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OPTIMAL TESTING OF EQUIVALENCE HYPOTHESES

BY JOSEPHP. ROMANO

Stanford University

In this paper we consider the construction of optimal tests of equivalence
hypotheses. Specifically, assumeX1, . . . ,Xn are i.i.d. with distributionPθ ,
with θ ∈ R

k . Let g(θ) be some real-valued parameter of interest. The null
hypothesis assertsg(θ) /∈ (a, b) versus the alternativeg(θ) ∈ (a, b). For
example, such hypotheses occur in bioequivalence studies where one may
wish to show two drugs, a brand name and a proposed generic version,
have the same therapeutic effect. Little optimal theory is available for
such testing problems, and it is the purpose of this paper to provide an
asymptotic optimality theory. Thus, we provide asymptotic upper bounds for
what is achievable, as well as asymptotically uniformly most powerful test
constructions that attain the bounds. The asymptotic theory is based on Le
Cam’s notion of asymptotically normal experiments. In order to approximate
a general problem by a limiting normal problem, a UMP equivalence test is
obtained for testing the mean of a multivariate normal mean.

1. Introduction. SupposeX1, . . . ,Xn are i.i.d. with distributionPθ , where
θ is a vector inR

k . Let g(θ) be some real-valued parameter of interest. The
hypothesis testing problem we study in this paper is of the following form: the
null hypothesis assertsg(θ) /∈ (a, b) versus the alternativeg(θ) ∈ (a, b).

This setup arises when trying to demonstrate equivalence (or sometimes called
bioequivalence) of treatments. By comparing a pharmacokinetic parameter of a
new drug to the standard drug, bioequivalence is declared if the parameterg(θ) lies
in the interval(a, b), where(a, b) is specified by a regulatory agency. For example,
if g(θ) is the difference in treatment means, then equivalence corresponds to values
of g(θ) near zero, and so(a, b) = (−�,�) for some� > 0. Then, rejection of
the null hypothesis is the same as declaring equivalence. By formulating the null
hypothesis asg(θ) /∈ (−�,�), the risk of marketing an alternative drug that does
not behave like the standard drug is controlled. In some situations it may be more
appropriate to specify equivalence by a ratio of means, and equivalence is then
declared if the ratio is near one, so that(a, b) would be an interval containing one.
More generally, the problem may consist of determining equivalence across several
parameters, but only the simple real-valued case is treated here. A very nice recent
account of testing hypotheses of equivalence is given in [17]. For the remainder of
the paper, we assume without loss of generality that(a, b) = (−�,�).
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If P belongs to a one-parameter exponential family, then a (uniformly most
powerful) UMP levelα test exists; see [10], Theorem 6 in Chapter 3. More
generally, if the family of distributions is strictly positive of order 3 and other
mild continuity conditions are satisfied, then a UMP test exists; the more general
result appears as Problem 30 in Chapter 3 of [10] and is proved in [7].

EXAMPLE 1.1 (Normal location model ). First, supposeX is N(µ,σ 2), the
normal distribution with meanµ and varianceσ 2. Assumeσ 2 is known. The
problem is to test|µ| ≥ � versus|µ| < �. Applying the previously mentioned
result, the UMP levelα test rejects if|X| < C, whereC = C(α,�,σ) satisfies

�

(
C − �

σ

)
− �

(−C − �

σ

)
= α(1)

and�(·) is the standard normal c.d.f.
Next, supposeX1, . . . ,Xn are i.i.d.N(µ,σ 2). For testing the same hypothesis,

the UMP levelα test rejects ifn1/2|X̄n| ≤ C(α,n1/2�,σ).
If σ is unknown, no UMP test exists, nor do unbiasedness or invariance

considerations lead to an optimal test.

Outside a small class of models, no optimality theory is available for tests of
equivalence. Wellek [17] provides a general construction of asymptotically valid
tests, based on some asymptotically normal estimators, but no theory is provided
to prove optimality of such procedures. The main goal of this paper is to provide
an asymptotic optimality theory for such problems. Specifically, we obtain bounds
for the asymptotic power of tests of equivalence for a large class of models, as
well as construct efficient tests that attain these bounds. As will be seen, the results
flow from Le Cam’s approach based on convergence of experiments; see [8]. In
order for this approach to be viable, we need to determine an optimal test for the
limiting normal experiment; this is accomplished in Section 2, where an exact finite
sample theory uniformly most powerful test is derived for testing the equivalence
of a linear function of a multivariate normal mean.

