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MINIMAX ESTIMATION WITH THRESHOLDING AND ITS
APPLICATION TO WAVELET ANALYSIS

BY HARRISON H. ZHOU1 AND J. T. GENE HWANG2

Yale University and Cornell University

Many statistical practices involve choosing between a full model and
reduced models where some coefficients are reduced to zero. Data were used
to select a model with estimated coefficients. Is it possible to do so and still
come up with an estimator always better than the traditional estimator based
on the full model? The James–Stein estimator is such an estimator, having
a property called minimaxity. However, the estimator considers only one
reduced model, namely the origin. Hence it reduces no coefficient estimator
to zero or every coefficient estimator to zero. In many applications including
wavelet analysis, what should be more desirable is to reduce to zero only
the estimators smaller than a threshold, called thresholding in this paper. Is it
possible to construct this kind of estimators which are minimax?

In this paper, we construct such minimax estimators which perform
thresholding. We apply our recommended estimator to the wavelet analysis
and show that it performs the best among the well-known estimators aiming
simultaneously at estimation and model selection. Some of our estimators are
also shown to be asymptotically optimal.

1. Introduction. In virtually all statistical activities, one constructs a model
to summarize the data. Not only could the model provide a good and effective
way of summarizing the data, the model if correct often provides more accurate
prediction. This point has been argued forcefully in Gauch (1993). Is there a way
to use the data to select a reduced model so that if the reduced model is correct,
the model-based estimator will improve on the naive estimator (constructed using
a full model) and yet never do worse than the naive estimator even if the full
model is actually the only correct model? James–Stein estimation (1961) provides
such a striking result under the normality assumption. Any estimator such as the
James–Stein estimator that does no worse than the naive estimator is said to be
minimax. See the precise discussion right before Lemma 1 of Section 2. The
problem with the James–Stein positive part estimator is, however, that it selects
only between two models: the origin and the full model. It is possible to construct
estimators similar to the James–Stein positive part to select between the full model
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and another linear subspace. However, it always chooses between the two. The
nice idea of George (1986a, b) in multiple shrinkage does allow the data to choose
among several models; it, however, does not do thresholding, as is the aim of the
paper.

Models based on wavelets are very important in many statistical applications.
Using these models involves model selection among the full model or the models
with smaller dimensions where some of the wavelet coefficients are zero. Is there a
way to select a reduced model so that the estimator based on it does no worse in any
case than the naive estimator based on the full model, but improves substantially
upon the naive estimator when the reduced model is correct? Again, the James–
Stein estimator provides such a solution. However, it selects either the origin or
the full model. Furthermore, the ideal estimator should do thresholding; namely, it
gives zero as an estimate for the components which are smaller than a threshold,
and preserves (or shrinks) the other components. However, to the best knowledge
of the authors, no such minimax estimators have been constructed. In this paper,
we provide minimax estimators which perform thresholding simultaneously.

Section 2 develops the new estimator for the canonical form of the model by
solving Stein’s differential inequality. Sections 3 and 4 provide an approximate
Bayesian justification and an empirical Bayes interpretation. Section 5 applies the
result to wavelet analysis. The proposed method outperforms several prominent
procedures in the statistical wavelet literature. Asymptotic optimality of some of
our estimators is established in Section 6.

2. New estimators for a canonical model. In this section we shall consider
the canonical form of the problem of a multinormal mean estimation problem
under squared error loss. Hence we shall assume that our observation

Z = (Z1, . . . ,Zd) ∼ N(θ, I )

has ad-dimensional normal distribution with meanθ = (θ1, . . . , θd), and a known
covariance identity matrixI . The case when the variance ofZi is not known will
be discussed briefly at the end of Section 5.

The connection of this problem with wavelet analysis will be pointed out in
Sections 5 and 6. In short,Zi and θi represent the wavelet coefficients of the
data and the true curve in the same resolution, respectively. Furthermore,d is
the dimension of a resolution. For now, we shall seek an estimator ofθ based
on Z. We shall, without loss of generality, consider an estimator of the form
δ(Z) = (δ1(Z), . . . , δd(Z)), where,

δi(Z) = Zi + gi(Z),

whereg(Z) :Rd → R, and search forg(Z) = (g1(Z), . . . , gd(Z)). To insure that
the new estimator (perhaps with some thresholding) does better thanZ (which
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does no thresholding), we shall compare therisk of δ(Z) to the risk ofZ with
respect to the�2 norm. Namely,

E‖δ(Z) − θ‖2 = E

d∑
i=1

(
δi(Z) − θi

)2
.

It is obvious that the risk ofZ is thend. We shall say one isas good as the
other if the former has a risk no greater than the latter for everyθ . Moreover, one
dominates the other if it is as good as the other and has smaller risk for someθ .
Also we shall say that an estimatorstrictly dominates the other if the former has a
smaller risk for everyθ . Note thatZ is a minimax estimator, that is, it minimizes
supθ E|δ0(Z) − θ |2 among allδ0(Z). Consequently anyδ(Z) is as good asZ if
and only if it is minimax.

To construct an estimator that dominatesZ, we use the following lemma.

LEMMA 1 [Stein (1981)]. Suppose that g :Rd → Rd is a measurable function
with gi(·) as the ith component. If for every i, gi(·) is almost differentiable with
respect to the ith component and

E

(∣∣∣∣ ∂

∂Zi

gi(Z)

∣∣∣∣
)

< ∞ for i = 1, . . . , d,

then

Eθ‖Z + g(Z) − θ‖2 = Eθ {d + 2∇ · g(Z) + ‖g(Z)‖2},
where ∇ · g(Z) = ∑d

i=1
∂gi(Z)
∂Zi

. Hence if g(Z) solves the differential inequality

2∇ · g(Z) + ‖g(Z)‖2 < 0,(1)

the estimator Z + g(Z) strictly dominates Z.

