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DEPTH WEIGHTED SCATTER ESTIMATORS

BY YIJUN ZUO1 AND HENGJIAN CUI2

Michigan State University and Beijing Normal University

General depth weighted scatter estimators are introduced and investi-
gated. For general depth functions, we find out that these affine equivariant
scatter estimators are Fisher consistent and unbiased for a wide range of mul-
tivariate distributions, and show that the sample scatter estimators are strong
and

√
n-consistent and asymptotically normal, and the influence functions

of the estimators exist and are bounded in general. We then concentrate on
a specific case of the general depth weighted scatter estimators, the projec-
tion depth weighted scatter estimators, which include as a special case the
well-known Stahel–Donoho scatter estimator whose limiting distribution has
long been open until this paper. Large sample behavior, including consis-
tency and asymptotic normality, and efficiency and finite sample behavior,
including breakdown point and relative efficiency of the sample projection
depth weighted scatter estimators, are thoroughly investigated. The influence
function and the maximum bias of the projection depth weighted scatter
estimators are derived and examined. Unlike typical high-breakdown com-
petitors, the projection depth weighted scatter estimators can integrate high
breakdown point and high efficiency while enjoying a bounded-influence
function and a moderate maximum bias curve. Comparisons with leading es-
timators on asymptotic relative efficiency and gross error sensitivity reveal
that the projection depth weighted scatter estimators behave very well over-
all and, consequently, represent very favorable choices of affine equivariant
multivariate scatter estimators.

1. Introduction. The sample mean vector and sample covariance matrix have
been the standard estimators of location and scatter in multivariate statistics. They
are affine equivariant and highly efficient for normal population models. They,
however, are notorious for being sensitive to unusual observations and susceptible
to small perturbations in data.M-estimators [Maronna (1976)] are the early robust
alternatives which have reasonably good efficiencies while being resistant to small
perturbations in the data. Like their predecessors, theM-estimators unfortunately
are not globally robust in the sense that they have relatively low breakdown
points in high dimensions. The Stahel–Donoho (S–D) estimator [Stahel (1981) and
Donoho (1982)] is the first affine equivariant estimator of multivariate location and
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scatter which attains a very high breakdown point. The estimator has stimulated
extensive research in seeking affine equivariant location and scatter estimators
which possess high breakdown points. Though

√
n-consistent [Maronna and Yohai

(1995)], the limiting distribution of the S–D estimator remained unknown until
very recently. This drawback has severely hampered the estimator from becoming
more prevalent and useful in practical inference. The limiting distribution of the
S–D (and general depth weighted)location estimator(s) has recently been
discovered by Zuo, Cui and He (2004). Establishing the limiting distribution (and
studying other properties) of general depth weighted and (particularly) the S–D
scatter estimators is one goal of this paper.

In addition to the S–D estimator, affine equivariant estimators of multivariate
location and scatter with high breakdown points include the minimum volume
ellipsoid (MVE) and the minimum covariance determinant (MCD) estimators
[Rousseeuw (1985)] andS-estimators [Davies (1987) and Lopuhaä (1989)].
A drawback to many classical high breakdown point estimators though is the
lack of good efficiency at uncontaminated normal models. Estimators which can
combine good global robustness (high breakdown point and moderate maximum
bias curve) and local robustness (bounded influence function and high efficiency)
are always desirable. Proposing (and investigating) a class of such estimators is
another goal of this paper.

Breakdown point serves as a measure of global robustness, while the influence
function captures the local robustness of estimators. In between the two extremes
comes the maximum bias curve. A discussion of the maximum bias curve of scatter
estimators at population models (with unknown location), seemingly very natural
and desirable, has not yet been seen in the literature, perhaps partially because of
the complication and difficulty to derive it. Providing an account of the maximum
bias of projection depth weighted scatter estimators is the third goal of this paper.

To these ends, general depth weighted estimators are introduced and studied.
The S–D estimator is just a special case of these general estimators. The paper
investigates the asymptotics of the general depth weighted scatter estimators.
Sufficient conditions for the asymptotic normality and the existence of influence
functions of the general estimators are presented. They are satisfied by common
depth functions including Tukey halfspace [Tukey (1975)] and Liu simplicial [Liu
(1990)] depth. The paper then specializes to the projection depth weighted scatter
estimators and examines their large and finite sample behavior. The asymptotic
normality of the S–D scatter estimator follows as a special case. The influence
function (together with the asymptotic relative efficiency) of the projection depth
weighted scatter estimators is compared to those of some leading estimators.
To fulfill the third goal of the paper, the maximum bias (under point-mass
contamination) of the projection depth weighted scatter estimators for elliptical
symmetric models is derived.

Findings in the paper reveal that the S–D and the projection depth weighted
scatter estimators possess good robustness properties locally (high efficiency and
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bounded influence function) and globally (high breakdown point and moderate
maximum bias) and behave very well overall compared with the leading competi-
tors and, thus, represent favorable choices of scatter estimators.

The empirical process theory approach in the paper is useful for other depth
applications. The treatment of the maximum bias of scatter estimators here sets a
precedent for similar problems.

The rest of the paper is organized as follows. Section 2 introduces general depth
weighted scatter estimators and investigates their Fisher consistency, asymptotics
and influence functions. Section 3 is devoted to a specific case of the general
depth weighted scatter estimators, the projection depth weighted scatter estimators.
Here, sufficient conditions introduced in Section 2 for asymptotics and influence
functions are verified and the corresponding general results are also concretized.
Furthermore, the asymptotic relative efficiency, the influence function and the
gross error sensitivity of the estimators are derived and compared with those of
leading estimators. The maximum bias curve (under point-mass contamination)
of the estimators is also derived and examined. Finally, the finite sample
behavior of the estimators, including breakdown point and relative efficiency,
is investigated. Simulation results with contaminated and uncontaminated data
confirm the validity of the asymptotic properties at finite samples. The paper ends
in Section 4 with some concluding remarks. Selected (sketches of ) proofs and
auxiliary lemmas are saved for the Appendix.

2. General depth weighted scatter estimators. Depth functions can be
employed to extend the univariateL-functionals (L-statistics) to the multivariate
setting [Liu (1990) and Liu, Parelius and Singh (1999)]. For example, one can
define a depth-weighted mean based on a given depth functionD(x,F ) as follows
[Zuo, Cui and He (2004)]:

L(F) =
∫

xw1
(
D(x,F )

)
dF(x)

/∫
w1

(
D(x,F )

)
dF(x),(1)

wherew1(·) is a suitable weight function [w1 andD are suppressed inL(·) for
simplicity]. Subsequently, a depth-weighted scatter estimator based onD(x,F )

can be defined as

S(F ) =
∫ (

x − L(F)
)(

x − L(F)
)′

× w2
(
D(x,F )

)
dF(x)

/∫
w2

(
D(x,F )

)
dF(x),

(2)

where w2(·) is a suitable weight function that can be different fromw1(·).
L(·) andS(·) include multivariate versions of trimmed means and covariance ma-
trices. The latter are excluded in later discussion though for technical convenience.
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To ensure well-definedL(F) andS(F ), we require∫
wi

(
D(x,F )

)
dF(x) > 0,∫

‖x‖iwi

(
D(x,F )

)
dF(x) < ∞, i = 1,2,

(3)

where‖ · ‖ stands for the Euclidean norm. The first part of (3) holds automatically
for typical weight and depth functions and the second part becomes trivial if
E‖X‖2 < ∞ or if wi , i = 1,2, vanishes outside some bounded set. Replacing
F with its empirical versionFn, we obtainL(Fn) andS(Fn) as empirical versions
of L(F) andS(F ), respectively.L(·) andS(·) distinguish themselves from other
leading estimators such as MVE- and MCD-,S-, M- and CM-estimators in the
sense thatL(·) is defined independently ofS(·). They are also different from the
ones in Lopuhaä (1999) since no prior location and scatter estimators are needed
to define themselves. With the projection depth functionPD(·, ·) (see Section 3),
L(·) andS(·) include as special cases the well-known Stahel–Donoho location and
scatter estimators, respectively.

In addition toPD(·, ·), common choices ofD(·, ·) include the Tukey (1975)
halfspace depth function,HD(x,F ) = inf{P(H) :H a closed halfspace, x ∈ H },
and the Liu (1990) simplicial depth function,SD(x,F ) = P(x ∈ S[X1, . . . ,Xd+1]),
whereX1, . . . ,Xd+1 is a random sample fromF andS[x1, . . . , xd+1] denotes the
d-dimensional simplex with verticesx1, . . . , xd+1. Weighted or trimmed means
based on the latter two depth functions were considered in Liu (1990), Dümbgen
(1992) and Massé (2004). For all these depth functions,L(·) andS(·) areaffine
equivariant, that is,L(FAX+b) = AL(F) + b, andS(FAX+b) = AS(F)A′ for any
d × d nonsingular matrixA and vectorb ∈ R

d . In fact, this is true for anyaffine
invariant D(·, ·) [i.e., D(Ax + b,FAX+b) = D(x,F )]. With suchD(·, ·) and for
F centrally symmetric aboutθ ∈ R

d [i.e., FX−θ (·) = Fθ−X(·)], L(F) is Fisher
consistent [L(F) = θ ] andL(Fn) is unbiased for θ if EX < ∞ [Zuo, Cui and He
(2004)]. This turns out to be true also forS(F ) andS(Fn). That is, for a broad
class of symmetric distributionsF (including as special cases elliptically symmet-
ric F ) with E‖X‖2 < +∞, S(F ) = κ Cov(X) and E(S(Fn)) = κn Cov(X), for
some positive constantsκ andκn (with κn → κ asn → ∞).

L(F) andL(Fn) have been studied in Zuo, Cui and He (2004) and Zuo, Cui
and Young (2004) with respect to robustness and large and finite sample behavior.
This current paper focuses onS(F ) andS(Fn). Throughout the paper, we assume
that 0≤ D(x,F ) ≤ 1 andD(·, ·) is continuous inx and translation invariant, that
is, D(x + b,FX+b) = D(x,F ) for the givenF and for anyb ∈ R

d .

