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An empirical Bayes approach to the estimation of possibly sparse
sequences observed in Gaussian white noise is set out and investigated. The
prior considered is a mixture of an atom of probability at zero and a heavy-
tailed densityγ , with the mixing weight chosen by marginal maximum
likelihood, in the hope of adapting between sparse and dense sequences.
If estimation is then carried out using the posterior median, this is a
random thresholding procedure. Other thresholding rules employing the same
threshold can also be used. Probability bounds on the threshold chosen by
the marginal maximum likelihood approach lead to overall risk bounds over
classes of signal sequences of lengthn, allowing for sparsity of various kinds
and degrees. The signal classes considered are “nearly black” sequences
where only a proportionη is allowed to be nonzero, and sequences with
normalized�p norm bounded byη, for η > 0 and 0< p ≤ 2. Estimation
error is measured by meanqth power loss, for 0< q ≤ 2. For all the
classes considered, and for allq in (0,2], the method achieves the optimal
estimation rate asn → ∞ andη → 0 at various rates, and in this sense adapts
automatically to the sparseness or otherwise of the underlying signal. In
addition the risk is uniformly bounded over all signals. If the posterior mean
is used as the estimator, the results still hold forq > 1. Simulations show
excellent performance. For appropriately chosen functionsγ , the method
is computationally tractable and software is available. The extension to
a modified thresholding method relevant to the estimation of very sparse
sequences is also considered.

1. Introduction.

1.1. Thresholding to find needles and straw. There are many statistical
problems where the object of interest is a high-dimensional parameter on which
we have a single observation, perhaps after averaging, and subject to noise.
Specifically, suppose thatX = (X1, . . . ,Xn) are observations satisfying

Xi = µi + εi,(1)
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where theεi areN(0,1) random variables, not too highly correlated. Letµ be the
vector of meansµ = (µ1,µ2, . . . ,µn). Clearly, without some knowledge of theµi

we are not going to be able to estimate them very effectively, and in this paper we
consider the advantage that may be taken of possible sparsity in the sequence.

In what contexts do problems of this kind arise? Some examples are the
following:

• In astronomical and other image processing contexts, theXi may be noisy
observations of the pixels of an image, where it is known that a large number of
the pixels may be zero.

• In the model selection context, there may be many different models that
conceivably contribute to the observed data, but it is of interest to select a subset
of the possible models. In this case, the individualXi are the raw estimates of
the coefficients of the various models, renormalized to have variance 1.

• In data mining, we may observe many different aspects of an individual or
population, and we are only interested in the possibly small number that are
“really there”; this is much the same as the model selection situation, but
couched in different language.

• In nonparametric function estimation using wavelets, the true wavelet coeffi-
cients at each level form a possibly sparse sequence, and the discrete wavelet
transform yields a sequence of raw coefficients, which are observations of these
coefficients subject to error. Wavelet approaches in nonparametric regression
take advantage of this structure in a natural way. This context originally moti-
vated the work of this paper but the potential applicability of the ideas developed
is much wider.

A natural approach to all these problems isthresholding: if the absolute value
of a particularXi exceeds some thresholdt , then it is taken to correspond to a
nonzeroµi which is then estimated, most simply byXi itself. If |Xi | < t , then the
coefficient|µi| is estimated to be zero. But how ist to be chosen? The importance
of choosingt appropriately is illustrated by a simple example. Consider a sequence
of 10,000 µi , of which m are nonzero and(10,000− m) zero. The nonzero
values are allocated at random and are each generated from a uniform distribution
on (−5,5). By varying the numberm, sequences of different sparsities can be
generated, as shown in Figure 1. In this figure the 10,000 µi are arranged in a
100× 100 pixel image. The absolute value of the image is plotted in gray scale in
order to allow white to correspond to the value zero. Estimating a sparse signal is
like finding needles in a haystack; it will be necessary to find which are the very
few signal values that are nonzero, as well as to estimate them. On the other hand,
estimating a dense signal is more like finding straw in a haystack; no longer will
we be surprised if a particularµi is nonzero.

Independent Gaussian noise of variance 1 is added to theµi to yield a
sequenceXi . The resulting images are shown in Figure 2. The average square
estimation error yielded by thresholdingXi with varying thresholds is plotted
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FIG. 1. Absolute value of parameter images of various sparsity. Out of 10,000 pixels, the number
of nonzero parameters is, from left to right: 5, 20, 100in the top row and 500, 2000, 10,000 in the
bottom row. Each nonzero parameter is chosen independently from a uniform distribution on (−5,5).

in Figure 3. Ignore the points marked by arrows for the moment. The number
in the top right of each panel is the value ofm, so m = 5 corresponds to a
very sparse model, whilem = 10,000 corresponds to a very dense model, with
no zero parameter values at all. The naive estimator, estimating eachµi by the
correspondingXi without performing any thresholding at all, will produce an
expected mean square error of 1. The scales in each panel are the same, and
the threshold range is from 0 to

√
2 log10,000 .= 4.292, the so-calleduniversal

threshold for a sample of this size.
Three things can be seen from this figure. First, the potential gain from

thresholding is very large if the true parameter space is sparse. For the sparsest
signals considered in Figures 1 and 3, the minimum average square error achieved
by a thresholding estimate is 0.01 or even less; see Figure 4 for a graph of minimum
average square error against sparsity. Second, the appropriate threshold increases
as the signal becomes more sparse. For the fully dense signal, no thresholding at
all is appropriate, while for the sparsest signals, the best results are obtained using
the universal threshold. Finally, it is important for the threshold to be tuned to
the sparsity of the signal; if a threshold appropriate for dense signals is used on a
sparse signal, or vice versa, the results are disastrous.
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FIG. 2. Absolute values of data Xi , result of adding Gaussian white noise to the images depicted
in Figure 1.

Thus, thresholding is a very promising approach, but the crucial aspect is the
choice of threshold. A good threshold choice method will have several properties,
as follows:

• It will be adaptive between sparse and dense signals, between finding “needles”
and finding “straw.”

• It will be stable to small changes in the data.
• It will be tractable to compute, with software available.
• It will perform well on simulated data and on real data.
• It will have good theoretical properties.

In this paper we set out and investigate a fully automatic empirical Bayes
thresholding method, which satisfies all these desiderata. In the example the
method chooses the threshold values shown by the arrows in Figure 3. It can
be seen that the empirical Bayes method is very good at tracking the minimum
of the average square error. More details are given in Figure 4. The empirical
Bayes thresholds are always close to the optimal thresholds, and—right across the
range of sparsity considered—the average square error obtained by the empirical
Bayes threshold is very close indeed to the best attainable average square error.
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FIG. 3. Mean square error of thresholding data obtained from the images in Figure 1 by adding
Gaussian white noise. In each panel the arrow indicates the threshold chosen by the empirical Bayes
approach. The prior used for the nonzero part of the distribution was a Laplace distribution with
scale parameter a = 1

2 . Each plot is labeled by the number of nonzero pixels, out of 10,000, in the
underlying signal.

