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An empirical Bayes approach to the estimation of possibly sparse
sequences observed in Gaussian white noise is set out and investigated. The
prior considered is a mixture of an atom of probability at zero and a heavy-
tailed densityy, with the mixing weight chosen by marginal maximum
likelihood, in the hope of adapting between sparse and dense sequences.
If estimation is then carried out using the posterior median, this is a
random thresholding procedure. Other thresholding rules employing the same
threshold can also be used. Prbitity bounds on the threshold chosen by
the marginal maximum likelihood approach lead to overall risk bounds over
classes of signal sequences of lengthllowing for sparsity of various kinds
and degrees. The signal classes cagrgid are “nearly black” sequences
where only a proportiom is allowed to be nonzero, and sequences with
normalized¢, norm bounded by, for » > 0 and O< p < 2. Estimation
error is measured by meagth power loss, for O< g < 2. For all the
classes considered, and for alin (0, 2], the method achieves the optimal
estimation rate as — oo andn — 0 at various rates, and in this sense adapts
automatically to the sparseness or otherwise of the underlying signal. In
addition the risk is unifomly bounded over all signals. If the posterior mean
is used as the estimator, the results still hold Jor 1. Simulations show
excellent performance. For appropriately chosen functipnshe method
is computationally tractable and software is available. The extension to
a modified thresholding method relevant to the estimation of very sparse
sequences is also considered.

1. Introduction.

1.1. Thresholding to find needles and straw. There are many statistical
problems where the object of interest is a high-dimensional parameter on which
we have a single observation, perhaps after averaging, and subject to noise.
Specifically, suppose that = (X1, ..., X,,) are observations satisfying

@) Xi=pi+ €,
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where the:; are N (0, 1) random variables, not too highly correlated. lebe the

vector of meang = (i1, 12, ..., uy). Clearly, without some knowledge of the

we are not going to be able to estimate them very effectively, and in this paper we

consider the advantage that may be taken of possible sparsity in the sequence.
In what contexts do problems of this kind arise? Some examples are the

following:

e In astronomical and other image processing contexts,Xthenay be noisy
observations of the pixels of an image, where it is known that a large number of
the pixels may be zero.

e In the model selection context, there may be many different models that
conceivably contribute to the observed data, but it is of interest to select a subset
of the possible models. In this case, the individ¥alare the raw estimates of
the coefficients of the various models, renormalized to have variance 1.

e In data mining, we may observe many different aspects of an individual or
population, and we are only interested in the possibly small number that are
“really there”; this is much the same as the model selection situation, but
couched in different language.

¢ In nonparametric function estimation using wavelets, the true wavelet coeffi-
cients at each level form a possibly sparse sequence, and the discrete wavelet
transform yields a sequence of raw coefficients, which are observations of these
coefficients subject to error. Wavelet approaches in nonparametric regression
take advantage of this structure in a natural way. This context originally moti-
vated the work of this paper but the potential applicability of the ideas developed
is much wider.

A natural approach to all these problemdhresholding: if the absolute value
of a particularX; exceeds some thresholdthen it is taken to correspond to a
nonzeragu; which is then estimated, most simply By itself. If | X;| < ¢, then the
coefficient|u;| is estimated to be zero. But howriso be chosen? The importance
of choosing appropriately is illustrated by a simple example. Consider a sequence
of 10,000 u;, of which m are nonzero and10,000 — m) zero. The nonzero
values are allocated at random and are each generated from a uniform distribution
on (=5, 5). By varying the numbem, sequences of different sparsities can be
generated, as shown in Figure 1. In this figure thedD@O u; are arranged in a
100x 100 pixel image. The absolute value of the image is plotted in gray scale in
order to allow white to correspond to the value zero. Estimating a sparse signal is
like finding needles in a haystack; it will be necessary to find which are the very
few signal values that are nonzero, as well as to estimate them. On the other hand,
estimating a dense signal is more like finding straw in a haystack; no longer will
we be surprised if a particulas; is nonzero.

Independent Gaussian noise of variance 1 is added touth#o yield a
sequenceX;. The resulting images are shown in Figure 2. The average square
estimation error yielded by thresholding; with varying thresholds is plotted
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FiG. 1. Absolute value of parameter images of various sparsity. Out of 10,000 pixels, the number
of nonzero parameters is, from left to right: 5, 20, 100in the top row and 500, 2000, 1000in the
bottom row. Each nonzero parameter is chosen independently froma uniformdistribution on (-5, 5).

in Figure 3. Ignore the points marked by arrows for the moment. The number
in the top right of each panel is the value mf som =5 corresponds to a

very sparse model, while: = 10,000 corresponds to a very dense model, with

no zero parameter values at all. The naive estimator, estimating.galsh the
correspondingX; without performing any thresholding at all, will produce an
expected mean square error of 1. The scales in each panel are the same, and
the threshold range is from 0 tg2log1Q000= 4.292, the so-callediniversal
threshold for a sample of this size.

Three things can be seen from this figure. First, the potential gain from
thresholding is very large if the true parameter space is sparse. For the sparsest
signals considered in Figures 1 and 3, the minimum average square error achieved
by athresholding estimate is 0.01 or even less; see Figure 4 for a graph of minimum
average square error against sparsity. Second, the appropriate threshold increases
as the signal becomes more sparse. For the fully dense signal, no thresholding at
all is appropriate, while for the sparsest signals, the best results are obtained using
the universal threshold. Finally, it is important for the threshold to be tuned to
the sparsity of the signal; if a threshold appropriate for dense signals is used on a
sparse signal, or vice versa, the results are disastrous.
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FIG. 2. Absolute values of data X;, result of adding Gaussian white noise to the images depicted
inFigure 1.

Thus, thresholding is a very promising approach, but the crucial aspect is the
choice of threshold. A good threshold choice method will have several properties,
as follows:

o It will be adaptive between sparse and dense signals, between finding “needles”
and finding “straw.”

It will be stable to small changes in the data.

It will be tractable to compute, with software available.

It will perform well on simulated data and on real data.

It will have good theoretical properties.

In this paper we set out and investigate a fully automatic empirical Bayes
thresholding method, which satisfies all these desiderata. In the example the
method chooses the threshold values shown by the arrows in Figure 3. It can
be seen that the empirical Bayes method is very good at tracking the minimum
of the average square error. More details are given in Figure 4. The empirical
Bayes thresholds are always close to the optimal thresholds, and—right across the
range of sparsity considered—the average square error obtained by the empirical
Bayes threshold is very close indeed to the best attainable average square error.
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FiG. 3. Mean square error of thresholding data obtained from the images in Figure 1 by adding
Gaussian white noise. In each panel the arrow indicates the threshold chosen by the empirical Bayes
approach. The prior used for the nonzero part of the distribution was a Laplace distribution with
scale parameter a = % Each plot is labeled by the number of nonzero pixels, out of 10,000, in the
underlying signal.
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Left panel:threshold plotted against sparsity. The solid line is the threshold chosen by
the empirical Bayes method, while the dashed lineis the threshold that yields the minimum possible
average square error. Right paneliog base 10 of the average square error yielded by the empirical
Bayes threshold (solid line) and by the best possible threshold (dashed line). The models illustrated
in Figure 1, and intermediate models, were used to construct these graphs.
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A documented implementatioBbayesThresh of our methodology in R and S-
PLUS is available. See Johnstone and Silverman (2003) for detalils.

1.2. Specifying the empirical Bayes method. In the present paper we concen-
trate attention on the case where the eregrare independent. In some contexts
this assumption is restrictive. While beyond the scope of the present paper, it is
of obvious interest to extend our method and the supporting theory to dependent
data, and this is a natural topic for future work.

The notion that many or most of the are near zero is captured by assuming
that the elementg; have independent prior distributions each given by the mixture

(2 fprior(M) = (1 —w)do(n) + wy (u).

The nonzero part of the prioy;, is assumed to be a fixed unimodal symmetric
density. In most previous work in the wavelet context mentioned above, the
densityy is a normal density, but we shall see that there are advantages in using a
heavier-tailed prior, for example, a double exponential distribution or a distribution
with tails that decay at polynomial rate.

For any particular value of the weight, consider the posterior distribution af
given X = x under the assumption that~ N (u, 1). Let fi(x; w) be themedian
of this distribution. For fixedw < 1, the functioni(x; w) will be a monotonic
function ofx with the thresholding property, in that there exigt®) > 0 such that
a(x; w) =0 if and only if |x| < ¢(w). Figure 5 shows the prior distribution and
the posterior median functiofa(x; w) for the Laplace mixture prior witlh = 0.5
and two different values of the weight.

Let ¢ denote the convolution of the density with the standard normal
density¢. The marginal density of the observatiakiswill then be

(1—w)e(x) + wg(x).

We define the marginal maximum likelihood estimatoof w to be the maximizer
of the marginal log likelihood

n
e(w) =Y log{(1 — w)$(X;) + wg(X;))
i=1
subject to the constraint om that the threshold satisfiesw) < /2logn. The
threshold chosen by the method will then be the value.

The function¢’(w) is a monotonic function ofv, so its root is very easily
found numerically, provided the functignis tractable; see Section 2.2. Our basic
approach will then be to plug the valdeback into the prior and then estimate the
parameterg; using this value ofv, either using the posterior median itself, or by
using some other thresholding rule with the same thresh@igl. In the example
above simple hard thresholding was used.
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Fic. 5. Firstline:Prior distribution for w = 0.4 and w = 0.02, for the mixed Laplace prior with
a = 0.5. The atom of probability at zero is represented by the solid vertical bar, plotted to the scale
indicated on the right of the plot; the probability density of the nonzero part of the prior is plotted
to the scale at the left. Second linePosterior median functions for the same priors. The dotted line
is the diagonal y = x. It can be seen that the posterior median is a monotonic function of the data
value and is zero whenever the absolute value of the datum is below the threshold.

Another possibility is to use the posterior mean, which we depgte w),
so that the corresponding estimate jis = fi(X;; w). The posterior mean
rule fails to have the thresholding property, and, hence, produces estimates in
which, essentially, all the coefficients are nonzero. Nevertheless, it has shrinkage
properties that allow it to give good results in certain cases. We shall see that both
in theory and in simulation studies, the performance of the posterior mean is good,
but not quite as good as the posterior median.

The empirical Bayes is a fully automatic practical method; intuitively, the reason
it works well is as follows. If the meang; are all near zero, theiw will be
small, corresponding to a large thresho{d), so that most of the means will be
estimated to be zero. On the other hand, if ghere larger, then a small threshold
will be chosen, and the data will not be shrunk so severely in the estimation of the
vector of means.

1.3. Measures of sparsity and minimax rates. The sparsity of a signal is not
just a matter of the proportion qf; that are zero or very near zero, but also of
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more subtle ways in which the energy of the sigpais distributed among the
various components. Our theory will demonstrate that the empirical Bayes choice
of estimated threshold yields a highly adaptive procedure, with excellent properties
for a wide range of conditions on the underlying signal.

A natural notion of sparsity is the possibility thatis a nearly black signal,
in the sense that the number of indigef®r which ; is nonzero is bounded. We
define

(3) Coln] = {uin ™ty I #0] <n{.

i=1
With just the knowledge that falls in £g[ ], how well canu be estimated? Define
the minimax average square error by

n
Ry 2(bolnl) =inf sup n™' Y~ E(i — ui)?.
I opetolnl 21

Donoho, Johnstone, Hoch and Stern (1992) show that, consideting, — 0 as
n— o0, Ryois 2n(logn= 1) (1+o(1)).

A more subtle characterization of sparsity will not require anyo be exactly
zero, but still constrain most of the energy to be concentrated on a few pf; the
by placing bounds on thg-norm of u for p > 0. There are various intuitive ways
of understanding whyl ||, = (3 |11;17)Y/? for small p is related to the sparsity
of u. Perhaps the simplest is to consider the energy (the sum of squares) of a
vector with |||, = 1 for some smalp. If only one component of. is nonzero,
then the energy will be 1. If, on the other hand, all the components are equal, then
the energy is:1~2/? which tends to zero as— oo if p < 2, rapidly if p is near
zero. By extension of these examplespifs small, the only way for a signal in
an ¢, ball with small p to have large energy is for it to consist of a few large
components, as opposed to many small components of roughly equal magnitude.
Put another way, among all signals with a given energy, the sparse ones are those
with small £, norm.

In this case we suppose the signal belongs té,amorm ball of small radiug,

@ eplm = {win ™Y wil? <07,

and define the minimax square error

Ry2(t2n]) =inf sup n™'>" E(fi; — ui)?
i petolnl ;3
Again, considering; — 0 asn — oo, Donoho and Johnstone (1994) show that,
for p <2, Ry 2(¢,n1) is n”(2logn™P)"P/2(1+ o(1)).
The estimator that attains the ideal performance over a nearly black class, or
over an¢, ball for somep > 0, will in general depend op and ory. The minimax
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rate is a benchmark for the estimation of signals that display the sparseness
characteristic of membership of &g class. Our main theorem will show that,
under mild conditions, an empirical Baydwésholding estimate will essentially
achieve the minimax rate oversimultaneously for allp in [0, 2], including the
nearly black class as the cage= 0. In this sense it adapts automatically to the
degree and character of sparsity of the signal in the optimum possible way.

A particular minimax risk is the risk when there is no constraint at all on the
underlying signal. In this case the minimax asymptotic risk is a constant 1, for
example, achieved by the estimator that simply estimatdsy X;. We show that
the maximum possible risk of the empirical Bayes thresholding method, under
appropriate conditions, is also uniformly bounded, so the adaptivity is not bought
at the price of asymptotically unbounded risk for signals of certain kinds.