√
n-consistency and asymptotic normality. Define

Hn(·) = √
n
(
D(·,Fn) − D(·,F )

)
, ‖Hn‖∞ = sup

x∈Rd

|Hn(x)|.
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For a givenF , denoteDr = {x :D(x,F ) ≥ r} for 0 ≤ r ≤ 1. Let w
(1)
i be the

derivative ofwi for i = 1,2. A function g(·) on [a, b] is said to be Lipschitz
continuous if there is someC > 0 such that|g(s) − g(t)| ≤ C|s − t | for any
s, t ∈ [a, b]. For 0≤ r0 ≤ 1, define the conditions:

(A1) ‖Hn‖∞ = Op(1) and supx∈Dr0
‖x‖|Hn(x)| = Op(1).

(A2) wi(r), i = 1,2, is continuously differentiable on[0,1] and 0 on[0, αr0]
for someα > 1, w

(1)
2 (r) is Lipschitz continuous on[0,1], w

(1)
2 (0) = 0, and∫

Dr0
‖x‖|w(1)

2 (D(x,F ))|dF(x) < ∞.

In light of Vapnik–Cervonenkis classes and the CLT for empirical processes
[Pollard (1984) and van der Vaart and Wellner (1996)], it is seen that the first
part of (A1) holds for commonD(·, ·) such asHD(·, ·) andSD(·, ·). The first part
of (A2) holds automatically for smoothwi such as

wi(r) = ((
exp

(−K
(
1− (r/C)2i)2i) − exp(−K)

)/(
1− exp(−K)

))
I (r < C)

+ I (r ≥ C),
(4)

with parameters 0< C < 1 andK > 0 and indicator functionI (·) (herer0 = 0),
i = 1,2, which will be used later. Note that (A2) excludes the trimmed means
and covariance matrices with indicator functions aswi . This, however, allows us
to impose fewer and less severe conditions onF andD(·, ·). The second part of
(A1) or (A2) holds with anyr0 > 0 for common depth functions, in virtue of their
“vanishing at infinity” property [Liu (1990) and Zuo and Serfling (2000a, b)], that
is, lim‖x‖→∞ D(x,F ) = 0. In Section 3 we show that (A1) and (A2) hold for
PD(·, ·) with r0 = 0.

THEOREM 2.1. Under (A1) and (A2), S(Fn) − S(F ) = Op(1/
√

n ).

The (strong) consistency ofS(Fn) can be established similarly based on
corresponding conditions. Hereafter, we omit the (strong) consistency discussion.
To establish the asymptotic normality ofS(Fn), we need the following conditions.
Denoteνn(·) = √

n(Fn(·) − F(·)).
(A3)

∫
Dr0

‖x‖2i (wi(D(x,F )))2 dF(x) < ∞,
∫
Dr0

‖x‖i |w(1)
i (D(x,F ))|dF(x) <

∞, i = 1,2.
(A4) Hn(x) = ∫

h(x, y) dνn(y) + op(1) uniformly onSn ⊂ Dr0, P {Dr0 − Sn} =
o(1), for someh and

∫
(
∫ ‖y‖i |w(1)

i (D(y,F ))h(y, x)|dF(y))2 dF(x) < ∞,
i = 1,2, and{h(x, ·) :x ∈ Sn} is a Donsker class.

Note that with a positiver0, (A3) holds automatically for depth functions
vanishing at infinity. (A4) holds forHD andSD with any positiver0 [Dümbgen
(1992) and Massé (2004)] and other depth functions. For details on a Donsker
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class of functions, see van der Vaart and Wellner (1996). In Section 3 we show that
(A3)–(A4) hold forPD with r0 = 0 and smoothwi [such as those in (4)],i = 1,2.

Let vec(·) be the operator which stacks the columns of ap × q matrix
M = (mij ) on the top of each other, that is, vec(M) = (m11, . . . ,mp1, . . . ,

m1q, . . . ,mpq)
′. Let M1 ⊗ M2 be the Kronecker product of matricesM1 andM2.

Let ks(·,F ) = (· − L1(F ))(· − L1(F ))′ − S(F ). Define fori = 1,2,

Li(F ) =
∫

xwi(D(x,F )) dF (x)∫
wi(D(x,F )) dF (x)

,(5)

Ki(x,F ) =
{∫ (

y − Li(F )
)
w

(1)
i

(
D(y,F )

)
h(y, x) dF (y)

+ (
x − Li(F )

)
wi

(
D(x,F )

)}
(6)

×
{∫

wi

(
D(x,F )

)
dF(x)

}−1

and

Ks(x,F )

=
∫

ks(y,F )w
(1)
2 (D(y,F ))h(y, x) dF (y) + ks(x,F )w2(D(x,F ))∫

w2(D(x,F )) dF (x)
.

(7)

THEOREM 2.2. Under (A1)–(A4), we have

S(Fn) − S(F ) = 1

n

n∑
i=1

(
K(Xi) − E

(
K(Xi)

)) + op

(
1

n

)
,

where K(·) = Ks(·,F )−K1(·,F )(L2(F )−L(F))′ −(L2(F )−L(F))(K1(·,F ))′.
Hence,

√
n
(
vec

(
S(Fn)

) − vec(S(F ))
) d→ Nd2(0,V ),

where V is the covariance matrix of vec(K(X)).

The main ideas and the outline of the proof are as follows. The key problem is
to approximate

Iin = √
n

(∫
hi(x)wi

(
D(x,Fn)

)
dFn(x)

−
∫

hi(x)wi

(
D(x,F )

)
dF(x)

)
, i = 1,2,

whereh1(x) = x − L(F) or 1 andh2(x) = ks(x,F ) or 1. The difficulty lies in
the first integrand—it depends onFn. By differentiability of wi , there isθin(x)
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betweenD(x,F ) andD(x,Fn) such that

Iin =
∫

hi(x)wi

(
D(x,F )

)
dνn(x) +

∫
hi(x)w

(1)
i

(
θin(x)

)
Hn(x)dFn(x).

The CLT takes care of the first term on the right-hand side. Call the second termI2
in.

Then by (A1) and (A2),

I2
in =

∫
hi(x)w

(1)
i

(
D(x,F )

)
Hn(x)dFn(x) + op(1).

Now by virtue of (A3) and (A4) (and, consequently, asymptotic tightness ofHn)
and Fubini’s theorem,

I2
in =

∫ (∫
hi(x)w

(1)
i

(
D(x,F )

)
h(x, y) dF (x)

)
dνn(y) + op(1).

The desired results in Theorem 2.2 follow from the above arguments. See the
Appendix for details.

Influence function. Now we study the influence function ofS(·). For a given
distributionF in R

d and anε > 0, the version ofF contaminated by anε amount
of an arbitrary distributionG in R

d is denoted byF(ε,G) = (1− ε)F + εG. The
influence function of a functionalT at a given pointx ∈ R

d for a givenF is defined
as [Hampel, Ronchetti, Rousseeuw and Stahel (1986)]

IF(x;T ,F ) = lim
ε→0+

(
T

(
F(ε, δx)

) − T (F )
)
/ε,

whereδx is the point-mass probability measure atx ∈ R
d . IF(x;T ,F ) describes

the relative effect (influence) onT of an infinitesimal point-mass contamination
at x, and measures the local robustness ofT . An estimator with a bounded
influence function (with respect to a given norm) is therefore robust (locally, as
well as globally) and very desirable. Define for anyy ∈ R

d ,

Hε(x, y) = (
D

(
x,F (ε, δy)

) − D(x,F )
)
/ε, ‖Hε(y)‖∞ = sup

x∈Rd

|Hε(x, y)|.

If the limit of Hε(x, y) exists asε → 0+, then it is IF(y;D(x,F ),F ). In
the following, we assume thatIF(y;D(x,F ),F ) exists. The latter is true for
the halfspace [Romanazzi (2001)], the projection [Zuo, Cui and Young (2004)], the
weightedLp [Zuo (2004)] and Mahalanobis depth (MD) functions. To establish
the influence function ofS(·), we need the following condition, a counterpart
of (A1). Denote byOy(1) a quantity which may depend ony but is bounded
asε → 0.

(A1′) ‖Hε(y)‖∞ = Oy(1) and supx∈Dr0
‖x‖|Hε(x, y)| = Oy(1).

Condition (A1′) holds forHD and weightedLp depth with a positiver0 and
for PD andMD with r0 = 0. Replaceh(y, x) in (6) and (7) byIF(x;D(y,F ),F )

and call the resulting functions̃Ki(x,F ), i = 1,2, andK̃s(x,F ), respectively. We
have the following:
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THEOREM 2.3. Under (A1′) and (A2),

IF(y;S,F ) = K̃s(y,F ) − K̃1(y,F )
(
L2(F ) − L(F)

)′
− (

L2(F ) − L(F)
)(

K̃1(y,F )
)′
.

For smooth wi , i = 1,2, the gross error sensitivity of S: γ ∗(S,F ) =
supy∈Rd |||IF (y;S,F )|||, where (and hereafter) “||| · |||” stands for a selected matrix
norm, is bounded ifr0 > 0. If r0 = 0, it is also bounded if supy∈Rd ‖yiwi(D(y,

F ))‖ < ∞, i = 1,2. The latter is true forPD andMD and suitablewi , i = 1,2
[such as those in (4)].

Note that the setDr0 in this section could be replaced by any bounded
set containingDr0 or the whole spaceRd , depending on the application. The
latter case corresponds tor0 = 0. Whenr0 > 0, by (A2), wi(r) = 0, i = 1,2,
for r in a neighborhood of 0, corresponding to a depth trimmed (and weighted)
L(F) andS(F ) and a boundedDr0 for anyD(·, ·) vanishing at infinity.

This section provides a general mechanism for establishing the asymptotics
and the influence function of general depth weighted scatter estimators. Some
of the sufficient conditions presented here might be slightly weakened in some
minor aspects (e.g., forw1 Lipschitz continuity suffices). Also note that results
in Theorems 2.2 and 2.3 become much simpler ifw1 = w2 or if F is centrally
symmetric sinceL2(F ) = L(F) in these cases.

3. Projection depth weighted and Stahel–Donoho scatter estimators. This
section is specialized to the specific case of the general depth weighted scatter
estimators, the projection depth weighted or Stahel–Donoho scatter estimators.