FIG. 4. Left panel:threshold plotted against sparsity. The solid line is the threshold chosen by
the empirical Bayes method, while the dashed line is the threshold that yields the minimum possible
average square error. Right panel:log base 10 of the average square error yielded by the empirical
Bayes threshold (solid line) and by the best possible threshold (dashed line). The models illustrated
in Figure 1, and intermediate models, were used to construct these graphs.
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A documented implementationEbayesThresh of our methodology in R and S-
PLUS is available. See Johnstone and Silverman (2003) for details.

1.2. Specifying the empirical Bayes method. In the present paper we concen-
trate attention on the case where the errorsεi are independent. In some contexts
this assumption is restrictive. While beyond the scope of the present paper, it is
of obvious interest to extend our method and the supporting theory to dependent
data, and this is a natural topic for future work.

The notion that many or most of theµi are near zero is captured by assuming
that the elementsµi have independent prior distributions each given by the mixture

fprior(µ) = (1− w)δ0(µ) + wγ (µ).(2)

The nonzero part of the prior,γ , is assumed to be a fixed unimodal symmetric
density. In most previous work in the wavelet context mentioned above, the
densityγ is a normal density, but we shall see that there are advantages in using a
heavier-tailed prior, for example, a double exponential distribution or a distribution
with tails that decay at polynomial rate.

For any particular value of the weightw, consider the posterior distribution ofµ

givenX = x under the assumption thatX ∼ N(µ,1). Let µ̂(x;w) be themedian
of this distribution. For fixedw < 1, the functionµ̂(x;w) will be a monotonic
function ofx with the thresholding property, in that there existst (w) > 0 such that
µ̂(x;w) = 0 if and only if |x| ≤ t (w). Figure 5 shows the prior distribution and
the posterior median function̂µ(x;w) for the Laplace mixture prior witha = 0.5
and two different values of the weightw.

Let g denote the convolution of the densityγ with the standard normal
densityφ. The marginal density of the observationsXi will then be

(1− w)φ(x) + wg(x).

We define the marginal maximum likelihood estimatorŵ of w to be the maximizer
of the marginal log likelihood

�(w) =
n∑

i=1

log{(1− w)φ(Xi) + wg(Xi)}

subject to the constraint onw that the threshold satisfiest (w) ≤ √
2 logn. The

threshold chosen by the method will then be the valuet (w).

The function�′(w) is a monotonic function ofw, so its root is very easily
found numerically, provided the functiong is tractable; see Section 2.2. Our basic
approach will then be to plug the valuêw back into the prior and then estimate the
parametersµi using this value ofw, either using the posterior median itself, or by
using some other thresholding rule with the same thresholdt (w). In the example
above simple hard thresholding was used.
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FIG. 5. First line:Prior distribution for w = 0.4 and w = 0.02, for the mixed Laplace prior with
a = 0.5. The atom of probability at zero is represented by the solid vertical bar, plotted to the scale
indicated on the right of the plot; the probability density of the nonzero part of the prior is plotted
to the scale at the left. Second line:Posterior median functions for the same priors. The dotted line
is the diagonal y = x. It can be seen that the posterior median is a monotonic function of the data
value and is zero whenever the absolute value of the datum is below the threshold.

Another possibility is to use the posterior mean, which we denoteµ̃(x;w),

so that the corresponding estimate isµ̃i = µ̃(Xi; ŵ). The posterior mean
rule fails to have the thresholding property, and, hence, produces estimates in
which, essentially, all the coefficients are nonzero. Nevertheless, it has shrinkage
properties that allow it to give good results in certain cases. We shall see that both
in theory and in simulation studies, the performance of the posterior mean is good,
but not quite as good as the posterior median.

The empirical Bayes is a fully automatic practical method; intuitively, the reason
it works well is as follows. If the meansµi are all near zero, then̂w will be
small, corresponding to a large thresholdt (ŵ), so that most of the means will be
estimated to be zero. On the other hand, if theµi are larger, then a small threshold
will be chosen, and the data will not be shrunk so severely in the estimation of the
vector of means.

1.3. Measures of sparsity and minimax rates. The sparsity of a signal is not
just a matter of the proportion ofµi that are zero or very near zero, but also of
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more subtle ways in which the energy of the signalµ is distributed among the
various components. Our theory will demonstrate that the empirical Bayes choice
of estimated threshold yields a highly adaptive procedure, with excellent properties
for a wide range of conditions on the underlying signal.

A natural notion of sparsity is the possibility thatµ is a nearly black signal,
in the sense that the number of indicesi for which µi is nonzero is bounded. We
define

�0[η] =
{
µ :n−1

n∑
i=1

I [µi �= 0] ≤ η

}
.(3)

With just the knowledge thatµ falls in �0[η], how well canµ be estimated? Define
the minimax average square error by

Rn,2(�0[η]) = inf
µ̂

sup
µ∈�0[η]

n−1
n∑

i=1

E(µ̂i − µi)
2.

Donoho, Johnstone, Hoch and Stern (1992) show that, consideringη = ηn → 0 as
n → ∞, Rn,0 is 2η(logη−1)(1+ o(1)).

A more subtle characterization of sparsity will not require anyµi to be exactly
zero, but still constrain most of the energy to be concentrated on a few of theµi ,
by placing bounds on thep-norm ofµ for p > 0. There are various intuitive ways
of understanding why‖µ‖p = (

∑ |µi |p)1/p for smallp is related to the sparsity
of µ. Perhaps the simplest is to consider the energy (the sum of squares) of a
vector with‖µ‖p = 1 for some smallp. If only one component ofµ is nonzero,
then the energy will be 1. If, on the other hand, all the components are equal, then
the energy isn1−2/p which tends to zero asn → ∞ if p < 2, rapidly if p is near
zero. By extension of these examples, ifp is small, the only way for a signal in
an �p ball with small p to have large energy is for it to consist of a few large
components, as opposed to many small components of roughly equal magnitude.
Put another way, among all signals with a given energy, the sparse ones are those
with small�p norm.

In this case we suppose the signal belongs to an�p norm ball of small radiusη,

�p[η] =
{
µ :n−1

∑ |µi |p ≤ ηp
}
,(4)

and define the minimax square error

Rn,2(�2[η]) = inf
µ̂

sup
µ∈�0[η]

n−1
n∑

i=1

E(µ̂i − µi)
2.

