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OPTIMAL DESIGNS FOR A CLASS OF NONLINEAR
REGRESSION MODELS

BY HOLGER DETTE,1 VIATCHESLAV B. MELAS AND ANDREY PEPELYSHEV

Ruhr-Universität Bochum, St. Petersburg State University and
St. Petersburg State University

For a broad class of nonlinear regression models we investigate the local
E- andc-optimal design problem. It is demonstrated that in many cases the
optimal designs with respect to theseoptimality criteria are supported at the
Chebyshev points, which are the local extrema of the equi-oscillating best
approximation of the functionf0 ≡ 0 by a normalized linear combination of
the regression functions in the corresponding linearized model. The class of
models includes rational, logistic and exponential models and for the rational
regression models theE- andc-optimal design problem is solved explicitly
in many cases.

1. Introduction. Nonlinear regression models are widely used to describe the
dependencies between a response and an explanatory variable [see, e.g., Seber
and Wild (1989), Ratkowsky (1983) or Ratkowsky (1990)]. An appropriate choice
of the experimental conditions can improve the quality of statistical inference
substantially and, therefore, many authors have discussed the problem of designing
experiments for nonlinear regression models. We refer to Chernoff (1953) and
Melas (1978) for early references and Ford, Torsney and Wu (1992), He, Studden
and Sun (1996) and Dette, Haines and Imhof (1999) for more recent references
on local optimal designs. Because local optimal designs depend on an initial
guess for the unknown parameters, several authors have proposed alternative
design strategies. Bayesian or robust optimal designs have been discussed by
Pronzato and Walter (1985) and Chaloner and Larntz (1989), among many others
[see Chaloner and Verdinelli (1995) and the references therein]. Other authors
propose sequential methods, which update the information about the unknown
parameter sequentially [see, e.g., Ford and Silvey (1980) and Wu (1985)]. Most
of the literature concentrates onD-optimal designs (independent of the particular
approach), which maximize the determinant of the Fisher information matrix for
the parameters in the model, but much less attention has been paid toE-optimal
designs in nonlinear regression models, which maximize the minimum eigenvalue
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of the Fisher information matrix [see Dette and Haines (1994) or Dette and Wong
(1999), who report some results for models with two parameters].

Because local optimal designs are the basis for all advanced design strategies, it
is the purpose of the present paper to study localE-optimal designs for a class of
nonlinear regression models which can be represented in the form

Y =
s∑

i=1

aihi(t) +
k∑

i=1

as+iϕ(t, bi) + ε.(1.1)

Here ϕ is a known function, the explanatory variablet varies in an interval
I ⊂ R, ε denotes a random error with mean zero and constant variance and
a1, . . . , as+k, b1, . . . , bk ∈ R denote the unknown parameters of the model. The
consideration of this type of model was motivated by recent work of Imhof and
Studden (2001), who considered a class of rational models of the form

Y =
s∑

i=1

ait
i−1 +

k∑
i=1

as+i

t − bi

+ ε,(1.2)

wheret ∈ I, bi �= bj (i �= j) and the parametersbi /∈ I are assumed to be known
for all i = 1, . . . , k. Note that model (1.2) is in fact linear, because Imhof and
Studden (2001) assumed thebi to be known. These models are very popular
because they have appealing approximation properties [see Petrushev and Popov
(1987) for some theoretical properties and Dudzinski and Mykytowycz (1961)
and Ratkowsky (1983), page 120, for an application of this model]. In this paper
[in contrast to the work of Imhof and Studden (2001)] the parametersb1, . . . , bk

in the model (1.1) are not assumed to be known, but also have to be estimated
from the data. Moreover, the model (1.1) considered here includes numerous
other regression functions. For example, in environmental and ecological statistics
exponential models of the forma1e

b1t +a2e
b2t are frequently used in toxicokinetic

experiments [see, e.g., Becka and Urfer (1996) or Becka, Bolt and Urfer (1993)]
and this corresponds to the choiceϕ(t, x) = etx in (1.1). Another popular class
of logarithmic models is obtained from equation (1.1) by the choiceϕ(t, x) =
log(t − x).

Imhof and Studden (2001) studiedE-optimal designs for the model (1.2) with
s = 1 under the assumption that the nonlinear parametersb1, . . . , bk are known
by the experimenter and do not have to be estimated from the data. In particular,
they proved that the support of theE-optimal design for estimating a subset of
the parametersa1, . . . , a�+1 is given by the Chebyshev points corresponding to the
functions 1, 1

t−b1
, . . . , 1

t−bk
in the model (1.2). These points are the extremal points

of the function 1+ ∑k
i=1

a∗
i

x−bi
= p∗(x), in the intervalI, which has the smallest

deviation from zero, that is,

sup
x∈I

|p∗(x)| = min
a2,...,ak+1

sup
x∈I

∣∣∣∣∣1+
k∑

i=1

ai

x − bi

∣∣∣∣∣.(1.3)
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The universality of this solution is due to the fact that any subsystem of the
regression functions in the model (1.2), which is obtained by deleting one of the
basis functions, forms a weak Chebyshev system on the intervalI [see Karlin
and Studden (1966) or the discussion in Section 2]. However, in the case where
parametersb1, . . . , bk are unknown and also have to be estimated from the data,
the local optimal design problem for the model (1.2) is equivalent to an optimal
design problem in the linear regression model

Y =
s∑

i=1

βit
i−1 +

k∑
i=1

(
βs+2i−1

t − bi

+ βs+2i

(t − bi)2

)
+ ε,(1.4)

for which the corresponding regression functions do not satisfy the weak
Chebyshev property mentioned above. Nevertheless, we will prove in this paper
that in cases withk ≥ 2, where the quantity maxi �=j |bi − bj | is sufficiently small,
local E-optimal designs and many localc-optimal designs for estimating linear
combinations of the parameters are still supported on Chebyshev points. This fact
simplifies the construction of localE-optimal designs substantially. Moreover,
we show that this result does not depend on the specific form of the model
(1.2) and (1.4) but can be established for the general model (1.1) (or its equivalent
linearized model). Additionally, it can be shown numerically that in many cases the
E-optimal design is, in fact, supported on the Chebyshev points for all admissible
values of the parametersb1, . . . , bk (bi �= bj ; i �= j). Our approach is based on
a study of the limiting behavior of the information matrix in model (1.1) in the
case where all nonlinear parameters in the model (1.1) tend to the same limit.
We show that in this case the localE-optimal and many local optimal designs for
estimating linear combinations of the coefficientsas+1, bs+1, . . . , as+k, bs+k in the
model (1.1) have the same limiting design. This indicates thatE-optimal designs
in models of type (1.1) yield precise estimates of the individual coefficients and
we will illustrate this fact in several concrete examples.

It is notable that the results regarding localE- and c-optimal designs in the
regression model (1.1) based on Chebyshev approximation are obtained under
the simplifying assumption thatbi = x + δri (i = 1, . . . , k) with ri �= rj and δ

sufficiently small. Obviously, every vectorb = (b1, . . . , bk) can be represented in
this form, but the answer to the question ifδ is sufficiently small such that our
results are applicable depends on the basic functionϕ used in (1.1) and the vectorb

itself. However, the theoretical results of this paper suggest a simple procedure to
obtainE- andc-optimal designs for the model (1.1). We use the designs derived
under the simplifying assumption to obtain candidates for the optimal designs
and check the optimality of these candidates by using equivalence theorems or
alternative characterizations. Moreover, the examples of this paper and additional
examples in a technical report of Dette, Melas and Pepelyshev (2002) indicate that
in many cases the designs obtained under the simplifying assumption yield, in fact,
theE- or c-optimal designs.
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The remaining part of the paper is organized as follows. In Section 2 we
introduce the basic concepts and notation, and present some preliminary results.
Section 3 is devoted to an asymptotic analysis of the model (1.1), which is based
on a linear transformation introduced in the Appendix. Finally, some applications
to the rational model (1.2) and its equivalent linear regression model (1.4) are
presented in Section 4, which extend the results of Imhof and Studden (2001) to
the case where the nonlinear parameters in the model (1.2) are not known and have
to be estimated from the data. Finally, all proofs and technical details are deferred
to the Appendix.