Let µ and σ be univariate location and scale functionals, respectively. The
projection depth of a point x ∈ R

d with respect to a given distributionF of a
random vectorX ∈ R

d , PD(x,F ), is defined as [Zuo and Serfling (2000a) and
Zuo (2003)]

PD(x,F ) = 1/
(
1+ O(x,F )

)
,(8)

where theoutlyingness O(x,F ) = sup‖u‖=1 (u′x − µ(Fu))/σ (Fu), andFu is the
distribution of u′X. Throughout our discussionsµ and σ are assumed to exist
for the univariate distributions involved. We also assume thatµ and σ are
affine equivariant, that is,µ(FsY+c) = sµ(FY ) + c and σ(FsY+c) = |s|σ(FY ),
respectively, for any scalarss and c and random variableY ∈ R. ReplacingF

with its empirical versionFn based on a random sampleX1, . . . ,Xn, an empirical
versionPD(x,Fn) is obtained. Withµ and σ being the median (Med) and the
median absolute deviation (MAD), respectively, Liu (1992) first suggested the use
of PD(x,Fn) as a depth function. For motivation, examples and related discussion
of (8), see Zuo (2003).

To establish the asymptotics and influence function of the projection depth
weighted scatter estimators, some conditions onµ and σ are needed. Denote
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by Fnu the empirical distribution function of{u′Xi, i = 1, . . . , n} for any unit
vectoru ∈ R

d .

(B1) sup‖u‖=1 |µ(Fu)| < ∞, sup‖u‖=1 σ(Fu) < ∞ and inf‖u‖=1 σ(Fu) > 0.

(B2) sup‖u‖=1 |µ(Fnu) − µ(Fu)| = Op(1/
√

n ), sup‖u‖=1 |σ(Fnu) − σ(Fu)| =
Op(1/

√
n ).

Conditions (B1) and (B2) hold for common choices of(µ,σ ) and a wide range
of distributions; see Remark 2.4 of Zuo (2003) for a detailed discussion [also see
Zuo, Cui and He (2004)].

3.1. Large sample behavior and influence function.

3.1.1. General distributions.

√
n-consistency and asymptotic normality. Denote byPWS(·) a PD weighted

scatter estimator. To establish the
√

n-consistency ofPWS(Fn), we need the
following lemma [Zuo (2003)]:

LEMMA 3.1. Under (B1) and (B2), supx∈Rd (1 + ‖x‖)|PD(x,Fn) −
PD(x,F )| = Op(1/

√
n ).

By the lemma, (A1) holds forPD with r0 = 0 under (B1) and (B2). For smooth
wi , i = 1,2, (A2) also holds since supx∈Rd ‖x‖PD(x,F ) < ∞ under (B1) [see
the proof of Theorem 2.3 of Zuo (2003)] and

∫ ‖x‖w(1)
2 (PD(x,F )) dF (x) ≤

C
∫ ‖x‖PD(x,F )dF (x) < ∞. These and Theorem 2.1 lead to the next theorem.

THEOREM 3.1. Assume that w
(1)
1 (r) is continuous and w

(1)
2 (r) is Lip-

schitz continuous on [0,1], w
(1)
i (r) = O(ri) for small r ≥ 0, and

∫
wi(PD(x,

F )) dF (x) > 0, i = 1,2. Then under (B1) and (B2), PWS(Fn) − PWS(F ) =
Op(1/

√
n ).

Maronna and Yohai (1995) showed the
√

n-consistency of the S–D scatter
estimator, a special case ofPWS (Fn) (and with w1 = w2). In Theorem 3.1
w

(1)
i (r) = O(ri) for small r ≥ 0 can be relaxed towi(0) = 0 andw

(1)
2 (0) = 0,

i = 1,2. Note thatwi in (4) can serve aswi in Theorem 3.1.
For smoothwi , i = 1,2, in Theorem 3.1, it is readily seen that (A3) holds

with r0 = 0 under (B1). To establish the asymptotic normality ofPWS(Fn), we
need to verify (A4). For anyx let u(x) be the set of unit vectorsu satisfying
O(x,F ) = (u′x − µ(Fu))/σ (Fu). If u(x) is a singleton, we also useu(x) as the
unique direction. IfX is a continuous random variable, nonuniqueness ofu(x)

may occur at finitely many points. Define the following conditions:
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(C1) µ(Fu) andσ(Fu) are continuous inu, σ(Fu) > 0, andu(x) is a singleton
except for pointsx ∈ A ⊂ R

d with P(A) = 0.
(C2) The asymptotic representationsµ(Fnu) − µ(Fu) = 1

n

∑n
i=1 f1(Xi, u) +

op(1/
√

n ) and σ(Fnu) − σ(Fu) = 1
n

∑n
i=1 f2(Xi, u) + op(1/

√
n ) hold

uniformly for u, the graph set of{fj (X,u) :‖u‖ = 1} forms a polynomial
set class withE(fj (X,u)) = 0 for any‖u‖ = 1,

E

[
sup

‖u‖=1
f 2

j (X,u)

]
< +∞

and

E

[
sup

|u1−u2|≤δ

|fj (X,u1) − fj (X,u2)|2
]

→ 0 asδ → 0, j = 1,2.

For details on polynomial set classes, see Pollard (1984). (C1) and (C2) hold for
generalM-estimators of location and scale and a wide range of distributions; see
Zuo, Cui and He (2004) for further discussion. Under these conditions we obtain
the following [Zuo, Cui and He (2004)].

LEMMA 3.2. Under conditions (C1) and (C2), there exists a sequence of
sets Sn ⊂ R

d such that 1 − P {Sn} = o(1) and Hn(x) = ∫
h(x, y) dνn(y) + op(1)

uniformly over Sn with

h(x, y) = (
O(x,F )f2

(
y,u(x)

) + f1
(
y,u(x)

))/(
σ

(
Fu(x)

)(
1+ O(x,F )

)2)
.(9)

Hence, for smoothwi , i = 1,2, in Theorem 3.1, (A4) holds forPD under (B1)
and (C1) and (C2) withr0 = 0 [see Section 2.10.2 of van der Vaart and Wellner
(1996) for the verification of a Donsker class]. In light of Theorem 2.2 for general
depth weighted scatter estimators, we have the following:

THEOREM 3.2. For wi , i = 1,2, in Theorem 3.1 and under (B1) and (B2)
and (C1) and (C2),

PWS(Fn) − PWS(F ) = 1

n

n∑
i=1

K(Xi) + op

(
1

n

)
,

where K(x) = Ks(x,F ) − K1(x,F )(L2(F ) − L(F))′ − (L2(F ) − L(F)) ×
(K1(x,F ))′. Hence

√
n
(
vec

(
PWS(Fn)

) − vec
(
PWS(F )

)) d→ N(0,V ),

where V is the covariance matrix of vec(K(X)).
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Influence function. Now we derive the influence function of the projection
depth weighted scatter matrices. First we need the following lemma [Zuo, Cui
and Young (2004)].

LEMMA 3.3. Assume that (C1) holds and the influence functions IF(u′y;
µ,Fu) and IF(u′y;σ,Fu) exist and are continuous for a given y ∈ R

d at u = u(x)

which is a singleton. Then

IF
(
y;PD(x,F ),F

)
= O(x,F )IF((u(x))′y;σ,Fu(x)) + IF((u(x))′y;µ,Fu(x))

σ (Fu(x))(1+ O(x,F ))2 .
(10)

Condition (B1) holds automatically under the conditions of this lemma and,
consequently, it can be shown that (A1′) holds withr0 = 0. By Theorem 2.3 we
have the next theorem.

THEOREM 3.3. Under the conditions of Lemma 3.3 and for smooth wi ,
i = 1,2, in Theorem 3.1,

IF(y;PWS,F ) = K̃s(y,F ) − K̃1(y,F )
(
L2(F ) − L(F)

)′
− (

L2(F ) − L(F)
)(

K̃1(y,F )
)′
.

The influence functionIF (y;PWS,F ) in Theorem 3.3 can be shown (details
skipped) to be uniformly bounded iny ∈ R

d (with respect to a matrix norm). Thus,
γ ∗(PWS,F ) < ∞.

3.1.2. Elliptically symmetric distributions. Now we focus on elliptically
symmetric F and (µ,σ ) = (Med,MAD). X ∼ Fθ,	 is elliptically symmetric
about θ with a positive definite matrix	 associated if for any unit vectoru,

u′(X − θ)
d= √

u′	uY with Y
d= −Y , where “d=” stands for “equal in distribution.”

First we have this lemma:

LEMMA 3.4. Let MAD(Y ) = m0 and the density p(y) of Y be continuous
with p(0)p(m0) > 0. Then u(x) is a singleton except at x = θ , and (B1) and (B2)
and (C1) and (C2) hold with

f1(x,u) = √
u′	u

(1
2 − I {u′(x − θ) ≤ 0})/p(0),

f2(x,u) = √
u′	u

(1
2 − I

{|u′(x − θ)| ≤ m0
√

u′	u
})

/2p(m0).

The main part of the proof is largely based on Cui and Tian (1994) and the
details are skipped. Asymptotic normality (and consistency) ofPWS (Fn) follows
immediately from this lemma and Theorem 3.2. The covariance matrixV in
Theorem 3.2 can be concretized.
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Asymptotic normality. Note that Z = 	−1/2(X − θ) ∼ F0 is spherically
symmetric about the origin andU = (U1, . . . ,Ud)′ = Z/‖Z‖ is uniformly
distributed on the unit sphere{x ∈ R

d; ‖x‖ = 1} and is independent of‖Z‖
[Muirhead (1982)]. Define

s0(x) = 1/(1+ x/m0),

si(x) = E
(
U

2(i−1)
1 sign(|U1|x − m0)

)
, i = 1,2,

c0 = Ew2
(
s0(‖Z‖)),

c1 = E
(‖Z‖2w2

(
s0(‖Z‖)))/(dc0),

cj = E
(‖Z‖2j−3s2

0(‖Z‖)w(1)
2

(
s0(‖Z‖)))/(

4m2
0p(m0)

)
, j = 2,3,

t1(x) = c3
(
s2(x) − (

s1(x) − s2(x)
)
/(d − 1)

) + x2w2
(
s0(x)

)
,

t2(x) = c3
(
s1(x) − s2(x)

)
/(d − 1) − c1c2s1(x) − c1w2

(
s0(x)

)
,

where(s1(x) − s2(x))/(d − 1) is defined to be 0 whend = 1.