REMARK. gi(z) is said to be almost differentiable with respect tozi , if for
almost allzj , j �= i, gi(z) can be written as a one-dimensional integral of a function
with respect tozi . For suchzj ’s, j �= i, gi(Z) is also called absolutely continuous
with respect tozi in Berger (1980).

To motivate the proposed estimator, note that the James–Stein positive estimator
has the form

θ̂JS
i =

(
1− d − 2

‖Z‖2

)
+
Zi

with c+ = max(c,0) for any numberc. This estimator, however, truncates
independently of the magnitude of|Zi |. Indeed, it truncates all or none of the
coordinates. To construct an estimator that truncates only the coordinates with
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small|Zi |, it seems necessary to replaced − 2 by a decreasing functionh(|Zi |) of
|Zi | and consider

θ̂+
i =

(
1− h(|Zi |)

D

)
+
Zi,

whereD, independent ofi, is yet to be determined. [In a somewhat different ap-
proach, Beran and Dümbgen (1998) construct a modulation estimator correspond-
ing to a monotonic shrinkage factor.] With such a form,θ̂+

i = 0 if h(|Zi |) ≥ D,
which has a better chance of being satisfied when|Zi | is small.

We consider the simple choiceh(|Zi |) = a|Zi |−2/3, and letD = �|Zi |4/3. This
leads to the untruncated versionθ̂ with theith component

θ̂i (Z) = Zi + gi(Z) wheregi(Z) = −aD−1 sign(Zi)|Zi |1/3.(2)

Here and later sign(Zi) denotes the sign ofZi . It is possible to use other decreasing
functionsh(|Zi |) and otherD.

In general, we consider, for a fixedβ ≤ 2, an estimator of the form

θ̂i = Zi + gi(Z),(3)

where

gi(Z) = −a
sign(Zi)|Zi |β−1

D
and D =

d∑
i=1

|Zi |β.(4)

Although at first glance it may seem hard to justify this estimator, it has a Bayesian
and empirical Bayes justification in Sections 3 and 4. It contains, as a special case
with β = 2, the James–Stein estimator. Now we have:

THEOREM 2. For d ≥ 3 and 1< β ≤ 2, θ̂ (Z) is minimax if and only if

0< a ≤ 2(β − 1) inf
θ

Eθ (D
−1 ∑d

i=1 |Zi |β−2)

Eθ (D−2 ∑d
i=1 |Zi |(2β−2))

− 2β.

PROOF. Obviously for Zj �= 0, ∀ j �= i, gi(Z) can be written as the one-
dimensional integral of

∂

∂Zi

gi(Z) = β(−a)(−1)D−2|Zi |(2β−2) + (β − 1)(−a)D−1(|Zi |β−2)

with respect toZi . (The only concern is atZi = 0.) Consider only nonzeroZj ’s,
j �= i. Sinceβ > 1, this function, however, is integrable with respect toZi even
over an integral including zero. It takes some effort to prove thatE(| ∂

∂Zi
gi(Z)|) is

finite. However, one only needs to focus onZj close to zero. Using the spherical-
like transformationr2 = ∑ |Zi |β , we may show that ifd ≥ 3 andβ > 1, both terms
in the above displayed expression are integrable.
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Now

‖g(Z)‖2 = a2D−2
d∑

i=1

|Zi |2β−2.

Hence

Eθ‖Z + g(Z) − θ‖2 ≤ d for everyθ

if and only if

Eθ {2∇ · g(Z) + ‖g(Z)‖2} ≤ 0 for everyθ,

that is,

Eθ

(
a

(
(2β)D−2

d∑
i=1

|Zi |(2β−2)

− (2β − 2)D−1
d∑

i=1

|Zi |β−2

)
+ a2D−2

d∑
i=1

|Zi |2β−2

)
≤ 0(5)

for everyθ,

which is equivalent to the condition stated in the theorem.�

THEOREM 3. The estimator θ̂ (Z) with the ith component given in (3) and (4)
is minimax provided 0 < a ≤ 2(β − 1)d − 2β and 1 < β ≤ 2. Unless β = 2 and a

is taken to the upper bound, θ̂ (Z) dominates Z.

PROOF. By the correlation inequality

d

(
d∑

i=1

|Zi |2β−2

)
≤

(
d∑

i=1

|Zi |β−2

)(
d∑

i=1

|Zi |β
)
.

Strict inequality holds almost surely ifβ < 2. Hence

Eθ(D
−1 ∑d

i=1 |Zi |β−2)

Eθ(D−2 ∑d
i=1 |Zi |2β−2)

≥ EθD
−1 ∑ |Zj |β−2

(1/d)EθD−1 ∑ |Zi |β−2 = d.

Hence if 0< a ≤ 2(β −1)d −2β, the condition in Theorem 2 is satisfied, implying
minimaxity of θ̂ (Z). The rest of the statement of the theorem is now obvious.�

The following theorem is a generalization of Theorem 6.2 on page 302 of
Lehmann (1983) and Theorem 5.4 on page 356 of Lehmann and Casella (1998).
It shows that taking the positive part will improve the estimator componentwise.
Specifically for an estimator(θ̃1(Z), . . . , θ̃d(Z)) where

θ̃i (Z) = (
1− hi(Z)

)
Zi,
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the positive part estimator of̃θi(Z) is denoted as

θ̃+
i (Z) = (

1− hi(Z)
)
+Zi.

THEOREM 4. Assume that hi(Z) is symmetric with respect to the ith
coordinate. Then

Eθ(θi − θ̃+
i )2 ≤ Eθ(θi − θ̃i )

2.

Furthermore, if

Pθ

(
hi(Z) > 1

)
> 0,(6)

then

Eθ(θi − θ̃+
i )2 < Eθ(θi − θ̃i )

2.