In Section 3 we consider asymptotic efficiency. We will formulate the asymp-
totic problem in two distinct ways. First, consider the case when the null hypothesis
parameter space is the complement of a fixed interval(−�,�) is considered.
Then, we analyze the case when this interval changes (and shrinks) withn. In
each case, attainable upper bounds for the asymptotic power of tests are obtained.
The upper bounds in the two approaches actually differ, and we prefer the second
approach.

In fact, Janssen [6] has already considered the problem of testing equivalence in
a semiparametric two-sample framework, which in many ways is a more difficult
problem. He too considered a shrinking alternative parameter space. Building on
the work of Pfanzagl [12, 13] and Janssen [5], his technique also relies on a
reduction to an asymptotically normal experiment. However, he proves optimality
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of the power function at a particular value of the functional of interest, which,
in our case, corresponds to the value ofg(θ) being zero. He also imposes an
asymptotic similarity condition (see (36) of [6]). Here, we obtain asymptotically
optimal tests, uniformly over values of the parameters in the region for which
equivalence is declared, and no asymptotic unbiasedness condition is imposed.
Of course, we are working in a parametric framework in order to obtain such
a clean result. But, our results can be used in semiparametric models by an
appropriate reduction to a parametric least favorable submodel. Some asymptotic
nonparametric results which differ slightly from those of Janssen [6] can be
obtained from the author.

Even in the normal one-sample problem with unknown variance, the problem
of testing for equivalence has a rich history, and some of the literature is given
in Example 3.1. Our asymptotic results will apply quite generally to parametric
models, under the weak assumption of quadratic mean differentiability. The results
generalize immediately to two-sample (ors-sample) problems, as well as to more
complicated designs (such as a crossover design), as long as the underlying model
is smooth enough to permit convergence to a normal experiment, since the optimal
test in the limiting normal experiment is completely specified in Theorem 2.1.

2. A finite sample UMP test. Throughout,�(·) is the standard normal
distribution function andzα satisfies�(zα) = α. Before discussing optimality for
general models, we first need to derive the optimal test in the appropriate limiting
normal experiment. This is obtained in the following result.

THEOREM 2.1. Suppose (X1, . . . ,Xk) is multivariate normal N(µ,�) with
unknown mean µ = (µ1, . . . ,µk)

T and known covariance matrix � ( possibly
nonsingular). Fix δ > 0 and any vector a = (a1, . . . , ak)

T satisfying aT �a > 0.
Consider testing

H :

∣∣∣∣∣
k∑

i=1

aiµi

∣∣∣∣∣ ≥ δ vs. K :

∣∣∣∣∣
k∑

i=1

aiµi

∣∣∣∣∣ < δ.

Then a UMP level α test exists and it rejects H if∣∣∣∣∣
k∑

i=1

aiXi

∣∣∣∣∣ < C,

where C = C(α, δ, σ ) satisfies

�

(
C − δ

σ

)
− �

(−C − δ

σ

)
= α(2)

and σ 2 = aT �a. Hence, the power of this test against an alternative (µ1, . . . ,µk)

with |∑i aiµi | = δ′ < δ is

�

(
C − δ′

σ

)
− �

(−C − δ′

σ

)
.



OPTIMAL EQUIVALENCE TEST 1039

PROOF. The proof will consider four cases in increasing generality.

