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For a broad class of nonlinear regression models we investigate the local
E- andc-optimal design problem. It is demonstrated that in many cases the
optimal designs with respect to theggtimality criteria ae supported at the
Chebyshev points, which are the local extrema of the equi-oscillating best
approximation of the functiotfy = 0 by a normalized linear combination of
the regression functions in the corresponding linearized model. The class of
models includes rational, logistic and exponential models and for the rational
regression models th&- andc-optimal design problem is solved explicitly
in many cases.

1. Introduction. Nonlinear regression models are widely used to describe the
dependencies between a response and an explanatory variable [see, e.g., Seber
and Wild (1989), Ratkowsky (1983) or Ratkowsky (1990)]. An appropriate choice
of the experimental conditions can improve the quality of statistical inference
substantially and, therefore, many authors have discussed the problem of designing
experiments for nonlinear regression models. We refer to Chernoff (1953) and
Melas (1978) for early references and Ford, Torsney and Wu (1992), He, Studden
and Sun (1996) and Dette, Haines and Imhof (1999) for more recent references
on local optimal designs. Because local optimal designs depend on an initial
guess for the unknown parameters, several authors have proposed alternative
design strategies. Bayesian or robust optimal designs have been discussed by
Pronzato and Walter (1985) and Chaloner and Larntz (1989), among many others
[see Chaloner and Verdinelli (1995) and the references therein]. Other authors
propose sequential methods, which update the information about the unknown
parameter sequentially [see, e.g., Ford and Silvey (1980) and Wu (1985)]. Most
of the literature concentrates @noptimal designs (independent of the particular
approach), which maximize the determinant of the Fisher information matrix for
the parameters in the model, but much less attention has been paidptmal
designs in nonlinear regression models, which maximize the minimum eigenvalue
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of the Fisher information matrix [see Dette and Haines (1994) or Dette and Wong
(1999), who report some results for models with two parameters].

Because local optimal designs are the basis for all advanced design strategies, it
is the purpose of the present paper to study ldcaptimal designs for a class of
nonlinear regression models which can be represented in the form

s k
(1.1) Y=Y ahi(t)+ ) axio(t, b)) +e.

i=1 i=1
Here ¢ is a known function, the explanatory variablevaries in an interval
I ¢ R, ¢ denotes a random error with mean zero and constant variance and
ai, ..., asyk, b1, ..., by € R denote the unknown parameters of the model. The
consideration of this type of model was motivated by recent work of Imhof and
Studden (2001), who considered a class of rational models of the form

s k .
(1.2) Y=Y ar " +3 = e
i=1 izt bi

wherer € 1,b; # b; (i # j) and the parametefs ¢ I are assumed to be known
forall i =1,...,k. Note that model (1.2) is in fact linear, because Imhof and
Studden (2001) assumed tle to be known. These models are very popular
because they have appealing approximation properties [see Petrushev and Popov
(1987) for some theoretical properties and Dudzinski and Mykytowycz (1961)
and Ratkowsky (1983), page 120, for an application of this model]. In this paper
[in contrast to the work of Imhof and Studden (2001)] the parameétgrs ., by
in the model (1.1) are not assumed to be known, but also have to be estimated
from the data. Moreover, the model (1.1) considered here includes numerous
other regression functions. For example, in environmental and ecological statistics
exponential models of the forme?Y +are?? are frequently used in toxicokinetic
experiments [see, e.g., Becka and Urfer (1996) or Becka, Bolt and Urfer (1993)]
and this corresponds to the choigé, x) = ¢’ in (1.1). Another popular class
of logarithmic models is obtained from equation (1.1) by the chgitex) =
log(r — x).

Imhof and Studden (2001) studidttoptimal designs for the model (1.2) with
s = 1 under the assumption that the nonlinear parameters ., b, are known
by the experimenter and do not have to be estimated from the data. In particular,
they proved that the support of the-optimal design for estimating a subset of
the parametensl, ..., ap+1 is given by the Chebyshev points corresponding to the

functions 1t 5 T in the model (1.2). These points are the extremal points
a*

of the function 1+ Z" 15725 = p*(x), in the intervall, which has the smallest

X—
deviation from zero, that i |s

(1.3) sup|p*(x)| = = o) m|n sup

xel Ak+1 e

1+Z

i=1% b’
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The universality of this solution is due to the fact that any subsystem of the
regression functions in the model (1.2), which is obtained by deleting one of the
basis functions, forms a weak Chebyshev system on the intériste Karlin

and Studden (1966) or the discussion in Section 2]. However, in the case where
parametersy, ..., by are unknown and also have to be estimated from the data,
the local optimal design problem for the model (1.2) is equivalent to an optimal
design problem in the linear regression model

k
Bs+2i-1 Bs+2i )
Z(r—bi Ta—b2) "

i=1

(1.4) Y = Z Bir' L+
i=1

for which the corresponding regression functions do not satisfy the weak
Chebyshev property mentioned above. Nevertheless, we will prove in this paper
that in cases witlk > 2, where the quantity max; |b; — b;| is sufficiently small,

local E-optimal designs and many localoptimal designs for estimating linear
combinations of the parameters are still supported on Chebyshev points. This fact
simplifies the construction of locak-optimal designs substantially. Moreover,

we show that this result does not depend on the specific form of the model
(1.2) and (1.4) but can be established for the general model (1.1) (or its equivalent
linearized model). Additionally, it can be shown numerically that in many cases the
E-optimal design is, in fact, supported on the Chebyshev points for all admissible
values of the parametets, ..., by (b; # bj;i # j). Our approach is based on

a study of the limiting behavior of the information matrix in model (1.1) in the
case where all nonlinear parameters in the model (1.1) tend to the same limit.
We show that in this case the loc&toptimal and many local optimal designs for
estimating linear combinations of the coefficiem{s1, bg11, ..., dsir, bsyr in the

model (1.1) have the same limiting design. This indicates Braptimal designs

in models of type (1.1) yield precise estimates of the individual coefficients and
we will illustrate this fact in several concrete examples.

It is notable that the results regarding lodal and c-optimal designs in the
regression model (1.1) based on Chebyshev approximation are obtained under
the simplifying assumption that; = x + ér; (i =1,...,k) with r; # r; and$
sufficiently small. Obviously, every vectér= (b1, ..., b;) can be represented in
this form, but the answer to the questionsifs sufficiently small such that our
results are applicable depends on the basic fungtiosed in (1.1) and the vectbr
itself. However, the theoretical results of this paper suggest a simple procedure to
obtain E- andc-optimal designs for the model (1.1). We use the designs derived
under the simplifying assumption to obtain candidates for the optimal designs
and check the optimality of these candidates by using equivalence theorems or
alternative characterizations. Moreover, the examples of this paper and additional
examples in a technical report of Dette, Melas and Pepelyshev (2002) indicate that
in many cases the designs obtained under the simplifying assumption yield, in fact,
the E- or c-optimal designs.
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The remaining part of the paper is organized as follows. In Section 2 we
introduce the basic concepts and notation, and present some preliminary results.
Section 3 is devoted to an asymptotic analysis of the model (1.1), which is based
on a linear transformation introduced in the Appendix. Finally, some applications
to the rational model (1.2) and its equivalent linear regression model (1.4) are
presented in Section 4, which extend the results of Imhof and Studden (2001) to
the case where the nonlinear parameters in the model (1.2) are not known and have
to be estimated from the data. Finally, all proofs and technical details are deferred
to the Appendix.