PROOF. Simple calculation shows that

Eθ(θi − θ̃+
i )2 − Eθ(θi − θ̃i )

2 = Eθ

(
(θ̃+

i )2 − θ̃2
i

) − 2θiEθ (θ̃
+
i − θ̃i ).(7)

Let us calculate the expectation by conditioning onhi(Z). Forhi(Z) ≤ 1, θ̃+
i = θ̃i .

Hence it is sufficient to condition onhi(z) = b whereb > 1 and show that

Eθ

(
(θ̃+

i )2 − θ̃2
i |hi(Z) = b

) − 2θiEθ

(
θ̃+
i − θ̃i |hi(Z) = b

) ≤ 0,

or equivalently,

−Eθ

(
θ̃2
i |hi(Z) = b

) + 2θi(1− b)Eθ

(
Zi |hi(Z) = b

) ≤ 0.

Obviously, the last inequality is satisfied if we can show

θiEθ

(
Zi |hi(Z) = b

) ≥ 0.

We may further condition onZj = zj for j �= i and it suffices to establish

θiEθ

(
Zi |hi(Z) = b,Zj = zj , j �= i

) ≥ 0.(8)

Given thatZi = zj , j �= i, consider only the case wherehi(Z) = b has solutions.
Due to symmetry ofhi(Z), these solutions are in pairs. Let±yk , k ∈ K , denote the
solutions. Hence the left-hand side of (8) equals

θiEθ (Zi |Zi = ±yk, k ∈ K)

= ∑
k∈K

θiEθ (Zi |Zi = ±yk)Pθ (Zi = ±yk|Zi = ±yk, k ∈ K).

Note that

θiEθ (Zi |Zi = ±yk) = θiyke
ykθi − θiyke

−ykθi

eykθi + e−ykθi
,(9)



MINIMAX ESTIMATION WITH THRESHOLDING 107

which is symmetric inθiyk and is increasing forθiyk > 0. Hence (9) is bounded
below by zero, a bound obtained by substitutingθiyk = 0 in (9). Consequently we
establish that (7) is nonpositive, implying thatθ̃+ in as good as̃θ .

The strict inequality of the theorem can be established by noting that the right-
hand side of (7) is bounded above byEθ [(θ̃+

i )2 − θ̃2
i ] which by (6) is strictly

negative. �

Theorem 4 implies the following corollary.

COROLLARY 5. Under the assumptions on a and β in Theorem 3, θ̂+ with
the ith component

θ̂+
i = (1− aD−1|Zi |β−2)+Zi(10)

strictly dominates Z.

It is interesting to note that the estimator (10), forβ < 2, does give zero
as the estimator when the|Zi | are small. When applied to wavelet analysis, it
truncates the small wavelet coefficients and shrinks the large wavelet coefficients.
The estimator lies in a data-chosen reduced model.

Moreover, forβ = 2, Theorem 3 reduces to the classical result of Stein (1981)
and (10) to the positive part James–Stein estimator. The upper bound ofa for
domination stated in Theorem 3 works only ifβ > 1 andd > β/(β − 1). We know
that for β ≤ 1

2, θ̂ fails to dominateZ because of the calculations leading to (11)

below. We are unable to prove thatθ̂ dominatesZ for 1
2 < β ≤ 1. However, for

suchβ ’s, θ̂ has a smaller Bayes risk thanZ if the condition (11) below is satisfied.

A remark about an explicit formula for a. In wavelet analysis, a vast majority
of the wavelet coefficients of a reasonably smooth function are zero. Consequently,
it seems good to choose an estimator that shrinks a lot and hence usinga larger
than the upper bound in Theorem 3 is desirable. Although Theorem 2 provides
the largest possiblea for domination in the frequentist sense, the bound is difficult
to evaluate in computation and hence difficult to use in a real application. Hence
we took an alternative approach by assuming thatθi are independently identically
distributed (i.i.d.)N(0, τ2). It can be shown by a detailed calculation [see Zhou
and Hwang (2003)] that the estimator (3) and (4) has a smaller Bayes risk thanZ

for all τ2 if and only if

0< a < aβ = 2/E

[
d∑

i=1

|ξi |2β−2
/(

d∑
i=1

|ξi |β
)2]

,(11)

whereξi are i.i.d. standard normal random variables.
What is the value ofaβ? It is easy to numerically calculate the boundaβ by

simulatingξi , which we did fora up to 100. It is shown thataβ , β = 4
3, is at least
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as big as(5/3)(d − 2). Using Berger’s (1976) tail minimaxity argument, we come
to the conclusion that̂θ+, with theith component

θ̂i =
(

1− (5/3)(d − 2)Z
−2/3
i∑d

i=1 Z
4/3
i

)
+
Zi,(12)

would possibly dominateZ. For variousd ’s includingd = 50 this was shown to
be true numerically.

To derive a general formula foraβ for all β, we then establish that the limit of
aβ/d asd → ∞ equals, for 1/2 < β < 2,

Cβ = 4
[
	

(
(β + 1)/2

)]2
/
[√

π	
(
(2β − 1)/2

)]
.(13)

It may be tempting to use(d − 2)Cβ . However, we recommend

a = (0.97)(d − 2)Cβ,(14)

so that atβ = 4/3, (14) becomes(5/3)(d − 2). Berger’s tail minimaxity argument
and many numerical studies indicate that thisa enables (10) to have a better risk
thanZ.

