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WITH A LINK FUNCTION
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This paper describes an estimator of the additive components of
a nonparametric additive model with a known link function. When the
additive components are twice continuously differentiable, the estimator is
asymptotically normally distributed with a rate of convergence in probability
of n=2/5. This is true regardless of the (finite) dimension of the explanatory
variable. Thus, in contrast to the existing asymptotically normal estimator,
the new estimator has no curse of dimensionality. Moreover, the estimator has
an oracle property. The asymptotic distribution of each additive component is
the same as it would be if the other components were known with certainty.

1. Introduction. This paper is concerned with nonparametric estimation of
the functionsny, ..., my in the model

(1.1) Y =Flp+mi(XH 4+ +mg(XH]+ U,

whereX/(j =1,...,d) is the jth component of the random vect&re R¢ for

some finited > 2, F is a known functionu is an unknown constant;1, ..., my

are unknown functions and/ is an unobserved random variable satisfying
E(U|X = x) = 0 for almost everyx. Estimation is based on an i.i.d. random
sample{Y;, X;:i =1,...,n} of (¥, X). We describe an estimator of the additive
componentsu, . .., my that converges in probability pointwise at the rate?/>

when F and them’s are twice continuously differentiable and the second
derivative ofF is sufficiently smooth. In contrast to previous estimators, only two
derivatives are needed regardless of the dimensidn eb asymptotically there is

no curse of dimensionality. Moreover, the estimators derived here have an oracle
property. Specifically, the centered, scaled estimator of each additive componentis
asymptotically normally distributed with the same mean and variance that it would
have if the other components were known.
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Linton and Hardle (1996) (hereinafter LH) developed an estimator of the
additive components of (1.1) that is based on marginal integration. The marginal
integration method is discussed in more detail below. The estimator of LH
converges at the rate—2/° and is asymptotically normally distributed, but it
requires then;’s to have an increasing number of derivatives as the dimension
of X increases. Thus, it suffers from the curse of dimensionality. Our estimator
avoids this problem.

There is a large body of research on estimation of (1.1) whesthe identity
function so thatY = u + my(X1) + --- + mg(X?) + U. Stone (1985, 1986)
showed that:=%/® is the optimalL» rate of convergence of an estimator of
them ;’s when they are twice continuously differentiable. Stone (1994) and Newey
(1997) describe spline estimators whdserate of convergence is~%/°, but the
pointwise rates of convergence and asymptotic distributions of spline and other
series estimators remain unknown. Breiman and Friedman (1985), Buja, Hastie
and Tibshirani (1989), Hastie and Tibshirani (1990), Opsomer and Ruppert (1997),
Mammen, Linton and Nielsen (1999) and Opsomer (2000) have investigated the
properties of backfitting procedures.awhmen, Linton and Nielsen (1999) give
conditions under which a smooth backfitting estimator ofthé& converges at the
pointwise raten =%/ when these functions are twice continuously differentiable.
The estimator is asymptotically normally distributed and avoids the curse of
dimensionality, but extending it to models in whiéhis not the identity function
appears to be quite difficult. Horowitz, Klemeld and Mammen (2002) (hereinafter
HKM) discuss optimality properties of a saty of estimatos for nonparametric
additive models without link functions.

Tjgstheim and Auestad (1994), Linton and Nielsen (1995), Chen, Hardle,
Linton and Severance-Lossin (1996) and Fan, Hardle and Mammen (1998) have
investigated the properties of marginal integration estimators for the case in which
F is the identity function. These estimators are based on the observation that when
F is the identity function, them1(x1), say, is given up to an additive constant by

(1.2) /E(Y|X=x)w(x2,...,xd)dxz---dxd,
wherew is a nonnegative function satisfying
/w(xz,...,xd)dxz---dxd =1

Therefore,m1(x1) can be estimated up to an additive constant by replacing
E(Y|X = x) in (1.2) with a nonparametric estimator. Linton and Nielsen (1995),
Chen, Hardle, Linton and Severance-Lossin (1996) and Fan, Hardle and Mammen
(1998) have given conditions under which a variety of estimators based on the
marginal integration idea converge at rate?’° and are asymptotically normal.

The latter two estimators have the oracle property. That is, the asymptotic
distribution of the estimator of each additive component is the same as it would be
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if the other components were known. LH extend marginal integration to the case
in which F is not the identity function. However, marginal integration estimators
have a curse of dimensionality: the smoothness ofithis must increase as the
dimension ofX increases to achieve %/®> convergence. The reason for this is
that estimatind=(Y | X = x) requires carrying out d-dimensional nonparametric
regression. It/ is large and the: ;'s are only twice differentiable, then the bias of
the resulting estimator dE(Y|X = x) converges to zero too slowly as— oo

to estimate then;’s with an n=2/5 rate. For example, the estimator of Fan,
Hardle and Mammen (1998), which imposes the weakest smoothness conditions
of any existing marginal integration estimator, requires more than two derivatives
if d>5.

This paper describes a two-stage estimation procedure that does not require
a d-dimensional nonparametric regression and, thereby, avoids the curse of
dimensionality. In the first stage, nonlindaast squares is used to obtain a series
approximation to each ;. The first-stage procedure imposes the additive structure
of (1.1) and yields estimates of the;’s that have smaller asymptotic biases
than do estimators based on marginal integration or other procedures that require
d-dimensional nonparametric estimation. The first-stage estimates are inputs to
the second stage. The second-stage estimate ofnpgay,obtained by taking one
Newton step from the first-stage estimate toward a local linear estimate. In large
samples, the second-stage estimator has a structure similar to that of a local
linear estimator, so deriving its pointwise rate of convergence and asymptotic
distribution is relatively easy. The main results of this paper can also be obtained
by using a local constant estimate in the second stage, and the results of Monte
Carlo experiments described in Section 5 show that a local constant estimator has
better finite-sample performance under some conditions. However, a local linear
estimator has better boundary behavior and better ability to adapt to nonuniform
designs, among other desirable properties [Fan and Gijbels (1996)].

Our approach differs from typical two-stage estimation, which aims at estimat-
ing one unknown parameter or function [e.g., Fan and Chen (1999)]. In this setting,
a consistent estimator is obtained in the first stage and is updated in the second,
possibly by taking a Newton step toward the optimum of an appropriate objective
function. In contrast, in our setting, there are several unknown functions but we
update the estimator of only one. It is essential that the first-stage estimators of the
other functions have negligible bias. The variances of these estimators must also
converge to zero but can have relatively slow rates. We show that asymptotically,
the estimation error of the other functions does not appear in the updated estimator
of the function of interest.

HKM use a two-stage estimation approach that is similar to the one used here,
but HKM do not consider models with link functions, and they use backfitting
for the first-stage estimator. Derivation of the properties of a backfitting estimator
for a model with a link function appears to be very complicated. We conjecture
that a classical backfitting estimator would have the same asymptotic variance
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as the one in this paper but a different and, possibly, complicated bias. We
also conjecture that a classical backfitting estimator would not have the oracle
property. Nonetheless, we do not argue here that our procedure outperforms
classical backfitting, in the sense of minimizing an optimality criterion such as
the asymptotic mean-square error. However, our procedure has the advantages of
a complete asymptotic distribution theory and the oracle property.

The remainder of this paper is organized as follows. Section 2 provides an
informal description of the two-stage estimator. The main results are presented in
Section 3. Section 4 discusses the selection of bandwidths. Section 5 presents the
results of a small simulation study, and Section 6 presents concluding comments.
The proofs of theorems are in Section 7. Throughout the paper, subscripts index
observations and superscripts denote components of vectors. Xhisstheith
observation ofX, X/ is the jth component o, anXm.J is theith observation of
the jth component.