2. Preliminary results. Consider the nonlinear regression model (1.1) and
define

F(t,b) = (f1(t,b), ..., fu(t,b))"

= (h1(D), ..., h(t), @(t, b1), @' (1, b1), ..., 9, i), @' (2, by)) "

as a vector ofm = s + 2k regression functions, where the derivatives of the
function ¢ are taken with respect to the second argument. It is straightforward
to show that the Fisher information for the parameigy, ..., 8.’ = B in the
linear regression model

Y=pTf@t,b)+e

s k

=Y Bihi(t) + Y (Bst2i-10(t, bi) + Bog2i¢'(t, b)) + &
i=1 i=1

2.1)

2.2)

is given by f(t,b) fT (¢, b). Following Kiefer (1974) we call any probability
measuret with finite support on the interval an (approximate) design. The
support points give the locations where observations have to be taken, while the
masses correspond to the relative proportions of total observations to be taken
at the particular points. For a designthe information matrix in model (2.2) is
defined by

(2.3) M. b) = /1 £ by Tt by dE(),

and a local optimal design maximizes an appropriate function of the information
matrix [see Silvey (1980) or Pukelsheim (1993)]. The dependence on the
parameteb is omitted whenever it is clear from the context. Among the numerous
optimality criteria proposed in the literature, we consider Eheandc-optimality
criteria in this paper. Ark-optimal desigrg ;. maximizes the minimum eigenvalue
Amin(M (€, b)) over the set of all approximate designs, while for a given vector
c € R™ a c-optimal design minimizes the expressiohM ~ (£, b)c, where the
minimum is taken over the set of all designs for which the linear combination
¢’ B is estimable, that is; € rang&M (£, b)) V b. A particular case appears for the
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choicec = ¢;, wheree; e R™ (i =1, ..., m) is theith unit vector. In this case we
call thec-optimal design optimal for estimating the individual coefficignt

Note that the information matrix in the nonlinear regression model (1.1) is given
by K, 1M (&, b)K 1, where the matrixk, € R™*" is defined by

1 1
(2.4) Ka=diag(1,...,l,1,—,1,...,1,—).
—— al ag
N

2k

Consequently, a local optimal design problem in a nonlinear model (1.1)
corresponds to an optimal design problem in model (2.2) for the transformed
vector of parameterk,b. For example, the-optimal design for the model (1.1)
can be obtained from the-optimal design in model (2.2), where the veciois
given byc = K,c. Similarly, the localE-optimal design in the nonlinear regression
model (1.1) maximizesmin(K; M (£, b)K 1), whereM (&, b) is the information
matrix in the equivalent linear regression model (2.2). For the sake of transparency
we will mainly concentrate on the linearized version (2.2). The corresponding
results in the nonlinear regression model (1.1) will be briefly mentioned whenever
it is necessary.

A set of functionsfi, ..., fi: I — R is called a weak Chebyshev system (on
the intervall) if there exists am € {—1, 1} such that
f1lxn) - f1lem)
(2.5) £ - oo >0
Sm(x1) -+ fin(Xm)
forall x1,...,x, € I with x1 <x2 <--- < x,,. If the inequality in (2.5) is strict,
then{fi,..., fn} is called a Chebyshev system. It is well known [see Karlin and
Studden (1966), Theorem 11 10.2] thafify, ..., f,} is aweak Chebyshev system,
then there exists a unique function

(2.6) Y et fity =T f@0)

i=1
with the following properties:
Q) I fl<1vrel,
(2.7) (i) there existm pointssy < - -+ < s, such that
T f(s) = (1), i=1,...,m.

The functionc*” f(¢) is called a Chebyshev polynomial and the points.. ., s,

are called Chebyshev points and need not be unique. They are unique if 1
spaf f1, ..., fm},m > 1, and[ is a bounded and closed interval, in which case
§1=MiN,es x, 5, = MaX.cy x. It is well known [see Studden (1968), Pukelsheim
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and Studden (1993), Heiligers (1994) or Imhof and Studden (2001), among others]
that in many cases th&- andc-optimal designs in the linear regression model

(2.8) Y=8TFf1)+¢

are supported at the Chebyshev points. For the following discussion assume
that the functionsf, ..., f,, generate a Chebyshev system on the inteival
with Chebyshev polynomiat*” £ () and Chebyshev points, ..., s,,, define the

m x m matrix F = (f,-(s‘,-))?fj:1 and consider a vector of weights given by

JF1cx
c*)|12

where the matrix/ is defined byJ = diag{(—1), 1, ..., (—=1)"}. It is then easy to
see that

(29) w:(U)l,...,wm)T =

C*

m
< _ — N1V w:
e =FJw=)_ f(s)(=D/w;eiR,

=1

(2.10)

where R = conm f(I) U f(—T)) denotes the Elfving set [see Elfving (1952)].
Consequently, if all weights in (2.9) are nonnegative, it follows from Elfving’s
theorem that the design

(2.11) EX = ( 5Lt Sm )

wl e wm

is c*-optimal in the regression model (2.8) [see Elfving (1952)], whére R™
denotes the vector of coefficients of the Chebyshev polynomial defined in the
previous paragraph. The following results relate this design toFRkeptimal
design.

LEMMA 2.1. Assume thatfy, ..., f,, generate a Chebyshev system on the
interval I such that the Chebyshev points are unigbiéhe minimum eigenvalue
of the information matrix of arE-optimal design has multiplicity on¢hen the
design . defined by(2.9)and (2.11)is E-optimal in the regression mod¢2.8).
Moreoverin this case thet-optimal design is unique

LEMMA 2.2. Assume that the functiong, ..., f,» generate a Chebyshev
system on the interval with Chebyshev polynomiat” f(z) and leté. denote
the ¢*-optimal design in the regression mod@l.2) defined by(2.11). Thenc*

is an eigenvector of the information matr (£, b), and if the corresponding

1

eigenvalue. = T2 is the minimal eigenvaly¢hen&. is also E-optimal in the

regression modgR.8).

