2006  16%  11%  13%
ISE(opt R=0)—ISE(AIC)
() " 11%  11%  15%  67%
©) Ropt 015 012 010 009

The number of realizations is 50, the sample size is 200 and the
name of the column denotes the design density—except the last column
(n =400, uniform).

When doubling: to 400, parameter selection is improved; see Table 3, column
“400,” item (b). Because of the small&, the gain due to penalizing is smaller
but still not negligible.

Parameter selection by GCV instead of Al€hows the same pattern (data not
shown).

5.2. Additive regression function. For additive regression functions, the ques-
tion arises whether we pay a price for the additional flexibility of penalizing local
linear estimation compared with additive estimation. Therefore, we choose an ad-
ditive regression function and examine 50 realizations.

We generated data using the regression function

2
rtrue(x) _ Z (1_256—32(xk—l/4)2 i 3_256—128(xk—3/4)2 n 2756—2()0(—1/2)2).

k=1

Uniform designX ; and errorg; (o = 5) are the same as in Section 5.1. Estimating
the additive model can be considered easy, as the data are rich enough for
multivariate local linear estimation.

Since AlCG has no problems with undersmoothing, we ignore in the simulations
the impracticable condition in Section 4.5—excluding undersmoothing—which
was imposed for classical AIC. For AKahe additive model is detected in 47 out
of 50 cases, aRc attains the maximal value. In the remaining three realizations
we obtained a relative loss in ISE 069 and 52% in two cases; a gain of 8%
was achieved in one case. Henomdel choice by AICc was successful in this
example.

Model selection by GCV detected the additive model iryS cases only,
whereas classical AIC failed completealy/50).
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5.3. Application to ozone data. We apply our method to the ozone dataset
using three out of nine predictors. The penalized estimator detects relevant
deviations from an additive model. The local linear estimator produces artifacts,
which do not occur in the penalized estimator.

We used the ozone dataset from the R package gss; see Hastie and Tibshirani
[(1990), Section 10.3]. The variable “wind speed” (wdsp) contains one excessive
value (observation number 92) which was removed, leading=%0329. The de-
pendent variabler was chosen as the logarithm of the “upland ozone concentra-
tion” (upo3). Using gam (package mgcv), we chose those three predictors which
maximize adjusted R-squared among additive models biithriate interaction
termswith 16 degrees of freedom each: “humidity” (hmdt), “inversion base height”
(ibtp), and “calendar day” (day).

Note that this additive model withivariate interaction terms has roughly the
same adjusted R-squared as the additive model with all nine predictors and four
degrees of freedom for each component; see Table 4. Hence, when using these
three predictors, we expect substantial information in the interaction terms.

The three variables in this model were scaled [@1]. Let univariate
bandwidths:4, ko andhg correspond to four degrees of freedom each, as in Hastie
and Tibshirani (1990). These bandwidths lie close together £186% max) with
meanh = Jh1hohs at 0237. ParameterR andc are selected by AIE, such that
the bandwidths areh1, chy andchs, respectively.

For the penalized estimator, AtCselectedR = 0.04 andch = 0.2065 and is
clearly nonadditive. For the local linear estimator, gl€electedh = 0.240. The
lower half of Table 4 demonstrates that the penalized estimator is vastly better than
the additive one in terms of adjust®&isquared, and slightly better than the local
linear estimator.

TABLE 4
Adjusted R-squared for different models and estimators

Estimator #independent variables R-squared
(adj.)

Regression additive 9 82.5%
spline (gam) additive 3 73.9%
df = 4|16 additive+ bivariate interaction 3 81.3%

Penalized 7 Multivariate ® = 10~4) 3 81.7%
local linear 7 penalized R = 0.04) 3 82.5%
AlC¢c T adq additive R = o) 3 73.9%

Above, we use regression splines with a fixed number of knots. Below, we use local linear
estimators with AlG selected parameters. The two additive estimators with three predictors
are equivalent to each other but inferior to the rest.
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TABLE 5
Orthogonal decomposition of estimation on a grid into constant, additive,
interaction and remainder components

R h L] ra r2 r3 ri2 r13 r23 r123

104 0240 3.95 0482 0.054 0025 0.023 0.082 0.019 0.059
0.04 0207 396 0478 0.051 0.017 0.009 0.023 0.002 0.011

We compare the mean squares of each component for the penakzedd(04)

and for the local linear 8 = 10~%4) estimator. Penalizing shrinks interaction and
remainder components. Univariate additive components are slightly reduced. The
indices are E ibtp, 2= day and 3= hmdt.