2. Preliminary results. Consider the nonlinear regression model (1.1) and
define

f (t, b) = (
f1(t, b), . . . , fm(t, b)

)T
(2.1)

= (
h1(t), . . . , hs(t), ϕ(t, b1), ϕ

′(t, b1), . . . , ϕ(t, bk), ϕ
′(t, bk)

)T
as a vector ofm = s + 2k regression functions, where the derivatives of the
function ϕ are taken with respect to the second argument. It is straightforward
to show that the Fisher information for the parameter(β1, . . . , βm)T = β in the
linear regression model

Y = βT f (t, b) + ε

(2.2)

=
s∑

i=1

βihi(t) +
k∑

i=1

(
βs+2i−1ϕ(t, bi) + βs+2iϕ

′(t, bi)
) + ε

is given by f (t, b)f T (t, b). Following Kiefer (1974), we call any probability
measureξ with finite support on the intervalI an (approximate) design. The
support points give the locations where observations have to be taken, while the
masses correspond to the relative proportions of total observations to be taken
at the particular points. For a designξ the information matrix in model (2.2) is
defined by

M(ξ, b) =
∫
I
f (t, b)f T (t, b) dξ(t),(2.3)

and a local optimal design maximizes an appropriate function of the information
matrix [see Silvey (1980) or Pukelsheim (1993)]. The dependence on the
parameterb is omitted whenever it is clear from the context. Among the numerous
optimality criteria proposed in the literature, we consider theE- andc-optimality
criteria in this paper. AnE-optimal designξ∗

E maximizes the minimum eigenvalue
λmin(M(ξ, b)) over the set of all approximate designs, while for a given vector
c ∈ R

m a c-optimal design minimizes the expressioncT M−(ξ, b)c, where the
minimum is taken over the set of all designs for which the linear combination
cT β is estimable, that is,c ∈ range(M(ξ, b)) ∀b. A particular case appears for the
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choicec = ei , whereei ∈ R
m (i = 1, . . . ,m) is theith unit vector. In this case we

call thec-optimal design optimal for estimating the individual coefficientβi.

Note that the information matrix in the nonlinear regression model (1.1) is given
by K−1

a M(ξ, b)K−1
a , where the matrixKa ∈ R

m×m is defined by

Ka = diag
(

1, . . . ,1︸ ︷︷ ︸
s

,1,
1

a1
,1, . . . ,1,

1

ak︸ ︷︷ ︸
2k

)
.(2.4)

Consequently, a local optimal design problem in a nonlinear model (1.1)
corresponds to an optimal design problem in model (2.2) for the transformed
vector of parametersKab. For example, thec-optimal design for the model (1.1)
can be obtained from thēc-optimal design in model (2.2), where the vectorc̄ is
given byc̄ = Kac. Similarly, the localE-optimal design in the nonlinear regression
model (1.1) maximizesλmin(K

−1
a M(ξ, b)K−1

a ), whereM(ξ, b) is the information
matrix in the equivalent linear regression model (2.2). For the sake of transparency
we will mainly concentrate on the linearized version (2.2). The corresponding
results in the nonlinear regression model (1.1) will be briefly mentioned whenever
it is necessary.

A set of functionsf1, . . . , fm : I → R is called a weak Chebyshev system (on
the intervalI ) if there exists anε ∈ {−1,1} such that

ε ·
∣∣∣∣∣∣∣
f1(x1) · · · f1(xm)

...
. . .

...

fm(x1) · · · fm(xm)

∣∣∣∣∣∣∣ ≥ 0(2.5)

for all x1, . . . , xm ∈ I with x1 < x2 < · · · < xm. If the inequality in (2.5) is strict,
then{f1, . . . , fm} is called a Chebyshev system. It is well known [see Karlin and
Studden (1966), Theorem II 10.2] that if{f1, . . . , fm} is a weak Chebyshev system,
then there exists a unique function

m∑
i=1

c∗
i fi(t) = c∗T f (t)(2.6)

with the following properties:

(i) |c∗T f (t)| ≤ 1 ∀ t ∈ I,

(ii) there existm pointss1 < · · · < sm such that(2.7)

c∗T f (si) = (−1)i, i = 1, . . . ,m.

The functionc∗T f (t) is called a Chebyshev polynomial and the pointss1, . . . , sm
are called Chebyshev points and need not be unique. They are unique if 1∈
span{f1, . . . , fm},m ≥ 1, andI is a bounded and closed interval, in which case
s1 = minx∈I x, sm = maxx∈I x. It is well known [see Studden (1968), Pukelsheim
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and Studden (1993), Heiligers (1994) or Imhof and Studden (2001), among others]
that in many cases theE- andc-optimal designs in the linear regression model

Y = βT f (t) + ε(2.8)

are supported at the Chebyshev points. For the following discussion assume
that the functionsf1, . . . , fm generate a Chebyshev system on the intervalI

with Chebyshev polynomialc∗T f (t) and Chebyshev pointss1, . . . , sm, define the
m × m matrix F = (fi(sj ))

m
i,j=1 and consider a vector of weights given by

w = (w1, . . . ,wm)T = JF−1c∗

‖c∗‖2 ,(2.9)

where the matrixJ is defined byJ = diag{(−1),1, . . . , (−1)m}. It is then easy to
see that

c∗

‖c∗‖2 = FJw =
m∑

j=1

f (sj )(−1)jwj ∈ ∂R,(2.10)

whereR = conv(f (I ) ∪ f (−I )) denotes the Elfving set [see Elfving (1952)].
Consequently, if all weights in (2.9) are nonnegative, it follows from Elfving’s
theorem that the design

ξ∗
c∗ =

(
s1 · · · sm
w1 · · · wm

)
(2.11)

is c∗-optimal in the regression model (2.8) [see Elfving (1952)], wherec∗ ∈ R
m

denotes the vector of coefficients of the Chebyshev polynomial defined in the
previous paragraph. The following results relate this design to theE-optimal
design.

LEMMA 2.1. Assume thatf1, . . . , fm generate a Chebyshev system on the
interval I such that the Chebyshev points are unique. If the minimum eigenvalue
of the information matrix of anE-optimal design has multiplicity one, then the
designξ∗

c∗ defined by(2.9) and (2.11) is E-optimal in the regression model(2.8).
Moreover, in this case theE-optimal design is unique.

LEMMA 2.2. Assume that the functionsf1, . . . , fm generate a Chebyshev
system on the intervalI with Chebyshev polynomialc∗T f (t) and letξ∗

c∗ denote
the c∗-optimal design in the regression model(2.2) defined by(2.11). Thenc∗
is an eigenvector of the information matrixM(ξ∗

c∗, b), and if the corresponding
eigenvalueλ = 1

‖c∗‖2 is the minimal eigenvalue, thenξ∗
c∗ is alsoE-optimal in the

regression model(2.8).

We now discuss thec-optimal design problem in the regression model (2.8) for
a general vectorc ∈ R

m (not necessarily equal to the vectorc∗ of coefficients of
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the Chebyshev polynomial). Assume again thatf1, . . . , fm generate a Chebyshev
system on the intervalI. As a candidate for thec-optimal design, we consider the
measure

ξc = ξc(b) =
(

s1 · · · sm
w1 · · · wm

)
,(2.12)

where the support points are the Chebyshev points and the weights are already
chosen such that the expressioncT M−1(ξc, b)c becomes minimal, that is,

wi = |eT
i JF−1c|∑m

j=1 |eT
j JF−1c|, i = 1, . . . ,m,(2.13)

whereej = (0, . . . ,0,1,0, . . . ,0)T ∈ R
m denotes thej th unit vector [see Kitsos,

Titterington and Torsney (1988), Pukelsheim and Torsney (1991) or Pukelsheim
(1993)]. The following result characterizes the optimal designs for estimating the
individual coefficients.