COROLLARY 3.1. Under the condition of Lemma 3.4and for wi , i = 1,2, in
Theorem 3.1,

PWS(Fn) − PWS(F ) = 1

n

n∑
i=1

K(Xi) + op

(
1

n

)

with K(X) = 	1/2(t1(‖Z‖)UU ′ + t2(‖Z‖)Id)	1/2/c0 and
√

n
(
vec

(
PWS(Fn)

) − vec
(
PWS(F )

)) d→ N(0,V )

with V = σ1(Id2 + Kd,d)(	 ⊗ 	) + σ2 vec(	)vec(	)′, where σ1 = 1/(d(d +
2)c2

0)Et2
1(‖Z‖), σ2 = σ1 + 2

dc2
0
E(t1(‖Z‖)t2(‖Z‖)) + 1

c2
0
Et2

2(‖Z‖), and Kd,d is a

d2 × d2-block matrix with (i, j)-block being equal to δji , δji is a d × d-matrix
which is 1 at entry (j, i) and 0 everywhere else, i, j = 1, . . . , d.

Asymptotic relative efficiency. With asymptotic normality established above,
we now are in a position to study the asymptotic relative efficiency of the
scatter estimatorPWS(Fn). We shall focus on its estimation of the “shape”
of 	, that is, its “shape component”; see Tyler (1983) and Kent and Tyler
(1996) for detailed arguments. For a given shape measureφ, H(φ;PWS,F ) =
φ(	−1/2PWS(F )	−1/2) measures the shape (or bias) ofPWS(F ) with respect
to 	. It clearly is affine invariant. One example ofφ is the likelihood ratio test
statisticφ0 measuring the ellipticity (sphericity) of any positive definiteT [see
Muirhead (1982), also see Maronna and Yohai (1995)],

φ0(T ) = (
trace(T )/d

)d/
det(T ).

For thisφ0, n log(H(φ0;PWS,Fn)) has a limiting distribution. More generally, we
have the following:
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THEOREM 3.4. Assume that scatter functional S(·) is affine equivariant and
for elliptically symmetric Fθ,	 , S(F ) = c	 for some c > 0 and

√
n(vec(S(Fn)) −

vec(S(F )))
d→ N(0,V ) with V = s1(Id2 +Kd,d)(	 ⊗	)+ s2 vec(	)vec(	)′, for

some si > 0, i = 1,2. Then

n log
(
φ0

(
	−1/2S(Fn)	

−1/2)) d→ s1

c2χ2
(d−1)(d+2)/2 as n → ∞.

The details of the proof are skipped, but the main ideas are as follows.
By affine equivariance ofS(·), assume	 = Id . Then we can writeS(Fn) =
c(Id + n−1/2Z/c) with N(0,V ) as the asymptotic distribution of vec(Z), where
Z = (zij ). Now expandn log(φ0(	

−1/2S(Fn)	
−1/2)) and write

n log
(
φ0

(
	−1/2S(Fn)	

−1/2)) = (
trace(Z2) − (

trace(Z)
)2

/d
)
/(2c2) + Op(n−1/2)

= z̃′Bz̃/c2 + Op(n−1/2),

with z̃ = (z11/
√

2, . . . , zdd/
√

2, z12, . . . , z1d, z23, . . . , z(d−1)d)
′ andB = diag(Id −

11′/d, Id(d−1)/2), where1 = (1)d×1. Let A be the asymptotic covariance matrix
of z̃. ThenBAB = s1B. The desired result follows since the rank ofB is (d − 1) ×
(d + 2)/2. For related discussion see Muirhead (1982).

In light of Theorem 3.4, forPWS(Fn), si = σi , i = 1,2, andc = c1 are given in
Corollary 3.1; for the sample covariance matrixCOV(Fn), c = 1 ands1 = 1 + κ

if Fθ,	 has kurtosis 3κ [Tyler (1982)]. Clearly, the ratioc2
1(1 + κ)/σ1 measures

the asymptotic relative efficiency (ARE) ofPWS(Fn) with respect toCOV(Fn) at
the given modelFθ,	 . The same idea was employed in Tyler (1983) to compute
AREs of scatter estimators. At the multivariate normal model,κ = 0, hence the
ratio c2

1/σ1 is the ARE ofPWS(Fn) with respect toCOV(Fn).
Considerwi , i = 1,2, in (4). They are selected to meet the requirements in

Theorem 3.1 and to down-weight exponentially less deep points to get better
performance of PWS. Also, appropriate tuning ofC and K can lead to highly
efficient (and robust) PWS [see Zuo, Cui and He (2004) for related comments ].
The behavior ofw2 is depicted in Figure 1 withC = 0.32 andK = 0.2.

FIG. 1. The behavior of w2(r) with C = 0.32 and K = 0.2. Left: w2(r). Right:w(1)
2 (r).
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TABLE 1
The asymptotic relative efficiency of PWS versus the dimension d

d

C = 1
1+√

d/�−1(3/4)

K = 2

C = 1
1+√

d/�−1(3/4)

K = 3

C = 1
1+√

2d

K = 2

C = 1
1+√

2d

K = 3

2 0.922 0.883 0.904 0.862
3 0.957 0.933 0.945 0.918
4 0.976 0.959 0.969 0.945
5 0.980 0.974 0.979 0.965
6 0.989 0.980 0.983 0.974
7 0.990 0.986 0.986 0.980
8 0.993 0.991 0.991 0.985
9 0.994 0.992 0.992 0.987

10 0.995 0.993 0.994 0.980
15 0.998 0.998 0.996 0.995
20 1.00 0.999 0.999 0.997
30 1.00 1.00 1.00 0.999

Table 1 reports the AREs ofPWS(Fn) [with respect toCOV(Fn)] versus
the dimensiond and selectedC and K at N(0, Id) with w2 above. Here we
selectC ’s that are close to Med(PD(X,F )) to get better performance of PWS.
It is seen thatPWS(Fn) possesses very high ARE for suitableK andC, which, in
fact, approaches 100% rapidly as the dimensiond increases. Note that the ARE
of PWS(Fn) here does not depend on that of the underlying projection depth
weighted mean(PWM). The ARE of the latter depends onw1 and behaves like
that ofPWS(Fn) [Zuo, Cui and He (2004)].

Influence function. Under the condition of Lemma 3.4, it can be shown that

IF
(
u(x)′y,Med,Fu(x)

) = ‖	−1/2x‖
2p(0)‖	−1x‖ sign(x′	−1y),

IF
(
u(x)′y,MAD ,Fu(x)

) = ‖	−1/2x‖
4p(m0)‖	−1x‖ sign(|x′	−1y| − m0‖	−1/2x‖).

These functions are continuous atu(x) almost surely. By Lemmas 3.4 and 3.3 we
have

IF
(
x;PD(y,F ),F

)
= s2

0(‖	−1/2y‖)
m0

×
(‖	−1/2y‖sign(|y′	−1x| − m0‖	−1/2y‖)

4m0p(m0)
+ sign(y′	−1x)

2p(0)

)
.

By virtue of Theorem 3.3, we have the next corollary.
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COROLLARY 3.2. Under the condition of Lemma 3.4and for wi , i = 1,2, in
Theorem 3.1,

IF
(
x;PWS,F0,Id

) = (
t1(‖x‖)xx′/‖x‖2 + t2(‖x‖)Id

)
/c0,

IF(x;PWS,Fθ,	) = 	1/2(IF(
	−1/2(x − θ);PWS,F0, Id

))
	1/2.

Figure 2 indicatesIF(x;PWS,Fθ,	) is uniformly bounded inx ∈ R
d relative to

a matrix norm.
Maintaining a good balance between high efficiency and a bounded influence

function is always a legitimate concern for estimators. Many existing high
breakdown estimators fail to do so though. CM- [Kent and Tyler (1996)] and
τ - [Lopuhaä (1999)] estimators are among the few exceptions. In light of these
papers, we consider a gross error sensitivity index for the shape of the scatter
estimatorS,

G2(S,F ) = GES(S,F )/
(
(1+ 2/d)(1− 1/d)1/2),

where GES(S,F ) is the gross-error-sensitivity ofS(F )/ trace(S(F )), the shape
component of the scatter functionalS(F ). In our case it is seen thatG2(PWS,

F ) = supr≥0 t1(r)/(c0(d + 2)). Table 2 reports the ARE andG2 of scatter
estimators (along with those of the corresponding location estimators listed in
parentheses; in the location caseG2 = γ ∗) for d = 2,5 and 10.

Table 2 lists only the ARE andG2 for τ - and PWS estimators. The
corresponding indices for the CM-estimators are omitted since they are almost
the same as those of theτ -estimators. The indices forτ(CM)-estimators are
obtained by optimizingG2 of the corresponding location estimators based on
Tukey’s biweight function [Kent and Tyler (1996) and Lopuhaä (1999)]. The
weight functionw2 in (4) is employed in our calculation for the indices of PWS
[and w1 in (4) for PWM] with K = 3 andC = 1/(1 + √

ξdd ), whereξ2 = 2.3,
ξ5 = 1.2 and ξ10 = 0.9 for PWS [andξd = 1.2 for PWM]. The values ofC
here are slightly different from those in Table 1 to get (nearly) optimal ARE
and G2 simultaneously. Inspecting Table 2 reveals that, compared with leading

FIG. 2. The behavior of IF(x;PWS,F0,I2) with w2 in (4). Left:−(1,1) entry. Right:−(1,2) entry.
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TABLE 2
The ARE and the gross error sensitivity index G2 of

scatter (location) estimators

d Estimator ARE G2

2 τ (CM)- 0.8670 (0.9057) 1.415 (1.861)
PWS 0.8810 (0.9152) 1.318 (1.818)

5 τ (CM)- 0.9099 (0.9354) 1.275 (2.588)
PWS 0.9180 (0.9516) 1.057 (2.546)

10 τ (CM)- 0.9505 (0.9606) 1.224 (3.425)
PWS 0.9620 (0.9734) 0.979 (3.421)

competitors, the projection depth weighted scatter estimator PWS behaves very
well overall.

Maximum bias. Define themaximum bias of a scatter matrixS under anε

amount of contamination atF asB(ε;S,F ) = supG |||S(F (ε,G))−S(F )|||, where
G is any distribution inR

d . The contamination sensitivity of S at F is defined
as γ (S,F ) = limε→0+ supG |||(S(F (ε,G)) − S(F ))/ε|||; see He and Simpson
(1993) for a related definition for location estimators.B(ε;S,F ) is the maximum
deviation (bias) ofS under anε amount of contamination atF , and measures
mainly the global robustness ofS. γ (S,F ) indicates the maximum relative effect
on S of an infinitesimal contamination atF , and measures the local, as well as
global, robustness ofS. The minimum amountε∗ of contamination atF which
leads to an unboundedB(ε;S,F ) is called the (asymptotic)breakdown point (BP)
of S atF , that is,ε∗ = min{ε :B(ε;S,F ) = ∞}.