Again, consideringη → 0 asn → ∞, Donoho and Johnstone (1994) show that,
for p ≤ 2, Rn,2(�p[η]) is ηp(2 logη−p)1−p/2(1+ o(1)).

The estimator that attains the ideal performance over a nearly black class, or
over an�p ball for somep > 0, will in general depend onp and onη. The minimax
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rate is a benchmark for the estimation of signals that display the sparseness
characteristic of membership of an�p class. Our main theorem will show that,
under mild conditions, an empirical Bayes thresholding estimate will essentially
achieve the minimax rate overη simultaneously for allp in [0,2], including the
nearly black class as the casep = 0. In this sense it adapts automatically to the
degree and character of sparsity of the signal in the optimum possible way.

A particular minimax risk is the risk when there is no constraint at all on the
underlying signal. In this case the minimax asymptotic risk is a constant 1, for
example, achieved by the estimator that simply estimatesµi by Xi . We show that
the maximum possible risk of the empirical Bayes thresholding method, under
appropriate conditions, is also uniformly bounded, so the adaptivity is not bought
at the price of asymptotically unbounded risk for signals of certain kinds.

1.4. Robustness. While adaptivity of an estimator is obviously desirable, it is
also important that the estimator should be robust to assumptions made. There are
several aspects of such robustness that we demonstrate for the empirical Bayes
threshold estimator.

Assumptions on the signal: Although our procedure is derived from the sparse
prior model (2), we derive results under the much weaker assumption that the
underlying signal belongs to an appropriate�p ball.

Assumptions on the noise: For example, in Section 5 we relax the assumption
of Gaussian errors in order to investigate the relation between tails of the prior and
tails of the noise density. While, in their present form, some other aspects of our
subsequent discussion make use of Gaussian assumptions, the key properties of the
posterior median thresholding rule hold under considerably weaker assumptions.

Assumptions on the error measure: Rate-optimal risk bounds are established
for meanqth power error measures for allq ∈ (0,2], not just for the standard mean
square error. Excessive reliance on mean square error (q = 2) is often criticized,
for example, as not corresponding to visual assessments of error. Choices ofq < 2
will give greater (relative) weight to small errors, and in some sense, theq → 0
limit corresponds to counting the number of errorsI {µ̂i �= µi}.

Assumptions on the estimator itself : While the posterior median is the
motivating estimator for our work, the exact form of the thresholding rule is not
specified in our theoretical discussion. The key point is that the data dependent
threshold is chosen according to the sparse empirical Bayes prescription. Indeed,
the processing rule does not even have to be a strict thresholding rule. We obtain
good results for the posterior mean, which is not a thresholding rule but still
possesses an appropriate bounded shrinkage property; however, for full robustness
to the choice of error measure, strict thresholding rules have to be used.
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1.5. Related work. Abramovich, Benjamini, Donoho and Johnstone (2000)
show that the false discovery rate approach provides adaptive asymptotic mini-
maxity at the level of exact constants, as well as the rates of convergence that we
demonstrate for the empirical Bayes method. However, their results do not guaran-
tee robustness for denser signals, and there is some evidence of this nonrobustness
in the simulations we report in Section 3.

In a more restrictive scenario than ours, and mainly concentrating on the
application to wavelet smoothing, Zhang (2004) provides an asymptotically more
sharply adaptive empirical Bayes analysis. This analysis uses much more general
families of priors than our simple mixtures, and employs nonparametric infinite-
order kernel methods to estimate the corresponding marginal densities. Such
methods are complex to implement in software, and their sharp asymptotic
properties might not be apparent in moderate samples.

Mixture priors built from models such as (2) are quite common in Bayesian
variable selection problems: our interest was stimulated in part by analysis of a
proposal due to George and Foster (1998, 2000) which takesγ to be Gaussian.
For further references specifically in the wavelet setting, see the companion paper
Johnstone and Silverman (2004).

1.6. Outline of the paper. The paper now proceeds as follows. In Section 2 we
set out some key definitions and state the main theorem of the paper. To show that
the advantages of the estimate are not just theoretical, in Section 3 a simulation
study is presented, comparing the empirical Bayes method with a range of other
estimators, on cases covering both sparse and dense signals. In this study the
theoretical adaptivity and robustness properties of the empirical Bayes method are
clearly borne out. In very sparse cases the theory suggests that some asymptotic
improvement may be possible for very sparse signals, and in Section 4, we set
out a modification of our standard procedure, whereby the threshold is increased
by a suitable factor when the signal is estimated to be very sparse. We state a
result giving key properties of this procedure, and also present some discussion
and numerical results that suggest that, except when the sample size is very large
indeed, the modification may be of theoretical interest only.

We then move to the proofs of the main results. In Section 5 various detailed
preliminaries are considered, including the properties of the posterior rules under
more general noise distributions than the Gaussian. We then go on, in Section 6,
to consider risk bounds first for fixed thresholds, and then for data-dependent
thresholds. These bounds depend on tail probabilities for the random thresholds.
As a prerequisite to the control of these probabilities, Section 7 investigates
properties of the moment behavior of the marginal likelihood score function. In
Section 8 the proof of the main theorem is completed: the results of Section 7 yield
tail probabilities of the prior parameters chosen by the empirical Bayes method,
and, hence, of the corresponding random thresholds. These are fed into the bounds
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of Section 6 to complete the proof. Section 9 then contains the modifications to the
previous arguments needed to prove Theorem 2.

The conditions in the main theorem for the posterior mean do not cover as wide
a range of loss functions as for strict thresholding rules. In Section 10 it is shown
that this is an essential feature of the use of such a rule; for values ofq ≤ 1 the
posterior mean cannot yield an optimal estimate relative toqth power loss under
the same broad conditions.

2. Aspects of the sequence estimation problem. It is convenient to set
up some notational conventions. WhereAr and Br are numerical quantities
depending on a discrete or continuous indexr , we write Ar 
 Br to denote
0 < lim inf r Ar/Br ≤ lim supr Ar/Br < ∞, andAr ∼ Br to denoteAr/Br → 1.

We useφ and� for the standard normal density and cumulative, respectively, and
set�̃ = 1−�. When there is no confusion about the value of the prior weightw, it
may be suppressed in our notation. Usec andC to denote generic strictly positive
constants, not necessarily the same at each use, even within a single equation. We
adopt the convention thatc is an absolute constant, while the use ofC will indicate
a possible dependence on the prior density componentγ .