2. Informal description of the estimator. Assume that the support &f is
X =[—1,1)¢, and normalizens, ..., my So that

1
/ mj(v)dv =0, j=1,....d.
1

For anyx € R¢ definem(x) = mi(x1) + --- + mg(x¢), wherex/ is the jth
component ofx. Let {py:k =1,2,...} denote a basis for smooth functions
on[—1, 1]. A precise definition of “smooth” and conditions that the basis functions
must satisfy are given in Section 3. These conditions include

1
(2.1) | pwyav=o.
1 (L it =k
(2:2) /_1 Pi@pe)dv = { 0, otherwise,
and
(2.3) mj(x)) = Zejkpk(xj),
=1

for eachj =1,...,d, eachx’/ € [0, 1] and suitable coefficient®}. For any
positive integek, define

Pex)=[1, pr(xY), .. pe Y, pr(x?), o e 6D, pr(x D), pe(x DT

Then for6, € R“4*+1 P (x)'6, is a series approximation o + m(x). Section 3
gives conditions that must satisfy. These require that> co at an appropriate
rate as: — oo.
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To obtain the first-stage estimators of thg’s, let {Y;, X;:i =1,...,n} be
a random sample af, X). Let 6, be a solution to

n
minimize: Sy (6) = n—li_Zl{Yi — FIP.(X;)01),
where®, c R““+1is a compact parameter set. The series estimatar-fn (x)
is

i+ (x) = P (x) O,
where [ is the first component of,.. The estimator ofmj(x_f) for any
j=1,...,d and anyx’ € [0, 1] is the product of p1(x/), ..., p.(x/)] with the
appropriate components 6§.

To obtain the second-stage estimator of (sayjx1l), let X; denote theith
observation ofX = (X2, ..., X%). Definem_1(X;) = m2(X?) + - - + ma(X9),
where X/ is theith observation of thgth component ofy ands; is the series
estimator ofm ;. Let K be a probability density function op-1, 1], and define
K, (v) = K(v/h) for any real, positive constaat Conditions thaik andz must

satisfy are given in Section 3. These inclulle> 0 at an appropriate rate as
n — oo. Define

Sy (et i) = =23 (¥; — Flji+ma(x) + m_1(X)])
i=1
x F'[i 4 m1 (b + o1 (X)1(XE = xH7 Kyt — X1
for j =0,1and

n
Syt =23 F'li+ma (Y + w1 (X)P(X] = xDT K (et — XD
i=1

n
=2 ¥ — Flin+ w1 + m_1(X)])
i=1
x F[ju 4 () + mo1(XD1XF — xH K (et = XP)
for j =0, 1, 2. The second-stage estimatomof(x!) is
8o (x )8! g (e ) — 8! (et ) S (L, )
noa (XL i) Sy (et i) — S)/14 (x, 1in)2

2.4) mh =mixh) -

The second-stage estimatorsm(x?), ..., mqy(x?) are obtained similarly. Sec-

tion 3.3 describes a weighted version of this estimator that minimizes the asymp-
totic variance of1%/°[i1(x1) — m(x1)]. However, due to interactions between the
weight function and the bias, the weighted estimator does not necessarily minimize
the asymptotic mean-square error.
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The estimator (2.4) can be understood intuitively as followg. #ndm _1 were
the true values of. andm_1, the local linear estimator a1 (x1) would minimize

n
Sn1(x*, bo, by) = ) {Y; — FIi +bo + ba(X{ —x¥)
i=1
(2.5) & N2 1 1
+m_1(X) [} Kn(x™ — X7).

Moreover,S; 1 (x*, i) = S,1(x%, bo, b1)/db; (j =0, 1) evaluated abo= i1 (x1)
andby = 0. S;[jl(xl, i) gives the second derivatives §f1(x1, bo, b1) evaluated
at the same point. The estimator (2.4) is the result of taking one Newton step from
the starting valuesgy = i1 (x1), b1 = 0 toward the minimum of the right-hand side
of (2.5).

Section 3 gives conditions under whidhy (x1) — m1(x) = 0,(n=%/%) and
n?lm1(xY) — my(x1)] is asymptotically normally distributed for any finité
whenF and them ;’s are twice continuously differentiable.

3. Main results. This section has three parts. Section 3.1 states the assump-
tions that are used to prove the main results. Section 3.2 states the results. The
main results are the—2/°-consistency and asymptotic normality of the’s. Sec-
tion 3.3 describes the weighted estimator.

The following additional notation is used. For any matdx define the norm
Al = [tracgA’A)]Y2. DefineU =Y — F[u + m(X)], V(x) = Var(U|X = x),

O« = E{F/[p+mX)PPc(X) P (X)'}, andW, = O, 'E{F/ [ +m(X)?V (X) x

P (X)P.(X)'} Q;l whenever the latter quantity exis@3, and¥, ared () x d (k)
positive semidefinite matrices, whet&x) = kd + 1. Let i, min denote the
smallest eigenvalue of,.. Let Q, ;; denote the(, j) element ofQ,. Define

s = SUPex 1 P (). Let {0} be the coefficients of the series expansion (2.3).
For eachc define

O = (14, 011, -, O, 021, .-, O, o, Bat, - - ., Oaic).

3.1. Assumptions. The main results are obtained under the following assump-
tions.

ASSUMPTION Al. The data,{(Y;, X;):i =1,...,n}, are an i.i.d. random
sample from the distribution @, X), andE(Y |X = x) = F[u +m(x)] for almost
everyx € X =[—1, 1.

ASSUMPTIONAZ2. (i) The support ofX is X.

(i) The distribution ofX is absolutely continuous with respect to Lebesgue
measure.

(i) The probability density function oX is bounded, bounded away from zero
and twice continuously differentiable dx.



2418 J. L. HOROWITZ AND E. MAMMEN

(iv) There are constantsy > 0 andCy < oo such thatcy < Var(U|X =
x) <Cy forall x € X. '

(v) There is a constarfy < oo suchthaE|U|/ < C{J_zj!E(Uz) < oo forall
j=2.

ASSUMPTIONAS. (i) There is a constant,, < oo such thatim;(v)| <C,,
foreachj =1,...,dand allv € [-1, 1].

(i) Each functionm  is twice continuously differentiable dn-1, 1].

(i) There are constantdr1 < oo,cp2 > 0, and Cp2 < oo such that
F(w)<Cprandcpr < F'(v) <Cppforallve[u—Cud, u+ Cpd].

(iv) F istwice continuously differentiable dm — C,,d, u + Cy,d].

(v) Thereis a constarzz < oo such that F”(v2) — F”(v1)| < Crzlvz — v1]
forall vo,v1 € [u — Cpd, u+ Cpd].

ASSUMPTION A4. (i) There are constant§y < oo andc; > 0 such that
|Qk,ij| < Co andi, min>cy forallk and alli, j =1,...,d (k).
(i) The largest eigenvalue oF, is bounded for alk.

AsSSUMPTIONAS. (i) The functions p;} satisfy (2.1) and (2.2).

(i) Thereis a constant, > 0 such that, > ¢, for all sufficiently largex.

(i) ¢ = 0Y?) ask — oo.

(iv) There are a constaidly < oo and vectorg,g € ®, = [—Cy, Cg14* such
that suRy [ + m(x) — Pe(x) 00l = O(k~?) ask — oo.