Case 1. Supposek = 1, so thatX1 = X is N(µ,σ 2) and we are testing|µ| ≥ δ

versus|µ| < δ. Fix an alternativeµ = m with |m| < δ. Reduce the composite null
hypothesis to a simple one via a least favorable distribution that places massp on
N(δ,σ 2) and mass 1− p onN(−δ, σ 2). The value ofp will be chosen shortly so
that such a distribution is least favorable (and will be seen to depend onm, α, σ

andδ). By the Neyman–Pearson lemma, the MP test of

pN(δ,σ 2) + (1− p)N(−δ, σ 2) vs. N(m,σ 2)

rejects for small values of

p exp[−(1/(2σ 2))(X − δ)2] + (1− p)exp[−(1/(2σ 2))(X + δ)2]
exp[−(1/(2σ 2))(X − m)2] ,(3)

or, equivalently, for small values off (X), where

f (x) = p exp[(δ − m)X/σ 2] + (1− p)exp[−(δ + m)X/σ 2].
We can now choosep so thatf (C) = f (−C), so thatp must satisfy

p

1− p
= exp[(δ + m)C/σ 2] − exp[−(δ + m)C/σ 2]

exp[(δ − m)C/σ 2] − exp[−(δ − m)C/σ 2] .(4)

Sinceδ − m > 0 andδ + m > 0, both the numerator and denominator of the right-
hand side of (4) are positive, so the right-hand side is a positive number; but,
p/(1− p) is a nondecreasing function ofp with range[0,∞) asp varies from 0
to 1. Thus,p is well defined. Also, observef ′′(x) ≥ 0 for all x. It follows that (for
this special choice ofC)

{X :f (X) ≤ f (C)} = {X : |X| ≤ C}
is the rejection region of the MP test. Such a test is easily seen to be levelα for the
original composite null hypothesis because its power function is symmetric and
decreases away from zero. Thus, the result follows by Theorem 6 in Section 3.7
of [10].

Case 2. Consider now generalk, so that(X1, . . . ,Xk) has mean(µ1, . . . ,µk)

and covariance matrix�. However, consider the special case(a1, . . . , ak) =
(1,0, . . . ,0), so we are testing|µ1| ≥ δ versus|µ1| < δ. Also, assumeX1 and
(X2, . . . ,Xk) are independent, so that the first row and first column of� are zero
except the first entry, which isσ 2 (assumed positive). Using the same reasoning as
in Case 1, fix an alternativem = (m1, . . . ,mk) with |m1| < δ and consider testing

pN
(
(δ,m2, . . . ,mk),�

) + (1− p)N
(
(−δ,m2, . . . ,mk),�

)
versusN((m1, . . . ,mk),�). The likelihood ratio is, in fact, the same as (3) because
each term is now multiplied by the density of(X2, . . . ,Xk) (by independence), and
these densities cancel. The UMP test from Case 1, which rejects when|X1| ≤ C,
is UMP in this situation as well.
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Case 3. As in Case 2, considera1 = 1 andai = 0 if i > 1, but now allow� to
be arbitrary. Reduce the problem to Case 2 by an appropriate linear transformation.
Simply letY1 = X1 and, fori > 1, let

Yi = Xi − Cov(X1,Xi)

Var(X1)
X1,

so that Cov(Y1, Yi) = 0 if i > 0. Thus, the problem of testingE(Y1) = E(X1),
based onY = (Y1, . . . , Yk), is in the form studied in Case 2, and the UMP test
rejects for small|Y1| = |X1|.

Case 4. Now, consider arbitrary(a1, . . . , ak) satisfying aT �a > 0. Let
Z = OX, whereO is any orthogonal matrix with first row(a1, . . . , ak). Then
E(Z1) = ∑k

i=1 aiµi , and the problem of testing|E(Z1)| ≥ δ versus|E(Z1)| < δ

reduces to Case 3. Hence, the UMP test rejects for small values of|Z1| =
|∑k

i=1 aiXi |. �

Next, we summarize some simple but useful properties of the critical constants
C(α, δ, σ ) and the optimal power of the above UMP test that will be used later.

REMARK 2.1. It is easy to check that, as a function ofC, the functionh(C)

given by

h(C) = �

(
C − δ

σ

)
− �

(−C − δ

σ

)

is increasing inC. Since

h(δ − σz1−α) = α − �(−2σ−1δ + z1−α) < α,

it follows that

C(α, δ, σ ) > δ − σz1−α.(5)

REMARK 2.2. The functionC(α, δ, σ ) satisfies

C(α, δ, σ )

σ
= C

(
α,

δ

σ
,1

)
.(6)

It is also easy to check that

C(α, ε,1) → z(1−α/2)

asε → 0 andC(α,B,1) → ∞ asB → ∞.