2.1. Assumptions on the prior. When using the mixture prior (2), we shall see
that there are considerable advantages in using a heavy-tailed density forγ , for
example, the Laplace density

γ (u) = 1
2 exp(−|u|)(5)

or the mixture density given by

(µ|� = θ) ∼ N(0, θ−1 − 1) with � ∼ Beta(α,1).(6)

The latter density forµ has tails that decay asµ−2α−1, so that, in particular, if
α = 1

2, then the tails will have the same weight as those of the Cauchy distribution.
To be explicit, this has

γ (u) =
∫ 1

0

1√
8π(1− θ)

exp
{
−1

2
u2θ(1− θ)−1

}
dθ.

In both cases (5) and (6) the posterior distribution ofµ given an observedX, and
the marginal distribution ofX, are tractable, so that the choice ofw by marginal
maximum likelihood, and the estimation ofµ by posterior mean or median, can be
performed in practice, using the approach outlined in Section 2.2. Details of the
relevant calculations for particular priors are given by Johnstone and Silverman
(2004).

Throughout the paper we will assume that the nonzero part of the prior,γ , has
a fixed unimodal symmetric density. In addition, we will assume that

sup
u>0

∣∣∣∣ d

du
logγ (u)

∣∣∣∣= � < ∞.(7)
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It follows from this assumption that, foru > 0, logγ (u) ≥ logγ (0) − �u, so that,
for all u,

γ (u) ≥ γ (0)e−�|u|.(8)

Thus, the tails ofγ have to be exponential or heavier, and the Gaussian model forγ

is ruled out. We will also assume that the tails ofγ are no heavier than Cauchy, in
the sense thatu2γ (u) is bounded over allu. Finally, we make the mild regularity
assumption that, for someκ ∈ [1,2],

γ (y)−1
∫ ∞
y

γ (u) du 
 yκ−1 asy → ∞.(9)

If γ has asymptotically exponential tails, thenκ = 1. If γ (y) 
 y−2 for largey,
then the tail probability is asymptotic toy−1 andκ = 2. Any Pareto tail behavior
gives the valueκ = 2.

2.2. Finding the estimate. Define the score functionS(w) = �′(w), and define

β(x) = g(x)

φ(x)
− 1 and β(x,w) = β(x)

1+ wβ(x)
,(10)

so that

S(w) =
n∑

i=1

g(Xi) − φ(Xi)

(1− w)φ(Xi) + wg(Xi)
=

n∑
i=1

β(Xi,w).(11)

Since by elementary calculusβ(x,w) is a decreasing function ofw for eachx,
the functionS(w) is also decreasing. Letwn be the weight that satisfiest (wn) =√

2 logn. If S(wn) > 0 andS(1) < 0, then the zero ofS in the range[wn,1] is the
estimated weight̂w. Furthermore, the sign ofS(w) for any particularw specifies
on which side ofw the estimateŵ lies. [Note thatS will be strictly decreasing
except in the pathological case whereβ(Xi) = 0 for all i, whenS(w) = 0 for all w
and the likelihood is constant.]

The marginal maximum likelihood approach can be used to estimate other
parameters of the prior. In particular, if a scale parametera is incorporated
by considering a prior density(1 − w)δ0(µ) + waγ (aµ), definega to be the
convolution of aγ (a ·) with the normal density. Then botha and w can be
estimated by finding the maximum over both parameters of

�(w,a) =
n∑

i=1

log{(1− w)φ(Xi) + wga(Xi)}.

If γ is the Laplace density, the tractability of the procedure is not affected by the
inclusion of a scale parameter into the prior. In this case if one is maximizing over
bothw anda, then a package numerical maximization routine that uses gradients
has been found to be an acceptably efficient way of maximizing�(w,a).
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In the current paper we will not develop theory for the case where additional
parameters ofγ are estimated, but we will include the possibility of estimating a
scale parameter in the simulation study reported in Section 3.

The R/S-PLUS software package EbayesThresh [Johnstone and Silverman
(2003)] includes a routine that performs empirical Bayes thresholding on a vector
of data. It allows the use of either the Laplace or the quasi-Cauchy prior, and
in the case of the Laplace prior, the scale parameter can if desired be chosen by
marginal maximum likelihood. Estimation may be carried out using the posterior
median or posterior mean rule, or by hard or soft thresholding. In addition, there
are several routines that will allow users to develop other aspects of the general
approach.

2.3. Shrinkage rules. We begin with some definitions, leading up to the
statement of the main theorem of the paper. A functionδ(x, t) will be called a
shrinkage rule if and only if δ(·, t) is antisymmetric and increasing on(−∞,∞)

for eacht ≥ 0, and

0 ≤ δ(x, t) ≤ x for all x ≥ 0.(12)

The shrinkage ruleδ(x, t) will be a thresholding rule with thresholdt if and only
if

δ(x, t) = 0 if and only if |x| ≤ t ,(13)

and will have thebounded shrinkage property relative to the threshold t if, for
some constantb,

|x − δ(x, t)| ≤ t + b for all x andt .(14)

For any given weightw, the posterior median will be a thresholding rule and
will have the bounded shrinkage property if|(logγ )′| is bounded; see Lemma 2(v).
In Section 5.5 it is demonstrated that the posterior mean for the same weight will
have the same bounded shrinkage property, but will not be a strict thresholding
rule. If the hyperparameterw is chosen by marginal maximum likelihood, both are
examples of rules with random thresholdt̂ = t (ŵ).

2.4. Risk measures and the main result. As already mentioned, we do not
restrict attention to losses based on squared errors, but we measure risk by the
average expectedqth power loss

Rq(µ̂,µ) = n−1
n∑

i=1

E|µ̂i − µi|q, 0< q ≤ 2.(15)

Note that the posterior median and mean estimators for prior (2) are Bayes rules
for theq = 1 andq = 2 error measures, respectively.
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We set two goals for estimation using the empirical Bayes threshold: “uniform
boundedness of risk” and “flexible adaptation.” To explain what we mean by
flexible adaptation, suppose that the signal is sparse in the sense of belonging to
an�p norm ball�p[η] as defined in (4). As before, we include nearly black classes
as the casep = 0. If the radiusη is small, we would hope that the estimation error
Rq(µ̂,µ) should be appropriately small. How small is benchmarked in terms of
the minimax risk

Rn,q(�p[η]) = inf
µ̂

sup
µ∈�p[η]

Rq(µ̂,µ).

Supposeη = ηn → 0 asn → ∞ but that, in the caseq > p > 0,

n−1/pη−1(logη−p)1/2 → 0,(16)

which preventsη from becoming very small too quickly. (Forp = 0 we require
nη → ∞.) Then we have the asymptotic relation

Rn,q(�p[ηn]) ∼ rp,q(ηn) asn → ∞,(17)

where

rp,q(η) =


ηq, 0< q ≤ p,

ηp(2 logη−p)(q−p)/2, 0< p < q,

η(2 logη−1)q/2, p = 0, q > 0.
(18)

The relation (17) is proved by Donoho and Johnstone (1994) for the casep > 0
andq ≥ 1, but only minor modifications are needed to extend the result to all the
cases we consider.