(v) For eachk, 6, is an interior point 0l®,.

ASSUMPTION A6. (i) « = Cn**> for some constaniC, satisfying
0 < C, < oo and some satisfying O< v < 1/30.
(i) h = Cpn~1> for some constant), satisfying 0< Cj, < co.

ASSUMPTION A7. The functionK is a bounded, comuous probhility
density function ori—1, 1] and is symmetric about O.

The assumption that the supportdfis [—1, 1] entails no loss of generality as
it can always be satisfied by carrying out monotone increasing transformations of
the components of, even if their support before transformation is unbounded. For
practical computations, it suffices to transform the empirical suppdrt101]¢.
Assumption A2 precludes the possibility of treating discrete covariates with
our method, though they can be handled inelegantly by conditioning on them.
Another possibility is to develop a version of our estimator for a partially
linear generalized additive model in which discrete covariates are included in
the parametric (linear) term. However, this extension is beyond the scope of the
present paper. Differentiability of the density &f [Assumption A2(iii)] is used
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to insure that the bias of our estimator converges to zero sufficiently rapidly.
Assumption A2(v) restricts the thickness of the tails of the distributiotr @ind is

used to prove consistency of the first-stage estimator. Assumption A3 defines the
sense in which¥ and them ;'s must be smooth. Assumption A3(iii) is needed
for identification. Assumption A4 insures the existence and nonsingularity of
the covariance matrix of the asymptotic form of the first-stage estimator. This is
analogous to assuming that the information matrix is positive definite in parametric
maximum likelihood estimation. Assumption A4(i) implies Assumption A4(ii)

if U is homoskedastic. Assumptions A5(iii) and A5(iv) bound the magnitudes
of the basis functions and insure that the errors in the series approximations to
them ;'s converge to zero sufficiently rapidly as— ooc. These assumptions are
satisfied by spline and (for periodic functions) Fourier bases. Assumption A6
states the rates at which— co andh — 0 asn — oco. The assumed rate of
convergence of is well known to be asymptotically optimal for one-dimensional
kernel mean-regression when the conditional mean function is twice continuously
differentiable. The required rate ferinsures that the asymptotic bias and variance

of the first-stage estimator are sufficiently small to achievenaf’® rate of
convergence in the second stage. Thaate of convergence of a series estimator

of m; is maximized by setting o n/3, which is slower than the rates permitted by
Assumption A6(i) [Newey (1997)]. Thus, Assumption A6(i) requires the first-stage
estimator to be undersmoothed. Undersmoothing is needed to insure sufficiently
rapid convergence of the bias of the first-stage estimator. We show that the first-
order performance of our second-stage estimator does not depend on the choice
of « if Assumption A6(i) is satisfied. See Theorems 2 and 3. Optimizing the choice
of « would require a rather complicated higher-order theory and is beyond the
scope of this paper, which is restricted to first-order asymptotics.

3.2. Theorems. This section states two theorems that give the main results
of the paper. Theorem 1 gives the asymptotic behavior of the first-stage series
estimator under Assumptions A1-A6(i). Theorem 2 gives the properties of the
second-stage estimator. Foe1,...,n, definelU; = Y; — F[u + m(X;)] and
beo(x) = u+m(x) — P (x)'6,0. Let ||v| denote the Euclidean norm of any finite-
dimensional vectop.

THEOREM1. Let Assumption81-A6(i) hold. Then

(@) liMy—s o0 |0 — B0l = 0 almost surely

(0) O — b0 = 0, (kY?/n%2 4 1c=?), and

(€) SURcx l(x) —m(x)| = O, (k/n*? 4+ =3/2),
In additiorn

d) b — 60 = n2OIYI Fllu+m(XDIP(X)U; + n10t x
Y0y Fl +m(X)PPe(X)bie(Xi) + Ry, where||R, | = 0, (%2 /n +n=12).
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Now let fx denote the probability density function &f For j =0, 1, define
Sy/ljl(xl’ m)=-2) {Y; — Flu+ ma(xh) +m_1(X)])
i=1
x F'li 4 ma(xeh) +m_a (X)X — xDT K (et — X1,

Also define

Do(xY) =2 f F'li 4+ ma(ch) + m_1 ()P fx oL ©) di.
Di(xhy =2 / F'li 4 ma(eb) + mo1 ()10 fx (6L 5)/0xY di,

1
Ax =/ v2K (v) dv,
1

1
Bk =/ K (v)?dv,
-1

gt %) = F'[u +ma(xY) + m_1(F)my(xh
+ F'lu 4 ma(xh) + m_g(3)mf (b,
B1(x1) =2C2A g Do(x1) 71

x f gL BV F T+ mi(xc) + m_g ()] fx (L B di

and

Vixh) = Bx €t Do(x) 2
« /Var(lel, BV F [+ mieD + m_1 (P fx (L ©) dx.

The next theorem gives the asymptotic properties of the second-stage estimator.

THEOREM 2. Let Assumption81-A6 hold. Then

(@) ma(xt) — mi(xt) = [nhDo(x1)] =S80 (xt, m) + [D1(x1)/Do(x1)] x
S/ 1,(xt, m)} + 0, (n=2/5) uniformly over|x!| <1 —h and my(xt) — mi(xh) =
0,[(logn)Y/?n=2/%] uniformly overjx!| < 1.

(b) n?5[i1(xY) — mi(xH] S N[BL(xD), VaGrhl.

(©) If j #1, thenn?S[m1(xt) — mi(xH)] and n?5[mj(x7) — m;(x7)] are
asymptotically independently normally distributed

Theorem 2(a) implies that asymptoticaly/°[111 (x1) —m1(x1)] is not affected
by random sampling errors in the first-stage estimator. In fact, the second-stage
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estimator ofm1(x1) has the same asymptotic distribution that it would have if
mo, ..., mg Were known and local-linear estimation were used to estimate?®)
directly. In this sense, our estimator has an oracle property. Parts (b) and (c) of
Theorem 2 imply that the estimators af (x1), ..., my(x?) are asymptotically
independently distributed.

It is also possible to use a local-constant estimator in the second stage. The
resulting second-stage estimator is

1 pe(et) = ma(xt) — 8o (et i) /Sho (et ).

The following modification of Theorem 2, which we state without proof, gives the
asymptotic properties of the local-constant second-stage estimator. Define

gro(xt, ¥) = (82/3¢H{Flma(¢ +xb) + m_1(0)]
— Fim1Gch +mo1(®) fx (@ 4+ x4 8)le=o

and
Brrc(xt) =2C2Ax Do(x) 7t

x / gre Gl D F [+ mieh) + m_y ()] fx (L ) dF.

THEOREM 3. Let Assumption81-A6 hold. Then

@) m1,Lc(x) —m1(xt) = —[nh Do(x V718! o, (x1, m) 40, (n=2/5) uniformly
over [x!| <1 —h and m1(x) — m1(x1) = 0,[(logn)*/2n=2/5] uniformly over
Ikt <1.