In many cases, the maximum bias is attained by a point-mass distribution;
see Huber (1964), Martin, Yohai and Zamar (1989), Chen and Tyler (2002) and
Zuo, Cui and Young (2004). In the following, we derive the maximum bias
and contamination sensitivity of the shape component of PWS under point-mass
contamination. We conjecture that our results hold for general contamination. For
any 0≤ ε < 1/2 andc ∈ R, defined1 = d1(ε), mi(c, ε), i = 1,2, by

P
(
Y ≤ d1(ε)

) = 1

2(1− ε)
,

P
(|Y − c| ≤ m1(c, ε)

) = 1− 2ε

2(1− ε)
,

P
(|Y − c| ≤ m2(c, ε)

) = 1

2(1− ε)

(assume thatd1,m1,m2 are well defined). Forx ∈ R
d , write x′ = (x1, x

′
2) with

x1 = x11 ∈ R and x2 = (x21, . . . , x2(d−1))
′ ∈ R

d−1. Likewise, partition the unit
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vectoru ∈ R
d . For anyr ≥ 0, define

f1(x, r, ε) = sup
0≤u1≤1

√
1− u2

1 ‖x2‖ + |u1x1 − f4(u1, r, d1)|
f3(u1, r, d1)

,

f2(r, ε) = sup
0≤u1≤1

|u1r − f4(u1, r, d1)|
f3(u1, r, d1)

,

with f3(u1, r, d1) being the median of{m1(f4(u1, r, d1), ε), |u1r − f4(u1, r, d1)|,
m2(f4(u1, r, d1), ε)}, f4(u1, r, d1) being the median of{−d1, u1r, d1} (ε is
suppressed inf3 andf4). Define, fori = 1,2,

φi(r, ε) = (1− ε)

∫
x1wi

(
1

1+ f1(x, r, ε)

)
dF0(x),

ψi(r, ε) = (1− ε)

∫
x2
i1w2

(
1

1+ f1(x, r, ε)

)
dF0(x),

ηi(r, ε) = (1− ε)

∫
wi

(
1

1+ f1(x, r, ε)

)
dF0(x),

γi(r, ε) = εwi

(
1

1+ f2(r, ε)

)
,

b1(r, ε) = ψ1(r, ε) − ψ2(r, ε) + γ2(r, ε)r
2

η2(r, ε) + γ2(r, ε)
+ (φ1(r, ε) + γ1(r, ε)r)

2

(η1(r, ε) + γ1(r, ε))2

− 2
φ1(r, ε)φ2(r, ε) + (φ1(r, ε)γ2(r, ε) + φ2(r, ε)γ1(r, ε))r

(η1(r, ε) + γ1(r, ε))(η2(r, ε) + γ2(r, ε))

− 2
γ1(r, ε)γ2(r, ε)r

2

(η1(r, ε) + γ1(r, ε))(η2(r, ε) + γ2(r, ε))
,

b2(r, ε) = ψ2(r, ε)/
(
η2(r, ε) + γ2(r, ε)

) − c1.

For anyy ∈ R
d , denoteỹ = 	−1/2(y − θ). We have the next theorem:

THEOREM 3.5. Under the condition of Lemma 3.4 and for any ε > 0 and
y ∈ R

d ,

PWS
(
F(ε, δy)

) − PWS(F ) = 	1/2(b1(‖ỹ‖, ε)ỹỹ′/‖ỹ‖2 + b2(‖ỹ‖, ε)Id

)
	1/2.

For weight functionswi , i = 1,2, in Theorem 3.1, it can be shown that for any
ε < 1/2, trace(PWS(F (ε, δy)) − PWS(F )) is uniformly bounded with respect to
y ∈ R

d . Hence we have the following:

COROLLARY 3.3. Under the condition of Lemma 3.4and for weight functions
wi , i = 1,2, in Theorem 3.1,ε∗(PWS,F ) = 1/2.
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Focusing again on the shape component of PWS and based on the result in
Theorem 3.5, we can define in a straightforward fashion a gross error sensitivity
index (GESI), a maximum bias index (MBI) and a contamination sensitivity index
(CSI), respectively, as follows:

GESI(PWS,F ) = sup
y∈Rd

∣∣∣∣
∣∣∣∣
∣∣∣∣ lim
ε→0

b1(‖ỹ‖, ε)	1/2(ỹỹ′/‖ỹ‖2)	1/2/ε

∣∣∣∣
∣∣∣∣
∣∣∣∣,

MBI(ε;PWS,F ) = sup
y∈Rd

|||b1(‖ỹ‖, ε)	1/2(ỹỹ′/‖ỹ‖2)	1/2|||,

CSI(PWS,F ) = lim
ε→0+ sup

y∈Rd

|||b1(‖ỹ‖, ε)	1/2(ỹỹ′/‖ỹ‖2)	1/2/ε|||.

In view of Corollary 3.2, it can be seen that GESI(PWS,F ) = λ1 ×
supr≥0 |t1(r)|/c0, which is ≤ CSI(PWS,F ), whereλ1 is the largest eigenvalue
of 	. Note that under point-mass contamination the only difference between CSI
and GESI is the order in which the suprema and the limits are taken in their respec-
tive definitions above. This might tempt one to believe that these two sensitivity
indices are the same if it is taken for granted that the order in which the supremum
and the limit are taken is interchangeable. Unfortunately, this is not always the
case [see, e.g., Chen and Tyler (2002)]. In the following, we prove that for PWS,
the orderis interchangeable and CSI(PWS,F ) is the same as GESI(PWS,F ). The
proof and the derivation of the following result, given in the Appendix, is rather
technically demanding and has no precedent in the literature.

THEOREM 3.6. Under the condition of Lemma 3.4 and for wi , i = 1,2, in
Theorem 3.1:

(a) MBI(ε;PWS,F ) = λ1 supr≥0 b1(r, ε) and
(b) CSI(PWS,F ) = GESI(PWS,F ) = λ1 supr≥0 |t1(r)|/c0.

The behavior of MBI(ε;PWS,N(0, I2)) [and B(ε;PWS,N(0, I2))], together
with that of the (explosion) maximum bias of MAD atN(0,1) − B(ε;MAD ,

N(0,1)) (note that no separate shape and scale components correspond to MAD,
a univariate scale measure), as functions ofε is revealed in Figure 3. The slopes
of the tangent lines at the origin represent the CSI (orγ ) of PWS and MAD. From
the figures we see that the maximum bias (index) of PWS is quite moderate (and
slightly larger than that of the univariate scale measure MAD) and it increases
very slowly as the amount of contaminationε increases and jumps to infinity as
0.45< ε → 1

2, confirming that the asymptotic breakdown point of PWS is1
2.

3.2. Finite sample behavior. In this section the finite sample robustness and
relative efficiency ofPWS(Fn) are investigated. Finite sample results in this section
confirm the asymptotic results in the last section.
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FIG. 3. The behavior of the maximum bias (index) of PWS and MAD. Left: maximum bias indices
of PWS and MAD. Right:maximum biases of PWS and MAD.

3.2.1. Finite sample breakdown point. Let Xn = {X1, . . . ,Xn} be a sample of
sizen from X in R

d (d ≥ 1). The replacement breakdown point (RBP) [Donoho
and Huber (1983)] of a scatter estimatorV atXn is defined as

RBP(V ,Xn) = min
{
m

n
: trace

(
V (Xn)V (Xn

m)−1 + V (Xn)−1V (Xn
m)

) = ∞
}
,

whereXn
m is a contaminated sample resulting from replacingm points ofXn with

arbitrary values.
In the following discussion of the RBP of the projection depth weighted scatter

estimators,(µ,σ ) = (Med,MAD k), where MADk is a modified MAD which can
lead to a slightly higher RBP. Similar ideas of modifying MAD to achieve higher
RBP were used in Tyler (1994) and Gather and Hilker (1997). Here MADk(x

n) =
Medk({|x1 − Med(xn)|, . . . , |xn − Med(xn)|}), with Medk(x

n) = (x((n+k)/2�) +
x((n+1+k)/2�))/2, for 1 ≤ k ≤ n, andx(1) ≤ · · · ≤ x(n) being ordered values of
x1, . . . , xn in R

1 (note MAD1 = MAD). Denote by PWS k
n the corresponding

scatter estimator.
A random sampleXn is said to bein general position if there are no more than

d sample points ofXn lying in any (d − 1)-dimensional subspace. Let·� be the
floor function. We have the next theorem.

THEOREM 3.7. Let (µ,σ ) = (Med,MAD) and PD(x,F ) be the depth
function. Let wi(r) be continuous on [0,1] and positive and ≤ Mir

i on
(0,1] for some Mi > 0, i = 1,2. Then for Xn in general position (n > 2d),
RBP(PWSk

n,X
n) = min{(n − k + 2)/2�/n, (n + k + 1− 2d)/2�/n}.

Whenk = d or d + 1, RBP(PWSk
n,X

n) = (n − d + 1)/2�/n, the upper bound
of RBP of any affine equivariant scatter estimators; see Davies (1987). The
RBP of the Stahel–Donoho scatter estimator, a special case ofPWSk

n, has been
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given in Tyler (1994). Note that for the smoothwi in (A2), wi(r) ≤ Mir
i holds

automatically,i = 1,2. The result in Theorem 3.7 holds true for anyµ andσ that
share the RBPs of Med and MADk , respectively.

3.2.2. Finite sample relative efficiency. We generate 400 samples from the
model (1 − ε)N(0, I2) + εδ(100,0) with ε = 0%, 10% and 20% for sample sizes
n = 100,200, . . . ,1000. An approximate algorithm with time complexityO(n3)

(for d = 2) is utilized for the computation of thePDn(Xi), i = 1, . . . , n, and the
projection depth weighted scatter matrix.(µ,σ ) = (Med,MAD) and the weight
functions wi(·) defined in (4), withC = 1/(1 + √

2/�−1(3/4)) ≈ 0.323 and
K = 2, are used in our simulation.