3. Approximate Bayesian justification. It would seem interesting to justify
the proposed estimation from a Bayesian point of view. To do so, we consider a
prior of the form

π(θ) =
{

1, ‖θ‖β ≤ 1,

1/(‖θ‖β)βc, ‖θ‖β > 1,

where‖θ‖β = (
∑‖θi‖β)1/β , andc is a positive constant which can be specified to

match the constanta in (10). In general the Bayes estimator is given by

Z + ∇ logm(Z),

wherem(Z) is the marginal probability density function ofZ, namely,

m(Z) =
∫

· · ·
∫

e−(1/2)‖Z−θ‖2

(
√

2π )d
π(θ) dθ.

The following approximation follows from Brown (1971), which asserts that
∇ logm(Z) can be approximated by∇ logπ(Z). The proof is given in the
Appendix.

THEOREM 6. With π(θ) and m(X) given above,

lim|Zi |→+∞
∇i logm(Z)

∇i logπ(Z)
= 1.
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Hence by Theorem 6, theith component of the Bayes estimator equals
approximately

Zi + ∇i logπ(Z) = Zi − cβ|Zi |β−1 sign(Zi)∑ |Zi |β .

This is similar to the untruncated version ofθ̂ in (2) and (3).

4. Empirical Bayes justification. Based on several signals and images,
Mallat (1989) proposed a prior for the wavelet coefficientsθi as the exponential
power distribution with the probability density function (p.d.f.) of the form

f (θi) = ke−|θi/α|β ,(15)

whereα andβ < 2 are positive constants and

k = β/
(
2α	(1/β)

)
is the normalization constant. See also Vidakovic [(1999), page 194]. Using the
method of moments, Mallat estimated the values ofα andβ to be 1.39 and 1.14
for a particular graph. However,α andβ are typically unknown.

It seems reasonable to derive an empirical Bayes estimator based on this class
of prior distributions. First we assume thatα is known. Then the Bayes estimator
of θi is

Zi + ∂

∂Zi

logm(Z).

Similar to the argument in Theorem 6 and noting that forβ < 2,

e−|θi+Zi |β/αβ

/e−|θi |β/αβ → 1 asθi → ∞,

the Bayes estimator can be approximated by

Zi + ∂

∂Zi

logπ(Zi) = Zi − β

αβ
|Zi |β−1 sign(Zi).(16)

Note that, under the assumption thatα is known, the above expression is also the
asymptotic expression of the maximum likelihood estimator ofθi by maximizing
the joint p.d.f. of(Zi, θi). See Proposition 1 of Antoniadis, Leporini and Pesquet
(2002) as well as (8.23) of Vidakovic (1999). In the latter reference, the sign ofZi

of (16) is missing due to a minor typographical error.
Sinceα is unknown, it seems reasonable to replaceα in (16) by an estimator.

Assume thatθi ’s are observable. Then by (15) the joint density of(θ1, . . . , θd) is[
β

2α	(1/β)

]d

e−�(|θi |β/αβ).
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Differentiating this p.d.f. with respect toα gives the maximum likelihood estimator
of αβ as

(β�|θi |β)/d.(17)

However,θi is unknown and hence the above expression can be further estimated
by (16). Forβ < 2, the second term in (16) has a smaller order than the first when
|Zi | is large. Replacingθi by the dominating first termZi in (16) leads to an
estimator ofαβ as(β�|Zi |β)/d.

Substituting this into (16) gives

Zi − d

�|Zi |β |Zi |β−1 sign(Zi),

which is exactly the estimator̂θi in (2) and (3) witha = d. Hence we have
succeeded in derivinĝθi as an empirical Bayes estimator whenZi is large.

5. Connection to the wavelet analysis and the numerical results. Wavelets
have become a very important tool in many areas including mathematics, applied
mathematics, statistics and signal processing. They are also applied to numerous
other areas of science such as chemometrics and genetics.

In statistics, wavelets have been applied to function estimation with amazing
results of being able to catch the sharp change of a function. Celebrated
contributions by Donoho and Johnstone (1994, 1995) focus on developing
thresholding techniques and asymptotic theories. In the 1994 paper, relative
to the oracle risk, their VisuShrink is shown to be asymptotically optimal.
Further in the 1995 paper, the expected squared error loss of their SureShrink is
shown to achieves the global asymptotic minimax rate over Besov spaces. Cai
(1999) improved on their result by establishing that Block James–Stein (BlockJS)
thresholding achieves exactly the asymptotic global or local minimax rate over
various classes of Besov spaces.

Now specifically letY = (Y1, . . . , Yn)
′ be samples of a functionf , satisfying

Yi = f (ti) + εi,(18)

whereti = (i − 1)/n andεi are i.i.d.N(0, σ 2). Hereσ 2 is assumed to be known
and is taken to be 1 without loss of generality. See a comment at the end of
the paper regarding the unknownσ case. One wishes to choose an estimate
f̂ = (f̂ (t1), . . . , f̂ (tn)) so that its risk function

E‖f̂ − f ‖2 = E

n∑
i=1

(
f̂ (ti) − f (ti)

)2(19)

is as small as possible. Many discrete wavelet transformations are orthogonal
transformations. See Donoho and Johnstone (1995). Consequently, there exists an
orthogonal matrixW such that the wavelet coefficients ofY andf areZ = WY

andθ = Wf . Obviously the componentsZi of Z are independent, having a normal
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distribution with meanθi and standard deviation 1. Hence previous sections apply
and exhibit many good estimators ofθ . Note that, by orthogonality ofW , for
any estimatorδ(Z) of θ , its risk function is identical toW ′δ(Z) as an estimator
of f = W ′θ . Hence the good estimators in previous sections can be inversely
transformed to estimatef well.

In all the applications to wavelets discussed in this paper, the estimators
(including our proposed estimator) apply separately to the wavelet coefficients of
the same resolution. Hence in (12), for example,d is taken to be the number of
coefficients of a resolution when applied to the resolution. In all the literature that
we are aware of, this has been the case as well.