LEMMA 2.3. Assume that the functionsf1, . . . , fm generate a Chebyshev
system on the intervalI. The designξej

defined by(2.12) and (2.13) for the
vector c = ej is ej -optimal in the linear regression model(2.8) if the system
{fi |i ∈ {1, . . . ,m} \ {j}} is a weak Chebyshev system on the intervalI.

If the sufficient conditions of Lemma 2.3 are not satisfied, the determination
of the ej -optimal designs is a substantially harder problem and optimal designs
for estimating individual coefficients have only been found numerically in rare
circumstances [see Studden (1968) or Dette, Melas and Pepelyshev (2004)]. In
many cases the resulting designs yield a singular information matrix, which makes
its determination by standard methods difficult.

REMARK 2.4. It is worthwhile to mention that, in general, the sufficient
condition of Lemma 2.3 is not satisfied in the regression model (2.2). To see this,
assume thatk ≥ 3, that the functionϕ is continuously differentiable with respect to
the second argument and that the functionsf1(·, b), . . . , fm(·, b) defined by (2.1)
generate a Chebyshev system for anyb. Define an(m − 1) × (m − 1) matrix

Fj(x) := (
h1(ti), . . . , hs(ti), ϕ(ti , b1), ϕ

′(ti , b1), . . . , ϕ(ti , bj−1),

ϕ′(ti , bj−1), ϕ(ti , x), ϕ(ti , bj+1), . . . , ϕ(ti , bk), ϕ
′(ti , bk)

)m−1
i=1 ,

wherec < t1 < · · · < tm−1 < d,bi �= bj wheneveri �= j andx �= bi. We choose
t1, . . . , tm−1 such thatg(x) = detFj(x) �≡ 0 (note that the functionsf1, . . . , fm

form a Chebyshev system and, therefore, this is always possible) and observe that
g(bi) = 0, i = 1, . . . , k; i �= j. Becausek ≥ 3 andg is continuously differentiable,
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it follows that there exist two points, sayx∗ andx∗∗, such thatg′(x∗) < 0 and
g′(x∗∗) > 0. Consequently, there exists anx̄ such that

0 = g′(x̄) = det
(
fν(ti , bx̄)

)ν=1,...,m,ν �=s+2j−1
i=1,...,m−1 ,

where the vectorbx̄ is defined bybx̄ = (b1, . . . , bj−1, x̄, bj+1, . . . , bk)
T . Note that

the Chebyshev property of the functionsf1, . . . , fs+2j−2, fs+2j , . . . , fm would
imply that all determinants in (2.5) are of the same sign (otherwise there exists ab

such that the determinant vanishes fort1 < · · · < tm−1). Therefore, the conditions
g′(x∗) < 0, g′(x∗∗) > 0 yield that there exists añx ∈ (x∗, x̄) or x̃ ∈ (x̄, x∗∗), such
that the system of regression functions

{f1(t, bx̃), . . . , fs+2j−2(t, bx̃), fs+2j (t, bx̃), . . . , fm(t, bx̃)}
= {h1(t), . . . , hs(t), ϕ(t, b1), ϕ

′(t, b1), . . . , ϕ
′(t, bj−1),

ϕ′(t, x̃), ϕ(t, bj+1), ϕ
′(t, bj+1), . . . , ϕ

′(t, bk)}
is not a weak Chebyshev system on the intervalI. Finally, in the casek = 2, if
lim |b|→∞ ϕ(t, b) → 0, it can be shown by a similar argument that there exists anx̃

such that the system

{h1(t), . . . , hs(t), ϕ(t, b1), ϕ
′(t, b1), ϕ

′(t, x̃)}
is not a Chebyshev system on the intervalI .

3. Asymptotic analysis of E- and c-optimal designs. Recall the definition
of the information matrix in (2.3) for the model (2.2) with design space given by
I = [c1, d1] and assume that the nonlinear parameters vary in a compact interval,
saybi ∈ [c2, d2], i = 1, . . . , k. We are interested in the asymptotic properties of
E- andc-optimal designs if

bi = x + δri, i = 1, . . . , k,(3.1)

for some fixedx ∈ [c2, d2], fixed r1 < r2 < · · · < rk and positiveδ satisfying
δ → 0. Note that condition (3.1) implies that all parametersbi converge tox at
the same rateδ. For the asymptotic investigations we study for fixedε,
 > 0 the
set

�ε,
 =
{
b ∈ R

k|bi − bj = δ(ri − rj );
(3.2)

i, j = 1, . . . , k; δ ≤ ε; bi ∈ [c2, d2], min
i �=j

|ri − rj | ≥ 


}
,

introduce the functions

f̄i (t, x) = f̄i(t) = hi(t), i = 1, . . . , s,

(3.3)
f̄s+i (t, x) = f̄s+i (t) = ϕ(i−1)(t, x), i = 1, . . . ,2k,
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and the corresponding vector of regression functions

f̄ (t, x) = (
f̄1(t, x), . . . , f̄s+2k(t, x)

)T
,(3.4)

where the derivatives ofϕ(t, x) are taken with respect to the second argument.
Again the dependency of the functions̄fi on the parameterx will be omitted
whenever it is clear from the context. Note that for a sufficiently smooth functionϕ,
a simple Taylor expansion shows that under assumption (3.1),(

ϕ(t, b1), ϕ
′(t, b1), . . . , ϕ(t, bk)

)T
= Q

(
ϕ(t, x), ϕ′(t, x), . . . , ϕ(2k−1)(t, x)

)T + o(1)

= Qf̄ (t, x) + o(1)

for an appropriately defined matrixQ ∈ R
2k×2k (see the proof of Theorem B.1

in the Appendix). Therefore, optimal designs in the linear model with vector of
regression functions given by (3.4) will serve as an approximation for the optimal
design in model (2.2) if the parametersbi are sufficiently close in the sense of (3.1).
The following results make this statement more precise.

LEMMA 3.1. Assume that the functionϕ : [c1, d1]×[c2, d2] →R in model(1.1)
satisfies

ϕ ∈ C0,2k−1([c1, d1] × [c2, d2])
and that for any fixedx ∈ [c2, d2], the functionsf̄1, . . . , f̄s+2k defined by(3.3)form
a Chebyshev system on the interval[c1, d1]. For any
 > 0 and any design on the
interval [c1, d1] with at leastm = s + 2k support points, there exists anε > 0 such
that for all b ∈ �ε,
, the maximum eigenvalue of the inverse information matrix
M−1(ξ, b) defined in(2.3) is simple.

THEOREM 3.2. Assume that the functionϕ : [c1, d1] × [c2, d2] → R in
model(1.1)satisfies

ϕ ∈ C0,2k−1([c1, d1] × [c2, d2])
and that the systems of functions{f1(t, b), . . . , fm(t, b)} and {f̄1(t, x), . . . , f̄m(t,

x)} defined by(2.1)and (3.3),respectively, are Chebyshev systems on the interval
[c1, d1] ( for arbitrary but fixedb1, . . . , bk, x ∈ [c2, d2] with bi �= bj whenever
i �= j). If ε is sufficiently small, then for anyb ∈ �ε,
, the designξ∗

c∗ defined by
(2.9)and(2.11)is the uniqueE-optimal design in the regression model(2.2).

Note that forb ∈ �ε,
, the E-optimal designs can be obtained explicitly by
Lemmas 2.1 and 2.2. The support points are the extremal points of the Chebyshev
polynomial corresponding to the functions in (2.1), while the weights are given
by (2.9).
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From Remark 2.4 we may expect that, in general,c-optimal designs in the
regression model (1.1) are not necessarily supported at the Chebyshev points.
Nevertheless, an analogue of Lemma 3.1 is available for specific vectorsc ∈ R

m.