(b) 1?50 e () — maxH]S NIBLLc D, Vaah].
() If j # 1, thenn®3[ig, Lc (6 — ma(xh)] andn? (i j e (xl) — m j(x7)]
are asymptotically independently normally distributed

Vi(x1) and B1(x1) and B .c(x?) can be estimated consistently by replacing
unknown population parameters with consistent estimators. Section 4 gives a
method for estimating the derivatives of; that are in the expressions for
B1(x1) and ﬂl’LC(xl). As is usual in nonparametric estimation, reasonably
precise bias estimation is possible only by making assumptions that amount
to undersmoothing. One way of doing this is to assume that the second
derivative of m1 satisfies a Lipschitz condition. Alternatively, one can set

h=Cpn~ for 1/5 < y < 1. Thenn@ 17201 (xY) — myxH]1S N[O, Va(x )],
andn /2y 1e(xb) — m(xH]-S N[O, Vi),
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3.3. A weighted estimator. A weighted estimator can be obtained by replacing
S;;1(ct, m) andsy (xt, m) in (2.5) with

St w) = =23 wek, XY — Fli +my(xeb) +m_1(X)])
i=1
x F'[i+ i1 (D) 4+ m_a(XD1(XE — xH K (et = x b
and

1 ~

=23 wieh, X) FI+ma(xch + moa (X)X — xh Ky (et = X1
i=1
=23 weh XY — Flia+mi(eh) +m_1(X)])
i=1
x F"[jt+m(xb) +m_1(X)1(XE — xb K (6t — xh

for j =0, 1, 2, wherew is a honnegative weight function that is assumed for the
moment to be nonstochastic. It is convenient to normaliz® that

/ wh, B F T+ muaY) +m_ (O fx (b By di = 1

for eachx! € [—1, 1]. Arguments identical to those used to prove Theorem 2 show
that the variance of the asymptotic distribution of the resulting local-linear or local-
constant estimator ofi1(x1) is

Vixt, w) :0.253Kch—1/w(xl,)z)ZVar(U|x1,)z)

x F'liw+m1(eh) +m_1(0)P fx (', %) di.
It follows from Lemma 1 of Fan, Hardle and Mammen (1998) thak!, w) is
minimized by settingw(x1, ¥)2 1/ Var(U |x1, %), thereby yielding
VaGeh w) = 0258, C; Do) [ Pl marh) + ms (DR fx () d.
where
Dy(x) = / Var(U |xt, §) 7 F [+ ma () + m 1 (D) fx (ch %) di

In an application, it suffices to replace the variance-minimizing weight function
with a consistent estimator. For exampl€/[u 4+ m1(x1) + m_1(X)] can be
estimated from the first estimation stage, Mak!, ¥) can be estimated by
applying a nonparametric regression to the squared residuals of the first-stage
estimate and kernel methods can be used to estime(tel, X).
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The minimum-variance estimator is not a minimum asymptotic mean-square
error estimator unless undersmoothing is used to remove the asymptotic bias
of m1. This is because weighting affects the bias when the latter is nonnegligible.
The weight function that minimizes the asymptotic mean-square error is the
solution to an integral equation and does not have a closed-form analytic
representation.

4. Bandwidth selection. This section presents a plug-in and a penalized least
squares (PLS) method for choosilgn applications. We begin with a description
of the plug-in method. This method estimates the valug tiat minimizes the
asymptotic integrated mean-square error (AIMSE)®P[ri1(x1) — m1(x1)] for
Jj=1,...,d. We discuss only local-linear estimation, but similar results hold for
local-constant estimation. The AIMSE of/°(/i11 — m1) is defined as

1
A||\/|SE1:n4/5f_1w(x1)[ﬁ1(x1)2+ Vi(xH]dxt,

wherew(-) is a nonnegative weight function that integrates to 1. We also define
the integrated squared error (ISE) as

1
ISE; = n4/5/ wxH (el — my(xh12dxt.
1
We define the asymptotically optimal bandwidth for estimatingas Cy1n~1/°,
whereCy,1 minimizes AIMSH. Let

Brxh =pixh/C2 and Vixl) = Cpvaeh.
Then
1 N 1 1-1/5
(4.1) ch1=[%fl—1w(x )Yl(x)dx] .
[ wEDBr(x)2dxt

The results for the plug-in method rely on the following two theorems. Theo-
rem 4 shows that the difference between the ISE and AIMSE is asymptotically neg-
ligible. Theorem 5 gives a method for estimating the first and second derivatives
of m;. Let G denote the'th derivative of any-times differentiable functioi.

THEOREM 4. Let Assumption®\1-A6 hold. Then for a continuous weight
functionw(-) and asn — oo, AIMSE; = ISE; +0,(1).

THEOREM 5. Let Assumption&1—-A6 hold. Let L be a twice differentiable
probability density function ofi—1, 1], and let{g,:n =1, 2, ...} be a sequence
of strictly positive real numbers satisfying — 0 and g2n*/°(logn)~* — oo as
n — oo. For £ =1, 2 define

1
A (Y = g1 / L1 = 0) /g Vi () dv.



2424 J. L. HOROWITZ AND E. MAMMEN

Thenas: — oo andfore =1, 2,

sup |y &b —ml? Y| = 0, (1).
Ixt<1

A plug-in estimator of C;1 can now be obtained by replacing unknown
population quantities on the right-hand side of (4.1) with consistent estimators.
Theorem 5 provides consistent estimators of the required derivatives; of
Estimators of the conditional variance bf and of fx can be obtained by using
standard kernel methods.

We now describe the PLS method. This method simultaneously estimates the
bandwidths for second-stage estimation of all of the functiengj =1,...,4d).

Let h; = Cyn~Y° be the bandwidth forn;. Then the PLS method selects
the Cp,;’s that minimize an estimate of the average squared error (ASE),

n
ASE(h) =n"1 Y (FLii + (X)) — Flu+m(Xp)1),
i—1
where h = (Cpin=Y5, ..., Cryn=°). Specifically, the PLS method selects
theCy;'s to

i=1

(4.2) +2KO)n Y (F'lu +m(X) 1PV (X))
i=1

d
x Y [n*°Cp; Dj(x)H17L,
j=1
where theC),;’s are restricted to a compact, positive interval that excludes 0,

~ ; 1 2 . . B .
D)) = =3 K (X] <) Flji+ (X))
Ji=1

and

n -1
Vx) = [Z Kp (X} —xb o Ky (x4 — xd)i|
i=1

n
X Y Kny (X} =y K (X8 = xD{Y; — FIi+m(Xp)1)%
i=1
The bandwidths used fdr may be different from those used férbecause’ is
a full-dimensional nonparametric estimator. We now argue that the difference

n
n~tY " U? + ASE(h) — PLS(h)
i=1
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is asymptotically negligible and, therefore, that the solution to (4.2) estimates the
bandwidths that minimize ASE. A proof of this result only requires additional
smoothness conditions dnand more restrictive assumptionsonlhe proof can

be carried out by making arguments similar to those used in the proof of Theorem 2
but with a higher-order stochastic expansion #or m. Here, we provide only

a heuristic outline. For this purpose, note that

n
n~tY " UZ + ASE(h) — PLS(h)
i=1

=20~y (Fli+m(X)] — Flu+m(X)}U;
i=1

n d
—2KO)n 1Y Flu+m(X) PV (Xi) Y [n°Cy; Dy (x)H1 7
i=1 j=1
We now approximateF' [ + m(X;)] — F[u + m(X;)] by a linear expansion in
m — m and replacen — m with the stochastic approximation of Theorem 2(a).
(A rigorous argument would require a higher-order expansiofi of m.) Thus,
Fli+m(X;)] — F[u+m(X;)] is approximated by a linear form iti;. Dropping
higher-order terms leads to an approximation of

2
— D AFl+m(X)] = Flp+m(X) Ui
i=1

that is aU statistic inU;. The off-diagonal terms of th& statistic can be shown
to be of higher order and, therefore, asymptotically negligible. Thus, we get

22 B .
- Z{F[u + (X)) — Flu +mX)NU;

2

~ =) Fllpd m(X) P VarUi| X Z[" 4/5Cp; Doj (X)W 1K (0),

i=1 j=1
where
Doj(x?) = 2E{F [+ m(X)P|X] = x7} fyi (x))

and fy, is the probability density function of/. Now by standard kernel smooth-
ing argumentsDo; (x/) & D;(x/). In addition, it is clear thaV (X;) ~ V (U; | X),
which establishes the desired result.