We can now state our main result, which gives comparable bounds on the risk
function of the empirical Bayes thresholding procedure. Apart from an error of
ordern−1(logn)2+(q−p)/2, the procedure uniformly attains the same error rate as
the minimax estimator for allp in [0,2] andq in (0,2].

THEOREM 1. Suppose that X ∼ Nn(µ, I ), that δ(x, t) is a thresholding rule
with the bounded shrinkage property and that 0 ≤ p ≤ 2 and 0 < q ≤ 2. Let ŵ be
the weight chosen by marginal maximum likelihood for a mixture prior (2) with γ

satisfying the assumptions set out in Section 2.1.Let t̂ = t (ŵ), where t (w) denotes
the threshold of the posterior median rule corresponding to the prior weight w.
Then the estimator µ̂i(x) = δ(xi, t (ŵ)) satisfies:

(a) (Uniformly bounded risk)There exists a constant C0(q, γ ) such that

sup
µ

Rq(µ̂,µ) ≤ C0.
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(b) (Adaptivity)There exist constants Ci(p, q, γ ) such that for η ≤ η0(p, q, γ )

and n ≥ n0(p, q, γ ),

sup
µ∈�p[η]

Rq(µ̂,µ) ≤ C1rp,q(η) + C2n
−1(logn)2+(q−p)/2.(19)

When q ∈ (1,2], these results also hold for the posterior mean estimate µ̃.

We emphasize that it is not necessary thatδ(x, t) be derived from the posterior
median or mean rule. It might be hard or soft thresholding or some other
nonlinearity with the stated properties. The point of the theorem is that empirical
Bayes estimation of the threshold parameter suffices with all such methods to
achieve both adaptivity and uniformly bounded risk.

If q > p > 0, then we necessarily havep < 2, and the first term of (19)
dominates ifηp > n−1 log2 n and the second ifηp < n−1 log2n. It follows that
the result is equivalent to

sup
µ∈�p[η]

Rq(µ̂,µ) ≤
{

Crp,q(η), if ηp ≥ n−1 log2 n,

Cn−1(logn)2+(q−p)/2, if ηp < n−1 log2 n.
(20)

Note thatηp ≥ n−1 log2 n is a sufficient condition for (16). For the nearly black
casep = 0, a similar argument leads to (20) withηp replaced byη.

If p ≥ q, the bound can be written as

sup
µ∈�p[η]

Rq(µ̂,µ) ≤ C max
{
ηq,n−1(logn)2+(q−p)/2}(21)

and the “break-even” point between the two bounds occurs at a value ofη

bounded above byηp = n−1 log2 n. It remains the case that forηp ≥ n−1 log2n

the supremum of the risk is bounded by a multiple ofrp,q(η). Therefore, for every
p andq in (0,2], and for the nearly black casep = 0, our estimator attains the
optimalq-norm risk (18), up to a constant multiplier, for all sufficiently largen and
for η satisfyingn−1 log2 n ≤ ηp ≤ η

p
0 if p > 0 andn−1 log2 n ≤ η ≤ η0 if p = 0.

3. Some simulation results. In order to investigate the capability of the
empirical Bayes method to adapt to the degree of sparsity in the true signal,
a simulation study was carried out. We approach the issue of sparsity directly,
by explicitly constructing sequences with a wide range of sparse behavior. The
S-PLUS code used to carry out the simulations is available from the authors’
web sites, enabling the reader both to verify the results and to conduct further
experiments if desired.

As an initial range of models for sparse behavior, we fixed the sample sizen

to 1000. We considered the estimation of a sequenceµ which hasµi = 0 except
in K randomly chosen positions, where it takes a specified valueµ0. For eachi,
a data valueXi ∼ N(µi,1) is generated, and various methods are used to estimate
the sequenceµ from the sequence ofXi .
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The parameterK controls the sparsity of the signal, and the values for which
results are reported are 5, 50 and 500—ranging from a very sparse signal, indeed,
to one in which half the data contain nonzero signal. The other parameterµ0 gives
the strength of the signal if it is nonzero. The values reported were 3, 4, 5 and 7,
bearing in mind that the noise isN(0,1). One hundred replications were carried
out for each of the values ofK andµ0, with the same 100,000 noise variables used
for each set of replications.

The posterior median estimator was used, with the prior parameters chosen by
marginal maximum likelihood for two different functionsγ for the nonzero part
of the prior. The double exponentialγ (u) = 1

2a exp(−a|u|) was used with both
the parametera and the prior weightw chosen by marginal maximum likelihood.
For comparison, the heavy-tailed mixture density with Cauchy tails, as defined
in (6) with α = 1

2, was also considered. For both choices of the functionγ , the
performance of the posterior median as a point estimator was studied. For double
exponentialγ with both parameters estimated, two other estimators were also
considered, the posterior mean, and hard thresholding with threshold equal to
that of the posterior median function. In addition, the effect of fixing the scale
parameter in the double exponential was investigated by considering four different
values ofa; in each casew was chosen by marginal maximum likelihood and the
posterior median estimator used.

These methods were compared with classical soft and hard universal threshold-
ing (using the threshold

√
2 logn ≈ 3.716) and with three other methods intended

to be adaptive to different levels of sparsity.
The SURE method [Donoho and Johnstone (1995)] aims to minimize the mean

squared error of reconstruction, by minimizing Stein’s unbiased risk estimate
for the mean squared error of soft thresholding. Thus, we chooset̂SURE as the
minimizer (within the range[0,

√
2 logn ]) of

Û (t) = n +
n∑
1

x2
k ∧ t2 − 2

n∑
1

I {x2
k ≤ t2}.

This is based on the unbiased risk estimator of Stein (1981) in the estimation of
a multivariate normal mean. In addition, a modification proposed by Donoho and
Johnstone (1995) aimed at gaining greater adaptivity is considered; this chooses
between the SURE and universal thresholds according to the result of a test for
sparsity; see also Section 6.4.2 of Bruce and Gao (1996) for details.