We now discuss the-optimal design problem in the regression model (2.8) for
a general vector € R™ (not necessarily equal to the vectdr of coefficients of



2148 H. DETTE, V. B. MELAS AND A. PEPELYSHEV

the Chebyshev polynomial). Assume again thigt .., f,, generate a Chebyshev
system on the intervdl. As a candidate for the-optimal design, we consider the
measure

_ _ sl e Sm
(2.12) =ty =(22
where the support points are the Chebyshev points and the weights are already
chosen such that the expressib’m/l—l(sc, b)c becomes minimal, that is,

lel JF~1c|

2.13 w; = . i=1,...,m,
(2.13) ' "y lel JF1c|

wheree; = (0,...,0,1,0,..., 0)7 e R™ denotes thgth unit vector [see Kitsos,
Titterington and Torsney (1988), Pukelsheim and Torsney (1991) or Pukelsheim
(1993)]. The following result characterizes the optimal designs for estimating the
individual coefficients.

LEMMA 2.3. Assume that the functiong, ..., f,, generate a Chebyshev
system on the interval. The desigrg,; defined by(2.12) and (2.13) for the
vectorc = e; is e;-optimal in the linear regression mod¢2.8) if the system
{fili e{1,...,m}\ {j}} is a weak Chebyshev system on the intefval

If the sufficient conditions of Lemma 2.3 are not satisfied, the determination
of the ¢;-optimal designs is a substantially harder problem and optimal designs
for estimating individual coefficients have only been found numerically in rare
circumstances [see Studden (1968) or Dette, Melas and Pepelyshev (2004)]. In
many cases the resulting designs yield a singular information matrix, which makes
its determination by standard methods difficult.

REMARK 2.4. It is worthwhile to mention that, in general, the sufficient
condition of Lemma 2.3 is not satisfied in the regression model (2.2). To see this,
assume that > 3, that the functiorp is continuously differentiable with respect to
the second argument and that the functigiG, b), ..., f (-, b) defined by (2.1)
generate a Chebyshev system for &nipefine an(m — 1) x (m — 1) matrix

Fi(x) = (ha(t), ..., hs(t), (ti,b1), ¢ (1, b1), ..., @i, bj-1),
-1
@ (ti,bj—1), (i, %), 9(ti, bj11), ..., @t br), @' (1, b)) iy

wherec <ty <--- <ty_1 <d,b; # bj whenever # j andx # b;. We choose

t1, ..., ty—1 such thatg(x) = detF;(x) # 0 (note that the functiongy, ..., f»

form a Chebyshev system and, therefore, this is always possible) and observe that
g;)=0,i=1,...,k;i# j. Becaus& > 3 andg is continuously differentiable,
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it follows that there exist two points, say andx**, such thatg’(x*) < 0 and
g’ (x**) > 0. Consequently, there exists arsuch that

0=g'(¥) = det(f, (1, b)) =y e,

..... m

where the vectob; is defined bybz = (b1,...,bj_1,X,bj41,..., bi)T. Note that

the Chebyshev property of the functioifs, ..., fi12;-2, fs42j, ..., fm Would
imply that all determinants in (2.5) are of the same sign (otherwise there eXists a
such that the determinant vanishes#ok - -- < r,,_1). Therefore, the conditions
g'(x*) <0, g (x*) > 0 yield that there exists ahe (x*, X) or x € (x, x**), such
that the system of regression functions

{fl(tv b})v ceey fS+2]—2(t’ bi)’ fS+2](ta bi)’ ceey fm(t’ b})}
={h1(0), ..., hs(1), (t,b1),¢'(t,b1), ..., ¢'(t,bj_1),
@' (1,%), 0(t,bj31), @' (t,bjy1), ..., @' (1, bp)}
is not a weak Chebyshev system on the intelvaFinally, in the cas& = 2, if
lim 51— 00 ¢ (t, b) — 0O, it can be shown by a similar argument that there exiss an
such that the system
{h1(t), ..., hs(1), @(t,b1), ¢'(t, b1), ¢'(1, %)}

is not a Chebyshev system on the inter¥al

3. Asymptotic analysis of E- and c-optimal designs. Recall the definition
of the information matrix in (2.3) for the model (2.2) with design space given by
I =[c1, d1] and assume that the nonlinear parameters vary in a compact interval,
sayb; € [c2,d2], i =1,..., k. We are interested in the asymptotic properties of
E- andc-optimal designs if

(31) b; = x + dr;, i=1 ...k,

for some fixedx € [c2,d?], fixed r1 < r2 < --- < 1 and positives satisfying
8 — 0. Note that condition (3.1) implies that all parametérsonverge tox at
the same raté. For the asymptotic investigations we study for fixged > 0 the
set

Qen= {b eR¥|b; —b; =8(ri —1));

(3.2)
i#]

introduce the functions
fit,x) = fi(t) = hi (1), i=1....s,

3.3 _ _ .
(3:3) fisit,x) = i) ="V, x),  i=1,..., 2,
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and the corresponding vector of regression functions

(3.4) F@,x)=(fat, %), .., forant, )",

where the derivatives ap(z, x) are taken with respect to the second argument.
Again the dependency of the functiorfs on the parameter will be omitted
whenever it is clear from the context. Note that for a sufficiently smooth fungtion
a simple Taylor expansion shows that under assumption (3.1),

(p(t,b1), @' (1, b1). ..., 0t bp))"
= 0(¢(t.x), ¢'(t.x). ..., 0% P, )" +0()
=Qf(t,x)+o0(D)

for an appropriately defined matri@ € R%>2 (see the proof of Theorem B.1

in the Appendix). Therefore, optimal designs in the linear model with vector of
regression functions given by (3.4) will serve as an approximation for the optimal
design in model (2.2) if the parametérsare sufficiently close in the sense of (3.1).
The following results make this statement more precise.

LEMMA 3.1. Assume that the functign: [c1, d1] x [c2, d2] — R in model(1.1)
satisfies

¢ € CO%*Y([c1, di] % [c2, do))

and that for any fixed € [c», d»], the functionsfy, ..., f;1o defined by3.3)form

a Chebyshev system on the interival d1]. For any A > 0 and any design on the
interval[c1, d1] with at leastn = s 4+ 2k support pointsthere exists ar > 0 such
that for all b € @, A, the maximum eigenvalue of the inverse information matrix
M~L(&, b) defined in(2.3)is simple

THEOREM 3.2. Assume that the functiow:[c1,d1] X [c2,d2] — R in
model(1.1) satisfies

¢ € CO%Y([c1, di] % [c2., do])

and that the systems of functiofi(, b), ..., fm(t,b)} and{ f1(t, x), ..., fn(t,

x)} defined by(2.1) and (3.3), respectivelyare Chebyshev systems on the interval
[c1,d1] (for arbitrary but fixedby, ..., b, x € [c2, do] with b; # b; whenever

i # j). If ¢ is sufficiently smallthen for anyb € Q; A, the desigré. defined by
(2.9)and(2.11)is the uniqueE-optimal design in the regression mod212).