5. Monte Carlo experiments. This section presents the results of a small set
of Monte Carlo experiments that compare the finite-sample performances of the
two-stage estimator, the estimator of LH and the infeasible oracle estimator in
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which all additive components but one are known. The oracle estimator cannot be

used in applications but provides a benchmark against which our feasible estimator

can be compared. The infeasible oracle estimator was calculated by solving (2.5).
Experiments were carried out with= 2 andd = 5. The sample size is= 500.

The experiments witld = 2 consist of estimating’ and f> in the binary logit

model

P(Y = 11X =x) = LLAGY + f20:9)],
whereL is the cumulative logistic distribution function
L(w)=e¢e"/[1+¢"], —00 <V < 00.

The experiments witld =5 consist of estimating’ and f> in the binary logit
model

5
P(Y =1]X =x)= L[fl(xl) + f2(x%) + fo]

j=3
In all of the experiments,
fi(x) =sin(rx) and fo(x) = ®(3x),

where @ is the standard normal distribution function. The componentss of
are independently distributed d8[—1, 1]. Estimation is carried out under the
assumption that the additive components have two (but not necessarily more)
continuous derivatives. Under this assumption, the two-stage estimator has the rate
of convergence —2/°. The LH estimator has this rate of convergence i 2 but
notif d = 5.

B-splines were used for the first stage of the two-stage estimator. The kernel
used for the second stage and for the LH estimator is

K@) =81-v)I(v| < D).

Experiments were carried out using both local-constant and local-linear estimators
in the second stage of the two-stage method. There were 1000 Monte Carlo
replications per experiment with the two-stage estimator but only 500 replications
with the LH estimator because of the very long computing times it entails. The
experiments were carried out in GAUSS using GAUSS random number generators.
The results of the experiments are summarized in Table 1, which shows
the empirical integrated mean-square errors (EIMSES) of the estimators at the
values of the tuning parameters that minimize the EIMSEs. Lengthy computing
times precluded using data-based methods for selecting tuning parameters in
the experiments. The EIMSEs of the local-constant and local-linear two-stage
estimates off; are considerably smaller than the EIMSEs of the LH estimator.
The EIMSEs of the local-constant and LH estimatorsfgfare approximately
equal whereas the local-linear estimatorfathas a larger EIMSE. There is little
difference between the EIMSESs of the two-stage local-linear and infeasible oracle
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TABLE 1
Results of Monte Carlo experimehts

Empirical IMSE
Estimator K1 K2 hy ho f1 fo
d=2
LH 0.9 09 0.116 Q015
Two-stage with 2 2 o 0.9 0.052 Q015
local-constant
smoothing
Two-stage with 4 2 ® 14 0.052 Q023
local-linear
smoothing
Infeasible oracle ® 17 0.056 Q021
estimator
d=5
LH 1.0 1.0 0.145 Q019
Two-stage with 2 2 o 0.9 0.060 Q018
local-constant
smoothing
Two-stage with 2 2 ® 13 0.057 Q029
local-linear
smoothing
Infeasible oracle ® 20 0.057 Q023
estimator

*In the two-stage estimatar,; and’; (j = 1,2) are the series length and bandwidth
used to estimatef;. In the LH estimator; (j = 1,2) is the bandwidth used to
estimatef;. The values oky, 2, i1 andhy minimize the IMSEs of the estimates.

estimators. This result is consistent with the oracle property of the two-stage
estimator.

6. Conclusions. This paper has described an estimator of the additive
components of a nonparametric additive model with a known link function.
The approach is very general and may be applicable to a wide variety of other
models. The estimator is asymptotically normally distributed and has a pointwise
rate of convergence in probability af~%/> when the unknown functions are
twice continuously differentiable, regardless of the dimension of the explanatory
variable X. In contrast, achieving the rate of convergenceé/® with the only
other currently available estimator for this model requires the additive components
to have an increasing number of derivatives as the dimensiaki ofcreases.

In addition, the new estimator has an oracle property: the asymptotic distribution
of the estimator of each additive component is the same as it would be if the other
components were known.
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7. Proofsof theorems. Assumptions A1-A7 hold throughout this section.

7.1. Theoreml. This section begins with lemmas that are used to prove
Theorem 1.

LEMMA 1. There are constants > 0 andC < oo such that

P[ Sup [Spc(8) — ESui ()] > e} < Cexp(—nas?)
0e®,

for any sufficiently smal > 0 and all sufficiently large:.

PROOE Write

n
Suc (@) =11 Y2 — 28,,1(0) + Suc2(6).
i=1

where

Suc1(0) =n"1Y Y, F[P.(X;)'0]
i=1

and

Suc2(0) =n~ 1Y FP(X;)01%.
i=1

It suffices to prove that

P[ SUP [Sukj (0) — ESuxj (0)] > s] < C‘exr{—naez) (j=1,2
0e®,

for anye > 0, someC < oo and all sufficiently large:. The proof is given only
for j = 1. Similar arguments apply whein= 2.

Define S,,,1(0) = S,c1(0) — ES,1(0). Divide ®, into hypercubes of edge-
length ¢. Let ©, ..., 0 denote theM = (2Cy/£)?® cubes thus created.
Let 6,; be the point at the center @, The maximum distance betweép;
and any other point i®Y” is r = d(x)¥2¢/2, andM = expld (x)[l0g(Cp/r) +
(1/2)logd(x)]}. Now

M

[ supI5a@)1 = ¢| < U] sup 15ua@)] = ¢ |

€0, iZ1bpcol)

Therefore,

M
P, = P[ sup [Sue1(0)] > s] <Y P[ Sup [Suc1(0)] > 8]
0€0, j=1 toce
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Now forg € Y,
101 < SO + 1Snk1(0) — Snec1(Bicj)|

n
< |8ue1Bcj)| + Crater (n—l >yl + cm)
i=1

for all sufficiently largex and, thereforey. Therefore, for all sufficiently large,

P[ Sup 1Spe1(0)] > e]
9coY’

< Pl|Suc1(6cj)| > €/2] + P[chcKr(n‘lz Y|+ CF1> > e/Z]
i=1

Chooser = §K—2_ Thene/2 — Crazr[Cr1 + E(IY])] > ¢/4 for all sufficiently
largex. Moreover,

P|:CF2§KF<"_1Z |Y;| + CF1> > 8/2:|

i=1
n
< P[chzKrn*Zum —ElY) > e/4}
i=1
< Zexq—alnezgjcz)

for some constant; > 0 and all sufficiently largec by Bernstein’s inequality
[Bosq (1998), page 22]. Also by Bernstein’s inequality, there is a conggantO
such that

PlISuc1(6))] > £/2] < 2 exp(—azns?)
for all n, k andj. Therefore,
P, < 2[M exp(—azne?) + exp(—aine?)]
< 2exp{—azne?c? + 2dCen? [log(Co /1) + 3109(2C,d) + 1y logn])
+ Zexq—alnez),
wherey = 4/15+ v. It follows thatP, < 4 exg—ane?) for a suitablez > 0 and
all sufficiently largen. O
Define
Sk (0) = E[Sn« (9)]
and

6, = arg minS,(9).
€0,
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LEMMA 2. For any n > 0, SK(énK) — Sc(6) < n almost surely for all
sufficiently largen.