1.4. Robustness. While adaptivity of an estimator is obviously desirable, it is
also important that the estimator should be robust to assumptions made. There are
several aspects of such robustness that we demonstrate for the empirical Bayes
threshold estimator.

Assumptionsonthesignal:  Although our procedure is derived from the sparse
prior model (2), we derive results under the much weaker assumption that the
underlying signal belongs to an appropriajeball.

Assumptions on the noise:  For example, in Section 5 we relax the assumption
of Gaussian errors in order to investigate the relation between tails of the prior and
tails of the noise density. While, in their present form, some other aspects of our
subsequent discussion make use of Gaussian assumptions, the key properties of the
posterior median thresholding rule hold under considerably weaker assumptions.

Assumptions on the error measure:  Rate-optimal risk bounds are established
for meangth power error measures for glle (0, 2], not just for the standard mean
square error. Excessive reliance on mean square erter?) is often criticized,
for example, as not corresponding to visual assessments of error. Choijcesof
will give greater (relative) weight to small errors, and in some senseg; theO
limit corresponds to counting the number of erréfg; # w;}.

Assumptions on the estimator itself: While the posterior median is the
motivating estimator for our work, the exact form of the thresholding rule is not
specified in our theoretical discussion. The key point is that the data dependent
threshold is chosen according to the sparse empirical Bayes prescription. Indeed,
the processing rule does not even have to be a strict thresholding rule. We obtain
good results for the posterior mean, which is not a thresholding rule but still
possesses an appropriate bounded shrinkage property; however, for full robustness
to the choice of error measure, strict thresholding rules have to be used.
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1.5. Related work. Abramovich, Benjamini, Donoho and Johnstone (2000)
show that the false discovery rate approach provides adaptive asymptotic mini-
maxity at the level of exact constants, as well as the rates of convergence that we
demonstrate for the empirical Bayes method. However, their results do not guaran-
tee robustness for denser signals, and there is some evidence of this nonrobustness
in the simulations we report in Section 3.

In a more restrictive scenario than ours, and mainly concentrating on the
application to wavelet smoothing, Zhang (2004) provides an asymptotically more
sharply adaptive empirical Bayes analysis. This analysis uses much more general
families of priors than our simple mixtes, and employs nongametric infinite-
order kernel methods to estimate the corresponding marginal densities. Such
methods are complex to implement in software, and their sharp asymptotic
properties might not be apparent in moderate samples.

Mixture priors built from models such as (2) are quite common in Bayesian
variable selection problems: our interest was stimulated in part by analysis of a
proposal due to George and Foster (1998, 2000) which takiesbe Gaussian.

For further references specifically in the wavelet setting, see the companion paper
Johnstone and Silverman (2004).

1.6. Outline of the paper. The paper now proceeds as follows. In Section 2 we
set out some key definitions and state the main theorem of the paper. To show that
the advantages of the estimate are not just theoretical, in Section 3 a simulation
study is presented, comparing the empirical Bayes method with a range of other
estimators, on cases covering both sparse and dense signals. In this study the
theoretical adaptivity and robustness properties of the empirical Bayes method are
clearly borne out. In very sparse cases the theory suggests that some asymptotic
improvement may be possible for very sparse signals, and in Section 4, we set
out a modification of our standard procedure, whereby the threshold is increased
by a suitable factor when the signal is estimated to be very sparse. We state a
result giving key properties of this procedure, and also present some discussion
and numerical results that suggest that, except when the sample size is very large
indeed, the modification may be of theoretical interest only.

We then move to the proofs of the main results. In Section 5 various detailed
preliminaries are considered, including the properties of the posterior rules under
more general noise distributions than the Gaussian. We then go on, in Section 6,
to consider risk bounds first for fixed thresholds, and then for data-dependent
thresholds. These bounds depend on tail probabilities for the random thresholds.
As a prerequisite to the control of these probabilities, Section 7 investigates
properties of the moment behavior of the marginal likelihood score function. In
Section 8 the proof of the main theorem is completed: the results of Section 7 yield
tail probabilities of the prior parameters chosen by the empirical Bayes method,
and, hence, of the corresponding random thresholds. These are fed into the bounds
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of Section 6 to complete the proof. Section 9 then contains the modifications to the
previous arguments needed to prove Theorem 2.

The conditions in the main theorem for the posterior mean do not cover as wide
a range of loss functions as for strict thresholding rules. In Section 10 it is shown
that this is an essential feature of the use of such a rule; for valugs<at the
posterior mean cannot yield an optimal estimate relativgthopower loss under
the same broad conditions.

2. Aspects of the sequence estimation problem. It is convenient to set
up some notational conventions. Whe#g and B, are numerical quantities
depending on a discrete or continuous indexwe write A, < B, to denote
0 < liminf,. A,/B, <limsup. A,/B, < oo, and A, ~ B, to denoteA, /B, — 1.
We usep and® for the standard normal density and cumulative, respectively, and
setd = 1— &. When there is no confusion about the value of the prior weigfit
may be suppressed in our notation. UsendC to denote generic strictly positive
constants, not necessarily the same at each use, even within a single equation. We
adopt the convention thatis an absolute constant, while the useodvill indicate
a possible dependence on the prior density compaopnent

2.1. Assumptionson the prior. When using the mixture prior (2), we shall see
that there are considerable advantages in using a heavy-tailed densityftor
example, the Laplace density

(5) y (1) = 5 exp(—|ul)
or the mixture density given by
(6) (u|®=0)~N(@©,61—1)  with © ~ Betaa, 1).

The latter density fop. has tails that decay gs—2*~1, so that, in particular, if
o= % then the tails will have the same weight as those of the Cauchy distribution.
To be explicit, this has

1 1 1, 1
= ————expy—=u6(1—-60) "1 d6.

v @) /0 871 —0) p{ U 0L=0 }

In both cases (5) and (6) the posterior distributiop@fiven an observe#f, and
the marginal distribution o, are tractable, so that the choicewfby marginal
maximum likelihood, and the estimation @fby posterior mean or median, can be
performed in practice, using the approach outlined in Section 2.2. Details of the
relevant calculations for particular priors are given by Johnstone and Silverman
(2004).

Throughout the paper we will assume that the nonzero part of the pribas
a fixed unimodal symmetric density. In addition, we will assume that

d
—logy(u)| = A < 0.

,
@ sup -

u>0




EMPIRICAL BAYES FOR SPARSE SEQUENCES 1605

It follows from this assumption that, for > 0, logy (1) > logy (0) — Au, so that,
for all u,

(8) y ) >y (0)e 2.

Thus, the tails of have to be exponential or heavier, and the Gaussian model for
is ruled out. We will also assume that the tailsjoére no heavier than Cauchy, in
the sense that?y (1) is bounded over alk. Finally, we make the mild regularity
assumption that, for somee [1, 2],

o0
©) V(y)_lf y@)dux<y  asy-— oo
y
If ¥ has asymptotically exponential tails, ther= 1. If ¥ (y) < y—2 for largey,
then the tail probability is asymptotic to-1 andx = 2. Any Pareto tail behavior

gives the valug = 2.

2.2. Findingtheestimate. Define the score functiofi(w) = ¢'(w), and define

_ 80 _ __pw
(10) B(x) = 500 1 and B(x,w)= 1+ wp)’
so that

" X)) — o (X; u
(11) Sw)y=Y_ 8(Xi) = $(X0) =3 B(Xi.w).

= A-weX) +wgXy) o

Since by elementary calculygx, w) is a decreasing function af for eachr,
the functionS(w) is also decreasing. Let, be the weight that satisfiesw, ) =
/2logn. If S(w,) > 0andS(1) < 0, then the zero of in the rangdw,,, 1] is the
estimated weighty. Furthermore, the sign of (w) for any particularw specifies
on which side ofw the estimatap lies. [Note thatS will be strictly decreasing
exceptin the pathological case whereX;) = 0 for all i, whenS(w) = 0 for all w
and the likelihood is constant.]

The marginal maximum likelihood approach can be used to estimate other
parameters of the prior. In particular, if a scale parameatas incorporated
by considering a prior densityl — w)do(u) + way (an), defineg, to be the
convolution ofay (a-) with the normal density. Then both and w can be
estimated by finding the maximum over both parameters of

n
t(w,a) =) 10g{(1 — w)$(X;) + wga(X))}.
i=1
If y is the Laplace density, the tractability of the procedure is not affected by the
inclusion of a scale parameter into the prior. In this case if one is maximizing over
bothw anda, then a package numerical maximization routine that uses gradients
has been found to be an acceptably efficient way of maximi&ing ).
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In the current paper we will not develop theory for the case where additional
parameters of are estimated, but we will include the possibility of estimating a
scale parameter in the simulation study reported in Section 3.

The R/S-PLUS software package EbayesThresh [Johnstone and Silverman
(2003)] includes a routine that performs empirical Bayes thresholding on a vector
of data. It allows the use of either the Laplace or the quasi-Cauchy prior, and
in the case of the Laplace prior, the scale parameter can if desired be chosen by
marginal maximum likelihood. Estimation may be carried out using the posterior
median or posterior mean rule, or by hard or soft thresholding. In addition, there
are several routines that will allow users to develop other aspects of the general
approach.

2.3. Srinkage rules. We begin with some definitions, leading up to the
statement of the main theorem of the paper. A functan, ) will be called a
shrinkage rule if and only if (-, #) is antisymmetric and increasing ¢a oo, co)
for eachr > 0, and

(12) 0<é8(x,1)<x for all x > 0.

The shrinkage rulé(x, ) will be athresholding rule with thresholds if and only
if

(13) §(x,t)=0 if and only if |x| <¢,

and will have thebounded shrinkage property relative to the threshold ¢ if, for
some constarit,

(14) lx —=8(x,0)| <t+b for all x andz.

For any given weightv, the posterior median will be a thresholding rule and
will have the bounded shrinkage property(ibgy)’| is bounded; see Lemma 2(v).
In Section 5.5 it is demonstrated that the posterior mean for the same weight will
have the same bounded shrinkage property, but will not be a strict thresholding
rule. If the hyperparameter is chosen by marginal maximum likelihood, both are
examples of rules with random thresholet ¢ ().

2.4. Risk measures and the main result. As already mentioned, we do not
restrict attention to losses based on squared errors, but we measure risk by the
average expectegth power loss

(15) Rq(,&,u):n_lem,-—M”q, O<g<2
i=1

Note that the posterior median and mean estimators for prior (2) are Bayes rules
for theq = 1 andg = 2 error measures, respectively.
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We set two goals for estimation using the empirical Bayes threshold: “uniform
boundedness of risk” and “flexible adaptation.” To explain what we mean by
flexible adaptation, suppose that the signal is sparse in the sense of belonging to
ant, norm ball¢ ,[n] as defined in (4). As before, we include nearly black classes
as the casp = 0. If the radius; is small, we would hope that the estimation error
R, (fr, u) should be appropriately small. How small is benchmarked in terms of
the minimax risk

Rn,q(gp[n]) = |rJf sup Rq(ll, ).
Hopelpn]

Suppose) = n,, — 0 asn — oo but that, in the case > p > 0,
(16) n~YPy~tlogn~")"% 0,

which prevents; from becoming very small too quickly. (Fgr = 0 we require
nn — o00.) Then we have the asymptotic relation

(7) Rug(Cplmn]) ~rpq(n)  asn— oo,
where
n’, 0O<g<p,
(18) rpg(m=1n"2 logn=r)@=r)/2, O<p<gq,
n(2logn=1)4/2, p=0,9g>0.

The relation (17) is proved by Donoho and Johnstone (1994) for the;casé
andg > 1, but only minor modifications are needed to extend the result to all the
cases we consider.

We can now state our main result, which gives comparable bounds on the risk
function of the empirical Bayes thresholding procedure. Apart from an error of
ordern—1(logn)2+@—r)/2, the procedure uniformly attains the same error rate as
the minimax estimator for ajp in [0, 2] andgq in (0, 2].

THEOREM 1. Supposethat X ~ N, (u, I), that §(x, ¢) is a thresholding rule
with the bounded shrinkage propertyandthat 0 < p <2and0 < ¢ < 2. Let w be
the weight chosen by marginal maximum likelihood for a mixture prior (2) with y
satisfying the assumptions set out in Section 2.1.Let 7 = ¢ (), where ¢ (w) denotes
the threshold of the posterior median rule corresponding to the prior weight w.
Then the estimator [i; (x) = 8(x;, t (w)) satisfies:

(&) (Uniformly bounded riskThere exists a constant Cp(g, y) such that

%
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(b) (Adaptivity) Thereexist constants C; (p, g, y) suchthat for n < no(p, g, v)
andn > no(p,q,y),

(19) sup Ry (i, ) < C1rpq (1) + Con~t(logn)?Ta=p)/2,
,U«Gﬁp[n]

When ¢ € (1, 2], theseresults also hold for the posterior mean estimate fi.

We emphasize that it is not necessary that r) be derived from the posterior
median or mean rule. It might be hard or soft thresholding or some other
nonlinearity with the stated properties. The point of the theorem is that empirical
Bayes estimation of the threshold parameter suffices with all such methods to
achieve both adaptivity and uniformly bounded risk.