Note that forb € Q. A, the E-optimal designs can be obtained explicitly by
Lemmas 2.1 and 2.2. The support points are the extremal points of the Chebyshev
polynomial corresponding to the functions in (2.1), while the weights are given
by (2.9).
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From Remark 2.4 we may expect that, in generabptimal designs in the
regression model (1.1) are not necessarily supported at the Chebyshev points.
Nevertheless, an analogue of Lemma 3.1 is available for specific vectoRs".

The proof is similar to the proof of Lemma 3.1 and, therefore, omitted.

LEMMA 3.3. Lete; = (0,...,0,1,0,...,07 denote theith unit vector
in R™. Under the assumptions of Lemi®d define a vectof = (0, ..., 0, v, ...,

v2r) € R™ by
3.5) ya=[]ti—r)2 V2i1=—V2i )

j#i Tl

2 .
i=1,...,k.

(i) If c € R™ satisfiesc” y # 0, then for anyA > 0, sufficiently smalk and
any b € Q. a, the desigré.(b) defined in(2.12) and (2.13) is c-optimal in the
regression modgR.2).

(i) The assumptior’ 7 # 0 is, in particular, satisfied for the vector =
es12j—1 forany j=1,...,k and for the vector = e, p; forany j =1,... k,
which satisfies the condition

(3.6) >

T —
e#j

1

£0.

re

REMARK 3.4. As pointed out by a referee, some explanation of th&seat
is helpful at this point.

Note that the quantityA < min;.; |r; — r;| yields some mild restriction for
ther; in (3.1) ands can be considered as a cut-off point, such that whenever
in (3.1), the statements of Theorem 3.2 and Lemmas 3.1 and 3.3 apply to the
corresponding vectar € Q. a. This cut-off point cannot be determined explicitly
because it depends in a complicated wayAarnthe intervalgci, d1], [c2, d2] and
the basic functiorp(z, x) used in the regression model (1.1). Roughly speaking,
the results of Lemmas 3.1 and 3.3 and Theorem 3.2 hold for any vkdtoa
compact neighborhood of the vector, ..., x) € R%. In the examples for the
rational model discussed in Section 4 the Qgty coincides with the set of all
admissible values for parameter

Note also that it follows from the proof of Lemma 3.1 that the assumption of
compactness of the intervdls, d1] and[c2, d2] is only required for the existence
of the set2, A. In other words, if condition (3.1) is satisfied afds sufficiently
small, the maximum eigenvalue of the mathic 1 (£, b) will have multiplicity one
(independently of the domain of the functign. The same remark applies to the
statements of Theorem 3.2 and Lemma 3.3.

Our final result of this section shows that under assumption (3.1) with gmall
the localE - and locak-optimal designs for the vectorsconsidered in Lemma 3.3
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of Remark 3.4 are very close. To be precise, we assume that the assumptions of
Theorem 3.2 are valid and consider the design
: (51 o 5w
3.7 fc—gc(x)—(wl wm)’
wheresy, ..., 5, are the Chebyshev points corresponding to the system=
1,...,m} defined in (3.3),
|el-TJ17_1c|

3.8 w; = — , i=1...,m,
(3-8) ! '}LlleerF_lcl

with F = (fiGj)}";_; andc € R™ afixed vector.

THEOREM3.5. Assume that the assumptions of TheoBePare satisfied and
that for the systerifs, ..., f} the Chebyshev points are unique

(i) If 6 — O, the desigre’ (b) defined by(2.11)and (2.9) converges weakly
to the desigrg,,, (x) defined by(3.7)and (3.8)for ¢ = e,,.

(i) If c e R™ satisfiesc’ 7 # 0 for the vectory with components defined
in (3.5)ands — 0, then the desig§}(b) defined by(2.12)and (2.13)converges
weakly to the desigé,,, (x).

(i) The assumptior” 7 # 0 is, in particular, satisfied for the vector =
esyoj—1foranyj=1,... ,k and for the vector = ¢,,p; foranyj=1,...,k,
which satisfies conditio(8.6).

REMARK 3.6. Note that Theorem 3.2, Lemma 3.3 and Theorem 3.5 remain
valid for the local optimal designs in the nonlinear regression model (1.1). This
follows by a careful inspection of the proofs of the previous results. For example,
there exists a seR; o such that for allb € Q. A, the maximum eigenvalue of
the inverse information matrix in the model (1.1) is simple. Similarlyj # 0
and (3.1) is satisfied;optimal designs in the nonlinear regression model are given
by the desigrgz(b) in (2.12) and (2.13) witlt = K,c, whenevery ¢ £ 0, and all
these designs converge weakly to theoptimal design in the linear regression
model defined by the functions (3.4).

We finally remark that Theorem 3.5 and Remark 3.6 indicate Hraptimal
designs are very efficient for estimating the parameigrs, b1, ..., a1k, br In
the nonlinear regression model (1.1) and the linear model (2.2), because for small
differencesb; — b;| the E-optimal design and the optimal design for estimating
an individual coefficienty; (i = 1,...,k) are close to the optimal design for
estimating the coefficierty,. We will illustrate this fact in the following section,
which discusses the rational model in more detail.
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4. Rational models. In this section we discuss the rational model (1.2) in
more detail, where the design space is a compact or seminfinite interial
contrast to the work of Imhof and Studden (2001), we assume that the nonlinear
parametersy, ..., by ¢ I are not known by the experimenter but have to be
estimated from the data. A typical application of this model can be found in
the work of Dudzinski and Mykytowycz (1961), where this model was used to
describe the relation between the weight of the dried eye lens of the European
rabbit and the age of the animal. In the notation of Sections 2 and 3 we have

f@) = f(t,b)=(fa®),..., fu(@®)T, with
="t i=1..s,

(4.1) Ss+2i-1(t) = foy2i-1(t,D) =

’

t —b;

1
fs+2i(t):fs+2i(tvb):m, i=1,...,k,
and the equivalent linear regression model is given by (1.4). The correspond-
ing limiting_model is determined by the regression functiof§) = f(¢) =
(f1@®), ..., fm@)T, with

_ . _ _ 1
4.2) fi)y=1"1, firs() = fopilt,x)=———,  i=1,...,s.
(t —x)!

Some properties of the functions defined by (4.1) and (4.2) are discussed in the
following lemma.