The false discovery rate (FDR) approach is derived from the principle of
controlling the false discovery rate in simultaneous hypothesis testing [Benjamini
and Hochberg (1995)] and has been studied in detail in the estimation setting, for
example, by Abramovich, Benjamini, Donoho and Johnstone (2000). Order the
data by decreasing magnitudes:

|x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(n)
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and compare to aquantile boundary:

tk = σz(q/2 · k/n),

where the false discovery rate parameterq ∈ (0,1/2]. Define a crossing index

k̂F = max
{
k : |x|(k) ≥ tk

}
and use this to set the thresholdt̂F = t

k̂F
. Various values for the rate parameterq

were used.
Block thresholding methods are designed to make use of neighboring informa-

tion in setting the threshold applied to each individual data point. We considered
the BlockThresh method of Cai (2002) and the hard thresholding versions of the
NeighBlock and NeighCoeff methods of Cai and Silverman (2001). The principle
of all these methods is to consider the data in blocks. BlockThresh thresholds all
the data in each block by reference to the sum of squares of the data in the block.
The other two methods use overlapping blocks and keep or zero the data in the
middle of each block according to the sum of squares over the whole block. See
the original papers for more details.

For each method considered, for each replication the total squared error of the
estimation

∑
(µ̂i − µi)

2 was recorded, and the average over 100 replications is
reported. The square error of every replication is available from the authors’ web
sites for any reader who wishes to examine the results in more detail.

Some results are given in Table 1 and the following conclusions can be drawn:

• The Cauchy method is always nearly, but not quite, as good as the exponential
method. Our theory is not sensitive enough to discriminate between the two
methods.

• In general, the posterior mean does not perform quite as well as the posterior
median.

• It is better to use the posterior median function itself rather than hard
thresholding with the resulting threshold.

• In the caseµ0 = 7 where the nonzero signal is very clearly different from zero,
hard thresholding with the universal threshold performs somewhat better than
the exponential method, but in other cases, particularly with moderate or large
amounts of moderate sized signal, it can give disastrous results.

• Estimating the scale parametera is probably preferable to using a fixed value,
though it does lead to slower computations. In general, the automatic choice is
quite good at tracking the best fixed choice, especially for a sparse and weak
signal.

• SURE is a competitor when the signal size is small (µ0 = 3), but performs
poorly whenµ0 is larger, particularly in the sparser cases. The attempt to make
SURE more adaptive is counterproductive.

• If q is chosen appropriately, FDR can outperform exponential in some cases, but
the choice ofq is crucial and varies from case to case. With the wrong choice
of q, the performance of FDR can be poor.
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TABLE 1
Average of total squared error of estimation of various methods on a mixed signal of length 1000.
A given number of the original signal values is set equal to a nonzero value, and the remainder are
zero. In each column those entries that outperform the MML /exponential/posterior median method

are underlined. Those that outperform by more than about 10% are set in bold type. The row
marked “postmean” refers to the posterior mean using the double exponential model. The

row “exphard” refers to hard thresholding using the threshold given by the posterior median
of the marginal maximum likelihood choice within the double exponential model. The rows for

fixed values of a correspond to the posterior median where only the weight w is chosen
by MML and the scale parameter a is fixed at the given value

Number nonzero 5 50 500

Value nonzero 3 4 5 7 3 4 5 7 3 4 5 7

Exponential 36 32 17 8 214 156 101 73 857 873 783 658

Cauchy 37 36 18 8 271 176 103 77 922 898 829 743
Postmean 34 32 21 11 201 169 122 85 860 888 826 708
Exphard 51 43 22 11 273 189 130 91 998 998 983 817

a = 1 36 32 19 15 213 166 142 135 994 1099 1126 1130
a = 0.5 37 34 17 10 244 158 105 92 845 878 884 884
a = 0.2 38 37 18 7 299 188 95 69 1061 730 665 656
a = 0.1 38 37 18 6 339 227 102 60 1496 798 609 579

SURE 38 42 42 43 202 209 210 210 829 835 835 835
Adapt 42 63 73 76 417 620 210 210 829835 835 835

FDRq = 0.01 43 51 26 5 392 299 125 55 2568 1332 656 524
FDRq = 0.1 40 35 19 13 280 175 113 102 1149 744 651 644
FDRq = 0.4 58 58 53 52 298 265 256 254 919 866860 860

BlockThresh 46 72 72 31 444 635 600 293 1918 1276 1065 983
NeighBlock 47 64 51 26 427 543 439 227 1870 1384 1148 972
NeighCoeff 55 51 38 32 375 343 219 156 1890 1410 1032 870

Universal soft 42 63 73 76 417 620 720 746 4156 6168 7157 7413
Universal hard 39 37 18 7 370 340 163 52 3672 3355 1578 505

• The block thresholding methods do not perform very well. In the companion
paper [Johnstone and Silverman (2004)] block thresholding methods are also
compared with empirical Bayes methods for the thresholding of wavelet
coefficients, and the difference in performance is not so great. This is
presumably because there is some correlation among the positions in which the
wavelet coefficients are effectively nonzero. By contrast, in the test signals under
current consideration, the nonzero positions are chosen by uniform random
sampling without replacement.
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• The median standard error of the entries of the table with 5 nonzero coefficients
is around 1, with corresponding figures of about 3 for those with 50 nonzero
coefficients, and 5 for the entries with 500 nonzero coefficients. Generally
speaking, the standard errors tend to be smaller for the empirical Bayes methods
than for the other methods considered; the false discovery rate and block
thresholding methods have errors that have variance two to three times as large
as the double exponential MML posterior median method, and for the universal
thresholding methods the variance is higher by a factor of about 5. This is an
indication of the stability of the empirical Bayes methods.

• Not surprisingly, given that the same data are used for all cases, the standard
error of the comparison between the first method and the other methods in
the table is typically smaller than that for individual entries taken alone.
The comparison standard error has a median value of 0.8 for the sparsest
signals and about 2 for the signals with 50 and 500 nonzero elements. In
general, comparisons between empirical Bayes methods have somewhat smaller
standard errors than those involving other approaches. Only about 10% of the
comparisons between the top line and other entries in the table are within 3
standard errors of zero, and all the comparisons that are numerically more than
trivial are clearly statistically significant on the basis of the study we have
carried out.

The two SURE methods, the FDR method withq = 0.01 or q = 0.4, and the
two universal thresholding methods all have the property that there is a case in
which their measured error is around three or more times that of the exponential
method, while never, or hardly ever offering any substantial improvement. Hence,
all are much worse at adapting to different patterns of sparsity. The FDR method
with q = 0.1 is a better competitor, but only wins in four of the twelve cases. The
best improvement over exponential is 651/783, a 17% improvement, while the
best improvement of the exponential over the FDR method is 73/102, nearly 30%.
Taking both adaptivity and overall performance into account, the exponential is
clearly the estimator of choice.

In order to quantify the comparison between the various methods, for each of
the models considered define theinefficiency of a method A for a particular model
B to be

100×
[

average error for method A applied to data from model B

minimum error for any method for model B
− 1

]
.