If ¢ > p > 0, then we necessarily have < 2, and the first term of (19)
dominates ifp” > n~1log?n and the second ifi” < n~tlog?n. It follows that
the result is equivalent to

oD -1 2
(20) sup Ry(a =] otz e logn,
welylnl Cn~l(logn)?t@-r1/2, if n? <n lIogzn.
Note thatn” > n~1log?n is a sufficient condition for (16). For the nearly black
casep = 0, a similar argument leads to (20) witli replaced byy.
If p> ¢, the bound can be written as

(21) sup R, (i, ;1) < Cmax{n?, n"t(logn)?t=p/2}

nelplnl
and the “break-even” point between the two bounds occurs at a valug of
bounded above by? = n~log?n. It remains the case that fa’ > n=1log?n
the supremum of the risk is bounded by a multiple of (). Therefore, for every
p andgq in (0, 2], and for the nearly black cage= 0, our estimator attains the
optimalg-norm risk (18), up to a constant multiplier, for all sufficiently largand
for n satisfyingn—tlog?n < n? < nf if p >0 andntlog?n <n <noif p=0.

3. Some simulation results. In order to investigate the capability of the
empirical Bayes method to adapt to the degree of sparsity in the true signal,
a simulation study was carried out. We approach the issue of sparsity directly,
by explicitly constructing sequences with a wide range of sparse behavior. The
S-PLUS code used to carry out the simulations is available from the authors’
web sites, enabling the reader both to verify the results and to conduct further
experiments if desired.

As an initial range of models for sparse behavior, we fixed the sample:size
to 1000. We considered the estimation of a sequenedich hasu; = 0 except
in K randomly chosen positions, where it takes a specified vay€or each,

a data valueX; ~ N (u;, 1) is generated, and various methods are used to estimate
the sequencg from the sequence df;.
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The parameteK controls the sparsity of the signal, and the values for which
results are reported are 5, 50 and 500—ranging from a very sparse signal, indeed,
to one in which half the data contain nonzero signal. The other paramgtgves
the strength of the signal if it is nonzero. The values reported were 3, 4, 5 and 7,
bearing in mind that the noise (0, 1). One hundred replications were carried
out for each of the values & andp.q, with the same 100,000 noise variables used
for each set of replications.

The posterior median estimator was used, with the prior parameters chosen by
marginal maximum likelihood for two different functionsfor the nonzero part
of the prior. The double exponentighu) = %a exp(—alu|) was used with both
the parametes and the prior weightv chosen by marginal maximum likelihood.

For comparison, the heavy-tailed mixture density with Cauchy tails, as defined
in (6) with a = % was also considered. For both choices of the functipthe
performance of the posterior median as a point estimator was studied. For double
exponentialy with both parameters estimated, two other estimators were also
considered, the posterior mean, and hard thresholding with threshold equal to
that of the posterior median function. In addition, the effect of fixing the scale
parameter in the double exponential was investigated by considering four different
values ofa; in each case was chosen by marginal maximum likelihood and the
posterior median estimator used.

These methods were compared with classical soft and hard universal threshold-
ing (using the thresholg/2logn ~ 3.716) and with three other methods intended
to be adaptive to different levels of sparsity.

The SURE method [Donoho and Johnstone (1995)] aims to minimize the mean
squared error of reconstruction, by minimizing Stein’s unbiased risk estimate
for the mean squared error of soft thresholding. Thus, we chegge as the
minimizer (within the rang€¢0, ./2Togn ]) of

n n
Uy=n+> xFAt? =23 I{xZ<r?).
1 1

This is based on the unbiased risk estimator of Stein (1981) in the estimation of
a multivariate normal mean. In addition, a modification proposed by Donoho and
Johnstone (1995) aimed at gaining greater adaptivity is considered; this chooses
between the SURE and universal thresholds according to the result of a test for
sparsity; see also Section 6.4.2 of Bruce and Gao (1996) for details.

The false discovery rate (FDR) approach is derived from the principle of
controlling the false discovery rate imsilltaneous hypothesis testing [Benjamini
and Hochberg (1995)] and has been studied in detail in the estimation setting, for
example, by Abramovich, Benjamini, Donoho and Johnstone (2000). Order the
data by decreasing magnitudes:

x| > |xl2) = > Ix|w
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and compare to guantile boundary:
tk=o0z(q/2-k/n),
where the false discovery rate parameter (0, 1/2]. Define a crossing index
IGF = max{k: |x|(k) > tk}

and use this to set the threshojd= 1;,.- Various values for the rate parameger
were used.

Block thresholding methods are designed to make use of neighboring informa-
tion in setting the theshold applied to each inddual data pointWe considered
the BlockThresh method of Cai (2002) and the hard thresholding versions of the
NeighBlock and NeighCoeff methods of Cai and Silverman (2001). The principle
of all these methods is to consider the data in blocks. BlockThresh thresholds all
the data in each block by reference to the sum of squares of the data in the block.
The other two methods use overlapping blocks and keep or zero the data in the
middle of each block according to the sum of squares over the whole block. See
the original papers for more details.

For each method considered, for each replication the total squared error of the
estimationY (/1; — ;)% was recorded, and the average over 100 replications is
reported. The square error of every replication is available from the authors’ web
sites for any reader who wishes to examine the results in more detail.

Some results are given in Table 1 and the following conclusions can be drawn:

e The Cauchy method is always nearly, but not quite, as good as the exponential
method. Our theory is not sensitive enough to discriminate between the two
methods.

e In general, the posterior mean does not perform quite as well as the posterior
median.

e It is better to use the posterior median function itself rather than hard
thresholding with the resulting threshold.

e Inthe caseup = 7 where the nonzero signal is very clearly different from zero,
hard thresholding with the universal threshold performs somewhat better than
the exponential method, but in other cases, particularly with moderate or large
amounts of moderate sized signal, it can give disastrous results.

e Estimating the scale parameteis probably preferable to using a fixed value,
though it does lead to slower computations. In general, the automatic choice is
quite good at tracking the best fixed choice, especially for a sparse and weak
signal.

e SURE is a competitor when the signal size is smalj &€ 3), but performs
poorly whenug is larger, particularly in the sparser cases. The attempt to make
SURE more adaptive is counterproductive.

e If g is chosen appropriately, FDR can outperform exponential in some cases, but
the choice ofy is crucial and varies from case to case. With the wrong choice
of g, the performance of FDR can be poor.
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TABLE 1
Average of total squared error of estimation of various methods on a mixed signal of length 1000.
A given number of the original signal valuesis set equal to a nonzero value, and the remainder are
zero. In each column those entries that outperform the MML /exponential/posterior median method
are underlined. Those that outperform by more than about 10% are set in bold type. The row
marked “postmean” refers to the posterior mean using the double exponential model. The
row “exphard” refers to hard thresholding using the threshold given by the posterior median
of the marginal maximum likelihood choice within the double exponential model. The rows for
fixed values of a correspond to the posterior median where only the weight w is chosen
by MML and the scale parameter « is fixed at the given value

Number nonzero 5 50 500

Value nonzero 3 4 5 7 3 4 5 7 3 4 5 7
Exponential 36 32 17 8 214 156 101 73 857 873 783 658
Cauchy 37 36 18 8 271 176 103 77 922 898 829 743
Postmean 3432 21 11 201 169 122 85 860 888 826 708
Exphard 51 43 22 11 273 189 130 91 998 998 983 817
a=1 36 32 19 15 213 166 142 135 994 1099 1126 1130
a=05 37 34 17 10 244 158 105 92 845 878 884 884
a=02 38 37 18 7 299 188 95 69 1061 730 665 656
a=01 38 37 18 6 339 227 102 60 1496 798 609 579
SURE 38 42 42 43 202209 210 210 829 835 835 835
Adapt 42 63 73 76 417 620 210 210 829835 835 835
FDR¢ =0.01 43 51 26 5 392 299 125 55 2568 1332 656 524
FDRg¢ =0.1 40 35 19 13 280 175 113 102 1149 744 651 644
FDRq¢ =0.4 58 58 53 52 298 265 256 254 919 866860 860
BlockThresh 46 72 72 31 444 635 600 293 1918 1276 1065 983
NeighBlock 47 64 51 26 427 543 439 227 1870 1384 1148 972
NeighCoeff 55 51 38 32 375 343 219 156 1890 1410 1032 870

Universal soft 42 63 73 76 417 620 720 746 4156 6168 7157 7413
Universal hard 39 37 18 7 370 340 163 52 3672 3355 1578 505

e The block thresholding methods do not perform very well. In the companion
paper [Johnstone and Silverman (2004)] block thresholding methods are also
compared with empirical Bayes methods for the thresholding of wavelet
coefficients, and the difference in performance is not so great. This is
presumably because there is some correlation among the positions in which the
wavelet coefficients are effectively nonzero. By contrast, in the test signals under
current consideration, the nonzero positions are chosen by uniform random
sampling without replacement.
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e The median standard error of the entries of the table with 5 nonzero coefficients
is around 1, with corresponding figures of about 3 for those with 50 nonzero
coefficients, and 5 for the entries with 500 nonzero coefficients. Generally
speaking, the standard errors tend to be smaller for the empirical Bayes methods
than for the other methods considered; the false discovery rate and block
thresholding methods have errors that have variance two to three times as large
as the double exponential MML posterior median method, and for the universal
thresholding methods the variance is higher by a factor of about 5. This is an
indication of the stability of the empirical Bayes methods.

e Not surprisingly, given that the same data are used for all cases, the standard
error of the comparison between the first method and the other methods in
the table is typically smaller than that for individual entries taken alone.
The comparison standard error has a median value of 0.8 for the sparsest
signals and about 2 for the signals with 50 and 500 nonzero elements. In
general, comparisons between empirical Bayes methods have somewhat smaller
standard errors than those involving other approaches. Only about 10% of the
comparisons between the top line and other entries in the table are within 3
standard errors of zero, and all the comparisons that are numerically more than
trivial are clearly statistically significant on the basis of the study we have
carried out.

The two SURE methods, the FDR method with= 0.01 or ¢ = 0.4, and the
two universal thresholding methods all have the property that there is a case in
which their measured error is around three or more times that of the exponential
method, while never, or hardly ever offering any substantial improvement. Hence,
all are much worse at adapting to different patterns of sparsity. The FDR method
with ¢ = 0.1 is a better competitor, but only wins in four of the twelve cases. The
best improvement over exponential is 6383, a 17% improvement, while the
best improvement of the exponential over the FDR method 14@3, nearly 30%.
Taking both adaptivity and overall performance into account, the exponential is
clearly the estimator of choice.

In order to quantify the comparison between the various methods, for each of
the models considered define iinefficiency of a method A for a particular model
B to be

100x [average error for method A applied to data from model B]

minimum error for any method for model B

Twelve different models are considered in Table 1, and summary statistics for
the twelve inefficiency values for the various methods are given in Table 2. The
posterior median of the exponential model with estimated scale parameter is
the best on nearly every measure: the maximum inefficiency of the Cauchy and
exponential § = 0.2) methods is slightly smaller, but both of these methods are
decisively beaten on the median inefficiency and are also equaled or beaten on the
other two measures.



EMPIRICAL BAYES FOR SPARSE SEQUENCES 1613

TABLE 2
Comparison of methods: for each method the stated
median, mean, maximum and tenth largest
inefficiency is over the twelve cases
considered in Table 1

median mean 10th max

Exponential 7 17 30 52
Cauchy 19 25 42 47
Postmean 22 27 40 95
Exphard 37 46 62 93
a=1 35 57 124 165
a=05 15 29 75 84
a=0.2 18 19 30 48
a=0.1 14 24 45 80
SURE 35 121 151 676
Adapt 103 223 303 1282
FDRg =0.01 44 56 91 210
FDR¢=0.1 18 35 39 139
FDRg =04 71 169 214 847
BlockThresh 129 228 456 531
NeighBlock 119 181 335 376
NeighCoeff 106 136 131 486
Universal soft 529 643 1282 1367
Universal hard 50 100 159 359

4. Maodifying the threshold for very sparse signal. In this section we
discuss a possible modification of the estimator, which allows a reduction in
error in very sparse cases, when the overwhelming majority of components have
essentially zero signal. Our original motivation for this arises from the use of
wavelet methods to estimate derivatives, where it was shown by Abramovich and
Silverman (1998) that the appropriate universal threshold is fbgn, but is a
multiple of this quantity. The basic notion of the modified estimator is this: if the
threshold = ¢ () estimated by the marginal maximum likelihood method is at or
near the universal threshold, we replace it by a higher threshold.

4.1. Definition of the modified estimator and theoretical discussion. To
be precise, set,f = 2logn — 5loglogn. Let A > 0 be fixed and puts =
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/2(1+ A)logn. Then define
R f, if £ <t,,
A= oA
ta, if 1 >1,.
With this modification of the threshold, we can reduce the order of magnitude
of the part of the error in Theorem 1, as follows.

THEOREM 2. Under the assumptions of Theorem 1, let 14 be defined by
fiai(x) =8(x;,ia). Define R (1) = SURLer,n) Ry (ia,i» ). Then, for suitable
constants C,

(22) RA =C  forally

and, for all sufficiently large n and for suitable 7,

3) Ry, (m) < Cmax{r, (), n~ " Aogn)@ Y2} for n <.
For ¢ > p > 0 we also have, for sufficiently large n,

‘R?,q m==cC maX{n(q_P)/an’ n—l—A(IOgn)(q_l)/z}

24
(24) for n? < n~1(logn)?/2.