We calculate for a scatter estimatorVn the mean of the likelihood ratio
test (LRT) statistic LRT(Vn) = 1

m

∑m
j=1 φ0(Vj ) with m = 400 andVj being

the estimate for thej th sample. In the case withε = 0% (no contamination),
the mean of then log likelihood ratio test (LLRT) statistic with LLRT(Vn) =
1
m

∑m
j=1 n log(φ0(Vj )) is calculated. The finite sample relative efficiency (RE)

of Vn at ε = 0% is then obtained by dividing the LLRT of the sample covariance
matrix by that ofVn [Maronna and Yohai (1995) used the same measure for finite
sample relative efficiency]. Some simulation results are listed in Table 3.

The finite sample RE ofPWS(Fn) related to the sample covariance matrix at
N(0, I2) increases from about 80% forn = 20 to 91% forn = 100 and is around
90%–93% and very stable forn = 100,200, . . . ,1000 [and is very close to its
asymptotic value 92.2% (listed in Table 1)]. In the contamination cases, the results
in Table 3 indicate thatPWS(Fn) is very robust, whereasCOV(Fn) is very sensitive
to outliers. For the special case ofPWSn, the Stahel–Donoho estimator, a related
simulation study was conducted by Maronna and Yohai (1995).

TABLE 3
Mean of the likelihood ratio test statistic and relative efficiency

PWS COV PWS COV PWS COV RE

n ε = 0% ε = 10% ε = 20% (ε = 0%)

100 1.022 1.021 1.110 234.09 1.523 420.80 0.913
200 1.011 1.010 1.109 231.03 1.534 407.10 0.911
300 1.007 1.006 1.106 230.04 1.528 405.72 0.900
400 1.006 1.005 1.105 227.79 1.539 404.13 0.903
500 1.004 1.004 1.103 227.18 1.555 404.43 0.901
600 1.004 1.003 1.105 227.26 1.560 404.78 0.917
700 1.003 1.003 1.103 227.37 1.545 403.20 0.930
800 1.003 1.002 1.104 226.28 1.555 404.00 0.932
900 1.002 1.002 1.103 226.27 1.549 401.45 0.923

1000 1.002 1.002 1.102 226.19 1.543 401.75 0.926
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Though alternatives exist, thew2 we select results in a very good performance
of PWSn and satisfies all the requirements in the previous sections. Note that
smallerC can lead to a higher RE ofPWSn under no contamination, while largerC

can lead to a better performance ofPWSn under contamination. The same is true
for the parameterK . Moderate values ofC andK thus are recommended (and are
used in our simulation); see Zuo, Cui and He (2004) for related discussion.

4. Concluding remarks. General depth weighted scatter estimators are
introduced and studied. The estimators possess nice properties. In a very general
setting, consistency and asymptotic normality of the estimators are established
and their influence functions are derived. These general results are concretized
and demonstrated via the projection depth weighted scatter estimators. The latter
estimators include as a special case the Stahel–Donoho estimator, the first one
constructed which combines affine equivariant and high breakdown point, but has
an unknown limiting distribution until this paper.

Frequently high breakdown point affine equivariant estimators suffer from a low
asymptotic relative efficiency and an unbounded influence function. The projection
depth weight scatter estimators are proven to be exceptions. They combine the
best possible breakdown point and a moderate maximum bias curve (global
robustness) and a bounded influence function (local robustness) and possess, in
the meantime, a very high asymptotic relative efficiency at multivariate normal
models. Simulations with clean and contaminated data sets reveal that the global
robustness and high efficiency properties hold at finite samples.

Finally, we comment that thewi in this paper do not include indicator functions.
This allows us to treat general depth and distribution functions. To cover trimmed
means (with indicator weight functions), one has to impose more conditions on
these functions (but the efficiency will be lower).

APPENDIX: SELECTED (SKETCHES OF) PROOFS AND
AUXILIARY LEMMAS

PROOF OF THEOREM 2.1. Denote byl1(F ) and l2(F ) the numerator and
the denominator ofL(F), respectively, ands1(F ) and s2(F ) those ofS(F ),
respectively. Write

L(Fn) − L(F) = ((
l1(Fn) − l1(F )

) − L(F)
(
l2(Fn) − l2(F )

))
/l2(Fn),(11)

S(Fn) − S(F ) =
(∫

xx′w2
(
D(x,Fn)

)
dFn(x)

−
∫

xx′w2
(
D(x,F )

)
dF(x)

)/
s2(Fn)

− S0(F )
(
s2(Fn) − s2(F )

)
/s2(Fn)(12)
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− (
L2(Fn) − L2(F )

)(
L(Fn)

)′ − L2(F )
(
L(Fn) − L(F)

)′
− (L(F ))

(
L2(Fn) − L2(F )

)′
− (

L(Fn) − L(F)
)(

L2(Fn)
)′

+ (
L(Fn) − L(F)

)(
L(Fn)

)′ + L(F)
(
L(Fn) − L(F)

)′
,

with S0(F ) = ∫
xx′w2(D(x,F )) dF (x)/s2(F ). We now show that under

(A1) and (A2),

Iin =
∫

‖x‖i
∣∣wi

(
D(x,Fn)

) − wi

(
D(x,F )

)∣∣dFn(x)

= Op

(
1/

√
n

)
, i = 1,2.

(13)

By (A2), there exists aθin(x) betweenD(x,Fn) and D(x,F ) such that for
i = 1,2,

Iin ≤
∫

‖x‖i
∣∣w(1)

i

(
θin(x)

) − w
(1)
i

(
D(x,F )

)∣∣ |Hn(x)|√
n

dFn(x)

+
∫

‖x‖iw
(1)
i

(
D(x,F )

) |Hn(x)|√
n

dFn(x).

Call the two terms in the right-hand sideI (1)
in andI

(2)
in , respectively. Letr1 = αr0.

By (A1), D(x,F ) + supx∈Rd |D(x,Fn) − D(x,F )| = D(x,F ) + Op(1/
√

n ) ≥
θin(x). This and (A2) and (A1) lead to

I
(1)
in =

∫
{θin(x)>r1}∪Dr1

‖x‖i
∣∣w(1)

i

(
θin(x)

) − w
(1)
i

(
D(x,F )

)∣∣ |Hn(x)|√
n

dFn(x)

≤ C

∫
{D(x,F )+Op(1/

√
n )>r1}∪Dr1

‖x‖i

( |Hn(x)|√
n

)i

dFn(x) = Op

((
1√
n

)i)

and

I
(2)
in =

∫
Dr0

‖x‖iw
(1)
i

(
D(x,F )

) |Hn(x)|√
n

dFn(x) = Op

(
1√
n

)
.

HenceIin = Op(1/
√

n ). Likewise we can show that∫
wi

(
D(x,Fn)

)
dFn(x) −

∫
wi

(
D(x,F )

)
dF(x) = Op

(
1/

√
n

)
.(14)

Let h(x) = xx′, x or 1. It follows from displays (13) and (14) and the CLT that∫
h(x)wi

(
D(x,Fn)

)
dFn(x) −

∫
h(x)wi

(
D(x,F )

)
dF(x) = Op

(
1/

√
n

)
.

By (11), the boundedness ofL(F) and l2(F ), and the fact thatl2(Fn) =
l2(F ) + Op(1/

√
n ), we haveL(Fn) − L(F) = Op(1/

√
n ). Likewise we have
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L2(Fn) − L(F) = Op(1/
√

n ). These, (12) and the boundedness ofS0(F ), s2(F ),
L(F) andL2(F ) yield S(Fn) − S(F ) = Op(1/

√
n ). �

PROOF OF THEOREM 2.2. Employing the notation in the proof of Theo-
rem 2.1, write

√
n

(∫
xx′w2

(
D(x,Fn)

)
dFn(x) −

∫
xx′w2

(
D(x,F )

)
dF(x)

)

=
∫

xx′w(1)
2

(
θ2n(x)

)
Hn(x)dFn(x) +

∫
xx′w2

(
D(x,F )

)
dνn(x),

whereθ2n(x) is a point betweenD(x,Fn) andD(x,F ). Following the proof of
Theorem 2.1 and by (A1)–(A4) (and, consequently, the asymptotic tightness ofHn

onSn), we can show that∫
xx′w(1)

2

(
θ2n(x)

)
Hn(x)dFn(x)

=
∫

xx′w(1)
2

(
D(x,F )

)
Hn(x)dFn(x) + op(1)

=
∫

xx′w(1)
2

(
D(x,F )

)
Hn(x)dF (x) + op(1).

Therefore,

√
n

(∫
xx′w2

(
D(x,Fn)

)
dFn(x) −

∫
xx′w2

(
D(x,F )

)
dF(x)

)

=
∫

xx′w(1)
2

(
D(x,F )

)
Hn(x)dF (x) +

∫
xx′w2

(
D(x,F )

)
dνn(x) + op(1).

By (A4) and Fubini’s theorem, we have

√
n

(∫
xx′w2

(
D(x,Fn)

)
dFn(x) −

∫
xx′w2

(
D(x,F )

)
dF(x)

)

=
∫ (∫

yy′w(1)
2

(
D(y,F )

)
h(y, x) dF (y) + xx′w2

(
D(x,F )

))
dνn(x)

+ op(1).

(15)

Likewise, we can show that
√

n
(
s2(Fn) − s2(F )

)
= √

n

(∫
w2

(
D(x,Fn)

)
dFn(x) −

∫
w2

(
D(x,F )

)
dF(x)

)

=
∫ (∫

w
(1)
2

(
D(y,F )

)
h(y, x) dF (y) + w2

(
D(x,F )

))
dνn(x)

+ op(1),

(16)
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and fori = 1,2 [see the proof of Theorem 2.1 of Zuo, Cui and He (2004)],√
n
(
Li(Fn) − Li(F )

)
=

{∫ (∫ (
y − Li(F )

)
w

(1)
i

(
D(y,F )h(y, x) dF (y)

+ (x − Li(F )
)
wi

(
D(x,F )

))
dνn(x)

}

×
{∫

wi

(
D(x,F )

)}−1

+ op(1).

(17)

Note thats2(Fn) = s2(F ) + op(1) andLi(Fn) = Li(F ) + op(1), i = 1,2 (see the
proof of Theorem 2.1). By (12) and (15)–(17), we have√

n
((

S(Fn)
) − (

S(F )
))

=
∫ (

Ks(x,F ) − K1(x,F )
(
L2(F ) − L1(F )

)′
− (

L2(F ) − L1(F )
)(

K1(x,F )
)′)

dνn(x) + op(1).