PROOF  For eachk, let &, C R be an open set containir@y. Let A
denote the complement of, in ©,. DefineT, = N, N O,. ThenT, c R is
compact. Define

1= Min S (©0) = S, ).

Let A, be the eventsS,,. (0) — S, (0)| < n/2foralld € ®,. Then

An = ScOne) < SucB) +n/2
and

An = Suc(@c) < Sc(B) +n/2.
BUt Spc Bne) < Spe (B,) by definition, so

An = ScOne) < SucG) + /2.
Therefore,

An = ScOnc) < Sc0) + 1= ScOnc) — Sc(B) <.

S0 A, = Oy € Ne. Sincen, is arbitrary, the result follows from Lemma 1 and
Theorem 1.3.4 of Serfling [(1980), page 10[]

Define
b (x) = p+m(x) — Pe(x) 6
and
Sco(®) = E{Y — F[P(X)'0 + b (X)]}*.
Then

0, = argminS,o(6).
0e®,

LEMMA 3. Foranyn > 0, S,0(6c) — Sco(bc0) < 1 for all sufficiently largen.

PrROOF Observe thafs, (8) — Sy0(0)| — 0 asn — oo uniformly overé € O,
becausé, (x) — 0 for almost every € X. For each, let &, C R?*) be an open
set containin@,o. DefineT, = N, N ©. ThenT, c R4% is compact. Define

1n = min S,0(6) — Sc0(6x0)-
0eTy
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By choosing a sufficiently smalV,., n can be made arbitrarily small. Choose
and, thereforeg large enough thats, (6) — S,0(0)| < n/2 for all 6 € ®. Now
proceed as in the proof of Lemma 2]

DefineZ; = F'[i +m(X)1Pe(X;) and O, =n~*Y 1 Z,;Z/,. ThenQ, =
EQK. Let Z’K‘i [k=1,...,d(x)] denote thekth component oZ,.;. Let Z, denote
then x d(x) matrix whose(i, k) element isz%..

LEMMA 4. [« — Qcll? = 0,(?/n).

PROOF. Let Q;; denote thei, j) element ofQ,.. Then

R d(ic) d(x) 2
ElQ« — Oll —ZZE< ‘122’2,% ij)
k=1j=1
d(k)d(x)
=>>»> (En_zzz zk.zl 7k, 7], — Q,Ej)
k=1 j=1 i=1¢=1
d(x)d () ) d(k)d (k)
=3 Y En- 22(2 VAZIH2 -0t 02
k=1j=1 i=1 k=1j=1
d(K) dw)
n_1E|:Z(Z,]fi)2 Z(zg,.)z} = O(x/n).
k=1 j=1

The lemma now follows from Markov’s inequality]

Define y,, = I (Ax.min > ¢1/2), where I is the indicator function. LeU =
(U1, ..., Uy

LEMMA 5. y,10.1Z.T /n| = 0,(Y?/n1/?) asn — oco.
PROOFE Foranyx € X,
nPEGmll 0 Y2 ZLUIPIX =x) = n"?,E(U' 2, 0; ' 2, U|X = x)
=n"2E[TraceZ, O 1 Z.UU")|X = x]
<n"?y,Cy Trac& 0, Z. Z},)
=n"1Cyynd(k) < Cx/n

for some constan€C < oo. Therefore,y,,”Q‘l/ZZ/ U/n|| = op(Kl/Z/nl/Z) by
Markov’s inequality. Now

vl O ZLU /n) = yul(U' Z, y) O Y201 0 Y 2(Z, U fn) M2,
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A—1/2

Defineé = Q Z,/(U/n. Letny, ..., naw) andqz, ..., qau) denote the eigenval-
ues and eigenvectors @f;l. Let nmax=max(nz1, ..., n4x)). The spectral decom-
position of 071 gives 071 = ¥-9%) 14qeq), 0
d ()
Yl O P ZLU I =y Y ne€ quqi
=1
d(x)
< Vnﬂmaxz S/qmé%“ < Yulmaxé & = Op(k/n). 0
=1

Define

n
B, =0 Y F'llu+m(X)1Zibeo(X)).
i=1

LEMMA 6. | B,| = O(x—?) with probability approaching. asn — oo.

PROOF Let & be then x 1 vector whoseith component isF'[ +
m(X)1beo(X;). Then B, = Q0 *Z &/n, and y,|IBall? = n=2y,§'Z, 0,2,
Therefore, by the same arguments used to prove Lemma,FB,|° <
Cn 1y, = ,0(k=*). The lemma follows from the fact thé&(y, = 1) — 1
asn — oco. [

PROOF OFTHEOREM 1. To prove part (a), write
S00nic) — Sc0(Bi) = [Sc0ni) — Sk Guic)] + [Sk Onic) — Sic (6]

+[Se(0e) — Sc0@)] + [Sc0Bx) — ScoBi)]-

Given anyn > 0, it follows from Lemmas 2 and 3 and uniform convergencs,of
to S,o that each term on the right-hand side of (7.1) is less #yd@nalmost surely
for all sufficiently largen. ThereforeS,0(0uc) — Sco(6c) < n almost surely for
all sufficiently largen. It follows that ||6,. — 6] — O almost surely ag — oo
because&), uniquely minimizesS,. Part (a) follows because uniqueness of the
series representation of each functispimplies that||6, — 6,0l — 0 asn — oo.

To prove the remaining parts of the theorem, observeithasatisfies the first-
order conditiorf)SnK(énK)/ae =0 almpst surely for all suffjciently large. Define
M; = u+m(X;) andAM; = P (X;) Ope — Mi = Pi(Xi)' (Onic — 6k0) — bo(Xi)-
Then a Taylor series expansion yields

(7.1)

n n
" ZeiUi = (O + Rup) G — 0c0) + 171> F' (M) Zyibeo(Xi) + Ruz =0,
i=1 i=1
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almost surely for all sufficiently large. R, is defined by
n ~
Ryp=n"1Y {~UiF"(M;) — Ui[F"(M;) — F"(M;)]
i=1

+[3F (M) F' (M) + 3F" (M) F' (M) A M,
+ 3PV (V) F! (M) (AM)Z] A M;
— [F"(M)F'(M;) — LF" (M) F' (M)
+ F'(M) F" (M)beo(XD) |beo(X1))
x Pe(X)Pe(Xy),

whereM; andM; are points betweeR, (X;) 6, andM;. R, is defined by

R = —”l_lZ{Ui F”(A:fi) + Ul'[F”(Ajli) — F"(M))]
i=1

+[F"(M)F' (M) — 3F" (M) F (M) ]beo(X:)
— SF" (M) F" (M)beo(X:)?} Pe(X)bio(X:).
Now let & denote eitherQ1Z . U/n or O n 1Y | F/(M;)?Pc(X;) x
b.0(X;) + R,2]. Note that
2

IS U F (M) P(X) Pe(Xi) | = 0,(k?/n).

i=1

Then

Yalll(Qc + Rup) ™ = 0110612
= ¥l (Qx + Ru1) " Ru1E11?
= Tracey,[&' Ru1(Q« + Ru1) "2Ru1£ 1}
= 0,(I&'Ru1ll?)