LEMMA 4.1. DefineB={b=(b1,...,b)T eR¥|b; ¢ I:b; #b;}. Thenthe
following assertions are true

(i) If I is a finite interval orI C [0,00) and b € 8B, then the system
{f1(t1,b), ..., fm(t,b)} defined in(4.1) is a Chebyshev system on the interfal
If x ¢ I, then the systerifi(t, x), ..., fm(t,x)} defined by4.2) is a Chebyshev
system on the intervdl

(i) Assume thab € 8 and that one of the following conditions is satisfied

(@) 1 [0, 00),
(b) s=1lors=0.

Foranyj € {1,...,k}, the system of regression functiohg(, b)|i =1, ...,m,
i #s5+ 2j}is a Chebyshev system on the interkal

(i) If Iis afinite interval orl C [0, 00), k >2,andj € {1, ..., k}, then there
exists a nonempty sé¥; C 8 such that for allb € W;, the system of functions
{fie,b)]i=1,...,m;i#s+2j—1}is nota Chebyshev system on the inteival

The casek = 1 will be studied more explicitly in Example 4.5. Note that the
third part of Lemma 4.1 shows that fér> 2, the main condition of Theorem 2.1
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in the paper of Imhof and Studden (2001 nist satisfied in general for the linear
regression model with the functions given by (4.1). These authors assumed that
every subsystem dff1, ..., f»} which consists ofn — 1 of these functions is a
weak Chebyshev system on the interyaBecause the design problem for this
model is equivalent to the design problem for the model (1.2) (where the nonlinear
parameters are not known and have to be estimated), it follows that, in general, we
cannot expect locdl'-optimal designs for the rational model to be supported at the
Chebyshev points. However, the linearized regression model (1.4) is a special case
of the general model (2.2) with (¢, b) = (+ — b)~* and all results of Section 3

are applicable here. In particular, we obtain that By@ptimal designs and the
optimal designs for estimating the individual coefficienis 1, b1, ..., as+, bk

are supported at the Chebyshev points if the nonlinear parantaters, b, are
sufficiently close (see Theorem 3.2, Lemma 3.3 and Remark 3.6).

THEOREM4.2. (i) If s =1, then the Chebyshev points= s1(b), ..., s, =
sm(b) for the system of regression functions(thl) on the interval[—1, 1] are
given by the zeros of the polynomial

4k
(4.3) A —13)> diU_gysri2(D),

i=0
whereU  (x) denotes thgth Chebyshev polynomial of the second Kiseke Szego
(2975), U_1(x) =0,U_,,(x) = —U,_2(x) and the factorsgl, ..., dg are defined
as the coefficients of the polynomial

4k k
(4.4) S ditt =] -
i=0 i=1
where
1 .
2bij =1+ —, i=1...,k.
I

l
(i) Let Qg C B denote the set of alt such that anE-optimal design for the
model(1.4)is given by(2.11)and (2.9). ThenQg # o.

REMARK 4.3. (a) The Chebyshev points for the system (4.1) on an arbitrary
finite interval I ¢ R can be obtained by rescaling the points onto the interval
[—1,1]. The cases =0 and I = [0, co0) will be discussed in more detail in
Examples 4.5 and 4.6.

(b) It follows from Theorem 3.2 that the s€ir defined in the second part
of Theorem 4.1 contains the s@t » defined in (3.2) for sufficiently smadl. In
other words, if the nonlinear parametéts. . ., b; are sufficiently close, the local
E-optimal design will be supported at the Chebyshev points with weights given
by (2.9). Moreover, we will demonstrate in the subsequent examples that in many
cases the s& g coincides with the full seB.
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(c) Inapplications the Chebyshev points can be calculated numerically with the
Remez algorithm [see Studden and Tsay (1976) or DeVore and Lorentz (1993)].
In some cases these points can be obtained explicitly.

REMARK 4.4. We note that a similar result is valid foroptimal designs
in the rational regression model (1.4). For example, assume that one of the
assertions of Lemma 4.1 is valid and that we are interested in estimating a linear
combinationc’ g of the parameters in the rational model (1.4). We obtain from
Lemma 3.3 that it € R” satisfiesc” 7 # 0, then for sufficiently smalt and any
b € Q; a, the desigré. (b) defined in (2.12) and (2.13) isoptimal. In particular,
this is true forc = e;12;—1 (forall j =1,...,k) and the vector = e, ; if the
index j satisfies the condition (3.6). Note that due to the third part of Lemma 4.1
in the casek > 2, there exists & € B such that thex,»;-optimal design is not
necessarily supported at the Chebyshev points. However, from Theorem 3.5 it
follows that for a vectob € 8B satisfying (3.1) with§ — 0 and any vectoer with
¢’y #0, we have for the desigigs. (b) and& (b) defined by (2.11) and (2.12)

£ (b) = &, (1), (b)) — &, (%),

where the desigh,, (x) is defined in (3.7) and (3.8) and ig,-optimal in the
limiting model with the regression functions (4.2). We conclude this section with
two examples. Further examples considering a finite interval as design space and a

comparison withD-optimal designs can be found in the technical report of Dette,
Melas and Pepelyshev (2002).

EXAMPLE 4.5. Consider the rational model
(4.5) Y:—tab—l—e, t €0, 00),
with b < 0 (here we havé = 1,5 =0, I =[0, o0)). The corresponding equivalent
linear regression model is given by

B1 B2

—nT —
(4.6) Y=8 f(t,b)—i—e_t_b—l—(t_b)z—l—e.

In this case it follows from the first part of Lemma 4.1 that the system of regression
functions {25, ﬁ} = {f1(t), f2(t)} is a Chebyshev system on the interval
[0, o0) wheneverb < 0. Moreover, any subsystem (consisting of one function)
is obviously a Chebyshev system on the intef@albo). The Chebyshev points
are given bys; = 0 ands, = +/2|b| = —+/2b. Now we consider the desidij (b)
defined in (2.12) as a candidate for theptimal design in model (4.6). The
weights (for anyc € R?) are obtained from formula (2.13) and a straightforward
calculation shows that theoptimal desigrE*(b) has masses; and 1—- w; at the

points 0 andv/2|b|, respectively, where
|b(—v/2c1+ 2+ /2)c2b)|

w] = .
IbI{] — v/2c1+ (2+~/2)c2b| + (44 3v2)| — c1 4 c2bl}
It can easily be checked by Elfving’s theorem [see Elfving (1952)] or by the
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equivalence theorem faroptimality [see Pukelsheim (1993)] that this design is,
in fact, c-optimal in the regression model (4.6) whenefg?ie¢ [%, m]. In the

remaining cases theoptimal design is a one-point design supported=at — z—;

In particular, by Lemma 2.3, the;- and e2-optimal designs for estimating the
coefficientsf, andp, in the model (4.6) have weighfs2 — +/2), 2(2++/2) and

1— %2 %2 at the points 0v/2|b|, respectively. It follows from the results of Imhof
and Studden (2001) that d@roptimal design in the regression model (4.6) is given
by thec*-optimal design for the Chebyshev vectdr= (1 + +/2)|b|(—2, |b|(1 +
V2)T, which has masses; and 1— w1 at the points 0 and/2|b|, respectively,
where

_1@-V2)6-4v2+b%) | 1V22V2-2+07
2 p+12-8V2 0 2 p2+12-8V2

Alternatively, the E-optimal design could be also obtained by the geometric
method of Dette and Haines (1994), which is especially designed for models with
two parameters.