REMARK 2.3. For fixedC = C(α, δ, σ ), the function

f (γ ) = �(C − γ ) − �(−C − γ )

is decreasing inγ ; to see why, just differentiatef . So if 0≤ γ < δ, thenf (γ ) > α.
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3. Asymptotic optimality. Throughout this section, we assumeX1, . . . ,Xn

are i.i.d. according to a distributionPθ , with θ ∈ 
, where
 is an open subset
of R

k . Here the observations take values in a sample spaceX. AssumePθ has
density pθ with respect toµ. We will assume the family is quadratic mean
differentiable (q.m.d.) at certain valuesθ0 of θ ; that is, there exists a vector of
real-valued functionsη(·, θ0) = (η1(·, θ0), . . . , ηk(·, θ0))

T such that∫
X

[√
pθ0+h(x) − √

pθ0(x) − 〈η(x, θ0), h〉]2
dµ(x) = o(|h|2)(7)

as|h| → 0. Hereh is a vector inRk and|h| denotes its Euclidean norm. For such
a family the Fisher information matrix atθ0 is the matrixI (θ0) with (i, j) entry

Ii,j (θ0) = 4
∫

ηi(x, θ0)ηj (x, θ0) dµ(x).

We also define thescore vectorZn to be

Zn = Zn(θ0) = 2n−1/2
n∑

i=1

[
η(Xi, θ0)/p

1/2
θ0

(Xi)
]
.(8)

For a review of families that are q.m.d., as well as the history and importance of
this notion, see [9]. In particular, we make heavy use of the fact that such families
are locally asymptotically normal, and so the testing problem under consideration
can be approximated by a certain normal testing problem.

Interest focuses ong(θ), whereg is a function from
 to R. Assumeg is
differentiable with gradient vectoṙg(θ) of dimension 1× k. We will formulate the
problem in two distinct ways. First, we consider the case when the null hypothesis
parameter space
0 is the complement of a fixed interval(−�,�). Then, we study
the case when this interval changes (and shrinks) withn.

3.1. Fixed parameter spaces. Fix � > 0. The problem is to test|g(θ)| ≥ �

versus|g(θ)| < �. We implicitly assumeg is such that there exists aθ such that
g(θ) ≥ �, as well as aθ with g(θ) ≤ −�. For any fixed alternative valueθ with
|g(θ)| < �, the power of any reasonable test againstθ will tend to one. Therefore,
as is customary (see [16], Chapters 14 and 15), we compare power functions
at local alternatives. Consider any fixedθ0 satisfying |g(θ0)| = �. For sake of
argument, consider the caseg(θ0) = −�. In order to derive an (obtainable) upper
bound for the limiting power of a test sequenceφn underθ0 + hn−1/2, a crude
way to bound the power is based on the simple fact that any levelα test for
testing|g(θ)| ≥ � versus|g(θ)| < � is also levelα for testingg(θ) ≤ −� versus
g(θ) > −�. Since upper bounds for the (asymptotic) power are well known for
the latter testing problem (as in [16], Theorem 15.4), an immediate result follows.
In this asymptotic setup, the statistical problem is somewhat degenerate, as it
becomes one of testing a one-sided hypothesis. For example, supposeX1, . . . ,Xn

are i.i.d.N(θ,1). Then for largen, one can distinguishθ ≤ −� andθ > −� with
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error probabilities that are uniformly small and tend to zero exponentially fast
with n. In essence, the statistical issue arises only if the trueθ is near the boundary
of [−�,�], in which case determining significance essentially becomes one of
testing a one-sided hypothesis.

EXAMPLE 3.1 (Normal one-sample problem). SupposeX1, . . . ,Xn are i.i.d.
N(µ,σ 2), with both parameters unknown. Consider testing|µ| ≥ � versus
|µ| < �. The standardt-test for testing the one-sided hypothesisµ ≤ −� against
µ > −� rejects if

n1/2(X̄n + �)/Sn > tn−1,1−α,

whereS2
n is the (unbiased) sample variance andtn−1,1−α is the 1− α quantile of

the t-distribution withn − 1 degrees of freedom. Similarly, the standardt-test of
the hypothesisµ ≥ � rejects if

n1/2(X̄n − �)/Sn < −tn−1,1−α.