Twelve different models are considered in Table 1, and summary statistics for
the twelve inefficiency values for the various methods are given in Table 2. The
posterior median of the exponential model with estimated scale parameter is
the best on nearly every measure: the maximum inefficiency of the Cauchy and
exponential (a = 0.2) methods is slightly smaller, but both of these methods are
decisively beaten on the median inefficiency and are also equaled or beaten on the
other two measures.
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TABLE 2
Comparison of methods: for each method the stated

median, mean, maximum and tenth largest
inefficiency is over the twelve cases

considered in Table 1

median mean 10th max

Exponential 7 17 30 52

Cauchy 19 25 42 47
Postmean 22 27 40 95
Exphard 37 46 62 93

a = 1 35 57 124 165
a = 0.5 15 29 75 84
a = 0.2 18 19 30 48
a = 0.1 14 24 45 80

SURE 35 121 151 676
Adapt 103 223 303 1282

FDRq = 0.01 44 56 91 210
FDRq = 0.1 18 35 39 139
FDRq = 0.4 71 169 214 847

BlockThresh 129 228 456 531
NeighBlock 119 181 335 376
NeighCoeff 106 136 131 486

Universal soft 529 643 1282 1367
Universal hard 50 100 159 359

4. Modifying the threshold for very sparse signal. In this section we
discuss a possible modification of the estimator, which allows a reduction in
error in very sparse cases, when the overwhelming majority of components have
essentially zero signal. Our original motivation for this arises from the use of
wavelet methods to estimate derivatives, where it was shown by Abramovich and
Silverman (1998) that the appropriate universal threshold is not

√
2 logn, but is a

multiple of this quantity. The basic notion of the modified estimator is this: if the
thresholdt̂ = t (ŵ) estimated by the marginal maximum likelihood method is at or
near the universal threshold, we replace it by a higher threshold.

4.1. Definition of the modified estimator and theoretical discussion. To
be precise, sett2

n = 2 logn − 5 log logn. Let A ≥ 0 be fixed and puttA =
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√
2(1+ A) logn. Then define

t̂A =
{

t̂ , if t̂ ≤ tn,

tA, if t̂ > tn.

With this modification of the threshold, we can reduce the order of magnitude
of the part of the error in Theorem 1, as follows.

THEOREM 2. Under the assumptions of Theorem 1, let µ̂A be defined by
µ̂A,i(x) = δ(xi, t̂A). Define RA

p,q(η) = supµ∈�p[η] Rq(µ̂A,i,µ). Then, for suitable
constants C,

RA
p,q(η) ≤ C for all η(22)

and, for all sufficiently large n and for suitable η0,

RA
p,q(η) ≤ C max

{
rp,q(η), n−1−A(logn)(q−1)/2} for η ≤ η0.(23)

For q > p > 0 we also have, for sufficiently large n,

RA
p,q(η) ≤ C max

{
n(q−p)/pηq, n−1−A(logn)(q−1)/2}

(24)
for ηp < n−1(logn)p/2.

The ramifications of this theorem in the wavelet context are explored by
Johnstone and Silverman (2004), but it has independent interest in exposing the
different regimes for adaptive estimation, especially in the caseq > p. Note first
that conclusion (22) is the same as for the unmodified estimator, and in the range
ηp ≥ n−1 log2 n for p > 0 (η ≥ n−1 log2 n for p = 0) so is (23), because in that
range the dominating term in the error isrp,q(η) for both estimators.

For q > p > 0, defineη
p
1 = n−1(logn)p/2. For η > η1, rp,q(η) is bounded

by a multiple ofn(q−p)/pηq and so (24), in fact, holds for allη < η0, but only
gives a stronger result than (23) ifη < η1. This is not in contradiction with the
result (17) of Donoho and Johnstone (1994) because the condition (16) can be
rewritten precisely as

rp,q(η) = o
(
n(q−p)/pηq

)
,

or equivalently,η/η1 → ∞.

The three bounds in Theorem 2 may be considered as corresponding to three
different zones of estimation. Ifη > η0, then the signal is insufficiently sparse for
any order of magnitude advantage to be gained by the use of our thresholding
method. In the zoneη1 ≤ η ≤ η0, a suitable thresholding method allows for
considerable improvement over the use of a “classical” estimator. Finally, in the
extremely sparse zoneη < η1, theη-dependent part of the error achieved by our
estimator compares to that given by the estimator that simply returns the value
zero.
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Note finally that for the standard estimator all theη-dependent risks in the
zoneηp < n−1 log2n (for p > 0) are dominated by the termn−1(logn)2+(q−p)/2

in the error bound. Sincen−1 log2 n > η
p
1 , the zone wheren−1(logn)2+(q−p)/2

dominates includes the very sparse zone, and so there is no point in pursuing
the kind of adaptivity within the very sparse zone achieved asymptotically by the
modified estimator.

4.2. Practicalities. Both theory and intuition suggest that the modified esti-
mator may only be advantageous for very large values ofn, where 5 log logn is
small relative to 2 logn. Otherwise, data that ought to be thresholded with moder-
ate thresholds will essentially be zeroed instead. For example, forn = 106, we have
5 log logn = 13.13 and 2 logn = 27.63. Hence, if the squared estimated threshold
in the standard estimator is any more than about half the universal threshold, the
modification will use a much larger threshold, thereby causing problems for sig-
nals that are nowhere near the very sparse zone.

A version of the modified estimator was investigated by simulation on the same
models as considered in Table 1. The Laplace prior with both parameters estimated
by marginal maximum likelihood was used. If the estimated threshold was less
than 95% of the universal threshold, the posterior median estimate was used.
Otherwise, we used hard thresholding with threshold 2

√
log1000, corresponding

to A = 1.
The only models for which the estimates were affected were those with only 5

nonzero entries. In each case the average squared error wasincreased by the use of
the modified estimator, respectively to 41, 40, 26 and 13, as compared to 36, 32, 17
and 8, for the cases where the nonzero parameter value was 3, 4, 5 and 7. Reducing
the number of nonzero parameters to 1 did not change the relative performance
of the unmodified and modified methods, unless the nonzero parameter value
was also increased. The only case tested where the modified method improved
the performance was where there was a single nonzero parameter value with
value 10. In this case the unmodified estimator has an average squared error (over
100 simulations) of about 2.4, while the modified estimator has a mean squared
error of just over 1. As might be expected, the modified estimator is only clearly
advantageous in very sparse cases where nonzero values of the parameters are
well above the universal threshold—and in these cases the error of the unmodified
method is already very small, so any improvement may be large in relative terms
but small in absolute terms.