In addition to considering the estimator (12), which is a special case of (10)
with β = 4/3, we also propose a modification (10) with an estimatedβ. The
estimatorβ̂ for β is constructed by minimizing, for each resolution, the Stein
unbiased risk estimator (SURE) for the risk of (10). The quantity SURE is basically
the expression inside the expectation on the right-hand side of (A.4) summing
over i, 1≤ i ≤ d, except thata is replaced byaβ . [Note thatD in (A.4) depends
onβ as well.] The resultant estimator is denoted as

θ̂ S = (10) withβ replaced byβ̂.(20)

Figure 1 gives six true curves (made famous by Donoho and Johnstone) from
which the data are generated. For these six cases, Figure 2 plots the ratios of the

FIG. 1. The curves represent the true curves f (t) in (18).
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FIG. 2. In each of the six cases corresponding to Blocks, Bumps, and so on, the eight curves plot
the risk functions, from top to bottom, when n = 64,128, . . . ,8192.For each curve (see, e.g., the
top curve on the left), the circles “o” from left to right give, with respect to n, the relative risks of
VisuShrink, Block James–Stein, SureShrink and the proposed methods (12) and (20).

risks of the aforementioned estimators ton, the risk of Y . Since most relative
risks are less than 1, this indicates that most estimators perform better than the
raw dataY . Our estimatorŝθ+ in (12) andθ̂ S in (20), however, are the ones that
are consistently better thanY . Furthermore, our estimatorŝθ+ and θ̂ S virtually
dominate all the other estimators in risk. Generally,θ̂ S performs better than̂θ+
virtually in all cases.

As shown in Figure 2, the difference in risks betweenθ̂+ andθ̂ S is quite minor.
Since θ̂+ is computationally less intensive, we focus onθ̂+ for the rest of the
numerical studies.

Picturewise, our estimator does slightly better than other estimators. See
Figure 3 for an example. Note that the picture corresponding toθ̂+ distinguishes
most clearly the first and second bumps from the right.

Based on asymptotic calculation, the next section also recommends a choice
of a in (21). It would seem interesting to comment on its numerical performance.
The difference between thea’s defined in (14) and (22) is very small when
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FIG. 3. Solid lines represent the true curves, and dotted lines represent the curves corresponding
to various estimators. The simulated risk is based on 500simulations.

64≤ n ≤ 8192 and whenβ is estimated by minimizing SURE. Consequently, for
suchβ, the risk functions of the two estimators with differenta’s are very similar,
with a difference virtually bounded by 0.02. The finite sample estimator [where
a is defined in (14)] has a smaller risk about 75% of the time.

The James–Stein estimator produces very attractive risk functions, sometimes
as good as the proposed estimator (12). However, it does not seem to produce good
graphs. Compare Figures 4 and 5.

In the simulation studies we use the procedures MultiVisu and MultiHybrid
which are VisuShrink and SureShrink in WaveLab802. See http://www-stat.
stanford.edu/∼wavelab. We use Symmlet 8 to do wavelet transformation. In
Figure 2 signal-to-noise ratio (SNR) is taken to be 3. Results are similar for other
SNRs. To include the block thresholding result of Cai (1999), we choose the lowest
integer resolution levelj ≥ log2(logn) + 1.

A comment about the case where σ 2 is not known to be 1. Whenσ is known
and is not equal to 1, a simple transformation applied to the problem suggests that
(10) be modified witha replaced byaσ 2. Whenσ is unknown, one could then
estimateσ by σ̂ , the proposed estimator forσ in Donoho and Johnstone [(1995),
page 1218]. With this modification in (12) (and even with the SURE estimatedβ),
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FIG. 4. Proposed estimator (12) applied to reconstruct Figure 1.

FIG. 5. James–Stein positive part applied to reconstruct Figure 1.
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the resultant estimators are not minimax according to some numerical simulations.
However, they still perform the best or nearly the best among all the estimators
studied in Figure 2.

6. Asymptotic optimality. To study the asymptotic rate of a wavelet analysis
estimator, it is customary to assume the model

Yi = f (ti) + εi, i = 1, . . . , n,(21)

where ti = (i − 1)/n and εi are assumed to be i.i.d.N(0,1). The estimatorf̂
for f (·) that can be proved asymptotically optimal applies estimator (10) with

a = d(2 lnd)(2−β)/2mβ, 0 ≤ β ≤ 2,(22)

and

mβ = E|εi |β = 2β/2	
(
(β + 2)/2

)√
π

to the wavelet coefficientsZi of each resolution with dimensionalityd of the
wavelet transformation of theYi ’s. After applying the estimator to each resolution
one at a time to come up with the new wavelet coefficient estimators, one then uses
the wavelet base function to obtain one functionf̂ in the usual way.

To state the theorem, we useBα
p,q to denote the Besov space with smoothnessα

and shape parametersp andq. The definition of the Besov classBα
p,q(M) with

respect to the wavelet coefficients is given in (A.19). Now the asymptotic theorem
is given below.

THEOREM 7. Assume that the wavelet ψ is t-regular, that is, ψ has t

vanishing moments and t continuous derivatives. Then there exists a constant C

independent of n and f such that

sup
f ∈Bα

p,q (M)

E

∫ 1

0
|f (t) − f̂ (t)|2 dt ≤ C(lnn)1−β/2n−2α/(2α+1),(23)

for all M > 0, 0< α < r , q ≥ 1 and p > max(β, 1
α
,1).

The asymptotic optimality stated in (23) is as good as what has been established
for hard and soft thresholding estimators in Donoho and Johnstone (1994), the
Garrott method in Gao (1998) and Theorem 4 in Cai (1999) and the SCAD method
in Antoniadis and Fan (2001). However, the real advantage of our estimator is in
the finite sample risk as reported in Section 5. Also our estimators are constructed
to be minimax and hence have finite risk functions uniformly smaller than the risk
of Z. This estimator̂θA for β = 4/3, however, has a risk very similar to (12). See
Section 5.