The proof is similar to the proof of Lemma 3.1 and, therefore, omitted.

LEMMA 3.3. Let ei = (0, . . . ,0,1,0, . . . ,0)T denote theith unit vector
in R

m. Under the assumptions of Lemma3.1define a vector̃γ = (0, . . . ,0, γ1, . . . ,

γ2k) ∈ R
m by

γ2i = ∏
j �=i

(ri − rj )
−2, γ2i−1 = −γ2i

∑
j �=i

2

ri − rj
, i = 1, . . . , k.(3.5)

(i) If c ∈ R
m satisfiescT γ̃ �= 0, then for any
 > 0, sufficiently smallε and

any b ∈ �ε,
, the designξc(b) defined in(2.12) and (2.13) is c-optimal in the
regression model(2.2).

(ii) The assumptioncT γ̃ �= 0 is, in particular, satisfied for the vectorc =
es+2j−1 for any j = 1, . . . , k and for the vectorc = es+2j for any j = 1, . . . , k,

which satisfies the condition ∑
��=j

1

rj − r�
�= 0.(3.6)

REMARK 3.4. As pointed out by a referee, some explanation of the set�ε,


is helpful at this point.
Note that the quantity
 ≤ mini �=j |ri − rj | yields some mild restriction for

theri in (3.1) andε can be considered as a cut-off point, such that wheneverδ < ε

in (3.1), the statements of Theorem 3.2 and Lemmas 3.1 and 3.3 apply to the
corresponding vectorb ∈ �ε,
. This cut-off point cannot be determined explicitly
because it depends in a complicated way on
, the intervals[c1, d1], [c2, d2] and
the basic functionϕ(t, x) used in the regression model (1.1). Roughly speaking,
the results of Lemmas 3.1 and 3.3 and Theorem 3.2 hold for any vectorb in a
compact neighborhood of the vector(x, . . . , x) ∈ R

2k. In the examples for the
rational model discussed in Section 4 the set�ε,
 coincides with the set of all
admissible values for parameterb.

Note also that it follows from the proof of Lemma 3.1 that the assumption of
compactness of the intervals[c1, d1] and[c2, d2] is only required for the existence
of the set�ε,
. In other words, if condition (3.1) is satisfied andδ is sufficiently
small, the maximum eigenvalue of the matrixM−1(ξ, b) will have multiplicity one
(independently of the domain of the functionϕ). The same remark applies to the
statements of Theorem 3.2 and Lemma 3.3.

Our final result of this section shows that under assumption (3.1) with smallδ,
the localE- and localc-optimal designs for the vectorsc considered in Lemma 3.3
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of Remark 3.4 are very close. To be precise, we assume that the assumptions of
Theorem 3.2 are valid and consider the design

ξ̄c = ξ̄c(x) =
(

s̄1 · · · s̄m
w̄1 · · · w̄m

)
,(3.7)

where s̄1, . . . , s̄m are the Chebyshev points corresponding to the system{f̄i|i =
1, . . . ,m} defined in (3.3),

w̄i = |eT
i J �F−1c|∑m

j=1 |eT
j J �F−1c|, i = 1, . . . ,m,(3.8)

with �F = (fi(s̄j ))
m
i,j=1 andc ∈ R

m a fixed vector.

THEOREM 3.5. Assume that the assumptions of Theorem3.2are satisfied and
that for the system{f̄1, . . . , f̄m} the Chebyshev points are unique.

(i) If δ → 0, the designξ∗
c∗(b) defined by(2.11)and (2.9) converges weakly

to the design̄ξem(x) defined by(3.7)and(3.8) for c = em.

(ii) If c ∈ R
m satisfiescT γ̃ �= 0 for the vectorγ̃ with components defined

in (3.5) and δ → 0, then the designξ∗
c (b) defined by(2.12)and (2.13)converges

weakly to the design̄ξem(x).

(iii) The assumptioncT γ̃ �= 0 is, in particular, satisfied for the vectorc =
es+2j−1 for any j = 1, . . . , k and for the vectorc = es+2j for any j = 1, . . . , k,
which satisfies condition(3.6).

REMARK 3.6. Note that Theorem 3.2, Lemma 3.3 and Theorem 3.5 remain
valid for the local optimal designs in the nonlinear regression model (1.1). This
follows by a careful inspection of the proofs of the previous results. For example,
there exists a set�ε,
 such that for allb ∈ �ε,
, the maximum eigenvalue of
the inverse information matrix in the model (1.1) is simple. Similarly, ifδ → 0
and (3.1) is satisfied,c-optimal designs in the nonlinear regression model are given
by the designξc̄(b) in (2.12) and (2.13) with̄c = Kac, wheneverγ̃ T c̄ �= 0, and all
these designs converge weakly to theem-optimal design in the linear regression
model defined by the functions (3.4).

We finally remark that Theorem 3.5 and Remark 3.6 indicate thatE-optimal
designs are very efficient for estimating the parametersas+1, b1, . . . , as+k, bk in
the nonlinear regression model (1.1) and the linear model (2.2), because for small
differences|bi − bj | theE-optimal design and the optimal design for estimating
an individual coefficientbi (i = 1, . . . , k) are close to the optimal design for
estimating the coefficientbk. We will illustrate this fact in the following section,
which discusses the rational model in more detail.
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4. Rational models. In this section we discuss the rational model (1.2) in
more detail, where the design space is a compact or seminfinite intervalI. In
contrast to the work of Imhof and Studden (2001), we assume that the nonlinear
parametersb1, . . . , bk /∈ I are not known by the experimenter but have to be
estimated from the data. A typical application of this model can be found in
the work of Dudzinski and Mykytowycz (1961), where this model was used to
describe the relation between the weight of the dried eye lens of the European
rabbit and the age of the animal. In the notation of Sections 2 and 3 we have
f (t) = f (t, b) = (f1(t), . . . , fm(t))T , with

fi(t) = t i−1, i = 1, . . . , s,

fs+2i−1(t) = fs+2i−1(t, b) = 1

t − bi

,(4.1)

fs+2i (t) = fs+2i (t, b) = 1

(t − bi)
2 , i = 1, . . . , k,

and the equivalent linear regression model is given by (1.4). The correspond-
ing limiting model is determined by the regression functionsf̄ (t) = f̄ (t) =
(f̄1(t), . . . , f̄m(t))T , with

f̄i(t) = t i−1, f̄i+s(t) = f̄s+i (t, x) = 1

(t − x)i
, i = 1, . . . , s.(4.2)

Some properties of the functions defined by (4.1) and (4.2) are discussed in the
following lemma.

LEMMA 4.1. DefineB = {b = (b1, . . . , bk)
T ∈ R

k|bi /∈ I ;bi �= bj }. Then the
following assertions are true:

(i) If I is a finite interval or I ⊂ [0,∞) and b ∈ B, then the system
{f1(t1, b), . . . , fm(t, b)} defined in(4.1) is a Chebyshev system on the intervalI.

If x /∈ I , then the system{f̄1(t, x), . . . , f̄m(t, x)} defined by(4.2) is a Chebyshev
system on the intervalI.

(ii) Assume thatb ∈ B and that one of the following conditions is satisfied:

(a) I ⊂ [0,∞),
(b) s = 1 or s = 0.

For any j ∈ {1, . . . , k}, the system of regression functions{fi(t, b)|i = 1, . . . ,m,
i �= s + 2j} is a Chebyshev system on the intervalI.

(iii) If I is a finite interval orI ⊂ [0,∞), k ≥ 2, andj ∈ {1, . . . , k}, then there
exists a nonempty setWj ⊂ B such that for allb ∈ Wj , the system of functions
{fi(t, b)|i = 1, . . . ,m; i �= s +2j −1} is not a Chebyshev system on the intervalI.