The ramifications of this theorem in the wavelet context are explored by
Johnstone and Silverman (2004), but it has independent interest in exposing the
different regimes for adaptive estimation, especially in the gasep. Note first
that conclusion (22) is the same as for the unmodified estimator, and in the range
n? > n~tlog?n for p > 0 (n = n=Llog?n for p = 0) so is (23), because in that
range the dominating term in the erroris, () for both estimators.

Forg > p > 0, definen) = n=Y(logn)?/2. Forn > n1, r,4(n) is bounded
by a multiple ofn¢=P/Py? and so (24), in fact, holds for alj < 5o, but only
gives a stronger result than (23)#f< n1. This is not in contradiction with the
result (17) of Donoho and Johnstone (1994) because the condition (16) can be
rewritten precisely as

rpg(n) = O(n(q—p)/pnq)’

or equivalentlyy;/n1 — oo.

The three bounds in Theorem 2 may be considered as corresponding to three
different zones of estimation. #f > ng, then the signal is insufficiently sparse for
any order of magnitude advantage to be gained by the use of our thresholding
method. In the zone); < n < 5o, a suitable thresholding method allows for
considerable improvement over the use of a “classical” estimator. Finally, in the
extremely sparse zong< 71, the n-dependent part of the error achieved by our
estimator compares to that given by the estimator that simply returns the value
zero.
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Note finally that for the standard estimator all thedependent risks in the
zonen” < n~1tlog?n (for p > 0) are dominated by the ternT 1(logn)2t@—p)/2
in the error bound. Since~tlog?n > 7}, the zone where~1(logn)Z*+@—r)/2
dominates includes the very sparse zone, and so there is no point in pursuing
the kind of adaptivity within the very sparse zone achieved asymptotically by the
modified estimator.

4.2. Practicalities. Both theory and intuition suggest that the modified esti-
mator may only be advantageous for very large values, afhere 5loglog is
small relative to 2log. Otherwise, data that ought to be thresholded with moder-
ate thresholds will essentially be zeroed instead. For example #at0®, we have
5loglogn = 13.13 and 2log: = 27.63. Hence, if the squared estimated threshold
in the standard estimator is any more than about half the universal threshold, the
modification will use a much larger threshold, thereby causing problems for sig-
nals that are nowhere near the very sparse zone.

A version of the modified estimator was investigated by simulation on the same
models as considered in Table 1. The Laplace prior with both parameters estimated
by marginal maximum likelihood was used. If the estimated threshold was less
than 95% of the universal threshold, the posterior median estimate was used.
Otherwise, we used hard thresholding with threshq)ddg) 1000, corresponding
toA=1.

The only models for which the estimates were affected were those with only 5
nonzero entries. In each case the average squared errataneesed by the use of
the modified estimator, respectively to 41, 40, 26 and 13, as compared to 36, 32, 17
and 8, for the cases where the nonzero parameter value was 3, 4, 5 and 7. Reducing
the number of nonzero parameters to 1 did not change the relative performance
of the unmodified and modified methods, unless the nonzero parameter value
was also increased. The only case tested where the modified method improved
the performance was where there was a single nonzero parameter value with
value 10. In this case the unmodified estimator has an average squared error (over
100 simulations) of about 2.4, while the modified estimator has a mean squared
error of just over 1. As might be expected, the modified estimator is only clearly
advantageous in very sparse cases where nonzero values of the parameters are
well above the universal threshold—and in these cases the error of the unmodified
method is already very small, so any improvement may be large in relative terms
but small in absolute terms.

5. Proofs of results: some detailed preliminaries. The remainder of the
paper is devoted to the proofs of the theorems stated above. We begin in this
section with a detailed discussion of a number of topics that will be useful later
in the proof. In some cases these also cast a broader light on the empirical Bayes
thresholding procedure. Our proofs cover the cases of nearly black and éfrong
constraints on the underlying parameter vegtorWe conjecture that similar
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arguments can be used for weék constraints too, but the full details are left
for future investigation.

5.1. Properties and definitions for the mixture model. The arguments of this
section and the next do not strongly depend on the precise assumption of Gaussian
errors in model (1). Indeed, relaxing this assumption sheds some light on the
robustness of our results to model formulation; see Remark 1.

For the moment then, we assume that in model (1) the noise coeffieients
are i.i.d. from a symmetric Polya frequen®&F3 density ¢. Polya frequency
functions are discussed in detail by Karlin (1968), and from a statistical perspective
by Brown, Johnstone and MacGibbon (1981). The defining property BfFa
functiong is that fory; < y» < yz andz1 < z2 < z3,

(25) 15?3'[5 JP0i =21 0.

Examples of such densities include the Gaussian depgitipserve the distinction
of notation), as well as the somewhat heavier tailed Laplace de%nsitkf| and
logistic densitye™*/(1 + ¢~*)2. The PF3 assumption implies thap is log-
concave, and hence there exists 0 such that

(26) @ (y)e” is decreasing for sufficiently large

Thus, the tails of cannot be heavier than exponential.
For this section only, we also modify assumption (7) on the prior to require only
thaty (u) > 0O for all u and the existence of positive andM such that

27) sup 4 logy (u)| < A < p.
du

u>M

[In the Gaussian error case= ¢, this places no essential constraintybecause
we can choosg to be arbitrarily large.] Assumptions (26) and (27) taken together
imply that the tails of the priop are heavier than those of the noise density.

The first part of the following lemma shows that the convolutiong inherits
properties assumed of

LEMMA 1. Assume(26)and (27),andlet g =y % ¢. Then

(28) g(x) <y (x),
(29) (1 + u?)g(u) isbounded for all u,
(30) g(y)_lf gw)du =yt

y
(31) limsup|(logg)’ ()| < A

and g/¢ isdtrictly increasing from (g/¢)(0) < 1to +o00 asx — oo.
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PrROOF. It follows from (27) thate®Yy (y) is an increasing function of for
y > M, and sincey is unimodal, that for alk andy in [0, M],

My (x) < CeMy(y)

for someC > 1. Combining these two observations implies that, given.asy0
andu > 0,

(32) y(x+u)>C e My(x) and y(x —u) < CePy(x).

It follows thatg(x) < y (x), since
glx) > /Oogo(u)y(x +u)du > C_ly(x) /oo e_Auw(u) du
0 0
and
g0 = [ @@yt +y G- w)du = Cyeo [ @+ Mg du
0 0

and the right-hand integrals are finite from (26) becawuse: p. Properties
(29) and (30) follow immediately from (28) and the assumptionsg on
For (31), settingA oo = sup|(logy)’|, we havely’(u)| < Ay (u) for u > M and
ly' ()| < Asoy (u) for u < M. Therefore,
/ g(x)

e’} M
<A /M o — )y () du/g(x) + Ao /_ o(x — 1)y () du/g(x)

<A+ Acop(x),

|(log )’ (x)| = |g'(x)|/g(x) = ‘/_ p(x —u)y'(u)du

where from (32)

p(x) = / Y= 0)p)dv/g(x)

=< C[V(x)/g(X)]/ioM eMp()dv—0 asx — oo.

To demonstrate that(x)/¢(x) is increasing ofi0, co), letr, (x) = [p(x +u) +
o(x —u)]/e(x). Using the symmetry of, we have the representation

(33) 8(r) _ / )y () du,

p(x) Jo

and so it will suffice to show that, for eaeh> 0, r,(x) is an increasing function
of x on[0, c0). Suppose that, > x; > 0 and consider the defining inequality (25),



1618 I. M. JOHNSTONE AND B. W. SILVERMAN

with {y;} = {—x1, x1, x2} and{z;} = {—u, 0, u}. Subtracting the second row in the
determinant from the first and exploiting symmetryogives

1 0 -1
pr+u) o) @x1—u)
pla+u) ¢x2) @x2—u)
= p(x)@x2)[p(—x1+u) — @(x1 + u)llr,(x2) — ry(x1)].

0<[p(—x1+u)—ex1+u)]

Sincegp > 0 and(x1 + u) < ¢(—x1 + u), this implies thatr, (x2) > r,(x1), as
required.

Finally, to show thag(x)/¢ (x) — oo asx — oo, we have, for any > 1, using
the result (8),

1 1
g(x) Z/O yx —v)p()dv > y(x)/o o (v)dv > Ce Al 0

Posterior odds. Write OddsA|B) for P(A|B)/[1 — P(A|B)]. Given w,
definew(x, w) to be the posterior weigh® (i« # 0| X = x), so that the posterior
odds Oddé&u # 0]x) are given by

w(x, w) w g
1—wx,w) 1-— w(p(x)'
Define wg = (¢/2)(0)/[1 + (¢/g)(0)], so that Q2(0, wg) = 1. For fixed w,
Lemma 1 shows tha®(x) increases from 1 teo, so that ifw < wg, then there
existst (w) > 0 for whichQ (r (w), w) = 1. If we definer (w) = 0 for w > wy, it
follows thatw — 7 (w) is a continuous decreasing functionwfe [0, 1]. We will
repeatedly use the functianin our subsequent argument.

A simple consequence of these definitions is thaufp< wo,

Qx)=2x,w) =

1_
(34) Q(t(wy), w) = ﬁ wf)l

>1, if w>wi.

Finally, for x > t, we clearly have

(35) 0 =2 exp| ((oge) - (oge)').
5.2. Properties of the posterior median.

LEMMA 2. Assume(26)and (27). The posterior median fi(x; w) is

(i) monotonein x: if x1 < xo, then f1(x1) < f1(x2),
(i) antisymmetric: i(—x) = —(x),
(iii) ashrinkagerule: 0 < i(x) <x for x >0,
(iv) athreshold rule: there exists ¢t (w) > 0 such that ji(x) = 0 if and only if
x| <t (w),
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(v) bounded shrinkage: there exists a constant » such that for all w, x,

li(x; w) — x| < t(w) +b.

REMARK 1. The lemma demonstrates that the posterior median has all the
properties needed for the estimation error bounds that will be derived for Gaussian
errors in the subsequent sections. The bounded shrinkage property essentially
means that rare large observations are more or less reliably assigned to a sparse
signal rather than noise in our Bayesian model; conditions (26) and (27) indicate
that a sufficient condition for this is that the tails of the prior be heavier than
the tails of the noise distribution. At least in this situation, one may expect the
gualitative features of our theory to remain true; it is left to future work to
investigate whether there are differences in quantitative thresholds and, perhaps,
in rates of convergence.

PROOF OF LEMMA 2. Suppose thatt has general prior density, with
respect to a suitable dominating measure. Then the posterior density

fulx) =Cx)p(x — ) f(w),

so that, for any: < v andx, > x1,

flx2) f(ulx1) _ p(x2 —v) p(x1—u) ~1
Sulx2) f(vlx1)  @lx2 —u) p(x1—v) —

il

so that

f@lxg) fulx2) < f(ulx) f(v]x2).

Now, for anym, integrate with respect to the dominating measure ever < u <
m andm < v < oo to obtain

P(u>mlx1))P(u <ml|x2) < P(u>mlx2) P(u < m|x1),

so that the odds that < m are greater foX = x; than forX = x». Letting fi(x)
be the posterior median ¢f, given X = x, it follows that i(x2) > i(x1), So the
posterior median is a monotonic functionxaf

Return now to the mixture prior (2). The antisymmetry of the posterior median
is immediate from the symmetry of the prior and the error distributiom # O,
the probabilitiesP (1 < 0| X = x) and P(u = 0|X = x) will be nonzero for allx
and each will vary continuously as a functionxfBy symmetry,P(u < 0| X =
0)=P(u>0X=0 < % and so there will be a range of valueswo€ontaining 0
for which the posterior median is By symmetry and the monotonicity @f there
will be some threshold(w) such that the posterior median is zero if and only
if —t < x <t. The posterior median gf, given X = 1, is necessarily zero, so
T(w) < t(w).
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Supposex > 0. By the assumption thay is symmetric and unimodal,
y(x —v) >y +v) forall v> 0. Hence, multiplying by (v)/g(x), if x > 0,

(36) fx—v|X=x,u£0)>fx+v|X=x,uz#%0) forall v > 0.
Integrating over G< v < oo,
Puzx|X=x,u#0)>P(u>x|X=x,u#0).
Therefore,
P(u>x|X=x)<P(u>x|X=x,pu#0) <3,

and so the posterior median satisfies) < x for all x > 0. By the monotonicity
of i we have the shrinkage propertyQi(x) < x for all x > 0; by symmetry it is
also the case that® /i(x) > x for x <O.

Finally we show that the maximum amount of shrinkage is appropriately

bounded: the approach is to find a constastich that for all sufficiently large,
P(u>x—alX=x)

(37) .

=P(u>x—alX=x,u#Z0OP(u#0|X=x) > 3.

The termP (1 > x —alX = x, u # 0) does not depend o, and we consider
it first. Set B = sup, <y vy we™"/y (M)e*™. Foru <0 and foru > M, u —
y (u)e™* is increasing and so for any> M we have

Oddsu > c|X =x,u #0)
(38) [ yex —u)du - [ e Mo —x)du
T [y —uw)ydu = B[ e Mo —x)du’

SinceA < p, we have[° e Mp(v) dv < oo, and so there is a valuesuch that

(39) fooe_A”(p(v) dv > 3B /_a e Mov)dv.

—a
As long asx > a + M, from (38) and (39) we will then have
[ e MV (v) dv

40 Odd —alX =x, 0> —4
(40) s —aX=x A0z g

so that
(41) P(,u>x—a|X=x,,u7é0)>%.