Next, we orthogonally decompose the local linear and the penalized estimator
into intercept, additive components, bivariate interactions and remainder. Penaliz-
ing shrinks the bivariate interactions and the remainder; see Table 5.

Figure 5 compares the local linear and penalized estimators, univariate com-
ponents on the top and the largest bivariate interaction (ibtp, hmdt) on the bottom.

00 04 08 00 04 08
o.—l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l_o.
0 | o
o o
B o | % o9
Qo Z T o Q
3 ~ T2
()] (@]
S 9
o —— penalized R=0.042 o
- == local linear R=1e-4 =
Yy ibtp day hmdt :
, 00 04 08 ]
Penalized Design Local linear
o o
= v R / =
( ( / AL % 052
S - 02 AR v e
Bo |2 0T N FreaRs TN TN
< SRS O BN < &
=s17 () R AR S : S
. ., JE. |
oD A T |y
© .\. ! "o : ! k JC: °
o] [N eeiZ2 00 i £
00 04 08 " 00 04 08
ibtp ibtp ibtp

Fic. 5. Comparison of penalized and local linear estimators. Above, the univariate additive
components are shown. Below, the bivariate components of ibtp and hmdt are compared. In between,
the design is shown including the smoothing windows at (0.73, 0.31).
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The plots for univariate components demonstrate those regularization properties of
the penalized estimator. The plot in the center of the bottom row shows the design
and the smoothing windows for one output point. Keep in mind that the smoothing
windows are actually three-dimensional cubes and hence not all points inside the
rectangle actually contribute to the local linear estimator.

Let us mention that parameter selection criteria such ag A€l GCV evaluate
the estimator at design points and hence are not influenced by its behavior in
sparse regions. Comparing the local linear estimator with the penalized estimator,
we observe some strange structure for the former at kafi8. This is clearly
an artifact, as for day 0.75 and ibtp> 0.75, the local linear estimator is an
extrapolation.

We conclude that the penalized estimator outperforms the additive estimator
and is also superior to the full estimator regarding adjusRedquared and
regularization properties.

Reproducing simulation results.  An implementation ofr ; together with the
R code used in the simulations of this paper is provided at www.biostat.unizh.ch/
Software.

APPENDIX
A.l. Assumptionsand details.

A.1.1. Conditions for optimality of the MLN estimator. MLN show that the
estimatorr ,4qiS asymptotically equal to the oracle estimatof¥if, X ;) are i.i.d.,
the true regression functioff®( X ;) = E[Y;| X ;] is additive (1) and the following
conditions hold:

ConNDITION MLN:B1. The kernel K is bounded, has compact support
([—C1, C1]), is symmetric about zero and is Lipschitz continuous.

CONDITION MLN:B2’. Thed-dimensional vectorX has compact support
[0, 1]¢ and its densityf is bounded away from zero and infinity ¢& 1]¢.

The product kernek;, with bandwidthsh;, ..., h; is constructed from the
univariate kernek by K, (X, X) = ]"[;’:11(([5 — X1x/ hi)/ .

Furthermore, the kernel is rescaled at the boundary such that foX a#
[0, 114,

[, Kr 6 0dx =1

This modification does not affect the local linear estimator, but it changes its
projection to the additive model. Hence, the estimation of the marginal design
density is equal to an integrated full-dimensional density estimation. Additionally
to MLN, we assume& > 0.
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CoNDITION MLN:B3’. For som& > 5/2, E[|Y|’] < co.
Additionally to MLN, we assum&[s?4] < oo in Sections 4.5 and 4.6.