The casek = 1 will be studied more explicitly in Example 4.5. Note that the
third part of Lemma 4.1 shows that fork ≥ 2, the main condition of Theorem 2.1
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in the paper of Imhof and Studden (2001) isnot satisfied in general for the linear
regression model with the functions given by (4.1). These authors assumed that
every subsystem of{f1, . . . , fm} which consists ofm − 1 of these functions is a
weak Chebyshev system on the intervalI. Because the design problem for this
model is equivalent to the design problem for the model (1.2) (where the nonlinear
parameters are not known and have to be estimated), it follows that, in general, we
cannot expect localE-optimal designs for the rational model to be supported at the
Chebyshev points. However, the linearized regression model (1.4) is a special case
of the general model (2.2) withϕ(t, b) = (t − b)−1 and all results of Section 3
are applicable here. In particular, we obtain that theE-optimal designs and the
optimal designs for estimating the individual coefficientsas+1, b1, . . . , as+k, bk

are supported at the Chebyshev points if the nonlinear parametersb1, . . . , bk are
sufficiently close (see Theorem 3.2, Lemma 3.3 and Remark 3.6).

THEOREM 4.2. (i) If s = 1, then the Chebyshev pointss1 = s1(b), . . . , sm =
sm(b) for the system of regression functions in(4.1) on the interval[−1,1] are
given by the zeros of the polynomial

(1− t2)

4k∑
i=0

diU−2k+s+i−2(t),(4.3)

whereUj(x) denotes thej th Chebyshev polynomial of the second kind[see Szegö
(1975)], U−1(x) = 0,U−n(x) = −Un−2(x) and the factorsd0, . . . , d4k are defined
as the coefficients of the polynomial

4k∑
i=0

dit
i =

k∏
i=1

(t − τi)
4,(4.4)

where

2bi = τi + 1

τi

, i = 1, . . . , k.

(ii) Let �E ⊂ B denote the set of allb such that anE-optimal design for the
model(1.4) is given by(2.11)and (2.9).Then�E ��= ∅.

REMARK 4.3. (a) The Chebyshev points for the system (4.1) on an arbitrary
finite interval I ⊂ R can be obtained by rescaling the points onto the interval
[−1,1]. The cases = 0 and I = [0,∞) will be discussed in more detail in
Examples 4.5 and 4.6.

(b) It follows from Theorem 3.2 that the set�E defined in the second part
of Theorem 4.1 contains the set�ε,
 defined in (3.2) for sufficiently smallε. In
other words, if the nonlinear parametersb1, . . . , bk are sufficiently close, the local
E-optimal design will be supported at the Chebyshev points with weights given
by (2.9). Moreover, we will demonstrate in the subsequent examples that in many
cases the set�E coincides with the full setB.
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(c) In applications the Chebyshev points can be calculated numerically with the
Remez algorithm [see Studden and Tsay (1976) or DeVore and Lorentz (1993)].
In some cases these points can be obtained explicitly.

REMARK 4.4. We note that a similar result is valid forc-optimal designs
in the rational regression model (1.4). For example, assume that one of the
assertions of Lemma 4.1 is valid and that we are interested in estimating a linear
combinationcT β of the parameters in the rational model (1.4). We obtain from
Lemma 3.3 that ifc ∈ R

m satisfiescT γ̃ �= 0, then for sufficiently smallε and any
b ∈ �ε,
, the designξc(b) defined in (2.12) and (2.13) isc-optimal. In particular,
this is true forc = es+2j−1 (for all j = 1, . . . , k) and the vectorc = es+2j if the
indexj satisfies the condition (3.6). Note that due to the third part of Lemma 4.1
in the casek ≥ 2, there exists ab ∈ B such that thees+2j -optimal design is not
necessarily supported at the Chebyshev points. However, from Theorem 3.5 it
follows that for a vectorb ∈ B satisfying (3.1) withδ → 0 and any vectorc with
cT γ̃ �= 0, we have for the designsξ∗

c∗(b) andξ∗
c (b) defined by (2.11) and (2.12)

ξ∗
c∗(b) → ξ̄em(x), ξ∗

c (b) → ξ̄em(x),

where the design̄ξem(x) is defined in (3.7) and (3.8) and isem-optimal in the
limiting model with the regression functions (4.2). We conclude this section with
two examples. Further examples considering a finite interval as design space and a
comparison withD-optimal designs can be found in the technical report of Dette,
Melas and Pepelyshev (2002).

EXAMPLE 4.5. Consider the rational model

Y = a

t − b
+ ε, t ∈ [0,∞),(4.5)

with b < 0 (here we havek = 1, s = 0, I = [0,∞)). The corresponding equivalent
linear regression model is given by

Y = βT f (t, b) + ε = β1

t − b
+ β2

(t − b)2 + ε.(4.6)

In this case it follows from the first part of Lemma 4.1 that the system of regression
functions { 1

t−b
, 1

(t−b)2 } = {f1(t), f2(t)} is a Chebyshev system on the interval
[0,∞) wheneverb < 0. Moreover, any subsystem (consisting of one function)
is obviously a Chebyshev system on the interval[0,∞). The Chebyshev points
are given bys1 = 0 ands2 = √

2|b| = −√
2b. Now we consider the designξ∗

c (b)

defined in (2.12) as a candidate for thec-optimal design in model (4.6). The
weights (for anyc ∈ R

2) are obtained from formula (2.13) and a straightforward
calculation shows that thec-optimal designξ∗

c (b) has massesω1 and 1−ω1 at the
points 0 and

√
2|b|, respectively, where

ω1 = |b(−√
2c1 + (2+ √

2)c2b)|
|b|{| − √

2c1 + (2+ √
2)c2b| + (4+ 3

√
2)| − c1 + c2b|} .

It can easily be checked by Elfving’s theorem [see Elfving (1952)] or by the
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equivalence theorem forc-optimality [see Pukelsheim (1993)] that this design is,
in fact,c-optimal in the regression model (4.6) wheneverc2

c1
/∈ [1

b
, 1

(1+√
2)b

]. In the

remaining cases thec-optimal design is a one-point design supported att = b− c1
c2

.

In particular, by Lemma 2.3, thee1- and e2-optimal designs for estimating the
coefficientsβ1 andβ2 in the model (4.6) have weights14(2−√

2), 1
4(2+√

2) and
1− 1√

2
, 1√

2
at the points 0,

√
2|b|, respectively. It follows from the results of Imhof

and Studden (2001) that anE-optimal design in the regression model (4.6) is given
by thec∗-optimal design for the Chebyshev vectorc∗ = (1+ √

2)|b|(−2, |b|(1+√
2))T , which has massesw1 and 1− w1 at the points 0 and

√
2|b|, respectively,

where

w1 = 1

2

(2− √
2)(6− 4

√
2+ b2)

b2 + 12− 8
√

2
= 1− 1

2

√
2(2

√
2− 2+ b2)

b2 + 12− 8
√

2
.

Alternatively, theE-optimal design could be also obtained by the geometric
method of Dette and Haines (1994), which is especially designed for models with
two parameters.

In Figure 1 we show the efficiencies of theE-optimal design for estimating the
coefficientsβ1 andβ2 in the regression model (4.6), that is,

effi
(
ξ∗
E(b)

)
=

(
eT
i M−1(ξ∗

E(b), b)ei

eT
i M−1(ξ∗

ei
, b)ei

)−1

(4.7)

=




28(b4(5
√

2− 7) + b2(34
√

2− 48) + 396− 280
√

2)

(9
√

2− 11)(b2 − 8
√

2+ 12)(7b2 + 16
√

2− 20)
, if i = 1,

b4(
√

2− 1) + (6
√

2− 8)b2 + 68− 48
√

2

(
√

2− 1)(b2 − 8
√

2+ 12)(b2 − 6
√

2+ 8)
, if i = 2

[for technical details for this calculation see Dette, Melas and Pepelyshev (2002)].
We observe for thee1-efficiency for allb ≤ −1 the inequality

0.9061≈= lim
b→−∞ eff1

(
ξ∗
E(b)

) ≤ eff1
(
ξ∗
E(b)

) ≤ eff1
(
ξ∗
E(−1)

) ≈ 0.9595,

and similarly for thee2-efficiency

0.9805≈ eff2
(
ξ∗
E(−1)

) ≤ eff2
(
ξ∗
E(b)

) ≤ lim
b→−∞ eff2

(
ξ∗
E(b)

) = 1.