Now sete = (p — A)/2. Taking into account (26), (27) and (31), choase M
large enough so that for| > 71 we have

(42) (logg)'(u) > —A —e, (logg)' (1) < —p.
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Choosew; so thatr (w1) = 11, and define1 = 2(p — A)~1log 2. Suppose < w1,
so thatr (w) > 1. It follows from (35) and (42) that, ik > 7(w) + ¢1, then

(43)  Oddsu #0|X =x) = Q(x, w) > Q(r(w), w)ePPE"D/2> 2

On the other hand, ifv > wy we will have Q(x, w) > Q(x, w1) > 2 as long as
x > 11+ c1. In either case, it follows thal (1 # 0|X = x) > 2.

Combining this bound with (41), it follows that (37) is guaranteed whenever
x >maxXa+ M, t(w)+c1, t1+c1}; otherwise, all we can say is that- ji(x) < x.
Hence, for allt > 0 andw € [0, 1],

x—pax)<maXa,a+M,t(w)+cy, 11+ <t(w)+b

with b = 11 4+ a V c¢1, which yields the required shrinkage bound since) <
t(w). O

5.3. Propertiesof posterior median for Gaussian errors. For the remainder of
the paper we specialize to the Gaussian error degsity model (1) and to the
global boundedness assumption (7) on the logarithmic derivative of thejprior
Property (31) is then strengthened to

(44) sup‘di logg(u)| < A < 0.
u

Wheng = ¢, the representation (33) yields

(45) 1+ 8() = (8/$)(y) =2 /0 coshyr)e /2y (1) dr.

Since coslyt is an even convex positive function for eacit follows that 14 8(y)
is also. Also, from (45) O< 1+ B(0) < 1, so that—1 < 8(0) < 0. We denote
by g1 the positive inverse of, defined on the intervdl3(0), co). We also have
the following simple bounds:

(46) 1B =C(g/d) (), forall y,
(47) 3@/ =B =@/H»,  ify>pTH.
For a lower bound on the second derivativeggofrom (45) we have, foy > 0,

@) p'm=["

We now develop an explicit form for the equation defining the threshaid.
Defineg  (x) = [§° ¢ (x — )y (W) dpu andg—(x) = /%, ¢ (x — )y () dpa. Then
wg4(x)
(L—w)px) +wg(x)

o0
12 coshyt)e /2y (1) di >/ 12712 (1) dt = B (0) > 0.

—0o0

P(u=>0X=x)=

Therefore, the thresholdsatisfies
(49) 2wg (1) = (L —w)e (1) + wg(r).
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Dividing by w¢ (¢) and rearranging yields
g+() —g—(1)
¢(1)

This equation shows that the posterior median thresh@id is continuous and
strictly decreasing fromo atw = 0 to zero atw = 1.

1 ©
(50) o= 1+ =1+ 2/0 Slnf(tu)e_"z/zy(u) du.

5.4. The link between threshold and pseudothreshold. It will be useful to find
bounds on the threshold of the posterior median function in terms of the weight
It will be convenient to define thpseudothreshold ¢ (w) by

¢ =p"tw™.

The following result sets out relations between the pseudothreglwldand the
true threshold (w) of the posterior median function. In most of our discussion the
dependence afand¢ onw is not expressed explicitly, and, indeed, any twa,of

¢ andw can be regarded as functions of the third.

LEMMA 3. For all w € (0, 1],
(51) 1+ B{t(w)} < B{g(w)} <2+ B{t(w)}.

PrROOF The bounds are a straightforward consequence of (50) defiting
which may be rewritten in the form

B&)=B(t)+2—2g_(1)/9(2).
Clearly,

0 0 1
0<g-)=[ #t-wyedu<e® [ yuwdu=3o0.
Thus, 0< 2¢g_(t)/¢(t) < 1, which establishes (51).1

From the properties g8 we can derive two important corollaries. First, we have
0 <t < ¢ for all finite t and¢, so that
(52) ? < 2.
Second, from the property (48) that(y) > C for all y, it follows that, fory > 0,
B’ (y) > Cy. Therefore,
d 1

—1/2 1
Eﬂ(ﬁ)ZEM Y2g'(u) > EC’

so that

B(&) — B =B(Ve2) - B(Vi2) > tc(e? - 12).
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Therefore,
(53) (2 -1 <207 B - By <4ch,

so (for a different value o€) —t2 < —¢2 + C and so finally, for some constant
C >0,

(54) ¢(t) < Ch(2).

5.5. Propertiesof theposterior mean. In this section we consider the effects of
using the posterior mean as an estimate instead of the posterior median. We begin
by considering the behavior of the posterior distribution conditional.os O,
which is also the unconditional case= 1. Given anyx, define

S u(x —u)y (u) du
2 ¢ (x —u)yyu)du

A simple argument using the propey(r) = —t¢(r) shows thatii(x) = x +
(logg)’ (x), and, hence, using the bound (44),

(55) |1(x) — x| < A.
Defining i (x, w) to be the posterior meaFi(it| X = x), we then have
(56) A, w)=Pp#0X=x)Eu|X =x,u#0)=w(x, w)i(x).

From (36), ifx > 0, the posterior meafi1(x) < x; by a similar argument, for
v >0,

pa(x) = Eposit| X = x, n #0) =

FuIX =x, p#0) > fu(—v|X =x, u#0)

and sofi1(x) > 0. Also, by a simple extension of the corresponding argument at
the beginning of Section 5.Z;1 is an increasing function of. Hence,ii1 is a
shrinkage rule, and from (56), sojig-, w).

For eachx the the posterior weighb (x, w) is monotone increasing iw; for
x > 0 it follows from (56) that so also is the posterior mgagx, w).

Bounded shrinkage properties of the posterior mean. From (55) and (56)
we have

x = fi(x, w) = (1 - w)x — w(logg) (x).

Choosew; so thatr (w1) = A, and letro = t(w A wp) > A. Using (35) and (44),
we have

Q(x) > exp{ /X(u — A)a’u} > exp{ /X(u — 12) a’u} = exp{%(u — 12)2}.
T2 2

From (34),2 (12) = Q(t(w A wi), w) > 1 and so forx > 1o,
1— <1/Q(x) < expl—5(x — 2%}
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Combining this with bound (44), we obtain fer> 1o,
x = fix, w) < (x = 2)(L— ) + 12+ [(log g) (x)|

<(x—)exp—3(x — )} + o+ A <e V2

+2A +t(w).
If 0 <x <1, thentrivially x — it <x < 12 < A 4+ t(w), so that we have shown
that the posterior mean is a bounded shrinkage rule relative to the thregtold
5.6. Boundsfor integrals of exponential growth.
LEMMA 4. If (logh)'(z) > (logk)'(z) for z € [¢1, ¢], then
_1 ¢ 1 ¢
(h(©)) /{ h(2)dz < (k(©) /{ k() dz
1 1

< {’/—1[1—6_”@_“)], ifk(z) =e’?,
~lapot, if k(z) = ¥,
wherein the second case we require also that ¢; > 0 and y ¢ > max(, 0).

PROOF The first inequality is seen easily by writing(z)/h(¢) =
exp{—ff(logh)/}, applying the assumed inequality and integrating. The second
inquality for k(z) = e¥* is trivial. Fork(z) = eﬂz‘“z, we first note that change of
scale shows that it suffices to prove the boundyfes 1/2. Replacing;; by 0 and
completing the square, we then find that the desired bound is implied by

(57) /C_a eV 12 dy < il63(5_‘”)2/2.

— ¢
If ¢ >2maxe,0), thena < ¢ — « and the integral on the left is bounded by
ng_“ e’12 4y, Equation (57) now follows from the inequalities

o2 /“’ 22 gy — /”’ o~ =0 W+)/2 g
0 0

w o0
< / e~ w=w/2 gy < / e W2y = 2/w. =
0 0

COROLLARY 1. If g=y x¢ and y satisfies(7), then

¢
(58) fo (8/$) ()P (x — ) dx < Hy(: A i) (g/D) (O (& — ),

where

8/1(g — 1¢], ifg>1,¢>29A/(q—1),
(59)  Hy(& A ) =1¢, ifg=11u>A,

(e —1)/A, ifg=1,0<pu<A.
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PROOF Leth(x)=(g/¢$)?(x)¢(x — ). Then

w— A’ q= 1’
(g—Dx+pn—gA, q > 1.

If g =1, we apply the preceding lemma with lbg¢) = (u — A)z and¢y, =0 and
obtain factorH1(¢; A, i) according ag. > A or not. Forg > 1, we use the version
with logk quadratic,y = (¢ — 1)/2 anda = gA — u, so thaty¢ > maxa, 0)
becomeg > (2/(¢ — ) maxgA — n,0). O

(logh) (x) = ¢(10gg)' (¥) + qx — (x — ) {

6. Risk properties of thresholding procedures. In this section we study
the risk behavior of thresholding procedures. Because the thresholds obtained by
the empirical Bayes procedure are data-dependent, some care is appropriate in
deriving the risk. We begin with risk bounds for hard thresholding using fixed,
nonrandom thresholds. These lead to comparison inequalities and so to bounds for
the risk for general random thresholds. The latter continue to hold if the threshold
is replaced by a pseudothreshold that is easier to find for the mixture prior model.
Analogs for the posterior mean are studied as well.

6.1. Risk boundsfor fixed thresholds. As atool for later work, we develop risk
bounds for hard thresholding,
AnT(x, 1) = xI{|x| > 1}
in L, error for 0< ¢ < 2. For the posterior mean estimatfaix, w) of (56),

a bound of similar structure holds fay > 1, based on the pseudothreshold
¢ =B L(w1) in place oft.

PROPOSITION1. (a)Fix g € (0, 2]. There exists a constant ¢, < 4 such that
for t > +/2 and for all p,

(60) E|anT(X, 1) — ] < cyllpl? + 19729 (1)].

(b) Now suppose g € (1, 2]. There exists a constant c; such that for ¢ > ¢(y)
and all u,

(61) E|ju(X, w) — pl? < [lul? + 77 )1,

The main use of these bounds is to control risks whea not too large, and
especially whem — 0. The second term in each bound is, up to constants, a sharp
representation of the risk at= 0 as a function of or ¢.

REMARK 2. If ¢ =1, it can be shown that the risk for the posterior mean at
zero,

Eli(Z, w)| =z cw = ¢ (£)/8(%),

is already of larger order than in (61), and so our methods for the analysis of the
behavior of the posterior mean cannot immediately be extended beyond the range
1 < g < 2. More remarks will be made in Section 10.
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PROOF OF PROPOSITION 1. We begin with a simple bound valid for any
shrinkage rulgi(x). Indeed, for any: andx,

(62) lax) — pl? <maxml?, |x — pl?} < [ul? +1x — pnl?.
Hence, ifX ~ N(u, 1) anda, = E|Z|?,

(63) E|u(X) — p|? <|ul? +aq.

From this we immediately have, whémn| > 1,

(64) E[u(X) — ul? < A +appl? <2|ulf,

and so, for the rest of the proof, we confine attentiofytp< 1, and, indeed, in
view of symmetry of the risk functions, to9u < 1.

(a) Write ry(j, t) for the risk E|X1{|X| > t} — | of hard thresholding. We
have

[ele] —t—n
et =10 - - -+ ([~ + [ s
—u Jeoo
By partial integration we obtain the upper bound
(65) rO.0=2 [ 9@ dz bt
t

whereb, may be taken as 2 fay < 1 and as 4 when & ¢ <2 andr > V2. By
subtraction,

(66) rg(u, 1) —ry(0,1) = u (@ — ) — (=t — w1+ Au, 1),

where
t t+u
e e _— q
AGw) = A, 1) (/,_M ft )z 6(2)dz.

The functiong, (1) = t9¢(t) is positive on(0, co) for all ¢, and forg > 0 attains
its maximum valuep; = ¢ (0)(g/e)?/? att = ./q. We remark thap; < 1/2 when
0<g <3. Setg,(t, u) = ¢y(t — p) + ¢4 (t + 1): some calculation then shows
that when O< u <1,

A" () = Gg+1(t, 1) — qpg—1(t, 1) < Pgr1(t, ) < 2¢;+1-

Since A(0) = A’(0) = 0, we therefore haveA(u) < ¢;‘+1M2, at least for
0 < u <t. Combining this with (66), we have

rg(u.t) <rg(0,0) + p? + ¢} 1.

If <1, thenu? < u?, and bringing in (65), we obtain (60) wily, < 4.
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(b) In view of (62) and (65), we have, for®u < % and¢ > 2,
0
Ellfi— pl?, X > ¢] < 2/€ (19 + x — u|9lp (x — ) dox

(67) <2[ul (¢ — w20 — W e — )
<517 (¢ — ).