CONDITION MLN:B4’. The true regression functioi™®(x) = E[Y|X =
X1 is twice continuously differentiable anflis once continuously differentiable.

CONDITION C1. Assume there exist constants with n1/°h;, — ¢, k =
1,....d.

CONDITION C14. The bandwidthsiq, ..., hy; are as in Condition C1 or
larger. As a matter of course we assume that> 0.

A.1.2. Definition of Z. In Section 2.2 the output gritl;, j =1,...,m, and
the parameterg = col; (/) = col; (CO|((ﬂE(J))) were introduced. In Section 3.2

Paggwas decomposed into the prodictZ. Instead of writing down the matrix,
we show whatZ does with a vectoB € Fgy. For the index ranges we use

j=1...m€=0,..d k=1._...d.Letg,=col;(;"). Define
ZB =col(Zo1By Z2B,,. -- -, ZaBy Z01B ;- Z02B 5. - -, ZodB ).

whereZy 8, adds thos¢3,§j) which have thetth coordinate oft ; in common,

mg ;
ZOkﬁkZ,/;Zﬁlgj)
J

For identifiability, all additive components of the intercept except the first one
should have mean zero. TherefaZg ., is defined agZ o 8. with subtracted mean.

We did not modifyZ; to have full rank, as this makes implementation more
complicated, and it appears that the additional computing steps offset the gain due
to lower dimensionZ ' Z is a projection and henc&Z T is too.

1.
llzlj,k

1«

mp =ljk

A.2. Proofs.
A.2.1. Algorithm, structure and proofs for Section 3.2

Deriving (7). Rao and Kleffe (1988) provide generalized inverse for the
matrix B + CDCT,
B~ —-B CD(I+C'B"CD)"C'B".
This holds ifB andD are symmetric and if the image Bfcontains the image 3.
We apply this formula fokB, C, D) = (S+ RI,Z", —RI).
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Verify that Ps g isa projection from Fyy to Fagq  Define
(21) Asg:=1—ZARZT =(1-2Z")+Z( —AR)Z".

Becausd — Ag > 0, the image ofAs r contains the image (I — Ag). We get

(22) AsgrAgRZ(—Ag) =Z(I — Ap).
Furthermore,

(23) (1-22"2=0

and the definition ofAs g implies

(24) (1 —2Z")Asgr=(1—-22").
Applying (22)—(24) leads to

(25) (I —=ZZT)Ag xZ(1 — Ag) =0.

Psr= ZTAgRZ(I — AR) is aprojection because
Pér = ZTAgrZ(I1 —AR)ZT Ag pZ(I — Ag)
77T Ag(Ask — (1 —ZZT)Ag 2Z(1 —Ag)
® 7T As rAsrAS RZ(1 —AR)

@ 72T Ag oZ(1 —AR) =Ps

and(l — Agr)Ps g is symmetric. IfAs  is nonsingular, the image &fs g is Fadd.
Let us verify thatPs g Padd= Padd:

(I -Psp)Z'Z = ZT(1 - AgRZ( - AR)ZT)Z
21 _
B 72701 - agk(Asr— (1 =22z
B zT01 - AskAsRZ=0.
Formula (8) is straightforward.

A.2.2. Iterative formula and proofs for Section 3.3.

Convergence of iterative algorithm in (9) in the case of nonuniqueness. We
denote by(ZARZT)> the projection to the subspace of eigenvectorg ARZ "
with eigenvalues 1. Becaugg| — ARB, is orthogonal to the above subspace,

(ZARZT)>®yld = (ZARZT)>*y!% andl — (ZARZ")>®y!“l converges.
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Iteration fgrmulafor Igrge R, derivirJg (10). Starting with (8),Amultiply byZ,
repIacePS,Rgll by ZTZER, subtrathﬁR, multiply by « R, addZéR, and apply
(I1-227)ZB , = 0 because of (23).

A.2.3. Properties on grid and proofs for Section 4.1. Proposition 1 is an
interpretation of (8) and requires no proof.

PROOF OF PROPOSITION 2. We need to prove thd?addER = PS,RB”,
respectively

Padd((I —Ag)(I —Ps))=0.