In Figure 1 we show the efficiencies of tlieoptimal design for estimating the
coefficientsg, andg2 in the regression model (4.6), that is,

eff; (£ (b))

B (ef MLEE D). b)ei>—1
~\ eI MTLEE b)e;

w1

41 28(b*(5v/2 — 7) + b?(34v/2 — 48) + 396 — 280/2) —
(92 — 11) (b2 — 82 + 12)(7h2 + 16v2 — 20) -
- b*(V2 —1) + (62 — 8)b2 + 68— 482 M

(V2—1)(b2—8/2+12)(b2— 62 +8)

[for technical details for this calculation see Dette, Melas and Pepelyshev (2002)].
We observe for the;-efficiency for allb < —1 the inequality

0.9061~= , lim effy (§5(0)) < effy (§£(1)) < effy (§£(—1)) ~ 0.9595

and similarly for thee,-efficiency
0.9805~ effz (55 (—1)) < eff2 (x(0)) < lim__effz(§5(5)) = 1.

This demonstrates that theoptimal design yields very accurate estimates for the
individual parameters in the regression model (4.6).

We finally mention the results for the local optimal design in the rational
model (4.5), which maximize or minimize the corresponding functional for the
matrix KM (¢, b)K 1, wherek, = diag(1, —51). Obviously, the locak;- and
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276 34 22 —--2:8--1.6 I};A‘;\ “t-2
0.98 b
0.96
0.94

Fic. 1. Efficiencies of theZ-optimal desigre™* (b) for estimating the individual coefficients in the
regression mode{4.6) for various values ob € [-2.5, —1]. Solid line eff{(§*(b)), dotted line
effo(£* (D).

ep-designs coincide with the corresponding designs in the equivalent linear
regression model (4.6). On the other hand, ¢heptimal design for the rational
model (4.5) is obtained from theoptimal desigrEZ (b) for the model (4.6) with

¢ = Kyuc = (c1, —c2/a)!. Similarly, the local E-optimal design for the rational
model (4.5) has masse§ and 1-w? at the points 0 and/2|b|, where the weights

are given by

222+ (4+3V2)0° . (4+3V2)@2a + (1+V2)b?)
2041+ V2)a2+ (T+5V2)b%) {41+ vV2)a2+ (7T+5v2)p%)

An investigation of the efficiencies for thE-optimal design in the rational
model (4.5) yields similar results as in the corresponding equivalent linear
regression model (4.6). For a broad range of parameter v&ués the local
E-optimal designs in the rational model (4.5) are very efficient for estimating the
individual parameters.

wi =

EXAMPLE 4.6. We now discusg-optimal designs for the rational model
(4.8) e 42

t—b1 t—>bo
whereby, by < 0;|bo —b2| > 0 (k =2, s = 0). The corresponding equivalentlinear
regression model is given by

B1 P2 B3 Pa
f—b T U—b02 by G—bp2 "
The results of Section 3 show that for sufficiently close paramétethe E- and
e;-optimal designs are supported at the Chebyshev points and that-tpgimal

+ &, t €0, 00),
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design is the uniqug-optimal design. In this case the local optimal designs cannot
be found explicitly. Therefore, we used these designs for any véetob,) under
consideration as candidates for the optimal designs. In other words, we used the
Chebyshev points as support points and calculated the optimal weights from the
formulas presented in Section 2 to obtain candidates for the local optimal design.
The optimality for a concrete choice was finally verified by an application of the
results in Section 2 (see the discussion below). For the sake of brevity, we restrict
ourselves to model (4.9), which corresponds to the local optimal design problem
for model (4.8) with(a1, a2) = (1, 1). In our comparison we will also include the
E-optimal design in the limiting model under assumption (3.1), that is,
p1 p2 B3 Pa

(4.10) i Py R P S ey L
where the parameter is chosen as = (b1 + b2)/2. Without loss of generality
we assume that = —1, because in the general case the optimal designs can be
obtained by a simple scaling argument. The limiting optimal design was obtained
numerically and has massed48, 026, 027, 034 at the points 0,.28, 108 and
7.9, respectively.

Theorem 3.2 shows that for sufficiently smglf — b»|, E-optimal designs for
the model (4.9) are given by the desigh(b) defined in (2.9) and (2.11). From
Lemma 2.2 it follows that the desidy () is E-optimal whenever

T M(Ef (b), b)c*
c*T o*

whereimin(M (5 (b), b)) < L) <--- < A(m) denote the ordered eigenvalues of
the matrixM (£ (b), b). The ratiok 2 /1.« is illustratively depicted in Figure 2 for
b1 =1 and a broad range 6} values, which shows that it is always bigger than 1

1000

800

800

oo

BOD

500

400

L]

200

100

0
-10 -8 -B -4 -2 ]

by

FIG. 2. Theratioi o) /A« for the desigref. (b), whereb = (-1, bp). The designs ar&-optimal if
this ratio is greater than or equal tb.
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TABLE 1
E-optimal designs for linear regression modé19) on the interval[0, co), where
b1 =—-1—1z, bp =—1+z. These designs arg-optimal in the rational mode(4.8)
for the initial parameter1 = a» = 1. Note that the smallest support point of the
E-optimal design{) is0

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 095

5 0.18 0.17 0.17 016 0.15 013 0.11 0.09 0.05 0.03
135 1.08 106 103 099 094 087 077 065 047 034

AR 785 777 765 746 7.21 6.88 645 588 505 443
wip 013 013 0413 013 012 0.10 008 0.07 005 0.03

wiy 026 026 027 026 025 022 020 017 013 0.10
wi; 027 027 028 028 028 028 028 028 028 028
w;r 034 033 033 033 036 039 044 049 054 059

Other cases yield a similar picture and, in practice, the ldtalptimal design

for the rational model (4.8) and the equivalent linear regression model (4.9) is
always supported at the Chebyshev points and given by (2.9) and (2.11). In Tables
1 and 2 we give the main characteristics and efficiencies for the agitimal
design&; (b) and for theE-optimal desigré; (2372) in the limiting regression
model (4.10). The efficiencies are defined by (4.7) and we observe again very
good performance of th&-optimal designs. The behavior of the designin

the limiting regression model (4.9) is interesting from a practical point of view
because it is very similar to the performance of fiy@ptimal design for a broad
range ofb1 andb; values. Consequently, this design might be appropriate if rather
imprecise prior information for the nonlinear parameters is available. For example,
if it is known (from scientific considerations) that € [b,, b1], bo € (b5, b»], the

designEE(#) might be a robust choice for practical experiments.