On the interval O< x < ¢ we have here g =g(0)/¢(0) <1+ wh(x) < 2,
and so

wg()/$(x) _
1+wpx) —
Together with (55) this shows that(x, w) < cow(¢ + A)(g/¢)(x), and so

Ella—pl?, 1X] =¢]

cowg(x)/¢(x).

w=

(68) ;
<202t + eow( + M [ (8/9)7 (00 (x = o) dx

(69) <2p9 +18/(g — D¢ 1[3cows (/) ()1 (& — ),

using (58) and (59), valid fot > 2¢gA /(¢ — 1), and noting that for such, we
have also; + A < 3¢/2. Since(¢) = w™t > 1, we always haveg/¢)(¢) =
(&) + 1< 2B(¢) = 2wl Inserting these remarks into (69) and combining
with (67) yields, foru € [0, 3] and¢ > ¢o = max2, B~1(1), 29 A /(g — 1)}, that

Eljii — pl? <2u% + 40719 (¢ — ).
ForO< u < 1/z, one hasp (¢ — ) < e¢(¢), while for 1/¢ < u < % some

calculus shows that?—1¢ (¢ — ) < u? < u4. This completes the proof of (61)

for 0 < 1 < 3, while for . > 3 the bound follows by a simple modification of (64).
O

6.2. Risk bounds for general random thresholds. We begin with a simple
bound. Suppose thatis a shrinkage rule with the bounded shrinkage property,
and thatf is a random threshold with< ¢ with probability one on the event.
Then

E|8(X,7) —u|?1s <2E[|8(X,1) — X|9 + |X — |91,
(70) <2{|t + b9 P(A) + [E|X — u|?1Y?P(A)Y/?)
< 4{t? + b7 + 1} P(A)Y2.

[We have used:|Z|% < (EZ*%/4 <3 forg <2.]

We now consider more specific risk bounds for random thresholds. The first will
be particularly useful for small values of the true mearin conjunction with a
constant which is with high probability a lower bound for the threshold
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LEMMA 5. (a)Supposethat 0 < g <2, that X ~ N(u,1) and that 7 is a
randomthreshold that may depend both on X and on other data. Supposethat § is
a thresholding rule with the bounded shrinkage property, and let

a=358(X,1).
Supposethat ¢ > +/2. Then for all p,
(71)  Elp—pl? <cyllpl? +19720 @) + 17 + b7 + D{P (7 < D}Y2).

(b) If 1 < g < 2, asimilar result holds for the posterior mean with estimated
pseudothreshold ¢. For ¢ > ¢o(gq, y) and for all u,

(72) ElfiCe, ) — pul? <[l + 2971 @) + (¢ + b7 + D{P(E < O},

PrRoOOF The method for both parts is essentially identical, so we concentrate
on the thresholding case (a). Denotelby(X) the effect of applying tX the hard
thresholding rule with threshold If 7 is a data dependent threshold witk ¢,
then it follows from the shrinkage and thresholding propertieg @nd p* that
both

(73) sign(1) =sign(n™) and O0<|a| <|w*|.
Hence,

I — | < max|uml?, |u* —pul?} < [ul? + |u* — pl.
If we remove the overall constraint that ¢, it remains the case that

| — w9 I[E = 1] < |l + | — 9.

The inequality (60) for the risk of the hard thresholding rylé with fixed
thresholdr shows that for > /2,
(74) E|jy — pl?117 = 1] < cqllpl? + 1971 ()],

Now consider the case< ¢. By the bounded shrinkage property and (70) it follows
that

(75) E|fl — u|9I[f <] <417 + b7+ D{P( < 1)}V/2

Putting together the twbounds (74) and (75) compés the proof of (71).

For the posterior mean, we use the pseudothresioldnd seti(x) =
fa(x, w(Z)) andu*(x) = fi(x, w(¢)) in the above argument. The key monotonicity
property (73) follows from that ofv — i (x, w), and the analog of (74) uses (61).
Finally, we use the bounded shrinkage property of the posterior mé&an.

The second lemma will be used in practice for larger valugs.of
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LEMMA 6. Make the same assumptions as Lemma 5 but relax the condition
that § is necessarily a strict thresholding rule; it is till required that § has the
bounded shrinkage property. Suppose that ¢ satisfies the inequality

(76) f <+/dlogn  with probability 1.
Let ¢+ be a nonrandomthreshold, possibly depending on . Then
(77) E|fi— |7 <8[t7 + b7+ 1+ (dlogn)?/?{P(i > 1)}¥?).

PROOF  To prove Lemma 6, suppose first that ¢. From (70) withA = {7 <
t}, we have

(78) Elp—pl?If <t] <407 + b7+ 1).

Now use (70) again, now with = {f > ¢} and note thaf < ,/dlogn w.p.1 onA,
so that

(79) E|fi — u|I[i > 1] < 4((dlogn)?/? + b1 + 1){P(i > 1)}Y/2.
Combining the two results (78) and (79) completes the proof of Lemmalk.

REMARK 3. Lemma 6 applies in particular to the posterior mean fute
f(x, w(Z)) with estimated pseudothreshaid

It also follows from (52) and (54) that the bounds in Lemmas 5 and 6 remain
valid if thresholdgs are replaced by pseudothreshofd$hroughout.

7. Momentsof the scorefunction. In this section we derive properties of the
score functionS(w) that will facilitate our detailed consideration of the behavior
of w. Suppose thaZ ~ N(0,1) and definem1(u, w) = EB(Z + u, w) and
mo(w, w) = E B(Z + p, w)?. We first note that

a o0
Sk, w) = f kB0 B/ O+ wB ()1 o (x — ) — o (x + w)ldx.
m 0

Fork =1, this shows thatt — m1(u, w) is increasing fop > 0.

7.1. The moments m(w) and my (u, w) as functions of w. We give a special
name to the mean zero case and study it first:

(80) f(w) = —m1 (0, w) = —2[000 Bz w)d(2) dz.

LEMMA 7. The function w — m(w) is nonnegative and increasing in w €
[0, 1] and satisfies 2 (0) = 0. 1f ¢ = B~1(w 1) isthe pseudothreshold discussed in
Section 5.4, then

(81) m(w) =< §K_1g({) asw — 0.
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LEMMA 8. Fixu > 0. Thefunctionw — m1(u, w) isdecreasingin w € [0, 1]
and satisfies mq(u,0) > 0. In terms of ¢ = g~L(w™1), for sufficiently small
w < wo(y) (not depending on 1) we have

(82) m1(p, w) = 380D — ),

(83) ma(pt, w) < Cw ™ tma(w, w), w=>1,
while

(84) mi(¢,w)~ 5wt asw—0.

PROOF OFLEMMA 7. For each; # f~1(0), B(z, w) is a decreasing function
of w and san(w) is increasing. It follows that, as \ 0,

i (w) \rh<0>=—/_ooﬁ<z)¢><z>dz=/oo{¢<z>—g(z)}dz=o.

To study the asymptotic behavior @t(w) as w — 0, use the property
J2% B()® () dy =0 to obtain

_ [ wB(R)?

Define; = p~1(w™1). Onthe range < ¢, we havewp(z) < 1, so that 1 8(0) <
1+ wB(z) < 2. On the other hand, for > ¢ we havewB(z) < 1+ wB(z) <
2wpB(z). It follows that

¢ 00
(85) i (w) = / wh ()% (2) dz + / B(2)$(2) dz.
0 e

Appealing to (46), (58) and (59), we then have §or 4A,

¢ ¢
|| B du = [ sw?/edu <8cs g% @)
(86)
~CTB(0)g() = Cw e e (),
using (47) and assuming also that> ¢o. Hence, the first integral in (85) is
bounded by a term of order1g(¢).
Becauses (u)¢ (1) ~ g(u) asu — oo, the second integral in (85) is asymptotic,
via (30) to

fg ) du = - g(0).

This term strictly dominates the bougdlg(¢) and, therefore, we can conclude
thatsi(w) is bounded above and below by multiplesz6f1g(¢). O
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PROOF OFLEMMA 8. Note first that the expression
o
i) = [~ e wp - war
—00

shows thain1(u, w) increases monotonically as— 0. The limiting value is

80
@ (1)

o0 1 2
= [ exp(1t = 52 o0t — 1= e 2 ) - 1

whereM, denotes the moment generating functiorg o8inceg is the convolution
of y and¢, andy is symmetric,

ml(u,O)=/_Zﬂ(t)¢(t—u)dt=/_o;< 1)¢<r—mdr

e“’“z/zMg(,u) — e"LZ/ZMy (Mg () = My, (1)

o0
= 2/ cosiut)y (t)dt > 1,
0
so thatmi(u,0) > 0. [If g has sufficiently heavy tails, then(x, 0) may be
infinite.]
For sufficiently smallw, we have

¢
(87) | pewsi-war=o
—00
since the limiting value of this expressiorvig (it, 0) > 0. It follows that
© B 1 4

mie, w) > ¢(t—u)dt2—w_/ ¢t — ) d.
¢ 2 ¢

14+ wB()
We turn to the bound om, (i, w). Notice first that

C=1BO)/{1+ B0}, if Bx) <0,

(88) 1BCx, w)| < { w-1 if B(x)>0.

Hence,
Elp(u+ Z, w)| =mi(n, w) + E{|B(u+ Z, w)| — B+ Z, w)}
<mi(u, w)+2C < Cm1(u, w)

for sufficiently smalw andu > 1, since we then have1(u, w) > m1(1, w) > C.
It also follows from (88) that, again for sufficiently small, |(¢, w)| < w1 for
all ¢, and so

ma(, w) < E{B(u+ Z, w)?} < w ' E|f(n+ Z, w)| < Cw ™ ma(u, w).
Turning finally to the proof of (84), we have

_ B(z+¢) |
i) = [ R e dz=w /r(;,z>¢<z>dz,
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where

r(¢,z)= P +2) — I{z>0}

B(&)+ B +2)
as¢ — oo, since letting01(Az) denote a quantity bounded in absolute value
by |Az],

BO) 8(®) ¢ +2)
BC+2 g+ @)

2 0,
=exp(O1(Az) —(z —29/2) — {
OO,

z>0,
z<0.

The conclusion (84) follows from the dominated convergence theorem, since
Ir (¢, z)| < 1 [atleast forz large enough thag(¢) > 2|8(0)[]]. O

7.2. The moments m; (v, w) as functions of p. We shall need a series of
bounds form;(u, w), each successively more refinedass constrained to be
closer to zero.

LEMMA 9. Thereare constants C; such that for all w, defining ¢ asin (88),

—i(w) + Crg(w)p?,  for |ul < 1/¢(w),

(89) m1(p, w) < Cop (¢ /2w, for |ul < ¢(w)/2,
(wAe) L, for all

and
C3¢(w) ™ wtmw),  for |u| < 1/¢(w),

(90) ma(p, w) < Cag~Lp(¢ /w2, for |u| < ¢(w)/2,
(wAc) 2, for all .

PROOF  We first remark that the global bounalg (i, w) < (w A ¢) =¥ follow
trivially from (88). We derive a bound on the behaviomof(x, w) — m1(0, w) for
smallp # 0. Assume thatu| < ¢~ and that; > 2. Then for ally € [—¢, ¢],

(91) (v — )= () exp(uy — 3u?) <ep(y)
and
(92) 16" (v — 1) =1y — )? = Lp(y — 1) < c(X+ ¥ (»),

where the absolute constant < 1.25¢. Using the property thatB(z, w)| is
bounded above by mim~1, B(z)} if B(z) > 0 and by {1 + B(0)}|B(2)| if
B(z) <0, it follows that

32ma(u, w)
2

(93) <[ O; B w2 — w)ldz

¢
(94) <c /_ B+ @) dz 207 /|z|>¢ ¢z — ) dz.



EMPIRICAL BAYES FOR SPARSE SEQUENCES 1633

Sinceg(z) < C(1+ 2z~ forall z, it follows that

1B@)p() <lg(z) —p )| <CAL+z%)T
and hence that

3 2
(95) [ ol Be@d:<ce.
For|u| <¢~1and¢ > 2 we have

-1 "e d
w /|Z|>C¢>(z n)dz

l o0
<2w~ / ¢"(z — |ul)dz
¢

96
(96) = 2w /(¢ — ul) =2w ¢ — luhd (@ — Iunb)

<CLB)P) <Cc(l+cH™L

Combining (95) and (96), recalling th&tcan be a different constant in different
expressions, we can conclude that, fief < ¢ 1 and¢ > 2,
8%ma(u, w)
———— <Ct¢.
au? =C¢

Since by symmetrgm1(u, w)/du = 0 whenu = 0, it follows that, foru < ¢ 1,
ma (i, w) —m1(0, w) < Czp?,

which completes the proof of (89).

Turn now to the second moment. Suppose throughoutthat ¢ 1 and¢ > 2
and, without loss of generality, that> 0. By the bounds onS(z) /{1 + wB(z2)}|
and ong (z — ) as above,

¢ 2 2
ma(u, w) < C/—¢ B2b(—wdz+ [ B2 — ) dz

|z|>¢
¢ -
(97) <c /O B(2)%h(2) dz +2B(0)2H( — )
(98) <Cw g () + CBO%P(c — )/ — )

by using (86). To deal with the second term in (98), use the boundsor- )
and the property that — u > ¢ /2 to conclude that

BE2P(C — /(€ — ) < CELB(0)%D(0) < Ce1B(0)8(0).
It follows that, for|u| < ¢t and¢ > 2,

ma(w, w) < CLB(0)g(0).
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Now use the property (81) thg(¢) < C¢1 s (w) to complete the proof of (90).
We now turn to the proof of the intermediate bounds. Note first that
e [ B(x)
1+ wpB(x)

Oon [0, ¢] we have 1+ wpB(x) > 1+ 8(0) > 0, so thaf1l + wB]~* < C, while on
[¢, 00] clearlywB/(1+ wpB) < 1. Hence

k
mk(ﬂ,w)fzf } ¢(x —p)dx.

0

¢ 00
i, w) < Cfo BX ()b (x — ) dx + 2w—"f§ S — ) dx

=Cle+2w I,
Sincep(¢) = w—t, we have foru| < (1 —a)¢,
I, = o —p) < ¢ag)/at.