Transposing and applying the symmetry of the matrix, this is equivalent to
(I = Agr)(I — Ps g)Pada= 0.

This holds becauss, g Pagd= Padd[if and only if (5) is unique]. O

A.2.4. Definition of #, g and proofs for Section 4.2 We use the abbreviation
Sadd= Paddd+Paddrestricted taFaqq HenceS44qis a linear operator offzqq, and
it has a continuous inverse with probability tending to 1/ep oo; see Lemma 2
in Section 4.4.

Define the operatoh « g : Fadd— Fadd

Ay R = PaddBs + RD) 18, Pada

If 8.4 exists and is continuous, ;% is continuous because

1
A R > ] dd
= S ll2supt+ R O

Let us define the projectiof®, r : Frun — Fadd by
(26) Pe.k = Pacd,  Padd S+ + RIS,

8, is continuous |(84l2,sup < 00), because kernel weights are bounded and have
compact support (Condition MLN:B1).
Below we will verify that the choice foF ; in (13) in Section 4.2 satisfies the
normal equation (12). We need the propertidgd?. g = P« g and
Padd] = (3 + R R Pk D A kAL L Padd(8s + RD LS,
(27)
= Padd(8s + RD) 14,
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We have to verify the normal equatiot$, + R(J — Padd) 7 g = 8«7 j;:

(8% + R(J— Padd)T
= ((/S* + RJ) - Rf(Padd)(/S* + RJ)_l{&k + R,?*,R}le
= 8.7+ RPagd{ (I — (B + RDTIR) P g — (85 + R 8.7y
2 - _ _ ~ ~
@ 847 + R{Padd(8x + RJ) 184 — Padd(8« + RI) 15*}11[ =487 .
While 7 ;; may be ambiguous§..7 ;; and (ifA;je exists) Py g T ; are unique.
PROOF OFPROPOSITION3. In (14), P« rT ;; € Fada In order to show that
the other term is orthogonal t6,4¢, We prove that
Padd8« + RI) " 18.(9 — P g) = 0.
This holds because$, + RJ) 18, =7 — (8, + RI) 1R and (27). O
PROOF OFPROPOSITION4. The orthogonal projection frofy to F5qqis the
same for|| - ||« and for|| - || g:

argmin|fr — ragdl« = argmin|ir — raqdle Vr € F,
I add€ Fadd T add€ Fadd

because the penaltR||(J — Padd) Po(r — Ladd)”% does not depend om 444
Consequently, we may exchange the two norms when projectitigqd® and we
may simplify nested projections:

PT g = argmin| r gqg—argmin|jr — ryllr

I add€ Fadd reFul *

= argmin| r ,qg— argmin||r — ryllr
I add€ Fadd reFul

= argmin||r aqq— ryllr = argmin||r ogqq— 7 ylls« = 7 adg 0
T add€ Fadd T add€ Fadd

A.2.5. Proofs for Section 4.3,

PROOF OFPROPOSITIONS. The proof follows from Gao (2003). In particu-
lar, continuity onR? of the design density’ does not hold. However, Condition
MLN:B2’ states thatf is bounded or{0, 1]¢. For anupper bound of So,0(X),
we choose some smooth densﬁ;and a constant with f(x) < cf(g) and add
(¢ — Dn] virtual observations with distributio(rf— f)/(c — 1). The density
estimator based on alkr| observations is bounded in probability afiglo/c is
smaller. The boundary adjustments are handled analogously.
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PROOF OFLEMMA 1. Because of Lemma 2 and Propositionss,and 8.,
are bounded. In Appendix A.2.4, the claim is already shown for sfhalhd (26).
Using (17) in Section 4.4, the proof is straightforward for laRye [J

A.2.6. Continuity in R = oo and proofs for Section 4.4. Continuity inR =0
requires no proof.

PROOF OFLEMMA 2.