TABLE 2
The efficiency4.7) of the E-optimal designg; in the linear regression modé#.9) on the
interval [0, o) with b1 = —1 — z, bp = —1+ z and the efficiency of thE-optimal design
£ (—=1) in the corresponding limiting modé#.10)

4 01 02 03 04 05 06 07 08 09 09

eff1 (§5) 1.00 100 099 094 070 045 050 055 0.64 0.78
effa(65) 099 099 098 098 099 100 100 1.00 1.00 1.00
eff3(£5) 1.00 100 100 099 095 0.87 0.76 0.68 0.58 0.44
effa(&x) 100 099 098 094 087 076 062 054 044 031

eﬁl(gg(—l)) 1.00 099 098 094 079 061 039 032 029 0.27
eff(6z(-1)) 099 097 094 088 078 065 049 040 031 021
eff3(6;(-1)) 1.00 099 098 095 088 075 054 040 024 0.08
eff4(65(-1)) 1.00 099 0.98 095 090 078 057 041 024 007
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APPENDIX A: PROOFS

PROOF OFLEMMA 2.1. Let&; denote anE-optimal design such that the
minimum eigenvalue. = Amin(M (§5, b)) of the information matrixV (), b) has
multiplicity one with corresponding eigenvectoe R™. By the equivalence the-
orem for theE-optimality criterion [see Pukelsheim (1993), pages 181 and 182],
we obtain for the matrit = zz7 /A,

1 2
(ﬁszm) _ TOEF) <1

for all + € I with equality at the support points §f;. Because the Chebyshev
polynomial is unique it follows that (up to the factgrl) ¢* = %z and that

suppéy;) = {s1,...,su}. Now Theorem 3.2 in Dette and Studden (1993) implies
that& is alsoc*-optimal, wheree* e R™ denotes the vector of coefficients of the
Chebyshev polynomial. Consequently, by the discussion of the previous paragraph
we havetf = £, which proves the assertion[]

PROOF OF LEMMA 2.2. From the identity (2.10) and the Chebyshev
property (2.7) it follows immediately that* is an eigenvector of the matrix

MEL D)= fs)f (sw
i=1

with corresponding eigenvalue = 1/|/c*||2. Now if A = Amin(M (%, b)), we
define the matrixE = Ac*c*’ and obtain from the Chebyshev properties (2.7)
that

FTOEF @) =0T £1))? <A = Amin(M(E%, b))

for all t € I. The assertion of Lemma 2.2 now follows from the equivalence
theorem forE -optimality [see Pukelsheim (1993)]

PROOF OFLEMMA 2.3. If f1,..., f,» generate a weak Chebyshev system on
the intervall, it follows from Theorem 2.1 in Studden (1968) that the degign
defined in (2.12) and (2.13) i5-optimal if

eeiTJF_lejEO, i=1...,m,

for somee € {—1, 1}. The assertion of Lemma 2.3 is now obtained by Cramér’s
rule. O

PrRooOF oFLEMMA 3.1. Recall the definition of the functions in (3.3) and let

_ d _ _
(A1) Mg, x) = f Fe.0 fT(tx) d )
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denote the information matrix in the corresponding linear regression model.
Because of the Chebyshev property of the functighs..., f;412, We have

|M (£, x)| # 0 (note that the designhas at least + 2k support points). It follows
from Theorem B.1 that under the condition (3.1) wih—~ 0, the asymptotic
expansion

(A2) s 2M & b)) =hyp7T +o(D)
is valid, where the vectof = (1, ..., 7s4+2¢) ! is defined by
_ L 2 ,
)’s+2i—1=—l_[(”i—”j) Z ' - i=1,... k,
J#i gl
(A.3) _ _ _ .
VIZZVSZO, yS—‘er:O’ l:]-""vk’
and the constarit is given by
(A.4) h=((2k — DY (MHE ), -

From (A.2) we obtain that the maximal eigenvalue of the maMx'(¢, b) is
simple if § is sufficiently small.

For a fixed value- = (r1, ..., r¢) and fixedx € R in the representation (3.1),
denote bye = e¢(x,r) the maximal value (possiblgo) such that the matrix
M~1(,b) has a simple maximal eigenvalue for dll< . Then the function
g:(x,r) — &(x,r) is continuous and the infimum

inf {ee.b)]x € lex.dal minfr =)= A, Il =1]
i#]

is attained for some* € [c1, d1] andr*, which impliese* = e(x*, r*) > 0. This
means that for any € Q.+ A, the multiplicity of the maximal eigenvalue of the
information matrixM ~1(¢, b) is equal to one. O

PROOF OFTHEOREM 3.2. The proof is a direct consequence of Lemma 2.2
and Lemma 3.1, which shows that the multiplicity of the maximum eigenvalue of
the inverse information matrix of any design has multiplicity one, & 2. A and
¢ is sufficiently small. O

PROOF OF THEOREM 3.5. It follows from Theorem 3.2 that the design
% = &% (D) is local E-optimal for sufficiently smalb > 0. In other words, if§ is
sufficiently small, the desigg. minimizes max,—1c” M~1(&, b)c in the class
of all designs. Note that the components of the vecter(ry, .. ., r) are ordered,
which implies

esT+2i—1J7 #0, i=1,... k.
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Multiplying (B.1) by §%~2, it then follows from Theorem B.1 that for some
subsequenci — 0:&% — £(x), where the desigé(x) minimizes the function
llrrl?axl(cT)?)ze;ATI_l(S,x)em
Cll2=
and the vectoy is defined by (A.3). The maximum is attained foe= p /(7|2
(independently of the desigh) and, consequenth (x) is e,,-optimal in the
linear regression model defined by the vector of regression functions in (3.4).
Now the functionsfy, . .., f,, generate a Chebyshev system and the corresponding
Chebyshev points are unique, which implies that #eoptimal desigré,, (x)
is unique. Consequently, every subsequence of degjgtls) contains a weakly
convergent subsequence with lingit, (x) and this proves the first part of the
assertion. For a proof of the second part we note thrabptimal design minimizes
cT M~1(&, b)c in the class of all designs on the intervaNow if ¢y £ 0 and

- _ 2
ef o117 =—[[wi=ry 22 ——#0
J#i T
for somei = 1,...,k, the same argument as in the previous paragraph shows
that £7(b) converges weakly to the design which maximizes the function