_ 0p<s’s>0p{fc2/n + [ 1P Gos — o) + su£|bko<x>|2}

= 0,E'€)0,K?/n+ Kb — b0l +K73).

Settinge = 017/ U /n and applying Lemma 5 yield§ (0, + Ry1) 1 — 0] x
Z,U/n|? = 0p[k3/n + (/) — Ocoll® + 1/ (). If & = 07 n™? x
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Y F'(M{)2P.(Xi)beo(X;) + Ru2], then applying Lemma 6 and using the result
101 Ruzll = 0, (c2) yields
" 2
H (O« + Ro) t = 01 [n—l Y F'(Mi)Zyibeo(Xi) + an}

i=1

= 0, (105 — coll®/xc + 1/x>).
It follows from these results that

n
O —Oco=n""01 > F'lu+ m(X)]Pe (X))
i=1

n
+n7 0 Fllp+ m(X)1PPe(X)beo(Xi) + R,
i=1

where ||R,| = 0,«*?/n +n~/2). Part (d) of the theorem now follows from
Lemma 4. Part (b) follows by applying Lemmas 5 and 6 to part (d). Part (c) follows
from part (b) and Assumption A5(iii). O

7.2. Theorem2. This section begins with lemmas that are used to prove
Theorem 2. For any = (x2,...,x%) e [-1, 1971, setm_1(%) = ma(x?) +
oo mg(x?), andbo(X) =+ m_1(X) — P(¥)6,0, where
Pe(x)=1[1,0,....0, p1(x?), ... pe(x?), ..., pr(xD). ..., pe(xDY
and
Oe0=(0,0,...,0,000, ...,600¢,....041,...,6ac) .

In other words P andé,g are obtained by replacines (x1), .. ., p.(x¢) with zeros
in P, and®11, ..., 01, with zeros ind,g. Also define

8u1(X) =n"1P(®) 0t le/[u +m(X)IP(X)U,

j=

and

8n2(X) =n 1P (¥) 0t le/[u +m(X )P Pe(X ))beo(X ).
Jj=
Forx!e[—1, 1] and forj =0, 1 define
Hyj1(xh) = <nh>—1/2fF/[u +m1(eh) +mo1(X)1A(X} — 1)
i=1
x Kp(xt = XH8u(X0),
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Hyjo(xh = (nh) ™23 F'[+ ma(eh) + moy (X)X} — xb
i=1

x Kn(xt = X1)8n2(X0)
and
Hyja(xh) = —(nh) Y23 F/lp 4+ ma(xh) + m_y (X)X} — xD/
i=1
x Kn(xt = XDbeo(X).

LetV(x)=Var(U|X =x).

LEMMA 7. For j =0,1 and k = 1,2,3, Hyjx(x}) = 0,(1) asn — oo
uniformly overx! e [—1, 1].

PrROOF The proofis given only foj = 0. Similar arguments apply fgr= 1.
First considerH,,p1(x1). We can write

Hyo1:h) =Y a;:Hu;,
j=1

where
n
aj(h) =n"3Zh 2 Flln+ ma(eh) + moy (XD
i=1
x Kn(xt = XHPo(Xi) Q7 F i 4+ m(X )P (X))
n
=n" ¥ 23 Ky (et - XA (.
i=1

Define
a(xt) = / F'lp+my(xY) 4+ m_1(H)1P P (®) fx (x1, %) dx.

Then arguments similar to those used to prove Lemma 1 shovw;f@af) =
(h/m)Y2[a(xY) + r,) O F [ + m(X ;)1P (X j), wherer, is uncorrelated with
the U;’s and ||r,|| = O[(logn)/(nh)Y/?] uniformly over x! e [—1,1] almost
surely. Moreover, for each® € [—1, 1], the components af(x!) are the Fourier
coefficients of a function that is bounded uniformly owér Therefore,

(7.2) sup a(xtya(xt) <m

Ix<1
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for some finite constan¥ and allx =1, ..., co. It follows from (7.2) and the
Cauchy—-Schwarz inequality that

n 2
a(xcy (n/mY2Y U O F [+ m(X)1Pe(X )
j=1
n 2
< MH (/2> U Q7 F' T+ m(X)D1Pc(X ) | -
j=1
But
n 2
EH (h/m)Y2Y U Q7 F I+ m(XDIP(X)| = O(h),
j=1
so it follows from Markov’s inequality that
a(x (n/mY2Y U O F [+ m(XDIP(X )| = 0, (hY?)
j=1

uniformly overx® e [—1, 1]. This and|r,|| = O[(logn)/(nh)Y?] establish the
conclusion of the lemma fof =0,k = 1.
We now prove the lemma fgfr= 0, k = 2. We can write

Hyo2xh) = (nh) ™23 F'lu + ma(xeh + m_1 (X)) PKp(xt = X Pe(X)) By,
i=1
where
By =n"r0 > Flln + m(X )12 Pe(X )beo(X ).
j=1

Arguments like those used to prove Lemma 6 show BB, || = O(x~%).
Therefore,

sup |Huo2(xHl = sup (nh) ™23 Ky (et = X1 - 0, 7?)

Ixi<1 Ixtl<1 i=1
_ Op(nl/Zhl/ZK—Z)
=0p,(1).

For the proof withj = 0, k = 3, note that

sup [Huos(xH = sup (nh) 2> Ky(xt — X} - 0, 72)

Ixi<1 lxll<1 i=1

=o0,(D). O
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Let Peh, X) = [LpaGeh). ... pe@h), pr(X?). ... pe(X?)... pr(X9),
o pe(XDY and b (x1, Xi) = o+ ma(x) + mo1(Xi) — Pe(xt, Xi)6co. De-
fine

n
8u3ct, X)) =n TP X)) O Y Fllp 4+ m(X)1Pe(X )U;
j=1

and
n
Snaxt, Xi) =0 P (xh XY Ot Y A+ m(X )P Pe(X j)beo(X ).
j=1

Also, for j =0, 1 define

Lyj1xh = (nh) ™2y U F [+ my(xeh) + m (X)X} — xb)/
i=1

x Kp(xt = XHous(xt, X)),
Lyj2(xt) = (nh) ™2y Ui F[p 4+ ma(xh) + m_1 (X)X} — x1)
i=1
x Kp(xt = XHopa(xt, X)),
Lyjz(xh = =) ™2 U F' T+ ma(eh) + moa (X)X — xby
i=1
x Kp(xt = XDbeo(xt, X)),
Lyja(xY) = (nh)™Y2Y {Flu +ma(X}) +m_1(X;)]
i=1
— Flu+m1(xh) +m_1(X)])
x F'[p+ma(xh) +m_1 (X)X} — xH/
x Kp(xt = XHous(xt, X)),
Lyjs(xh = (nh)V2Y (Flu +my(X]) +m_1(X))]
i=1
— Flp+ma(xb) +m_1(X)1}
x F'[u+ma(xh) +m_ g (X)1(X] — x)
x Kp(xt = XH8ua(xt, Xi)
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and
Lyjs(xh) = —(nh) Y2 Y {Flu +ma(X}) + m_1(X))]
i=1
— Flp+ma(xh +m_1 (X))
x F"[u +my(xd) +m_1(X)IXE — xb/
x Kp(xt = XHbeoxt, Xp).

LEMMA 8. Asn — o0, Lyjx(x1) = 0,(1) uniformly overx! e [—1, 1] for
eachj=0,1,k=1,...,6.