Overview. MLN showed in Theorem’lthat the estimatoF .44 1S unique with
probability tending to 1 for — oco. Uniqueness is equivalent fo- ||, > O for all
r € FaggWith || r ]2 = 1. Using their technique of proof, we may even show that
the above norm i®ounded away from zero with probability tending to 1. In this
casesaqdq has a continuous inverse with respecf td».

Sketch of proof for TheoremMLN:1". The normal equations faf .44 are
$addl adgd= Paddr -

Define the matrixI\A/Ik(g) which depends only on the one-dimensional data
Yi, Xin),i=1,....n:

Xik — Xk
1 ! h
Mk(l)—ni;/Kh(ll,X)dl—kY’ Xik — Xk (Xi,k—Xk>2
hy hi

With probability tending to 1M, (x) is continuous, and in this case sofés
obtained by a continuous mappingBfddr ; :

Tadd=T Tadd+ T,
where 7 is somecontraction. Therefore the solution is unique aehgdar ; —

T add IS continuous. Bothi and 7 depend onM ,jl and the two-dimensional
empirical marginal distribution oK ;.

BecausePaqdr ;. , even when choosing arbitrary values f6r, does not occupy
Fada We cannot (yet) conclude thaf, exists and is continuous.

Definition of #,. Let us now examine the orthogonal (with respect td|.)
projection®, from Fiy 10 Fada,
PoF = argmin||F — F qdl?.
I addE Fadd
The normal equations are

Sadd add= Padd8+ T .

By choosingt appropriately, one can prove th&qa8. 7 — F 54q1S CONtinuous.
Because of the uniqueness.8f, the image offs, under the mappingPagdas« is
equal toFagaand therefores ., exists and is continuous.
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Convergence of 85990 The operator$,gq depends orbivariate terms only.
Under Conditions MLN:B1, MLN:B2 and C1, these terms converge to their
theoretical counterparts, which depend on the design defsitifurthermore,
MLN argued that7 is a contraction (with probability tending to 1) because it
converges t@, which is a contraction [MLN:(69)].

Bandwidths larger than »n~1/>. The above calculation assumes thatis
proportional ton~/°. In the proof of MLN, one piece was the convergence of
7 to 7, which depends only on the theoretical design dengityin case of
oversmoothing, variability is reduced and the expected part is not critical, as
Condition MLN:B2 holds also for smootheg'. Hence, Condition C1 may be
replaced by Condition C¢. [

PROOF OF LEMMA 3. | Paddr |2 is essentially univariate and therefore
Op(1).

Define Pagar: Fiul — Fadd Via (Pagarr)°(x) = X¢_; [r%(x)dx _ and
(Paddr 1) (x) = [r¥(x)d x _x. By construction Paqq; is monotone: if rf(x) >
FE(x) (Y€, X), then (Padar ) (X) = (Pag7)*(X). Note that Pagq is not
monotone. Denote by the contractiord — (J 4+ R~14,)~1 which is apointwise
linear transformation with{ Dr |2, sup < R—1||5*||2,Sup

We want to prove thatPagq, Dr r; is arbitrarily small whenR =15, is small
enough. Let us sketch the proof in a simplified caseD}f were diagonal, we
would use themonotonicity of $P5qq+ to obtain an upper bound by replacir@g )
by its absolute valuev(¢, x) and enlargingDg t0 || Dg ||2,sup:

(28) | (Paddt+ Dr 1 1) (X) |2 < Dk 2, supll (Paddt 112 (X) |2,

where r |, denotesr; with absolute values. Thpointwise upper bound for
|(Pada+r 1) (X)|l2 remains valid ifY; and X; ; — x; are replaced byY;| and
| X x — xk|, respectively.