This demonstrates that theE-optimal design yields very accurate estimates for the
individual parameters in the regression model (4.6).

We finally mention the results for the local optimal design in the rational
model (4.5), which maximize or minimize the corresponding functional for the
matrix K−1

a M(ξ, b)K−1
a , whereKa = diag(1,− 1

a
). Obviously, the locale1- and
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FIG. 1. Efficiencies of theE-optimal designξ∗(b) for estimating the individual coefficients in the
regression model(4.6) for various values ofb ∈ [−2.5,−1]. Solid line: eff1(ξ∗(b)), dotted line:
eff2(ξ∗(b)).

e2-designs coincide with the corresponding designs in the equivalent linear
regression model (4.6). On the other hand, thec-optimal design for the rational
model (4.5) is obtained from thēc-optimal designξ ∗̄

c (b) for the model (4.6) with
c̄ = Kac = (c1,−c2/a)T . Similarly, the localE-optimal design for the rational
model (4.5) has massesw∗

1 and 1−w∗
1 at the points 0 and

√
2|b|, where the weights

are given by

w∗
1 = 2

√
2a2 + (4+ 3

√
2)b2

2{4(1+ √
2)a2 + (7+ 5

√
2)b2} = 1− (4+ 3

√
2)(2a2 + (1+ √

2)b2)

2{4(1+ √
2)a2 + (7+ 5

√
2)b2} .

An investigation of the efficiencies for theE-optimal design in the rational
model (4.5) yields similar results as in the corresponding equivalent linear
regression model (4.6). For a broad range of parameter values(a, b) the local
E-optimal designs in the rational model (4.5) are very efficient for estimating the
individual parameters.

EXAMPLE 4.6. We now discussE-optimal designs for the rational model

Y = a1

t − b1
+ a2

t − b2
+ ε, t ∈ [0,∞),(4.8)

whereb1, b2 < 0; |b2−b2| > 0 (k = 2, s = 0). The corresponding equivalent linear
regression model is given by

Y = β1

t − b1
+ β2

(t − b1)2
+ β3

t − b2
+ β4

(t − b2)2
+ ε.(4.9)

The results of Section 3 show that for sufficiently close parametersbi , theE- and
ei-optimal designs are supported at the Chebyshev points and that thec∗-optimal
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design is the uniqueE-optimal design. In this case the local optimal designs cannot
be found explicitly. Therefore, we used these designs for any vector(b1, b2) under
consideration as candidates for the optimal designs. In other words, we used the
Chebyshev points as support points and calculated the optimal weights from the
formulas presented in Section 2 to obtain candidates for the local optimal design.
The optimality for a concrete choice was finally verified by an application of the
results in Section 2 (see the discussion below). For the sake of brevity, we restrict
ourselves to model (4.9), which corresponds to the local optimal design problem
for model (4.8) with(a1, a2) = (1,1). In our comparison we will also include the
E-optimal design in the limiting model under assumption (3.1), that is,

Y = β1

t − x
+ β2

(t − x)2 + β3

(t − x)3 + β4

(t − x)4 + ε,(4.10)

where the parameterx is chosen asx = (b1 + b2)/2. Without loss of generality
we assume thatx = −1, because in the general case the optimal designs can be
obtained by a simple scaling argument. The limiting optimal design was obtained
numerically and has masses 0.13, 0.26, 0.27, 0.34 at the points 0, 0.18, 1.08 and
7.9, respectively.

Theorem 3.2 shows that for sufficiently small|b1 − b2|, E-optimal designs for
the model (4.9) are given by the designξ∗

c∗(b) defined in (2.9) and (2.11). From
Lemma 2.2 it follows that the designξ∗

c∗(b) is E-optimal whenever

λc∗ := c∗T M(ξ∗
E(b), b)c∗

c∗T c∗ ≤ λ(2)

(
M

(
ξ∗
E(b), b

)) = λ(2),

whereλmin(M(ξ∗
E(b), b)) ≤ λ(2) ≤ · · · ≤ λ(m) denote the ordered eigenvalues of

the matrixM(ξ∗
E(b), b). The ratioλ(2)/λc∗ is illustratively depicted in Figure 2 for

b1 = 1 and a broad range ofb2 values, which shows that it is always bigger than 1.

FIG. 2. The ratioλ(2)/λc∗ for the designξ∗
E(b), whereb = (−1, b2). The designs areE-optimal if

this ratio is greater than or equal to1.
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TABLE 1
E-optimal designs for linear regression model(4.9)on the interval[0,∞), where

b1 = −1− z, b2 = −1+ z. These designs areE-optimal in the rational model(4.8)
for the initial parametera1 = a2 = 1. Note that the smallest support point of the

E-optimal design(t∗1E) is 0

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

t∗2E 0.18 0.17 0.17 0.16 0.15 0.13 0.11 0.09 0.05 0.03
t∗3E 1.08 1.06 1.03 0.99 0.94 0.87 0.77 0.65 0.47 0.34
t∗4E 7.85 7.77 7.65 7.46 7.21 6.88 6.45 5.88 5.05 4.43

w∗
1E 0.13 0.13 0.13 0.13 0.12 0.10 0.08 0.07 0.05 0.03

w∗
2E 0.26 0.26 0.27 0.26 0.25 0.22 0.20 0.17 0.13 0.10

w∗
3E 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

w∗
4E 0.34 0.33 0.33 0.33 0.36 0.39 0.44 0.49 0.54 0.59

Other cases yield a similar picture and, in practice, the localE-optimal design
for the rational model (4.8) and the equivalent linear regression model (4.9) is
always supported at the Chebyshev points and given by (2.9) and (2.11). In Tables
1 and 2 we give the main characteristics and efficiencies for the localE-optimal
designξ∗

E(b) and for theE-optimal designξ̄∗
E(b1+b2

2 ) in the limiting regression
model (4.10). The efficiencies are defined by (4.7) and we observe again very
good performance of theE-optimal designs. The behavior of the designξ̄E in
the limiting regression model (4.9) is interesting from a practical point of view
because it is very similar to the performance of theE-optimal design for a broad
range ofb1 andb2 values. Consequently, this design might be appropriate if rather
imprecise prior information for the nonlinear parameters is available. For example,
if it is known (from scientific considerations) thatb1 ∈ [b1, b̄1], b2 ∈ [b2, b̄2], the

designξ̄E(
b1+b̄2

2 ) might be a robust choice for practical experiments.