Turning now to/y ; < Cfg (g/P)(x)p(x — w)dx, we apply (58) and (59): since

(g/#)(¢) <2w™tandg (¢ — p) <exp(—¢(¢ —2u)/Hp(¢/2) for 0< u < ¢/2,
we have

e < 2w G /DH(E; A, ) expl—L (¢ —2u) /4}.
The desired conclusion fér= 2 follows. Fork = 1 one may check that

§>8A,0=<u=¢/2

while a direct argument shows that for< 8A, regardless ofs, /1, < Cwl<
Coc/2w™t O

8. Themarginal maximum likelihood weight and itsrisk properties. The
marginal maximum likelihood method yields a random weightdependent on
all the dataX,, ..., X,, and, hence, to a random threshold and pseudothreshold.
In this section we study the properties ©fin order to use the risk bounds of
Section 6.2 to bound the risk for the whole procedure and, hence, complete the
proof of Theorem 1. The structure of the proof is essentially the same for both
nearly black and/,, sparseness classes, and to avoid unnecessary repetition of
arguments, it is helpful to define

B { ps if p>0,

la, if p=0.

The bounds obtained in Theorems 1 and 2 do not changeimseases above 2.
Furthermore, forp > 2 we havet ,[n] C £2[n] and so demonstrating the bounds

for p = 2 will imply that they hold for all largep. Therefore, for the whole of the
subsequent argument, we assume without loss of generality th&.

(99)

S h
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The strategy is to consider separately the components of the risk for large and
small ;. We employ risk decompositions

Ry wy=n"1 3" Elpi—pwil?+n1 > Elf; —pil

|mil<t luil>t

(100) -
= Ry (1) + Ry(7),

say. For “global” risk bounds, we take= 1, while for risk bounds ovef,[1], we
taket roughly of order(2 logn—7)1/2.

In each case properties of the estimated weight and corresponding pseudothresh-
old are derived; these are then substituted into the appropriate expression for the
risk. We begin by the consideration of the threshold and risk for the components
with small ;.

8.1. Small signals: lower bounds for thresholds. Suppose that, for somg
with 0 < p <2 and for some) > 0, . lies in an¢,, ball:

n
Cplnl = uin ™ |wil? < 0P
i=1

or, if p =0, that the proportion of:; that are nonzero is at most Let Z; be
independentV (0, 1) random variables, and let be the weight estimated from
the datau; + Z; by the marginal maximum likelihood procedure. Define the
pseudothreshold = g~1(w1).

One cannot hope to adapt to signals that are too small relative to the sample
sizen; this corresponds to restrictingw) to the rang€0, \/2logn ]. Hence, we
set

7P = max{n”, n"1(logn)?}
and, with the usual definition = g~1(w~1), define the weightv = w(1, n) by
(101) P wim(w) = 7P.

Writing the left-hand side as the productdf—"/8(¢) andm(w), both of which
are increasing irw (for w sufficiently small), shows thab is well defined and
monotonically increasing if, at least fori; small.

The intent of this definition is to choose a weight= w(n,n) and pseudo
thresholdz = ¢(n, n) which is both a lower bound t¢ = ¢(W) for p € £,[n]
with high probability (Lemma 10) and is of the right size to yield minimax risk
bounds [see (103), (104) and Section 8.2].



1636 I. M. JOHNSTONE AND B. W. SILVERMAN

Some propertiesof w and ¢. Using the definition ofg and the property (81)
thati(w) < ¢ 1g(¢),
(102) 7P <P wetre(0) < PR /B =< ¢ P ().
We immediately obtain a bound,
(103) £h(&) =< i g? P
Taking logarithms,

|logii™? — 3¢%+ (p — Dlog¢| < C.

Hence, ag — 0,
(104) c%~2logi?.
More explicitly, there exist constantssuch that
2logn™? 4+ (p — Dloglogn=? —¢,  if n? >ntlog?n,
2logn — (5— p)loglogn — c, if n” <n~Llog?n.

Approximation (104) shows that our pseudothreshold bogifid»n) has the
order of the minimax threshold fof,[#,], and the right-hand side of (103) is
essentially the asymptotic expression for the normalized minimax risk. We now
show that¢ (n, n) is typically a lower bound for the estimated pseudothreshold
when the signal is small.

(105) ¢ >

LEMMA 10. Let the pseudothreshold ¢ = ¢(n,n) corresponding to 7 be
defined by (101). There exist C = C(y) and ng = no(y) such that if n < ng and

n/log?n > ngﬁ, then

(106) sup P, (¢ <¢) <exp{—C(logn)®/?}.
,U«Gﬁp[n]

_ Itfollows from this lemma that ifx is very sparserf’ < n~llog?n), thenf and
¢ are, in relative terms, close tg2logn. On the other hand, if. is less sparse,

tAhenf and? are at least about2logn—?. (Recall from (53) that the difference
¢ —t€[0,C/t]is small.)

PrROOF OFLEMMA 10. This argument leading to (103) also shows that
1¢2— (p—1Dlog¢ <logn — 2loglogn + O(1),

and hence that(w) < ¢(w) < +/2logn for n sufficiently large, so thatw €
[w,, 1], the interval over which the likelihoo8(w) is maximized. Consequently,
{£ <t} ={d>w}={S(w) > 0}. The summands i (w) = X", B(w; + Zi, w)
are independent, and in view of (88), bounded-py .

We therefore recall Bernstein's inequality [e.g., Pollard (1984), page 193],
which gives exponential bounds on the tail probabilities of the sum of uniformly
bounded independent random variables.
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PROPOSITION 2. Suppose that Wy, Wo, ..., W, are independent random
variables with EW; =0 and |W;| < M for i =1,...,n. Suppose that V >
Y7 qvarW;. Then, for any A > 0,

n
P(Z W; > A) <exp{—3A%/(V + $MA)}.
i=1
We have
n
(107) P(zi)>w)=P{S(w)>0}=P<ZWl- >A>,
i=1
whereW; = B(u; + Zi, w) — m1(ui, w), M =2(c A1)~ tw~land
n
A=) —mi(pi, w).
i=1
Define sets of “small,” “medium” and “large” co-ordinates,

S={i:lml<¢7h, M=1i¢ <l <2/2), L={i:|pil >¢/2}.

For the nearly black case, it suffices to consider only two classes, coale#cing
ands$, but it is notationally simpler to use the same argument ag for
Using the three parts of (89),

> ma(ui, w) < Y [—ri(w) + C1epfl+ ClMIp (/2w + [ Llw ™™
ied

On thet ,-ball £,[n], we have # : |u;| > t} < nnPt=P and so
(108)  [8I=n—nnPeP, M| <npPcP, Ll <nnP2PTP
On the set$, we haveu? < |u;|7¢?~2, and so, on making use of (101),

> mi(ui, w) < —ni(w) + CnnPe Pw™?

x [w?Pi(w) + Crwe 2P+ 2P (£ /2) 4+ 1
< —nl(w) — CAP ¢ Pw™Y
= —mi(w)[1 - C¢~*] < =3 (w)

for w < wo. ConsequentlyA > 2nsi(w).
We now obtain a bound oW = }_ varW;. Using the same decomposition into
small, medium and large coordinates, we have from the three parts of (90),

V <> ma(ui, w) < Cal81¢ w Hi(w) + ClMw ™2 p(0/2) + |Llw ™2
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Using now (108) along with (101), we find that for sufficiently small
V < Cnt ™ w bi(w) + Cnn? c P w29 (0 /2) + CnnPr Pw 2
< Cnw tm)[E ™ + 295 /2) + ¢ 7]
< Cnw tm(w)c~.
Turning to the exponent in the Bernstein bound, we haveusfer wo,
A? v M Cnwlaw)ie™® Cwt
[W} T3S T wZaw?Z )

= C{nwrh(w)}_l.

Therefore, applying the definition gf
A? - .

2> Cnwm(w) > CniP ¢ > C(logn)?[log i~ P« =772,
VT 3MA nwrit(w) > Cni? ¢*7F > C(logn)“[log# 7]

Defineng(y) so thatn > ng if and only if n/log?n > naf’. If « > p, then for
n < no andn > ng we haveii =7 = min{n~7,n/log?n} > n,”, while if k < p,
thenij? <n and*5£ > —1/2. In either case we have

](K—P)/2

-1/2.

[logii—? > C(logn)

Applying the Bernstein inequality to (107) concludes the proof of (106), so long
asw < wo(y). Use (101) to defingg as the value ofy corresponding tavg, and
then set)g = 7jp to arrive at the first statement of Lemma 1.

8.2. Small signals: risk behavior. We apply risk bound (71) of Lemma 5.
Bound (54) permits the inequality to be rewritten in terms of the pseudothresh-
old ¢. We have, for all values qf;,

(109)  Elfi —wil? < C{lmil? + ¢4 () + A+ )P < 0)Y3).

If n is sufficiently small [less thamo = no(y), say], then we may use bounds
(104) and (103) along with the probability bound (106) to yield

(0 =P ~_ 5\ (q— - _ 3/2
E|Mi_Mi|q§C{|Mi|q+np(|0gn p)(q p)/2+(|0977 p)q/2€ Clog n}

If n > no(y), we have exp-C(logn)¥?2} < n=(logn)?—?/2 < 7P (logii—?)~P/2,
and we finally obtain

. 5 (Ve 5P\ [@—P)/2
Elf — wil? < C{lwil? + 7P (logii7)“ P72},

If 77 = n~l(logn)?2, then logi—? = logn — 2loglogn ~ logn so that, in
general,

ﬁﬁ('ogﬁ_ﬁ)(q_l’)/z < max{nﬁ(log n_ﬁ)(q_l’)/z’ Cn_l(logn)2+(q_p)/2}.
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Combining the last two expressions and summing oweéelds

Ry @) =n"1 > Eldi — pil
il <¢

<Cin™ 37 lwil? + 07 (logn 7)™ 4 n~Hlogm)>HaP2L,
lwil=<¢

If ¢ < p, we have by Hoélder’s inequality
_ _ q/p
(110) nY Il < (Y ll?) T <,

and alson? (logn=r)4=P/2 < ¢, .09 for n < e™L If ¢ > p, we have|u;|9 <
lnilP¢97P, and so, using the property thatif= 0 at most:n of the terms will be
nonzero,

— 5 eqg— 1 —m\(q—p)/2
Y l? < 0P < CnP (lognP) P2,
[mil<¢

In every case then, fqr € £,[n], n < no(y) andn > ng(y), we have
(111) R, (&) < Clrp. () +n~tlogn)?ta=r/2),

Before leaving the consideration of small, consider the case where there are
no constraints op at all. The application of the elementary risk bound (63), along
with a, < 1, then yields an absolute bound on the average risk for gmall

(112) Tt Y El -l <nmh Y A il <2
lmil<1 lil<1

8.3. Large signals: upper bounds for thresholds. Define# (t; u) = n~1#{i:
lnil = t}. We will be interested in deriving upper bounds on the estimated
pseudothresholgd when it is known thaf (t; 1) > 7 for appropriate choices af
Choosewp small enough so that both (81) and (83) apply. Define

(113) w(t, ) =sufw < wo:rmi(t, w) > 2m(w)}.

Sincem1(t, w)/m(w) — oo asw — 0, certainlyw(z, ) is well defined. On the
pseudothreshold scale, we write,, or ¢ (z, ) for B~1(1/w(z, 7).

LEMMA 11. Thereexist C = C(y) and mg = mo(y) suchthat if = < mg, then
for all T > 1,

(114) sup Pu(C > Lrn) < eXp{—Cngf 7 ¢ (Gen)).
nim(Tu)=m
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ProoFr If nw of the u; for which |u;| > © are shrunk totz, and all the
otheru; are setto zero, then the distribution of egeh+ Z; | will be stochastically
reduced. Sincg(y, w) is an increasing function dfy| for eachw, it follows that
S(w) will be stochastically reduced, and 0(S(w) < 0) will be, if anything,
increased. Thus, the maximum valueRf; > ¢) subject to the constraint that at
leastnr of the |u;| exceedr will be taken when exactlys of the |u;| are equal
to r and the remainder are zero. We shall therefore assume that this is the case.

We now return to the problem of bounding the probability that) is negative,
for w = w(z, 7). We have, following (107) but changing the sign,

P <w) = P(S(w) <O):P[ZW,- >A},
i=1
where, on this occasion,
n
Wi =ma(ui, w) — B(ui + Zi,w) and A=Y ma(ui, w).

i=1

Just as abovéW;| < 2cow~* for all i. To obtain a bound oA, we have, making
use of the definition (113) ab,

ntA = (1—m)my(0, w) +wma(r, w)
> —1ami(r, w) + wmi(r, w) = Lrma(z, w).

We now seek an upper bound on the sum of the variances dVvth&laking
use of the bound (90) for2(0, w), bound (83) fotmo(t, w) and (113),

n_livarWi <m2(0, w) + wma(t, w)
= < Ce(w) ™ w hi(w) + Cw trmi(r, w)
< Cw_lnml(r, w).

Substituting into the expression needed for the application of Bernstein’s
inequality, we have

n(l + ﬂ) < Cw_lrr_lm[l(t, w),
A2 3A)
so that
A2
- >C ,
Vi a/ama = crermm w)

> Cnwit(w) > Cng*1B(0) " 2e(¢)
> Cng1(2),
(sincew < wg). O
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8.4. Large signals: risk behavior. Let ¢ = ¢(r, 7 (t; n)), wheret remains
unspecified for the moment. For eaeh we have from (77) and (52),

Elf — w7 < C{14¢ + (logn)?/2 P(Z > 0)Y/?).