116 H. H. ZHOU AND J. T. G. HWANG

APPENDIX

PROOF OFTHEOREM 6. Assume that|Zi | > 1. We have

lim|Zi |→∞
∇i logm(Z)

∇i logπ(Z)
= lim|Zi |→+∞

π(Z)

m(Z)
· (∂/∂Zi)m(Z)

(∂/∂Zi)π(Z)
.

We shall prove only

lim|Zi |→∞
m(Z)

π(Z)
= 1,

since

lim|Zi |→∞
(∂/∂Zi)m(Z)

(∂/∂Zi)π(Z)
= 1

can be similarly established.
Now

m(Z) =
∫

· · ·
∫ 1

(
√

2π)p
e−(1/2)‖Z−θ‖2

π(θ) dθ

=
∫

· · ·
∫
‖θ‖β≤1

1

(
√

2π )p
e−(1/2)‖Z−θ‖2

dθ

+
∫

· · ·
∫
‖θ‖β>1

1

(
√

2π )p
e−(1/2)‖Z−θ‖2 1

‖θ‖βc
β

dθ

= m1 + m2, say.

Obviously, as|Zi | → +∞, m1 has an exponentially decreasing tail. Hence

lim|Zi |→+∞
m1

π(Z)
= 0.

By the change of variableθ = Z + y, we have

m2/π(Z) =
∫

· · ·
∫
‖Z+y‖β>1

1

(
√

2π )p
e−(1/2)‖y‖2 ‖Z‖βc

β

‖Z + y‖βc
β

dy.

To prove the theorem, it suffices to show the above expression converges to 1. In
doing so, we shall apply the dominated convergence theorem to show that we may
pass to the limit inside the above integral. After passing to the limit, it is obvious
that the integral becomes 1.

The only argument left is to show that the dominated convergence theorem can
be applied. To do so, we seek an upper boundF(y) for

‖Z‖βc
β /‖Z + y‖βc

β when‖Z + y‖β > 1.
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Now for ‖Z + y‖β > 1,

‖Z‖βc
β ≤ Cp(‖Z + y‖βc

β + ‖y‖βc
β ),

that is,

‖Z‖βc
β

‖Z + y‖βc
β

≤ Cp

(
1+ ‖y‖βc

β

‖Z + y‖βc
β

)
≤ Cp(1+ ‖y‖βc

β ).

Hence if we takeCp(1+ ‖y‖βc
β ) asF(y), then∫

· · ·
∫
‖Z+y‖β>1

1

(
√

2π )p
e−(1/2)‖y‖2

F(y)dy < +∞.

Consequently, we may apply the dominated convergence theorem, which com-
pletes the proof. �

PROOF OFTHEOREM 7. Before relating to model (21), we shall work on the
canonical form:

Zi = θi + σεi, i = 1,2, . . . , d,

whereσ > 0 and theεi ’s are independently identically distributed standard normal
random errors. Herêθ = (θ̂1, . . . , θ̂d) denotes the estimator in (10) witha defined
in (22). For the rest of the paperC denotes a generic quantity independent ofd

and the unknown parameters. Hence theC ’s below are not necessarily identical.
We shall first prove Lemma A.1 below. Inequality (A.1) will be applied

to the lower resolutions in the wavelet regression. The other two inequalities
(A.2) and (A.3) are for higher resolutions.�

LEMMA A.1. For any 0< β < 2, 0< δ < 1, and some C > 0, independent of
d and the θi ’s, we have

d∑
i=1

E(θ̂i − θi)
2 ≤ Cσ 2d(lnd)(2−β)/2(A.1)

and

E(θ̂i − θi)
2 ≤ C(θ2

i + σ 2dδ−1(lnd)−1/2)
(A.2)

if
d∑

i=1

|θi |β ≤ σβ

(
2− β

2β

)β

δ2mβd.

Here and belowmβ denotes the expectation of|εi |β , defined right above the
statement of Theorem 7. Furthermore, for any 0< β < 1, there existsC > 0 such
that

E(θ̂i − θi)
2 ≤ Cσ 2 lnd.(A.3)



118 H. H. ZHOU AND J. T. G. HWANG

PROOF OFLEMMA A.1. Without loss of generality we will prove the theorem
for the caseσ = 1. By Stein’s identity,

E(θ̂i − θi)
2 = E

[
1+ (Z2

i − 2)Ii

(A.4)

+
(

a2|Zi |2β−2

D2 − 2a(β − 1)
|Zi |β−2

D
+ 2aβ

|Zi |2β−2

D2

)
I c
i

]
.

Here Ii denotes the indicator functionI (a|Zi |β−2 > D) and I c
i = 1 − Ii .

Consequently

Ii = 1 if |Zi |2−β < a/D(A.5)

and

I c
i = 1 if a|Zi |β−2/D ≤ 1.(A.6)

From (A.4) and after some straightforward calculations,

E

d∑
i=1

(θ̂i − θi)
2

= d + E

[
d∑

i=1

(|Zi |2−β |Zi |β − 2)Ii(A.7)

+ a|Zi |β−2

D

(
a|Zi |β

D
− 2(β − 1) + 2β

|Zi |β
D

)
I c
i

]
.

Using this and the upper bounds in (A.5) and (A.6), we conclude that (A.7) is
bounded above by

d + E

[
d∑

i=1

a|Zi |β
D

+ a|Zi |β
D

+ 2β
|Zi |β
D

]
+ 2|β − 1|d ≤ C(lnd)(2−β)/2d,

completing the proof of (A.1).
To derive (A.2), note that

E
(
1+ (Z2

i − 2)Ii

) = θ2
i + E(−Z2

i + 2)I c
i .