TABLE 2
The efficiency(4.7)of theE-optimal designsξ∗

E in the linear regression model(4.9)on the
interval [0,∞) with b1 = −1− z, b2 = −1+ z and the efficiency of theE-optimal design

ξ∗
E(−1) in the corresponding limiting model(4.10)

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

eff1(ξ∗
E) 1.00 1.00 0.99 0.94 0.70 0.45 0.50 0.55 0.64 0.78

eff2(ξ∗
E) 0.99 0.99 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00

eff3(ξ∗
E) 1.00 1.00 1.00 0.99 0.95 0.87 0.76 0.68 0.58 0.44

eff4(ξ∗
E) 1.00 0.99 0.98 0.94 0.87 0.76 0.62 0.54 0.44 0.31

eff1(ξ̄∗
E(−1)) 1.00 0.99 0.98 0.94 0.79 0.61 0.39 0.32 0.29 0.27

eff2(ξ̄∗
E(−1)) 0.99 0.97 0.94 0.88 0.78 0.65 0.49 0.40 0.31 0.21

eff3(ξ̄∗
E(−1)) 1.00 0.99 0.98 0.95 0.88 0.75 0.54 0.40 0.24 0.08

eff4(ξ̄∗
E(−1)) 1.00 0.99 0.98 0.95 0.90 0.78 0.57 0.41 0.24 0.07
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APPENDIX A: PROOFS

PROOF OF LEMMA 2.1. Let ξ∗
E denote anE-optimal design such that the

minimum eigenvalueλ = λmin(M(ξ∗
E,b)) of the information matrixM(ξ∗

E,b) has
multiplicity one with corresponding eigenvectorz ∈ R

m. By the equivalence the-
orem for theE-optimality criterion [see Pukelsheim (1993), pages 181 and 182],
we obtain for the matrixE = zzT /λ,(

1√
λ
zT f (t)

)2

= f T (t)Ef (t) ≤ 1

for all t ∈ I with equality at the support points ofξ∗
E. Because the Chebyshev

polynomial is unique it follows that (up to the factor∓1) c∗ = 1√
λ
z and that

supp(ξ∗
E) = {s1, . . . , sm}. Now Theorem 3.2 in Dette and Studden (1993) implies

thatξ∗
E is alsoc∗-optimal, wherec∗ ∈ R

m denotes the vector of coefficients of the
Chebyshev polynomial. Consequently, by the discussion of the previous paragraph
we haveξ∗

E = ξ∗
c∗, which proves the assertion.�

PROOF OF LEMMA 2.2. From the identity (2.10) and the Chebyshev
property (2.7) it follows immediately thatc∗ is an eigenvector of the matrix

M(ξ∗
c∗, b) =

m∑
i=1

f (si)f
T (si)wi

with corresponding eigenvalueλ = 1/‖c∗‖2. Now if λ = λmin(M(ξ∗
c∗, b)), we

define the matrixE = λc∗c∗T and obtain from the Chebyshev properties (2.7)
that

f T (t)Ef (t) = λ
(
c∗T f (t)

)2 ≤ λ = λmin
(
M(ξ∗

c∗, b)
)

for all t ∈ I. The assertion of Lemma 2.2 now follows from the equivalence
theorem forE-optimality [see Pukelsheim (1993)].�

PROOF OFLEMMA 2.3. If f1, . . . , fm generate a weak Chebyshev system on
the intervalI , it follows from Theorem 2.1 in Studden (1968) that the designξej

defined in (2.12) and (2.13) isej -optimal if

εeT
i JF−1ej ≥ 0, i = 1, . . . ,m,

for someε ∈ {−1,1}. The assertion of Lemma 2.3 is now obtained by Cramér’s
rule. �

PROOF OFLEMMA 3.1. Recall the definition of the functions in (3.3) and let

�M(ξ, x) =
∫ d

c
f̄ (t, x)f̄ T (t, x) dξ(x)(A.1)
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denote the information matrix in the corresponding linear regression model.
Because of the Chebyshev property of the functionsf̄1, . . . , f̄s+2k , we have
| �M(ξ, x)| �= 0 (note that the designξ has at leasts + 2k support points). It follows
from Theorem B.1 that under the condition (3.1) withδ → 0, the asymptotic
expansion

δ4k−2M−1(ξ, b) = hγ̄ γ̄ T + o(1)(A.2)

is valid, where the vector̄γ = (γ̄1, . . . , γ̄s+2k)
T is defined by

γ̄s+2i−1 = − ∏
j �=i

(ri − rj )
−2 · ∑

j �=i

2

ri − rj
, i = 1, . . . , k,

(A.3)
γ̄1 = · · · = γ̄s = 0, γ̄s+2i = 0, i = 1, . . . , k,

and the constanth is given by

h = (
(2k − 1)!)2( �M−1(ξ, x)

)
m,m.(A.4)

From (A.2) we obtain that the maximal eigenvalue of the matrixM−1(ξ, b) is
simple if δ is sufficiently small.

For a fixed valuer = (r1, . . . , rk) and fixedx ∈ R in the representation (3.1),
denote byε = ε(x, r) the maximal value (possibly∞) such that the matrix
M−1(ξ, b) has a simple maximal eigenvalue for allδ ≤ ε. Then the function
ε : (x, r) → ε(x, r) is continuous and the infimum

inf
{
ε(x, b)

∣∣∣x ∈ [c1, d1], min
i �=j

|ri − rj | ≥ 
, ‖r‖2 = 1
}

is attained for somex∗ ∈ [c1, d1] andr∗, which impliesε∗ = ε(x∗, r∗) > 0. This
means that for anyb ∈ �ε∗,
, the multiplicity of the maximal eigenvalue of the
information matrixM−1(ξ, b) is equal to one. �

PROOF OFTHEOREM 3.2. The proof is a direct consequence of Lemma 2.2
and Lemma 3.1, which shows that the multiplicity of the maximum eigenvalue of
the inverse information matrix of any design has multiplicity one, ifb ∈ �ε,
 and
ε is sufficiently small. �

PROOF OF THEOREM 3.5. It follows from Theorem 3.2 that the design
ξ∗
c∗ = ξ∗

c∗(b) is localE-optimal for sufficiently smallδ > 0. In other words, ifδ is
sufficiently small, the designξ∗

c∗ minimizes max‖c‖2=1 cT M−1(ξ, b)c in the class
of all designs. Note that the components of the vectorr = (r1, . . . , rk) are ordered,
which implies

eT
s+2i−1γ̃ �= 0, i = 1, . . . , k.
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Multiplying (B.1) by δ4k−2, it then follows from Theorem B.1 that for some
subsequenceδk → 0 :ξ∗

c∗ → ξ̂ (x), where the design̂ξ(x) minimizes the function

max‖c‖2=1
(cT γ̃ )2eT

m
�M−1(ξ, x)em

and the vector̃γ is defined by (A.3). The maximum is attained forc = γ̃ /‖γ̃ ‖2
(independently of the designξ) and, consequently,̂ξ(x) is em-optimal in the
linear regression model defined by the vector of regression functions in (3.4).
Now the functionsf̄1, . . . , f̄m generate a Chebyshev system and the corresponding
Chebyshev points are unique, which implies that theem-optimal designξ̄em(x)

is unique. Consequently, every subsequence of designsξ∗
c∗(b) contains a weakly

convergent subsequence with limitξ̄em(x) and this proves the first part of the
assertion. For a proof of the second part we note that ac-optimal design minimizes
cT M−1(ξ, b)c in the class of all designs on the intervalI. Now if cT γ̃ �= 0 and

eT
s+2i−1γ̃ = − ∏

j �=i

(ri − rj )
−2

∑
j �=i

2

ri − rj
�= 0

for somei = 1, . . . , k, the same argument as in the previous paragraph shows
that ξ∗

c (b) converges weakly to the design which maximizes the function
(γ̃ T c)2eT

m
�M−1(ξ, x)em. If eT

s+2i−1γ̃ = 0 for all i = 1, . . . , k, the condition
cT γ̃ �= 0 implieseT

s+2i γ̃ �= 0 for somei = 1, . . . , k and the assertion follows by
multiplying (B.1) by δ4k−4 and similar arguments. Finally, the third assertion
follows directly from the definition of the vector̃γ in (3.5). �

PROOF OFLEMMA 4.1. Part (iii) follows from Remark 2.4. Parts (i) and (ii)
are proved similarly and we restrict ourselves to the first case. For this purpose we
introduce the functionsψ(t, b) = (ψ1(t, b̃), . . . ,ψm(t, b̃))T with

ψi(t, b̃) = t i−1, i = 1, . . . , s,

(A.5)
ψs+i (t, b̃) = 1

t − b̃i

, i = 1, . . . ,2k,

whereb̃ = (b̃1, . . . , b̃2k)
T is a fixed vector withb̃i �= b̃j if i �= j. With the notation

L(
) =
(

Is 0
0 Gk(
)

)
∈ R

m×m,

Gk(
) =



G(
)
. . .