(7Te)2el M1 (&, x)ep. If el 5 17 =0 for all i = 1,....k, the condition
¢’y #0impliese!, ,, 7 # 0 for somei = 1,..., k and the assertion follows by
multiplying (B.1) by 8%~ and similar arguments. Finally, the third assertion

follows directly from the definition of the vectgr in (3.5). O

PROOF OFLEMMA 4.1. Part (iii) follows from Remark 2.4. Parts (i) and (ii)
are proved similarly and we restrict ourselves to the first case. For this purpose we
introduce the functions (z, b) = (Y1(t, b), ..., ¥ (¢, b))T with

wi(t, by =11, i=1...s,
(A.5)

~ 1
l)DS-H'(Z"b): =~ i:]-,...,Zk,
t—>b

i

whereb = (b1, ..., by)" is afixed vector withh; # b; if i # j. With the notation

IS 0 mxXm
L(A):<0 Gk<A))€R ’
G(A)
Gi(A) = € RZx2k

G(A)

(1 0 2x2
G(A)_<—1/A 1/A)€R :



OPTIMAL DESIGNS 2163

(herel; is thes x s identity matrix) it is easy to verify that
(A.6) f(t,b) =LA (¢, ba) +0(1),

whereba = (b1, b1+ A, ..., b, br + A)T. For afixed vectof = (t1, ..., 1,)" €
R™ with ordered componentg < --- < t,, such that; e I,i =1, ..., m, define
the matrices
F(T,b)=(fi(tj, D) ;_y,  W(T,b)=(¥i(t;, b))}y
Then we obtain from (A.6)
1

detF (T.b) = lim /(T ba)

CThcicjem@ =) Mg <j<i(bi — bj*
- Ty T (1 — bi)?
where the last identity follows from the fact that(7, b) is a Cauchy—Vander-
monde matrix, which implies
Ma<i<j<m(t; — ) Tla<i < j<o (bi — b))

ML TTa (1 = B) '

Now for any b € 8, the right-hand side does not vanish and is of one sign
independently off. Consequently f; (¢, b)|i =1, ...,m} is a Chebyshev system
on the intervall. The assertion regarding the systémi(z, x)|i = 1,...,m} is
proved similarly and, therefore, left to the readér]

(A7)

’

dety (T, b) =

PROOF OF THEOREM 4.2. The second part of the theorem is a direct
consequence of Lemma 4.1 and Theorem 3.2, while the first part of the proposition
follows by Theorem A.2 in Imhof and Studden (2001]]

APPENDIX B: AN AUXILIARY RESULT

Recall the notation in Sections 2 and 3, the definition of the regression
functions in (2.1) and (3.3) and consider a desigon the intervall with at
leastm support points. In this appendix we investigate the relation between the
information matrices/ (¢, b) andM (¢, b) defined by (2.3) and (A.1), respectively,
if condition (3.1) is satisfied, wdre the components of the vectioe (r1, ..., i)
are different and ordered.

THEOREMB.1. Assume thap € C%%~1 and¢ is an arbitrary designsuch
that the matrixM (&, b) is nonsingularlf assumption(3.1) is satisfiedit follows
that for sufficiently smald the matrixM (¢, b) is invertible and if§ — 0O,

MO &) M@ EF

B.1) M-L _ g dk+ap -
- &0=e (8)<FTM<2> & yyTh+o(1)

)T(S) +o(1),
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where the matrices'(8) € R™™ and M (§) € R™, M@ (&) € R**%* and
M® (&) e R%*2 are defined by

T(a)=diag<52’<—2,...,52’<—2,3,1,},1,...,},1),
LA LA A s
g 2k
MO M@ ) ——
(M@T(s) MC”)(&))‘M .2,

the vectory = (y1, ..., yax)” andh € R are given byh = [(2k — 1)!]%e M~ (g,
x)em,

ya = [ (ri —rj) 72, Yai-1=—V2i ) 2 , i=1...k,
j#i AT
and the matrixF € R%>Z is defined by
0 ... 0 y1/0!
F=|:
0 -+ 0 yx/((Zk—D

PROOF Defines; =r8, i =1,....k, v = (1,6,...,8% 1T and intro-
duce the matrices

(B.2) L=(q,..., KZk)T € RZkXZk,

11 1
B.3 U=diag(1l —,—,..., R2kx2k
®3 g< 1 2l (2k—1)!)e

wherely; 1 =v(8;), L2 =¥/ (8;),i =1,..., k. Forfixedr € I, we use the Taylor
expansions

2k—1 (i) " _
qo(t’x+8): Z MS/ +0(82k—1)’
Jj=0
2k—1 (i) _
@t x+8) = Z %5/_1—%0(82"_2),
j=1 ’
to obtain the representation
(I, 0 z 0
(8.4) rab+on=(¢ 5 )fen+( 7).

wherel, € R*** denotes the identity matrix and the vecibrs of order

(B.5) F@) = (066%™, 06%72),0(6%7Y), ..., 0(6%2)".
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It follows from pages 127-129 in Karlin and Studden (1966) thatLdet
Mi<icj<c (@ — )% and consequentlyy = (v1,...,vx) := L1 exists. The
equalityLV = I,,, implies the equations

vEv () =0,  wuy'()=0,  j#i
v () =0,  viY(8) =
which shows thab, ..., 8;_1,8;+1,...,8; are zeros of multiplicity two of the

polynomial vaiw(S) andé; is a zero of multiplicity one. Because this polynomial
has degree2— 1, it follows that

§—8:\2
(B.6) @ =6-0]](5—2).
j#E !
and a similar argument shows that
2
(B.7) vl () = ]‘[( )
i 3
where the constantg, ..., a; are given by
2 -1
(BS) ai=8i+<25i—5'> s i=1...,k.
J#i /

From (B.4) and (B.5) we therefore obtain
f&,b+8r)fT(t,b+6r)

(L O 0\" 2%—2
~(§ ) fenieo(y 5) +oe* .
and integrating the right-hand side with respect to the desgimows that

T
B9) ME b+or) = (’0 LOU>M(§ x)({) L?]) +o0(5%72).

Now defineH; (8) = diag(8%~1, %2, §%-1 §%~1 §%-2) ¢ R%*x2 gnd

I O mxm
H($) = (0 H(S))ER )

Then we obtain from (B.6) and (B.7) tha&ty(8)(L~Y)7 = (0ly) + o(1), where
Yy = (..., v)7 is defined by formula (B.2) and & R%*%-1 denotes the
matrix with all entries equal to zero. This implies that the inverse of the matrix
M(&, b+ dr) is given by

“eprn=n0 (g p)iten(y o) +ew)ate)

D 172 T
=6—4k+4T(6){< M (&) MY &) F

A R L
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where the matrixF is defined byF = (0]y)U~! € R%>*%_ The assertion now
follows by a straightforward calculation which shows tla¥® (£) FT = hy 1.
l
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