The intersection of these rejection regions is therefore a levelα test of the null
hypothesis|µ| ≥ �. Such a construction that intersects the rejection regions of two
one-sided tests (TOST) was proposed in [18] and [15], and can be seen as a special
case of Berger’s [2] intersection-union tests; see [3] for a review. The resulting
TOST is given by the testφTOST

n that rejects when|X̄n| < � − n−1/2Sntn−1,1−α .
The asymptotic power ofφTOST

n against a sequence with mean−� + hn−1/2

(h > 0) and variance fixed atσ 2 can be calculated directly as

P�+hn−1/2,σ {|X̄n| < � − n−1/2Sntn−1,1−α} = �

(
z1−α − h

σ

)
,

which is the optimal bound for the one-sided testing problem given in The-
orem 15.4 of [16]. A similar calculation applies to sequences of the form
� − hn−1/2. Thus, the TOST is asymptotically optimal in this setup. It should
be remarked that the TOST has been criticized because it is biased (in finite sam-
ples) and tests have been proposed that have greater power; some proposals are
reviewed and studied in [3], [4] and [11]. These points are valid, but no test can
have greater asymptotic power against such local alternatives. On the other hand,
the TOST will be seen to be inefficient under the asymptotic setup of the next
section.

3.2. Shrinking alternative parameter space. We now consider a second
asymptotic formulation of the problem. The null hypothesis asserts|g(θ)| ≥
δn−1/2 and the alternative hypothesis asserts|g(θ)| < δn−1/2. Notice now that, in
this asymptotic study, the parameter spaces (or hypotheses) are changing withn.
Of course, a given hypothesis testing situation deals with a particularn, and there
is flexibility in how the problem is embedded into a sequence of similar problems
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to get a useful approximation. Indeed, if equivalence corresponds to|g(θ)| < �,
we can always set up the problem by choosingδ = �n1/2. From an asymptotic
point of view, it makes sense to allow the null hypothesis parameter space to
change withn, or else the problem becomes degenerate in the sense that the values
of � and−� for g(θ) can be perfectly distinguished asymptotically. In testing
for bioequivalence, for example,� represents a small value so that a value of
|g(θ)| ≤ � is deemed sufficiently close to zero in a clinical sense. In a particular
situation (such as the previous example withσ not too small), a value for|g(θ)|
of � cannot be perfectly tested against a value ofg(θ) = 0. Thus, if 0 is in some
sense not far from both� and−�, it follows that� and−� are not far from each
other either, and the asymptotic setup should reflect this.

We implicitly assume there exists someθ with g(θ) > 0, as well as someθ with
g(θ) < 0. The main result of this section is the following theorem.

THEOREM 3.1. Suppose X1, . . . ,Xn are i.i.d. according to Pθ , θ ∈ 
, where

 is assumed to be an open subset of R

k . Consider testing the null hypothesis

θ ∈ 
0,n = {θ : |g(θ)| ≥ δn−1/2}
versus |g(θ)| < δn−1/2, where the function g from R

k to R is assumed differ-
entiable with gradient ġ(θ). Assume for every θ with g(θ) = 0 that the family
{Pθ , θ ∈ 
} is q.m.d. at θ and I (θ) is nonsingular.

(i) Let φn = φn(X1, . . . ,Xn) be a uniformly asymptotically level α sequence
of tests, so that

lim sup
n→∞

sup

0,n

Eθ (φn) ≤ α.