G(
)


 ∈ R

2k×2k,

G(
) =
(

1 0
−1/
 1/


)
∈ R

2×2,
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(hereIs is thes × s identity matrix) it is easy to verify that

f (t, b) = L(
)ψ(t, b̃
) + o(1),(A.6)

whereb̃
 = (b1, b1 +
, . . . , bk, bk +
)T . For a fixed vectorT = (t1, . . . , tm)T ∈
R

m with ordered componentst1 < · · · < tm such thatti ∈ I , i = 1, . . . ,m, define
the matrices

F(T , b) = (
fi(tj , b)

)m
i,j=1, ψ(T , b̃) = (

ψi(tj , b̃)
)m
i,j=1.

Then we obtain from (A.6)

detF(T , b) = lim

→0

1


k
ψ(T, b̃
)

(A.7)

=
∏

1≤i<j≤m(tj − ti )
∏

1≤i<j≤k(bi − bj )
4∏k

i=1
∏m

j=1(tj − bi)2
,

where the last identity follows from the fact thatψ(T, b̃) is a Cauchy–Vander-
monde matrix, which implies

detψ(T, b̃) =
∏

1≤i<j≤m(tj − ti )
∏

1≤i<j≤2k(b̃i − b̃j )∏2k
i=1

∏m
j=1(tj − b̃i )

.

Now for any b ∈ B, the right-hand side does not vanish and is of one sign
independently ofT . Consequently,{fi(t, b)|i = 1, . . . ,m} is a Chebyshev system
on the intervalI. The assertion regarding the system{f̄i (t, x)|i = 1, . . . ,m} is
proved similarly and, therefore, left to the reader.�

PROOF OF THEOREM 4.2. The second part of the theorem is a direct
consequence of Lemma 4.1 and Theorem 3.2, while the first part of the proposition
follows by Theorem A.2 in Imhof and Studden (2001).�

APPENDIX B: AN AUXILIARY RESULT

Recall the notation in Sections 2 and 3, the definition of the regression
functions in (2.1) and (3.3) and consider a designξ on the intervalI with at
leastm support points. In this appendix we investigate the relation between the
information matricesM(ξ, b) and �M(ξ, b) defined by (2.3) and (A.1), respectively,
if condition (3.1) is satisfied, where the components of the vectorr = (r1, . . . , rk)

are different and ordered.

THEOREM B.1. Assume thatϕ ∈ C0,2k−1 andξ is an arbitrary design, such
that the matrix�M(ξ, b) is nonsingular. If assumption(3.1) is satisfied, it follows
that for sufficiently smallδ the matrixM(ξ, b) is invertible and ifδ → 0,

M−1(ξ, b) = δ−4k+4T (δ)

( �M(1)(ξ) �M(2)(ξ)F

FT �M(2)T (ξ) γ γ T h + o(1)

)
T (δ) + o(1),(B.1)
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where the matricesT (δ) ∈ R
m×m and �M(1)(ξ) ∈ R

s×s , �M(2)(ξ) ∈ R
s×2k and

�M(3)(ξ) ∈ R
2k×2k are defined by

T (δ) = diag
(

δ2k−2, . . . , δ2k−2︸ ︷︷ ︸
s

,
1

δ
,1,

1

δ
,1, . . . ,

1

δ
,1︸ ︷︷ ︸

2k

)
,

( �M(1) �M(2)(ξ)

�M(2)T (ξ) �M(3)(ξ)

)
= �M−1(ξ, x),

the vectorγ = (γ1, . . . , γ2k)
T andh ∈ R are given byh = [(2k − 1)!]2eT

m
�M−1(ξ,

x)em,

γ2i = ∏
j �=i

(ri − rj )
−2, γ2i−1 = −γ2i

∑
j �=i

2

ri − rj
, i = 1, . . . , k,

and the matrixF ∈ R
2k×2k is defined by

F =



0 · · · 0 γ1/0!
...

0 · · · 0 γ2k/((2k − 1)!)


 .

PROOF. Defineδi = riδ, i = 1, . . . , k, ψ(δ) = (1, δ, . . . , δ2k−1)T and intro-
duce the matrices

L = (�1, . . . , �2k)
T ∈ R

2k×2k,(B.2)

U = diag
(

1,
1

1! ,
1

2! , . . . ,
1

(2k − 1)!
)

∈ R
2k×2k,(B.3)

where�2i−1 = ψ(δi), �2i = ψ ′(δi), i = 1, . . . , k. For fixedt ∈ I , we use the Taylor
expansions

ϕ(t, x + δ) =
2k−1∑
j=0

ϕ(i)(t, x)

j ! δj + o(δ2k−1),

ϕ′(t, x + δ) =
2k−1∑
j=1

ϕ(i)(t, x)

(j − 1)! δj−1 + o(δ2k−2),

to obtain the representation

f (t, b + δr) =
(

Is 0
0 LU

)
f̄ (t, x) +

(
0

f̃ (t)

)
,(B.4)

whereIs ∈ R
s×s denotes the identity matrix and the vectorf̃ is of order

f̃ (t) = (
o(δ2k−1), o(δ2k−2), o(δ2k−1), . . . , o(δ2k−2)

)T
.(B.5)
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It follows from pages 127–129 in Karlin and Studden (1966) that detL =∏
1≤i<j≤k(δi − δj )

4 and consequently,V = (v1, . . . , v2k) := L−1 exists. The
equalityLV = Im implies the equations

vT
2iψ(δj ) = 0, vT

2iψ
′(δj ) = 0, j �= i,

vT
2iψ(δi) = 0, vT

2iψ
′(δi) = 1,

which shows thatδ1, . . . , δi−1, δi+1, . . . , δk are zeros of multiplicity two of the
polynomialvT

2iψ(δ) andδi is a zero of multiplicity one. Because this polynomial
has degree 2k − 1, it follows that

vT
2iψ(δ) = (δ − δi)

∏
j �=i

(
δ − δj

δj − δi

)2

,(B.6)

and a similar argument shows that

vT
2i−1ψ(δ) = δ − αi

δi − αi

∏
j �=i

(
δ − δj

δi − δj

)2

,(B.7)

where the constantsα1, . . . , αk are given by

αi = δi +
(∑

j �=i

2

δi − δj

)−1

, i = 1, . . . , k.(B.8)

From (B.4) and (B.5) we therefore obtain

f (t, b + δr)f T (t, b + δr)

=
(

Is 0
0 LU

)
f̄ (t, x)f̄ T (t, x)

(
Is 0
0 LU

)T

+ o(δ2k−2),

and integrating the right-hand side with respect to the designξ shows that

M(ξ, b + δr) =
(

Is 0
0 LU

)
�M(ξ, x)

(
Is 0
0 LU

)T

+ o(δ2k−2).(B.9)

Now defineH1(δ) = diag(δ2k−1, δ2k−2, δ2k−1, . . . , δ2k−1, δ2k−2) ∈ R
2k×2k and

H(δ) =
(

Is 0
0 H1(δ)

)
∈ R

m×m.

Then we obtain from (B.6) and (B.7) thatH1(δ)(L
−1)T = (0|γ ) + o(1), where

γ = (γ1, . . . , γ2k)
T is defined by formula (B.2) and 0∈ R

2k×2k−1 denotes the
matrix with all entries equal to zero. This implies that the inverse of the matrix
M(ξ, b + δr) is given by

M−1(ξ, b + δr) = H−1(δ)

{(
I 0
0 F

)
�M−1(ξ, x)

(
I 0
0 FT

)
+ o(1)

}
H−1(δ)

= δ−4k+4T (δ)

{( �M(1)(ξ) �M(2)(ξ)F T

F �M(2)T (ξ) F �M(3)(ξ)F T

)
+ o(1)

}
T (δ),
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where the matrixF is defined byF = (0|γ )U−1 ∈ R
2k×2k. The assertion now

follows by a straightforward calculation which shows thatF �M(3)(ξ)F T = hγ γ T .

�
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