(18)

Note that vec(ab′) = b ⊗ a for anya, b ∈ R
d . The desired result now follows from

the CLT. �

PROOF OFTHEOREM 2.3. The proof follows closely that of Theorem 2.2 and
is thus omitted. �

PROOF OF COROLLARY 3.1. By Theorem 3.2,K(x) = Ks(x,F ) since
Li(F ) = θ for i = 1,2. Assume without loss of generality thatθ = 0. For the
givenF and(µ,σ ), it follows that

u(x) = 	−1x/‖	−1x‖, (x �= 0),

σ
(
Fu(x)

) = m0
√

u(x)′	u(x), O(x,F ) = ‖	−1/2x‖/m0.

Let u = z/‖z‖. Observe that

PWS(F ) =
∫

xx′w2(PD(x,F )) dF∫
w2(PD(x,F )) dF

= 	1/2(
∫

zz′w2(s0(‖z‖)) dF0)	
1/2∫

w2(s0(‖z‖)) dF0

= E
(‖Z‖2w2

(
s0(‖Z‖)))	1/2

(∫
u′udF0

)
	1/2/c0 = c1	

by, for example, Lemma 5.1 of Lopuhaä (1989). By Lemma 3.4, it follows that for
anyx, y ∈ R

d ,

f1
(
x,u(y)

) =
√

u(y)′	u(y)

2p(0)
sign(y′	−1x),

f2
(
x,u(y)

) =
√

u(y)′	u(y)

4p(m0)
sign(|y′	−1x| − m0‖	−1/2y‖).
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Note thatf1(x,u(y)) is an odd function ofy. By Lemma 3.2, we have

c0Ks(x,F )

=
∫

(yy′ − c1	)w
(1)
2

(
s0(‖	−1/2y‖))h(y, x) dF (y)

+ (xx′ − c1	)w2
(
s0(‖	−1/2y‖))

=
∫

(yy′ − c1	)w
(1)
2 (s0(‖	−1/2y‖))O(y,F )f2(x,u(y))

σ (Fu(y))(1+ O(y,F ))2 dF(y)

+ (xx′ − c1	)w2
(
s0(‖	−1/2x‖)).

Let x̃ = 	−1/2x, ỹ = 	−1/2y, ỹ/‖ỹ‖ = u = (u1, . . . , ud)′ andT be an orthogonal
matrix with x̃/‖x̃‖ as its first column. We have

c0Ks(x,F ) − (xx′ − c1	)w2
(
s0(‖	−1/2x‖))

=
∫

(yy′ − c1	)w
(1)
2 (s0(‖ỹ‖))‖ỹ‖s2

0(‖ỹ‖)sign(|(ỹ)′x̃| − m0‖ỹ‖)
4m2

0p(m0)
dF (y)

= 	1/2
∫ {

(ỹỹ′ − c1Id)w
(1)
2

(
s0(‖ỹ‖))‖ỹ‖s2

0(‖ỹ‖)sign
(|(ỹ)′x̃| − m0‖ỹ‖)}

× {4m2
0p(m0)}−1 dF0(ỹ)	1/2

= 	1/2T

∫ {
(ỹ/‖ỹ‖ỹ′/‖ỹ‖‖ỹ‖2 − c1Id)

× w
(1)
2

(
s0(‖ỹ‖))‖ỹ‖s2

0(‖ỹ‖)sign
(|u1|‖x̃‖ − m0

)}
× {4m2

0p(m0)}−1 dF0(ỹ)T ′	1/2

= 	1/2T

(
c3

∫
uu′ sign(|u1|‖x̃‖ − m0) dF0(ỹ) − c1c2s1(‖x̃‖)Id

)
T ′	1/2,

by Theorem 1.5.6 of Murihead (1982). Note that

T c3

∫
uu′ sign(|u1|‖x̃‖ − m0) dF0(ỹ)T ′

= T c3 diag
(
s2(‖x̃‖), s̃2(‖x̃‖), . . . , s̃2(‖x̃‖))T ′

= c3s̃2(‖x̃‖)Id + c3
(
s2(‖x̃‖) − s̃2(‖x̃‖)) x̃

‖x̃‖
x̃′

‖x̃‖ ,

wheres̃2(t) = ∫
u2

2 sign(|u1|t − m0) dF0(ỹ) = (s1(t) − s2(t))/(d − 1). Therefore,
we have

K(X) = Ks(X,F ) = 1

c0
	1/2

(
t1(‖X̃‖) X̃

‖X̃‖
X̃′

‖X̃‖ + t2(‖X̃‖)Id

)
	1/2.
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Now invoking Lemmas 5.1 and 5.2 of Lopuhaä (1989), we obtain the desired
result. �

PROOF OFTHEOREM3.5. We need the following lemma. Its proof is skipped.
Note thatF(ε, δy) = (1 − ε)F + εδy andFu(ε, δy) = (1 − ε)Fu + εδu′y for any
unit vectoru.

LEMMA 5.1. Suppose that X ∼ F is elliptically symmetric about the origin
with a positive definite matrix 	 associated. Let a(u) = √

u′	u. Then:

1. Med(Fu(ε, δx)) = Med{−a(u)d1(ε), u
′x, a(u)d1(ε)}, and

2. MAD(Fu(ε, δx)) = Med{a(u)m1(Med(Fu(ε, δx))/a(u), ε), |u′x − Med(Fu(ε,

δx))|, a(u)m2(Med(Fu(ε, δx))/a(u), ε)}.
We now turn to the proof of Theorem 3.5. By Lemma 5.1, for anyy ∈ R

d , we
have that

µ
(
Fu(ε, δy)

)
/a(u) = Med{−a(u)d1, u

′y, a(u)d1}/a(u)

= Med{−d1(ε), (	
1/2u)′/a(u)	−1/2y, d1(ε)},

σ (Fu(ε, δy))

a(u)
= Med

{
m1

(
µ(Fu(ε, δy))

a(u)
, ε

)
,

∣∣∣∣(	1/2u)′

a(u)
	−1/2y − µ(Fu(ε, δy))

a(u)

∣∣∣∣,
m2

(
µ(Fu(ε, δy))

a(u)
, ε

)}
.

Let v = 	1/2u/a(u), ỹ = 	−1/2y and x̃ = 	−1/2x. Then all the mappings are
one-to-one and‖v‖ = 1. Denotef5(u, x, d1) = Med{−d1, u

′x, d1}. Then

O
(
x,F (ε, δy)

)
= sup

‖v‖=1

v′x̃ − f5(v, ỹ, d1)

Med{m1(f5(v, ỹ, d1), ε), |v′ỹ − f5(v, ỹ, d1)|,m2(f5(v, ỹ, d1), ε)} .

Let U be an orthogonal matrix with̃y/‖ỹ‖ as its first column, andU ′v = ṽ.
Then f5(v, ỹ, d1) = Med{−d1, ṽ1‖ỹ‖, d1} = f4(ṽ1,‖ỹ‖, d1) and O(x,F (ε, δy))

becomes

sup
‖ṽ‖=1

{ṽ′U ′x̃ − f4(ṽ1,‖ỹ‖, d1)}

× {
Med

{
m1

(
f4(ṽ1,‖ỹ‖, d1), ε

)
,

|ṽ1‖ỹ‖ − f4(ṽ1,‖ỹ‖, d1)|,m2
(
f4(ṽ1,‖ỹ‖, d1), ε

)}}−1

= sup
‖ṽ‖=1

(
ṽ′U ′x̃ − f4(ṽ1,‖ỹ‖, d1)

)
/f3(ṽ1,‖ỹ‖, d1).
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It follows that∫
xx′w2

(
PD

(
x,F (ε, δy)

))
dF(x)

=
∫

	1/2x̃x̃′w2

(
1
/(

1+ sup
‖ṽ‖=1

ṽ′U ′x̃ − f4(ṽ1,‖ỹ‖, d1)

f3(ṽ1,‖ỹ‖, d1)

))
	1/2 dF(x)

=
∫

	1/2Uxx′w2

(
1
/(

1+ sup
‖u‖=1

u′x − f4(u1,‖ỹ‖, d1)

f3(u1,‖ỹ‖, d1)

))
U ′	1/2 dF0(x).

Observe that

sup
‖u‖=1

u′x − f4(u1,‖ỹ‖, d1)

f3(u1,‖ỹ‖, d1)

= sup
−1≤u1≤1

sup
‖u2‖=

√
1−u2

1

u′
2x2 + u1x1 − f4(u1,‖ỹ‖, d1)

f3(u1,‖ỹ‖, d1)

= sup
0≤u1≤1

√
1− u2

1‖x2‖ + |u1x1 − f4(u1,‖ỹ‖, d1)|
f3(u1,‖ỹ‖, d1)

= f1(x,‖ỹ‖, ε),
which is an even function ofx2. Hence,∫

xx′w2
(
PD

(
x,F (ε, δy)

))
dF(x)

=
∫

	1/2Uxx′w2
(
1/

(
1+ f1(x,‖ỹ‖, ε)))U ′	1/2 dF0(x)

= 	1/2
(
ψ2(‖ỹ‖, ε)Id + (

ψ1(‖ỹ‖, ε) − ψ2(‖ỹ‖, ε)) ỹ

‖ỹ‖
(ỹ)′

‖ỹ‖
)
	1/2.

Likewise, we can show that∫
xwi

(
PD

(
x,F (ε, δy)

))
dF(x)

= (y/‖ỹ‖)
∫

x1wi

(
1/

(
1+ f1(x,‖ỹ‖, ε)))dF0(x).

Thus

Li

(
F(ε, δy)

)
=

{
(y/‖ỹ‖)

(
(1− ε)

∫
x1wi

(
1/

(
1+ f1(x,‖ỹ‖, ε)))dF0(x)

+ ε‖ỹ‖wi

(
1/

(
1+ f2(‖ỹ‖, ε))))}
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×
{
(1− ε)

∫
wi

(
1/

(
1+ f1(x,‖ỹ‖, ε)))dF0(x)

+ εwi

(
1/

(
1+ f2(‖ỹ‖, ε)))}−1

and

PWS
(
F(ε, δy)

)
=

{
(1− ε)

(
ψ2(‖ỹ‖, ε)	 + (

ψ1(‖ỹ‖, ε) − ψ2(‖ỹ‖, ε)) y

‖ỹ‖
y′

‖ỹ‖
)

+ ε‖ỹ‖2w2

(
1

1+ f2(‖ỹ‖, ε)
)

y

‖ỹ‖
y′

‖ỹ‖
}

×
{
(1− ε)

∫
w2

(
1

1+ f1(x,‖ỹ‖, ε)
)

dF0(x)

+ εw2

(
1

1+ f2(‖ỹ‖, ε)
)}−1

− L1
(
F(ε, δy)

)(
L2

(
F(ε, δy)

))′ − L2
(
F(ε, δy)

)(
L1

(
F(ε, δy)

))′
+ L1

(
F(ε, δy)

)(
L1

(
F(ε, δy)

))′
.