Assume θ0 satisfies g(θ0) = 0. Then, for any h such that |〈ġ(θ0)
T , h〉| = δ′ < δ,

lim sup
n→∞

Eθ0+hn−1/2(φn) ≤ �

(
C − δ′

σθ0

)
− �

(−C − δ′

σθ0

)
,(9)

where σ 2
θ0

is given by

σ 2
θ0

= ġ(θ0)I
−1(θ0)ġ(θ0)

T(10)

and C = C(α, δ, σθ0) satisfies (2).
(ii) Let θ̂n be any estimator satisfying

n1/2(θ̂n − θ0) = I−1(θ0)Zn + oP n
θ0

(1),(11)

(such as an efficient likelihood estimator). Suppose I (θ) is continuous in θ and
ġ(θ) is continuous at θ0. Then the test sequence φn that rejects when n1/2|g(θ̂n)| ≤
C(α, δ, σ̂n), where

σ̂ 2
n = ġ(θ̂n)I

−1(θ̂n)ġ(θ̂n)
T ,
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is pointwise asymptotically level α and is locally asymptotically UMP in the sense
that the inequality (9) is an equality. In fact, the same properties hold for any test
sequence that rejects if |Tn| < C(α, δ, σ̂n), if Tn satisfies

Tn = ġ(θ0)I
−1(θ0)Zn,θ0 + oP n

θ0
(1)

for every θ0 ∈ 
0, where Zn,θ0 is the score vector defined in (8).

PROOF. Fix θ0 satisfyingg(θ0) = 0. We will derive an upper bound for the
limiting power of a test sequenceφn underθ0 + hn−1/2. Note that

g(θ0 + hn−1/2) = n−1/2〈ġ(θ0)
T , h〉 + o(n−1/2).

So, if h is such that|〈ġ(θ0)
T , h〉| > δ, then |g(θ0 + hn−1/2)| > δn−1/2 for all

sufficiently largen. Hence, ifφn has limiting sizeα, then, for such anh,

lim sup
n→∞

Eθ0+hn−1/2(φn) ≤ α.(12)

Since the family is q.m.d., the sequence of experimentsP n
θ0+hn−1/2 (indexed

by a vectorh) converges to a limiting (multivariate) normal experiment with
unknown mean vectorh and known covariance matrixI−1(θ0). Therefore, we can
approximate the power of a test sequenceφn by the power of a testφ = φ(X) for
the (limit) experiment based onX from the modelN(h, I−1(θ0)); see Lemma 3.4.4
of [14] or Theorem 15.1 of [16]. So, letβφ(h) denote the power function ofφ(X)

whenX ∼ N(h, I−1(θ0)). Then (12) impliesβφ(h) ≤ α if |〈ġ(θ0)
T , h〉| > δ. By

continuity ofβφ(h), βφ(h) ≤ α for anyh with |〈ġ(θ0)
T , h〉| ≥ δ. The choice ofφ

to maximizeβφ(h) for this limiting normal problem was given in Theorem 2.1 with
� = I−1(θ0) andaT = ġ(θ0). Thus, ifφ is levelα for testing|〈ġ(θ0)

T , h〉| ≥ δ and
h satisfies|〈ġ(θ0)

T , h〉| = δ′ < δ, then

βφ(h) ≤ �

(
C − δ′

σθ0

)
− �

(−C − δ′

σθ0

)
,

andC = C(α, δ, σθ0) satisfies (2).
To prove (ii), consider the test that rejects whenn1/2|g(θ̂n)| ≤ C(α, δ, σ̂n). Fix

h such that|〈ġ(θ0)
T , h〉| = δ′ < δ and letθn = θ0 + hn−1/2. Then, using standard

contiguity arguments, underθn,

n1/2[g(θ̂n) − g(θn)] N→(
0, σ 2

θ0

)
.

But

n1/2g(θn) = 〈h, ġ(θ0)
T 〉 + o(1).

Therefore, underθn,

n1/2g(θ̂n)
L→ N

(〈h, ġ(θ0)
T 〉, σ 2

θ0

)
.
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Also, under θn, σ̂n tends in probability toσθ0, and soC(α, δ, σ̂n) tends in
probability toC(α, δ, σθ0). Hence, lettingZ denote a standard normal variable,

Pθn{n1/2|g(θ̂n)| ≤ C(α, δ, σ̂n)} → P
{∣∣σθ0Z + 〈h, ġ(θ0)

T 〉∣∣ ≤ C
(
α, δ, σθ0

)}
,

which agrees with the right-hand side of (9).�

EXAMPLE 3.2 (Normal one-sample problem, Example 3.1,continued ). Sup-
poseX1, . . . ,Xn are i.i.d.N(µ,σ 2) with both parameters unknown, so thatθ =
(µ,σ ). Let g(θ) = µ and consider testing|µ| ≥ δn−1/2 versus|µ| < δn−1/2. By
the previous theorem, for any test sequenceφn with limiting size bounded byα
and anyh with |h| < δ,