This and (A.4) imply that

E(θ̂i − θi)
2 = θ2

i + E

{[(
a|Zi |β−2

D

)2

Z2
i − Z2

i

]
I c
i

}

+ E

{[
−2(β − 1)

a|Zi |β−2

D
+ 2

]
I c
i

}

+ E

[(
2βa

|Zi |β−2

D

|Zi |β
D

)
I c
i

]
.
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Using (A.7), one can establish that the last expression is bounded above by

θ2
i + E

[(−2(β − 1) + 2
)
I c
i

] + E2β
|Zi |β
D

Ic
i ≤ θ2

i + E[(4+ 2β)I c
i ]

(A.8)
≤ θ2

i + 8EIc
i .

We shall show under the condition in (A.2) that

EIc
i ≤ C

(|θi |2 + dδ−1(logd)−1/2).(A.9)

This and (A.8) obviously establish (A.2). To prove (A.9), we shall consider two
cases: (i) 0< β ≤ 1 and (ii) 1< β < 2. For case (i) note that, for anyδ > 0,
EIc

i equals

P(a|Zi |β−2 ≤ D) = P
(
D ≥ a|Zi |β−2, |Zi | ≤ (2 lnd)1/2/(1+ δ)

)
+ P

(
D ≥ a|Zi |β−2, |Zi | ≥ (2 lnd)1/2/(1+ δ)

)
.

Obviously the last expression is bounded above by

P
(
D ≥ (1+ δ)2−β dmβ

) + P
(|Zi | ≥ (2 lnd)1/2/(1+ δ)

)
.(A.10)

Now the second term is bounded above by

C
(|θi |2 + (

d1−δ
√

lnd
)−1)(A.11)

by a result in Donoho and Johnstone (1994). To find an upper bound for the first
term in (A.10), note that by a simple calculus argument

|Zi |β ≤ |εi |β + |θi |β,

due to 0< β ≤ 1. Hence the first term of (A.10) is bounded above by

P

(
d∑

i=1

|εi |β ≥ (1+ δ)2−β dmβ − ∑ |θi |β
)
.

Replacing
∑ |θi |β by the assumed upper bound in (A.2), the last displayed

expression is bounded above by

P

(
d∑

i=1

|εi |β ≥ dmβ [(1+ δ)2−β − (2− β)δ2]
)
.(A.12)

Using the inequality

(1+ δ)2−β > 1+ (2− β)δ,

one concludes that the quantity inside the bracket is bounded below by

1+ (2− β)(δ − δ2) > 1.
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Hence the probability (A.12) decays exponentially fast. This and (A.11) then
establish (A.9) for 0< β ≤ 1.

To complete the proof for (A.2), all we need to do is to prove (A.9) for case (ii),
1< β < 2.

Similarly to the argument for case (i), all we need to do is to show that the first
term in (A.10) is bounded by (A.11). Now applying the triangle inequality,

D1/β ≤
(∑ |εi |β

)1/β +
(∑ |θi |β

)1/β
,

to the first term of (A.10) and using some straightforward algebraic manipulation,
we obtain

P
(
D ≥ (1+ δ)2−β dmβ

)
(A.13)

≤ P

(
d∑

i=1

|εi |β ≥ dmβ

[{
(1+ δ)(2−β)/β − 2− β

2β
δ2/β

}β])
.

Note that

(1+ δ)(2−β)/β ≥ 1+ (2− β)δ

2β

and consequently the quantity inside the brackets is bounded below by[
1+ 2− β

2β
(δ − δ2/β)

]β

≥ 1+ (2− β)(δ − δ2/β)/2> 1.

Now this shows that the probability on the right-hand side decreases exponentially
fast. Hence inequality (A.9) is established for case (ii) and the proof for (A.2) is
now completed.

To prove (A.3) for 0≤ β ≤ 1, we may rewrite (A.4) as

E(θ̂i − θi)
2 = 1+ E(Z2

i − 2)Ii + E

(
|Zi |2β−2

(
a2

D2 + 2βa

D2

)
I c
i

)
(A.14)

+ 2(1− β)E

[ |Zi |β−2a

D
Ic
i

]
.

Inequality (A.3), sharper than (A.1), can be possibly established due to the critical
assumptionβ ≤ 1, which implies that

|Zi |2β−2 ≤
(

a

D

)−(2−2β)/(2−β)

if I c
i = 1.(A.15)

Note that the last term in (A.14) is obviously bounded above by 2(1 − β).
Furthermore, replace|Zi |2β−2 in the third term on the right-hand side of (A.14)
by the upper bound in (A.15) and replaceZ2

i in the second term by the upper
bound

|Zi |2 <

(
a

D

)2/(2−β)

whenIi = 1,
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which follows easily for (A.5). We then obtain an upper bound for (A.14):

1+ E

(
a

D

)2/(2−β)

+ E

[(
a

D

)(2β−2)/(2−β)( a2

D2 + 2
βa

D2

)
I c
i

]
+ 2(1− β)

≤ (3− 2β) + CE

(
a

D

)2/(2−β)

.

Here in the last inequality 2βa/D2 was replaced by 2βa2/D2. To establish (A.3),
obviously the only thing left to do is

E

(
a

D

)2/(2−β)

≤ C ln(d).(A.16)

This inequality can be established if we can show that

E

(
d

D

)2/(2−β)

≤ C,(A.17)

since the definition ofa and a simple calculation show that

a2/(2−β) = Ca2/(2−β) ln(d).