In practice, positivity of all components is generally not preserved under
multiplication by Dg. By Condition MLN:B1, the kerneK has compact support
[—C1, C1] and therefore the slope terms of, are bounded by the intercept,
r(x) < C1r2(x). The norm||(Dgr ) (X)ll2 is bounded pointwise inx by

1+ C3d|| Drll2 supy Ximg Kn(Xi, X)IYi].
Let r,(X) = 1+ C2dE¥"  Ku(Xi, X)IY;](1,...,1) and (28) holds.
Again, Padd+ 11| (X) depends on univariate terms only, which is essential in high

dimensions, Wher% Y71 Kn(X;, X) is not of constant order.
We conclude that sypl|(Padd+ Dr 7 1) (X)ll2 = Op(R7Y 8 ll2sup. O

PROOF OFLEMMA 4. Leta=ry —Tg, b=Tg —Tagg@Ndc=a+b=
I'y — Tade BECAUSE  minimizes|r — ry % and|| 7 agq— 7y |l is independent
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of R,
(29) lallg < llcllr = licllx.
Obtain a bound fofl(J — Pagd 7 g I3 Using (4):

~ 2@ 29
RII(J — Pagd T gll3 = llallz — llall? < llcl2 = lall? = (c —a,c +a)«

*=

= (b, 2c — b)yx < 2(b, c)+ < 2||D]l«|Ic]l+.
Then

—~ 2 1 ~ ~ ~
(T — Padd) ER”Z <2R (\/ ||5>x<||2,sup||£R - Kadd||2)||£y — T addll«-

BecauseSo,o(X) is a density estimate| 8|2, sup> 1 and we omit the square root.
Becauser oqq is @ minimizer, |ry — Fagdl? < lryl2 = 237, Y2 For
increasings, this is O p (1) because of Condition MLN:B3 [

PROOF OFTHEOREM2. As the expected part is additive [updp(h2) terms],
the nonadditive part consists only of the variance terit§:— P, g)7 ;15 =
Op(n%). By Proposition 4,7 44 — Paddl g = P«(J — Padd T g, Where Py is
continuous (with probability— 1). By Proposition 3,(J — Padd7r = (8« +
RI)718.(0 — P.r)T; and the claim follows from||(8. + RI) ™18, [l2.5up <
R‘1||/3*||2,sup and uniform continuity ofP, g (Lemma 1). O

A.2.7. Model selection by AIC (Section 4.5).

PROOF OFLEMMA 5. We use a formula from Rao and Kleffe [(1988), pages
31ff],

(30) cov(e'Be, &' Ce) =20*tr(BC) + ko *tr(Bdiag(C)),

whereB, C aresymmetric matrices of dimension andE[ef‘] = (3+«)o?. Using
B=C=3(M} +Mg) we obtain

var((e,Mge)) =a*(tr(MgMpg) + tr(M yM g) + « tr (diagM g)?)).

Note that ||'V|R||12L1s = tr(M;MR) is known as a Hilbert-Schmidt norm and
tr(MgMg) = (M}, M)pus is bounded by|[M gl zslM}llxs. Hence vaf(e,
Mre)) < 2+l tr(MpMg) andE[[M g & 1] = o2 tr(M zM g).

Analogously, using M ;M g)?) < [M ;M gllsuptr(M ;M g), the variance of
IM g £ 1% is smaller thar(2 + |<[)o?[M g Mg [lsudElIM g £ [2]. O
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A.2.8. Proofs for Section 4.6.

PROOF OF PROPOSITION7. It is well known thatE[||M; & ||?] # and
E[[[Madde 1?] o 4. Let us start with the.? terms: Becaus%%HMaddg |2 is of
smaller order than; My, £ ||, the mixed term-2; (My; & , Magde ) is bounded by
the Cauchy—Schwarz inequality. Furthermdfe- E)[ -3, |[M; € ||2] is negligible

11(72

compared tcE[”%ZHM”g I12] (see Lemma 5), indicating that thaverse of the A2

terms isOp (nh?).
For thei-linear terms, it is obvious thaﬁt%(l —E)[{e, My )] is the largest

stochastic term. It remains to show t@&ﬁE[(M”g, Madqe )1 is nonnegative, as

a nonnegative coefficient afindicates that the minimum is agin < 0 (R = o0).

As we are using a fixed uniform design, the local linear and the Nadaraya—
Watson estimator coincide (ignoring the boundary). Hence, we are interested
in the covariance of a multivariate and a univariate Nadaraya—Watson estimator
with nonnegative kernel weights, whose hat matrices have therefore nonnegative
elements. [
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