We then consider two cases.if > logn, then the right-hand side is bounded by
C(1+ 2¢7). On the other hand, if2 < logn, then

ng"‘lexp{—%gz} >Cn exp{—%;z} > cnt/4,
so that from (114),
(logn)?/?2 P(Z = ¢)Y/? < lognexp(—Cn*/%) <1

if n > ng. It follows that, for sufficiently smallz andn > ng, whether or not
2> logn,

(115) Elfi — pil? < C(1+¢9).

Hence,

(116) Ry =n"" 3 Elji —pwil? < C7i (s w)[1+ ¢ (v, 7 (z, )]
lnil=t

For the global risk bound needed for Theorem 1, wesetl. Letwr = 7 (1; ).
We seek a bound far = ¢(1, 7). Sincer(w) =< ¢ ~1g¢(¢) by (81), it follows that
for sufficiently smallbr and, hencey,

iy 2O

Taking logarithms, we have
logr1>c—«loge +¢

and, hence, for sufficiently smatl,

(117) (7 =¢(Lm)? <24 (logm .

In combination with (116), this yields, regardless of the value ef 7 (1; ),

(118) R,(1) < Cx[14 (logr~ Y21 < C.

Write ¢1 for the pseudothresholdn, n) defined by (101). Our main goal now
is to establish a large signal complement to inequality (111), namely,

(119) R,(21) < Clrp.4(n) +n~t(ogn)?H@=r/2),
The approach will be to apply Lemma 11 with= ¢> = ¢2(u) defined by
(120) {2 =1¢(51, ), T =7 (81 1.
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Let us first verify that, as one would expect fare £,[n], ¢2 > 1. Since
m(w) =< ¢““1g(¢) by (81), andmi(f1, w1) ~ (2w)~! by (84), we have,
using (102),

mirwy) | 1BG 1o S P
mw) T 2g() Tt T ¢ !

For p > 0 we now use the bound |u;|? < nn?, while for p = 0 we simply use

7 < n. Both cases are encompassed by the inequality

(121) m<nPe P <ile?,

and so

m1(¢1, wi)

a <C¢g*ntx2n™t  for¢ large
m(wi)

which shows that, > ¢1 (and, in particular, thag, > 1).
In this notation the bound (116) becomes
Ry(t1) < Cn(1+¢)) < Cmgg.

Although (121) places an upper bound an in fact, it may be arbitrarily
much smaller. The analysis to follow considers separately cases in whish
comparable to, or much smaller thaﬁ,{l_”.

Recalling the lower bound (82) that1(¢1, w) > %ﬂ(;)é(; — {1), it follows
that¢y < 3 = ¢ (w3), wherews is the solution to

(122) ®(z(w) — 1) = 4w (w).

¢z is intended as a more manageable versiogp of
Suppose first thats > ¢1 + 1. Then from (122),

g+k—-18(3) 3— &1

9 <
T2 =208 e s — 1)
SC§§+q ¢ (¢3) :C§§+qe_(§3_§1)§1¢(§1).

¢ (3 — 1)

Using (103) and the fact thag — ¢5 e~ 3-% s decreasing, at least for
{3>¢1+1, we get

ned < Cifey (e + 1) e,
From (104), we then conclude that for sufficiently large,
ntg <max{CnP(2logy™P) 2 TP g TP )

< cmax{n?(2logn~?) 2 n1}.
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_ Now suppose that < ¢1+1 (and, hencez € [¢1, {1+ 1]). Sinced(;3— 1) >
d (1), it follows that¢s is smaller than the solution to

Kk—1 g({)
—QT7
B©)

Taking logarithms, the equation becomes

&(1) = dwim(wyrt=¢ e leon L

¢%/2— (k — Dlogt +loge = logm 1,
from which it follows that
t2 <2logn ! +loglogz~t + C.

Consequently, sincer[2logr ! + loglogz ! + C]9/? is increasing inz for
sufficiently smalbr, andr < r;P;l_p, we get

ned < CnPe P[21og(nPef)]"? < CnP (2logn~P)*?(2logi~P) P/,

If ¢ < p, the right-hand side may be bounded furtherty!. If ¢ > p, consider
separately the two caseg > n~tlog?n andn” < n~1log?n. In all cases we
obtain (119) for sufficiently smal} andn > no.

To complete the proof of Theorem 1, combine the bounds (112)Rfad)
and (118) forﬁq(l). For the adaptivity bound, similarly combine bounds (111)
for R,(¢1) and (119) fork, (¢1).

9. Proof of Theorem 2. The proof of Theorem 2 requires small but significant
modifications to the proof of Theorem 1.

Consider first the case” > n~1log?n, so thatij = n. To show that parts
() and (b) of the theorem remain true wifty in place of i, simply observe
that

E|8(X, 1) — pu|? = E{I8(X,1) — |9, 1 <t} + E{I8(X, 14) — |7, 7 > 1,}.
Ignoring the eventf <1,} in the first term leads to

Ry(fia, 1) < Ry (i, ) + Sy (R4, ),

where

(123) Sq(ihs ) =n"1 YT E{I8(Xi 1) — wil®, 7 > 1),
i
The superscripF emphasizes the fixed threshold
The bound of Theorem 1 applies #®,(jt, 1), SO it remains to consider
Sy (/Sc/f, w). Analogously to (100), decompose (123) according to terms with large
and small values qgi;, obtaining

(124) Sq (i 1) = S4(T) + 84 (1),
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where, for example,
Sy =n"1 3" E(I8(Xi.ta) — ild. 7 > 1)
|uil>t

We will need the following risk bounds from Section 6. First, from (71),

(125) EI8(X,14) — 1tl? < cq{linl? + 15 pa)),
while from (70), for any evens,
(126) E{|8(X,14) — pl9, By <44 + b1 + D P(B)Y2

Consider first part (a), namely, global boundedness. For gmalhe uses (125)
to obtain

S =n~t > ES(Xi,ta) — pild
lnil<1

(127) < e 3 (il + 14 g (1))
|mil<1

<c {1+ tj_lqb(tA)} <2,

For largeu;, as in Section 8.4, introduce = 7 (1, u) and ¢(u) defined as
(1, ), where¢(z, ) is as defined before Lemma 11. Note throughout that
c(w) > B~1(1) > 0. Arguing as at (117), we also observe that

£(u) <2 lognt.

Two cases arise. if (1) > log?n, then
ta =21+ A)logn < c¢(u) < clogn ™,
and so, from (126),
Eln(Xi,ta) — pil? < clogm )4
and hence
S;(1) < cm(logrn 4 < C.

In the second casg() < log¥?n <, and so, using the property= ¢ (7) > f
and Lemma 11,

P(f>1y) < P(Z > ty) < P{T > £ ()}
< exgd—CnZ (W) 1z (W)} < exp(—Cn'?).
Consequently, using (126) witB = {T > t,},
Sy (D) < 4w (t) + b7 4 1) exp(—CnY*) < cexp(—Cn'/*)logn < C.
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Now turn to part (b), adaptivity ovef,[n]. The case; < p is simple; from
(125) and bound (110), we have

A — -1 —
Se(h 1) < cqn ™3 {lwil? + 1477 (ta)} < cqn? + Cn~ I logh2n.
i

Forg > p, we follow a strategy broadly similar to that of Section 8.4. In (124)
we taket = ¢1 = ¢(n, n), the pseudothreshold defined by (101). Applying (125)
in a similar manner to (127), we find that

S <cqn™t S (il + 147 o)) < egnPed TP 4 gt T o),
|pil<¢1

which is bounded by the right-hand side of (19) in view of (104).
To bound the large signal terfy (¢1), we again apply Lemma 11 with= ¢, =
¢2(n) defined as in (120). We first observe, using (126) vite: {7 > 1,}, that

(128) S, (1) < emtd (P > t)}2 < enPePrd{P (i > 1)) Y2

Consider now three cases. First suppose thet such thata(u) < 1,. Using
initially the property that = ¢(7) > ¢, and then appealing to Lemma 11, we have

P(>1,) < P(E>1) < P >02)
< exp—Cnes 6 (52)) < expi—Criy T (1),
Using the definition of,,, and the fact that,‘j‘l >1forn> 13,
nty "1 (1) = ¢(0)log>? .
Hence, from (128) and using the fact thek o,
84(¢1) < CnP (logn)?/?exp(—Clog®?n) < Cn” < Crp, 4 ().

Second, consider for which ;12 > logn. In this case 2log~7 < ;12 > logn,
and so, from (128)

$,(¢1) < CnP(logn) =P/ < Cr), 4 ().
Finally, suppose botbl2 <logn and¢o(un) > t,. In this case
t3— 41> 0 — =1, —log”?n > $logt?n

if n > ng. We use (122) definings to derive an upper bound on. The equation
implies

® (L3 — ¢1) = 4 "t (ws)/B(L3)
= 415 e (23)/B(¢a)
= 471k 9 (¢a).
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In other words, using (103),
7 < 853 — 0)b (£a) /¢ (83— £1)
< &3 exp(— (&3 — ¢1)81}e (41)
=n"e "es expl—(gs — ta)éa).
Using the first inequality of (128), we have
S4(60) = CnPries T expi— (3 — )
< CnPtf(t3— ¢ Mrexp(— (g3 — t)aal,

where we have used the fact tihigt-¢1 > 5 10g'/?n > 3¢1, so thatz < 3(¢3—¢).
Using these properties again, as well as the propertyitats—1(1), we have

S,(¢1) < CnP (logn) “ T/ 2exp(—z14/logn) < CnP < Crp 4 (0).

This completes the proof that the results of Theorem 1 continue to hold for the
modified estimator fop? > n~1log?n.

Now turn to the case? < n~1log?n. Reuse decomposition (100) with=
Z(n, n) defined after (101). First use bound (71) witk: z4:

(129) Elfa; — mil? < cgllmil? + 470 ta) + (4 + b7 + D{P (Ga < ta)} Y2,
By the definition oft4, we have
(130) 147 (t4) = ¢ (01 A[2(1 4 A) logn]9—Y/2 < cn~ 14 logld—V/2p,

To boundP (74 < t4), observe from (53) thaf’(¢) > ¢2 — C. In combination
with (105), this implies, fon” < n~1log?n, that

t2(¢) = 12+ ploglogn — ¢ — C,
so thatr?(¢) > t? for n > n(p, y). Consequently,
(fa<ta)=(f <t} Cf <t} =5 <¢)
and so we conclude from (106) that wheh< n~1log?n andn > n(p, y),
(131) (14 + b7 + 1) P(is <1ta) < c(logn)?/?exp{—C(logn)¥/?} = o(n=1=4).
We now have

q/p
-1 P q_
132) a7 1) |l < (" Xi:“‘l' ) snt=rpqetm, forg=<p,

’ n~ul§ < n@=Prpd, forg > p >0.

Averaging (129) over all and inserting (130)—(132) proves (23) for the case p
and (24) forg > p.
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To prove (23) forg > p, argue as in Section 8.2 to give
(133) nt Y il < Crp (),
lpil<¢

so that, summing only ovep;| < ¢,
(134) Ry(¢) < Crpq(m) +cn "*log"?n.

For ¢ > p and |u;| > ¢, we apply bound (78), noting thal < t4 with
probability one, to obtain

Eljiai — mil? <4 + b7+ 1) < C(logn)?’2.
As in the previous section, comparing (120) and (121), we have
7 =n"MHi il > ¢y <0 Pe
and so, recalling from (105) that> ./logn,
Ry(¢) < wC(logn)?/? < CnP (logn) =P/,

But n” < ntlog?n implies that log;~7 > logn — 2loglogn and, hence, that
logn < Clogn~7, so forn large andh? < n~1log?n we have

Ry() < Crp g ();
combining this result with (134) completes the proof of Theorem(2.

10. Remarks on the posterior mean. In proving results for the posterior
mean, we have assumed throughout that 1. The failure of the posterior mean
to be a strict thresholding rule has a substantive effect on the overall risk if
g < 1. Concentrate attention on the case wheris the Laplace distribution with
parameter 1, and defing(n) = exp(y/2Togn ) so thatg(v/2Togn )~ =< ¥ (n) as
n— Q.

An important contributor to our arguments wads) < ./2logn, from which it
follows thatt (1) < +/2logn. By the definition ofr, we have

w >¢>(\/2logn)>
1-w ~ g(/2logn) ~

so thatw > Cn~Yy (n). Sinceg(x)/¢(x) is bounded below away from zero, it
follows that, for some constarit and for all x, the posterior weighto (x, w) >
Cn~ Ly ).

On the other hand, the odd functigiy satisfies/i}(0) > 0 and is strictly
increasing withiz1(x) > x — A for all x; thereforex ~1fi1(x) is uniformly bounded
below away from zero fox # 0. It follows that, for allx # 0,

Cn Yy (),

(e, D) = b (x, D)2 ()| = Clxln~  (n).
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If w=0andX ~ N(O, 1), it follows that
E|i(X,w) — ul? = Cin~ 1y m)?E|X|T = Cn~ 1y (n)?

so that, however small the value gf the risk bound cannot be reduced below
Cn~14r(n)4, making it impossible for the estimate to attain the full range of
adaptivity given by the posterior median. The restrictions become more severe
the lower the value aof .
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