To prove (A.17), we apply Anderson’s theorem [Anderson (1955)] which
implies that|Zi | is stochastically larger than|εi |. Hence

E

(
d

D

)2/(2−β)

≤ E
[
d
/(∑ |εi |β

)]2/(2−β)
,

which is bounded byA + B. Here

A = E
[
d
/(∑ |εi |β

)]2/(2−β)
I

(
d∑

i=1

|εi |β ≤ dmβ/2

)

and

B = E
[
d
/(∑ |εi |β

)]2/(2−β)
I

(
d∑

i=1

|εi |β > dmβ/2

)
,

and as beforeI (·) denotes the indicator function.
Now B is obviously bounded above by

(2/mβ)2/(2−β) < C.

Also by the Cauchy–Schwarz inequality

A2 ≤ E
[
d
/(∑ |εi |β

)]4/(2−β)
P

(
d∑

i=1

|εi |β ≤ dmβ/2

)
< C.

Here the last inequality holds since the probability decays exponentially fast. This
completes the proof for (A.17) and consequently for (A.3).�
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Now we apply Lemma A.1 to the wavelet regression. We only prove the case
0 < β ≤ 2. For β = 0 the proof is similar and simpler. Equivalently we shall
consider the model

Zjk = θjk + εjk/
√

n, k = 1, . . . ,2j ,(A.18)

where theθjk ’s are wavelet coefficients of the functionf , and theεjk ’s are i.i.d.
standard normal random variables. For the details of reasoning supporting the
above statement, see, for example, Section 9.2 of Cai (1999), following the ideas
of Donoho and Johnstone (1994, 1995). Also assume thatθ ’s live in the Besov
spaceBα

p,q(M) with smoothnessα and shape parametersp andq, that is,

∑
j

2jq(α+1/2−1/p)

(∑
k

|θjk|p
)q/p

≤ Mq(A.19)

for some positive constantsα, p, q andM . The estimator̂θ below for model (A.18)
refers to (20) witha defined in (22) andσ 2 = 1/n. For such âθ , the total risk can
be decomposed into the sum of the following three quantities:

R1 = ∑
j<j0

∑
k

E(θ̂jk − θjk)
2,

R2 = ∑
J>j≥j0

∑
k

E(θ̂jk − θjk)
2,

R3 = ∑
j≥J

∑
k

E(θ̂jk − θjk)
2,

wherej0 = [log2(Cδn
1/(2α+1))] andCδ is a positive constant to be specified later.

Applying (A.1) toR1, which corresponds to the risk of low resolution, we establish
by some simple calculation

R1 ≤ C(lnn)(2−β)/2n−2α/(2α+1).(A.20)

For j ≥ j0, (A.19) implies∑
k

|θjk|p ≤ Mp2−jp(α+1/2−1/p) = Mp2j2−jp(α+1/2).(A.21)

Furthermore, forp ≥ β

2−jp(α+1/2) ≤ 2−jβ(α+1/2) ≤ 2−j0β(α+1/2) = (Cδ)
−β(α+1/2)σ β.

ChooseCδ > 0 such that

Mp/C
(1/2+α)β
δ =

(
2− β

2β

)β(
1

2α + 1

)2

mβ.
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This then implies that

∑
k

|θjk|p ≤ Mp

C
(1/2+α)β
δ

2j σ β

≤
(

2− β

2β

)β(
1

2α + 1

)
mβ2j σ β,

satisfying the condition in (A.2) ford = 2j andδ = (2α + 1)−1.
Now for p ≥ 2 we give an upper bound for the total risk.
From (A.2) we obtain

R2 + R3 ≤ C
∑
j≥j0

∑
k

θ2
jk + o

(
n−2α/(2α+1))

and from Hölder’s inequality the first term is bounded above by

∑
j≥j0

2j (1−2/p)

(∑
k

|θjk|p
)2/p

.

Then inequality (A.21) gives

R2 + R3 ≤ C
∑
j≥j0

2j (1−2/p)2−j2(α+1/2−1/p) + o
(
n−2α/(2α+1))

= C
∑
j≥j0

2−j2α + o
(
n−2α/(2α+1))

≤ Cn−2α/(2α+1).

This and (A.20) imply (23) for 0≤ β ≤ 2 andp ≥ 2.
Note that forβ = 2 the proof can be found in Donoho and Johnstone (1995).

Forβ �= 2 our proof is very different and much more involved.
To complete the proof of the theorem, we now focus on the case 0≤ β ≤ 2 and

2 > p ≥ max{1/α,β} and establish (23). We similarly decompose the risk ofθ̂

as the sum ofR1, R2 andR3. Note that the bound forR1 in (A.20) is still valid.
Inequalities (A.2) and (A.3) imply

R2 ≤ ∑
J≥j≥j0

∑
k

θ2
jk ∧ logn

n
+ o

(
1

n1−δ

)

for some constantsC > 0. Furthermore, the inequality∑
xi ∧ A ≤ A1−t

∑
xt
i , xi ≥ 0,A > 0,1≥ t > 0,

implies

∑
J≥j≥j0

∑
k

θ2
jk ∧ logn

n
≤

(
logn

n

)1−p/2 ∑
J>j≥j0

∑
k

|θjk|p.
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Some simple calculations, using (A.21), establish

R2 ≤ C

(
logn

n

)1−p/2 ∑
J>j≥j0

2−jp(α+1/2−1/p) + o
(
n−2α/(2α+1))

(A.22)
≤ C(logn)1−p/2n−2α/(2α+1).

From Hölder’s inequality, it can be seen thatR3 is bounded above by

∑
j≥j0

(∑
k

|θjk|p
)2/p

.

Similarly to (A.22), we obtain the upper bound ofR3,

R3 ≤ C
∑
j≥J

2−j2(α+1/2−1/p) = o
(
n−2α/(2α+1)),

whereJ is taken to be log2 n. Thus for 0≤ β ≤ 2 and 2≥ p ≥ max{1/α,β}, we
have

sup
f ∈Bα

p,q

E‖θ̂ − θ‖2 ≤ C(logn)1−β/2n−2α/(2α+1).
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