The desired result follows.�

PROOF OF THEOREM 3.6. (a) is trivial. We now show (b). Assume,
w.l.o.g. thatθ = 0. Since CSI(PWS,F ) ≥ GESI(PWS,F ), we need to show that
CSI(PWS,F ) ≤ GESI(PWS,F ). Following the proof of Theorem 2.3 and noting
thatLi(F (ε, δy)) = Li(F ) + o(1), i = 1,2, we can show that(

PWS
(
F(ε, δy)

) − PWS(F )
)
/ε

=
(∫

xx′w(1)
2

(
PD(x,F )

)
Hε(x, y)F (dx) + yy′w2

(
PD(y,F )

))

×
(∫

w2
(
PD(x,F )

)
F(dx)

)−1

− PWS(F )

(∫
w

(1)
2

(
PD(x,F )

)
Hε(x, y)F (dx) + w2

(
PD(y,F )

))

×
(∫

w2
(
PD(x,F )

)
F(dx)

)−1

+ o(1),

whereo(·) is in the uniform sense with respect toy ∈ R
d . Following the proof

of Theorem 3.5 of Zuo, Cui and Young (2004) and lettingg(x,u,F ) = (u, x −
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µ(Fu))/σ (Fu), we have(∫
xx′w(1)

2

(
PD(x,F )

)
Hε(x, y)F (dx) + yy′w2

(
PD(y,F )

))

×
(∫

w2
(
PD(x,F )

)
F(dx)

)−1

=
{∫

S(x,M)
xx′w(1)

2

(
PD(x,F )

)g(x,u(x),F ) − g(x,u(x),F (ε, δy))

ε(1+ O(x,F ))2 dF(x)

+ yy′w2
(
PD(y,F )

)}

×
{∫

w2
(
PD(x,F )

)
dF(x)

}−1

+ I5(M,y, ε) + o(1),

where S(x,M) = {x : 1/M ≤ ‖	−1/2x‖ ≤ M} for a fixed M > 0,
supy∈Rd ,ε<0.5 ‖I5(M,y, ε)‖ → 0 asM → ∞ ando(·) is in the uniform sense in

y ∈ R
d . Note thatu(x) = 	−1x/‖	−1x‖ andσ(Fu(x)) = m0‖	−1/2x‖/‖	−1x‖

for x �= 0,µ(Fu(x)) = 0 andO(x,F ) = ‖	−1/2x‖/m0. By Lemma 5.1 we see that
µ(F(ε, δy)) is odd iny. Therefore,(∫

xx′w(1)
2

(
D(x,F )

)
Hε(x, y)F (dx) + yy′w2

(
D(y,F )

))

×
(∫

w2
(
D(x,F )

)
F(dx)

)−1

=
{∫

S(x,M)
xx′w(1)

2

(
s0(‖	−1/2x‖))‖	−1x‖

× σ(Fu(x)(ε, δy)) − σ(Fu(x))

m2
0ε(1+ O(x,F ))2

dF(x) + yy′w2
(
PD(y,F )

)}

×
{∫

w2
(
PD(x,F )

)
dF(x)

}−1

+ I5(M,y, ε) + o(1),

whereo(·) is in the uniform sense with respect toy ∈ R
d . Call the first term in the

right-hand side of the last equalityI6 = I6(M,y, ε). By Lemma 5.1,

σ
(
Fu(x)(ε, δy)

) − σ
(
Fu(x)

)
= ‖	−1/2x‖

‖	−1x‖ Med
{
m1

(
µ(F(ε, δy))

a(u(x))
, ε

)
,

∣∣∣∣ x′	−1y

‖	−1/2x‖ − µ(F(ε, δy))

a(u(x))

∣∣∣∣,m2

(
µ(F(ε, δy))

a(u(x))
, ε

)}
,
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where µ(F(ε, δy))/a(u(x)) = Med{−d1, x
′	−1y/‖	−1/2x‖, d1}. Let x̃ =

	−1/2x, ỹ = 	−1/2y and T be an orthogonal matrix with̃y/‖ỹ‖ as its first

column. Note thatT ′X̃ d= X̃. DenoteT ′x̃/‖x̃‖ = u = (u1, . . . , ud)′. Changing vari-
ables (̃x = 	−1/2x) and then taking an orthogonal transformation (with matrixT )
and taking advantage of the independence of‖X̃‖ andX̃/‖X̃‖ [see Lemma 5.1 of
Lopuhaä (1999)], we have

I6 =
{
	1/2T

∫
1/M≤‖x̃‖≤M

x̃x̃′w(1)
2

(
s0(‖x̃‖))‖x̃‖s2

0(‖x̃‖)I7(u1, ỹ, ε)

m2
0ε

dF0(x̃)

× T ′	1/2 + yy′w2
(
s0(‖ỹ‖))}

×
{∫

w2
(
s0(‖x̃‖))dF0(x̃)

}−1

=
{
	1/2T

∫
1/M≤‖x̃‖≤M

‖x̃‖3w
(1)
2

(
s0(‖x̃‖))s2

0(‖x̃‖) dF0(x̃)

×
∫

1/M≤‖x̃‖≤M
uu′ I7(u1, ỹ, ε)

m2
0ε

dF0(x̃)T ′	1/2
}

×
{∫

w2
(
s0(‖x̃‖))dF0(x̃)

}−1

+ yy′w2
(
s0(‖ỹ‖))/∫

w2
(
s0(‖x̃‖))dF0(x̃),

whereI7(u1, ỹ, ε) = Med{m1(I8(u1, ỹ, ε), ε), |u1‖ỹ‖−I8(u1, ỹ, ε)|,m2(I8(u1, ỹ,

ε), ε)} − m0 andI8(u1, ỹ, ε) = Med{−d1, u1‖ỹ‖, d1}. It can be shown (details are
skipped) that

I7(u1, ỹ, ε)/ε = sign(|u1|‖ỹ‖ − m0)/
(
4p(m0)

) + o(1),

where o(1) → 0 uniformly in y ∈ R
d as ε → 0. Following the proof of

Corollary 3.1, we have

I6 = 	1/2T c3(M)
∫
1/M≤‖x̃‖≤M uu′ sign(|u1|‖ỹ‖ − m0)T

′	1/2∫
w2(s0(‖x̃‖)) dF0(x̃)

+ yy′w2(s0(‖ỹ‖))∫
w2(s0(‖x̃‖)) dF0(x̃)

+ o(1)

= 	1/2c3(M)(s̃2(‖ỹ‖,M)Id + (s2(‖ỹ‖,M) − s̃2(‖ỹ‖,M))ỹ/‖ỹ‖ỹ′/‖ỹ‖)	1/2∫
w2(s0(‖x̃‖)) dF0(x̃)

+ yy′w2
(
s0(‖ỹ‖))/∫

w2
(
s0(‖x̃‖))dF0(x̃) + o(1),
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whereo(1) is in the same sense as before. Further,

c3(M) =
∫

1/M≤‖x̃‖≤M
‖x̃‖3w

(1)
2

(
s0(‖x̃‖))s2

0(‖x̃‖) dF0(x̃),

s2(t,M) =
∫

1/M≤‖x̃‖≤M
u2

1 sign(|u1|t − m0) dF0(x̃),

s̃2(t,M) =
∫

1/M≤‖x̃‖≤M
u2

2 sign(|u1|t − m0) dF0(x̃).

Therefore,(
PWS

(
F(ε, δy)

) − PWS(F )
)
/ε

= 	1/2 ỹ

‖ỹ‖
(
c3(M)

(
s2(‖ỹ‖,M) − s̃2(‖ỹ‖,M)

) + ‖ỹ‖2w2
(
s0(‖ỹ‖))) ỹ′

‖ỹ‖	1/2

×
(∫

w2
(
s0(‖x̃‖))dF0(x̃)

)−1

+ I5(M,y, ε) + o(1)

+ 	

(
c3(M)s̃2(‖ỹ‖,M)∫
w2(s0(‖x̃‖)) dF0(x̃)

− c1

∫
w

(1)
2 (D(x,F ))Hε(x, y)F (dx) + w2(D(y,F ))∫

w2(D(x,F ))F (dx)

)
,

where againo(1) → 0 uniformly in y ∈ R
d asε → 0. From the definition of CSI,

it follows that

CSI(PMS,F )

= lim
ε→0+ sup

y∈Rd

∣∣∣∣
∣∣∣∣
∣∣∣∣{	1/2ỹ/‖ỹ‖(

c3(M)
(
s2(‖ỹ‖,M) − s̃2(‖ỹ‖,M)

)

+ ‖ỹ‖2w2
(
s0(‖ỹ‖)))ỹ′/‖ỹ‖	1/2}

×
{∫

w2
(
s0(‖x̃‖))dF0(x̃)

}−1

+ I5(M,y, ε) + o(1)

∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ lim
ε→0+ sup

y∈Rd

∣∣∣∣
∣∣∣∣
∣∣∣∣{	1/2ỹ/‖ỹ‖(

c3(M)
(
s2(‖ỹ‖,M) − s̃2(‖ỹ‖,M)

)

+ ‖ỹ‖2w2
(
s0(‖ỹ‖)))ỹ′/‖ỹ‖	1/2}

×
{∫

w2
(
s0(‖x̃‖))dF0(x̃)

}−1∣∣∣∣
∣∣∣∣
∣∣∣∣

+ lim
ε→0+ sup

y∈Rd

|||I5(M,y, ε)|||
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≤ λ1 sup
r≥0

∣∣∣∣c3(M)(s2(r,M) − s̃2(r,M)) + r2w2(s0(r))∫
w2(s0(‖x̃‖)) dF0(x̃)

∣∣∣∣
+ lim

ε→0+ sup
y∈Rd

|||I5(M,y, ε)|||.

Now letting M → ∞, we get CSI(PMS,F ) ≤ λ1 supr≥0 |t1(r)|/c0 =
GESI(PMS,F ). �
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