PROOFE  The proof is given only forj = 0. The arguments are similar for
j = 1. By Theorem 15,4(x1, X;) is the asymptotic bias component of the

stochastic expansion @t (x*, X;)(@uc — 6c0) and is O, (x ~%/?) uniformly over
(x1, X;) € [~1, 1]%. This fact and standard bounds on

sup > Ui Kp(xt — X

lxl<1l;=1
and
n
sup Y Kp(xt — X1
Ixl<1li=1
establish the conclusion of the lemma fpe=0, k =2,5. Forj =0, k = 3,6,
proceed similarly using

sup |beo(xh) = 0 (k2.

Ixlj<1

For j =0,k =4, one can use arguments similar to those madéIL@[(xl) in the
proof of Lemma 7. It remains to considefo1(x1) = D, (x1)B,,, where

n
Dy(xt) = (nh) V2N U F [+ ma(xh) + m_1(X)1Ka(xt — XD Pe(x?, Xi)
i=1
and
n
By=n"10 Y Fllu+m(X)PP(X)U;.
j=1
Now, E|| B, ||2 = O(kn1), andD, (x1) contains elements of the form

(nh)2p, (6 Y Ui F [+ ma(x) + moa (XD 1K (cF = X
i=1
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and
n
) Y23 Ui pr (XD F [+ my(xb) + m_y (XD 1K (1 — XD
i=1
for0<r <k, 2< ¢ <d. These expressions can be bounded uniformly over

Ix1| < 1 by terms that ar@,[(logn)Y/?| p, (x1)[] and O ,[(logn) /2], respectively.
This gives

sup [|D,(xh) 1> = 0, (k logn).

Ixi<1
Therefore,

sup |Lyo1(xY)|? < sup 1D, (x Y1121 B, 112 = 0,(D).

xl|<1 Ixl|<1 O

LEMMA 9. The following hold uniformly ovex!| <1 — h:
(nh) L8]0, (xt i) = Do(x) + 0, (D),
(nh) 1851 (x1, i) = Agh?Do(xV)[1+ 0, (1)]

n

and
(nh) 7184 (et ) = W2 Ag D1 DL+ 0, (D).
PrRooFE This follows from Theorem 1(c) and standard bounds on
sup Z Ul (X} —xH Ky (et — x1)

Ixl=<1j=1

forr=0,1,s=0,1,2. O

DefineAm1(xt) =m1(xt) — mi(x1), Am_1(F) = t — p +m_1(F) — m_1(¥)
andAm(x1, %) = Ami(x1) + Am_1(%).

LEMMA 10. The following hold uniformly overl| < 1 — &:

@) (nh)~Y28! o (xL i) = (nh)~Y2S! o, (xL, m) + (nh)Y2Do(x ) Ama (x1) +
Op(l)1

(b) (nh)~Y28) 1, (x*, i) = (nh) 128, (xt m) + 0,(D).

PROOF Only (a) is proved. The proof of (b) is similar. For each=
1,....n, let m*(x!, X;) and m**(x', X;) denote quantities that are between
a4 mi(xh +m_1(X;) and w + mi(xh) + m_1(X;). The values ofn*(x1, X;)
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andm** (x1, X;) may be different in different uses. A Taylor series expansion and
Theorem 1(c) give

4
(nh) 2800t i) = (nh) Y280 (et m) + D T (6
j=1

+n(nh>—1/20[ sup ||Am<x1,x>||3}

x1,x)ex

4
= (nh) Y280 (xtm) + 3 T (xh) + 0, (D)
j=1

uniformly over|x1| <1 — i, where

T (et = 2nh) Y2 F [+ ma(eh) + moy(X)PKp(xt — XH Amy(xh),
i=1

Tu2(xt) = 2(nh)_1/2Xn:F/[u +m1(xeh) +m_1(X))?
i=1
x Kp(xt — XHam_1(X)),
Jua(xh) = =2(nh) =2 f{Yi — Flp+ma(xh) + m_1(X)]}
i=1
x F'm* (xt, X)1Kp (bt = XHAam(x, X)),
Jua(x) = 2(nh)_l/2Xn:F/[u +ma(xt) +m_1(X))]
i=1
) {F"[m*(x*, X)] + 2F"[m*™* (x*, X)) 1}
x Kp(xt = XH[am(xt, X)12.
It follows from Theorem 1(d) and Lemma 7 thafy(x1) = 22221 Hyor (x1) +

0p(1) = 0,(1) uniformly over Ix1| <1 — h. In addition, it follows from
Theorem 1(c) that for some constani oo,

n
Db < Comy 2y Kyt = xb| sup_ amG 2]
i=1 (L F)ex

=0p[(nh)l/2 sup IIAm(xl,)?)||21|=op(1)

@x1,5)ex
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uniformly over |x1| < 1 — 4. Now considerJ,3(x1). It follows from Assump-
tion A3(v) that

Jua(xch) = =2(h) Y23 (Y — Flu + my(xh) + m_1 (X))
i=1
x F'[p 4+ mi(xh) +m_1(X)]
x Kp(xt = XxHamxt, X))

+0p| (a2 suplam(:t, D2
xeX

6
=3 Luoxh + 0, [(nh)l/z sup|Am(x?, 2)|2} +0,(1)
k=1 xeX

uniformly over|xl| <1 — h. Therefore J,3(x1) = 0,(1) uniformly by Lemma 8
and Theorem 1(c), and

(nh) Y2800 (x 1, i) = (nh) TV28) 00 (e m) + Jua(xh) + 0, (1)
uniformly over|xt| <1 — h.
Now consider/,1(x1). Set
n
T Yy = 200h) Y2 F [ 4 ma(xh) + mog (XD PR (= XD,
i=1

It follows from Theorem 2.37 of Pollard (1984) thafi(x) — E[Ju1(x})]
o(logn) almost surely asn — oo. In addition, E[(nh)~Y2],1(x1)] =
D(x1) + O(h?). Therefore,

J1(xh) = )2 Do(xhy Amy(x1) + OllognAmy (x1)]
= (nh)Y2Do(xh) Am1(x1) +0,(1)

uniformly overjxt| <1 —h. O

PROOF OFTHEOREM 2. By the definition ofiiq (x1),
(et —ma(x?)
(73) =n~11(xl) —ml(xl)
_ Sl iS00t i) — Sy (et i) S, (e, )

Part (a) follows by applying Lemmas 9 and 10 to the right-hand side of (7.3).
Define

w = [nh Do(x)] =S, 01(x1, m) + [D1(x1)/ Do(x 118} 11 (x 1, m)).
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Methods identical to those used to establish asymptotic normality of local-linear
estimators show theE (n2/°w) = B1 + o(1), Var(n?°w) = V4(x1}) + o(1) and
n?/5[mq(xY) — m1(x1)] is asymptotically normal, which proves part (b}

PROOF OFTHEOREM 4. It follows from Theorem 2(a) that
n4/5/ wH ) —miehH1Pdxt = 0,(2).
1-h<|xl|<1
Now consider
n4/5/ wiH ALY —meHPdxt.
Ixt<1-h

By replacing the integrand with the expansion of Theorem 2(a), one obtains
a U-statistic in U; conditional onXy, ..., X,,. This U-statistic has vanishing
conditional variance. [

PrROOF OF THEOREM 5. Use Theorem 2(a) to repla@e; with mq in the

expression fom(f). The result now follows from standard methods for bounding
kernel estimators. []
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