Ehn−1/2,σ (φn) ≤ �

(
C − h

σ

)
− �

(−C − h

σ

)
,(13)

whereC = C(α, δ, σ ) satisfies (2). A test whose limiting power achieves this
bound is given by the testφ∗

n that rejects when

n1/2|X̄n| ≤ C(α, δ, Sn),

whereS2
n is the (unbiased) sample variance (or any consistent estimator ofσ 2). In

the normal model, such an approximate test was first proposed by Anderson and
Hauck [1] (but in a two-sample context); in essence, the general construction of
Theorem 3.1 can be viewed as an extension of their method.

On the other hand, the testφTOST
n given in Example 3.1 isno longer

asymptotically efficient. This test (with� = δn−1/2) rejects when

n1/2|X̄n| < δ − Sntn−1,1−α

and has power against(µ,σ ) = (hn−1/2, σ ) given by

Phn−1/2,σ

{−δ + Sntn−1,1−α − h

σ
< Zn <

δ − Sntn−1,1−α − h

σ

}
,(14)

where

Zn = n1/2(X̄n − hn−1/2)/σ ∼ N(0,1).

Also, Sn → σ in probability and tn−1,1−α → z1−α . By Slutsky’s theorem,
(14) converges to

P

{−δ

σ
+ z1−α − h

σ
< Z <

δ

σ
− z1−α − h

σ

}
,(15)

whereZ ∼ N(0,1). Observe that this last expression is positive only ifσz1−α < δ;
otherwise, the limiting power is zero! On the other hand, the limiting optimal
power of φ∗

n is always positive (and greater thanα when |h| < δ). Even when
the limiting power ofφTOST

n is positive, it is always strictly less than that ofφ∗
n .

Note that the limiting expression (15) for the power ofφTOST
n corresponds exactly
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to using a TOST test in the limiting experimentN(h,σ 2), where you are testing
|h| ≥ δ versus|h| < δ with σ known; such a procedure is conservative and less
powerful than the UMP test. In general, (5) implies that

C(α, δ, σ̂n) > δ − σ̂nz1−α,

which shows that the testφ∗
n of Theorem 3.1 is always more powerful than the

asymptotic TOST construction.

REMARK 3.1. Thus far, we have considered testing for two situations, first
where the null hypothesis specifies|g(θ)| ≥ � and next where|g(θ)| ≥ δ/n1/2.
Of course, one can also consider the general situation where the null hypothesis
is specified by|g(θ)| ≥ δ/τn, whereτn → ∞. For the purposes of this discussion,
supposeg(θ) = θ ∈ R. So, suppose we are testing|θ | ≥ δ/τn with τn → ∞ at a
rate slower thann1/2, so thatτn = o(n1/2). By contiguity arguments, the optimal
limiting power will be nondegenerate (meaning away fromα and 1) for alternatives
of the formδ/τn −h/n1/2 or δ/τn +h/n1/2 for h > 0, or, more generally, ifh/n1/2

is replaced by any sequenceεn satisfyingε � n−1/2. But, if τn = o(n1/2), then
δ/τn and−δ/τn can be perfectly distinguished, and so we are essentially in the first
asymptotic setup. That is, the asymptotically optimal power against an alternative
sequenceδ/τn − h/n1/2 is the same as for testing a one-sided hypothesisθ ≥ δ/τn

versusθ < δ/τn.
On the other hand, supposeτn → ∞ faster thann1/2, so thatn1/2/τn → 0. Then

δ/τn and−δ/τn are so close that the optimal limiting power against any alternative
sequencehn with |hn| < δ/τn is α.

Perhaps the reader can be more easily convinced of these assertions in the
N(θ,1) model, where explicit expressions for the power of the UMP test exist, but
the previous arguments apply to more general models. Thus, the two asymptotic
approaches previously considered in this section are in essence the most general.

Acknowledgment. Special thanks to Erich Lehmann for some helpful discus-
sion.
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