5. Proofs of results: some detailed preliminaries. The remainder of the
paper is devoted to the proofs of the theorems stated above. We begin in this
section with a detailed discussion of a number of topics that will be useful later
in the proof. In some cases these also cast a broader light on the empirical Bayes
thresholding procedure. Our proofs cover the cases of nearly black and strong�p

constraints on the underlying parameter vectorµ. We conjecture that similar



1616 I. M. JOHNSTONE AND B. W. SILVERMAN

arguments can be used for weak�p constraints too, but the full details are left
for future investigation.

5.1. Properties and definitions for the mixture model. The arguments of this
section and the next do not strongly depend on the precise assumption of Gaussian
errors in model (1). Indeed, relaxing this assumption sheds some light on the
robustness of our results to model formulation; see Remark 1.

For the moment then, we assume that in model (1) the noise coefficientsεi

are i.i.d. from a symmetric Polya frequencyPF3 density ϕ. Polya frequency
functions are discussed in detail by Karlin (1968), and from a statistical perspective
by Brown, Johnstone and MacGibbon (1981). The defining property of aPF3
functionϕ is that fory1 < y2 < y3 andz1 < z2 < z3,

det
1≤i,j≤3

[ϕ(yi − zj )] ≥ 0.(25)

Examples of such densities include the Gaussian densityφ (observe the distinction
of notation), as well as the somewhat heavier tailed Laplace density1

2e−|x| and
logistic densitye−x/(1 + e−x)2. The PF3 assumption implies thatϕ is log-
concave, and hence there existsρ > 0 such that

ϕ(y)eρy is decreasing for sufficiently largey.(26)

Thus, the tails ofϕ cannot be heavier than exponential.
For this section only, we also modify assumption (7) on the prior to require only

thatγ (u) > 0 for all u and the existence of positive� andM such that

sup
u>M

∣∣∣∣ d

du
logγ (u)

∣∣∣∣≤ � < ρ.(27)

[In the Gaussian error case,ϕ = φ, this places no essential constraint on�, because
we can chooseρ to be arbitrarily large.] Assumptions (26) and (27) taken together
imply that the tails of the priorγ are heavier than those of the noise density.

The first part of the following lemma shows that the convolutionγ � ϕ inherits
properties assumed ofγ .

LEMMA 1. Assume (26) and (27),and let g = γ � ϕ. Then

g(x) 
 γ (x),(28)

(1+ u2)g(u) is bounded for all u,(29)

g(y)−1
∫ ∞
y

g(u) du 
 yκ−1,(30)

lim sup
u→∞

|(logg)′(u)| ≤ �(31)

and g/ϕ is strictly increasing from (g/ϕ)(0) < 1 to +∞ as x → ∞.
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PROOF. It follows from (27) thate�yγ (y) is an increasing function ofy for
y > M , and sinceγ is unimodal, that for allx andy in [0,M],

e�xγ (x) ≤ Ce�yγ (y)

for someC > 1. Combining these two observations implies that, given anyx > 0
andu > 0,

γ (x + u) ≥ C−1e−�uγ (x) and γ (x − u) ≤ Ce�uγ (x).(32)

It follows thatg(x) 
 γ (x), since

g(x) >

∫ ∞
0

ϕ(u)γ (x + u)du ≥ C−1γ (x)

∫ ∞
0

e−�uϕ(u) du

and

g(x) =
∫ ∞

0
ϕ(u){γ (x + u) + γ (x − u)}du ≤ Cγ (x)

∫ ∞
0

(1+ e�u)ϕ(u) du,

and the right-hand integrals are finite from (26) because� < ρ. Properties
(29) and (30) follow immediately from (28) and the assumptions onγ .

For (31), setting�∞ = sup|(logγ )′|, we have|γ ′(u)| ≤ �γ (u) for u > M and
|γ ′(u)| ≤ �∞γ (u) for u < M . Therefore,

|(logg)′(x)| = |g′(x)|/g(x) =
∣∣∣∣ ∫ ∞

−∞
ϕ(x − u)γ ′(u) du

∣∣∣∣/g(x)

≤ �

∫ ∞
M

ϕ(x − u)γ (u) du/g(x)+ �∞
∫ M

−∞
ϕ(x − u)γ (u) du/g(x)

≤ � + �∞ρ(x),

where from (32)

ρ(x) =
∫ ∞
x−M

γ (x − v)ϕ(v) dv/g(x)

≤ C[γ (x)/g(x)]
∫ ∞
x−M

e�vϕ(v) dv → 0 asx → ∞.

To demonstrate thatg(x)/ϕ(x) is increasing on[0,∞), let ru(x) = [ϕ(x +u)+
ϕ(x − u)]/ϕ(x). Using the symmetry ofγ , we have the representation

g(x)

ϕ(x)
=

∫ ∞
0

ru(x)γ (u) du,(33)

and so it will suffice to show that, for eachu > 0, ru(x) is an increasing function
of x on[0,∞). Suppose thatx2 > x1 ≥ 0 and consider the defining inequality (25),
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with {yi} = {−x1, x1, x2} and{zi} = {−u,0, u}. Subtracting the second row in the
determinant from the first and exploiting symmetry ofφ gives

0 ≤ [ϕ(−x1 + u) − ϕ(x1 + u)]
∣∣∣∣∣∣

1 0 −1
ϕ(x1 + u) ϕ(x1) ϕ(x1 − u)

ϕ(x2 + u) ϕ(x2) ϕ(x2 − u)

∣∣∣∣∣∣
= ϕ(x1)ϕ(x2)[ϕ(−x1 + u) − ϕ(x1 + u)][ru(x2) − ru(x1)].

Sinceϕ > 0 andϕ(x1 + u) < ϕ(−x1 + u), this implies thatru(x2) ≥ ru(x1), as
required.

Finally, to show thatg(x)/φ(x) → ∞ asx → ∞, we have, for anyx > 1, using
the result (8),

g(x) ≥
∫ 1

0
γ (x − v)φ(v) dv ≥ γ (x)

∫ 1

0
φ(v) dv ≥ Ce−�|x|. �

Posterior odds. Write Odds(A|B) for P (A|B)/[1 − P (A|B)]. Given w,
definew̃(x,w) to be the posterior weightP (µ �= 0|X = x), so that the posterior
odds Odds(µ �= 0|x) are given by

�(x) = �(x,w) = w̃(x,w)

1− w̃(x,w)
= w

1− w

g

ϕ
(x).

Define w0 = (ϕ/g)(0)/[1 + (ϕ/g)(0)], so that �(0,w0) = 1. For fixed w,
Lemma 1 shows that�(x) increases from 1 to∞, so that ifw < w0, then there
existsτ (w) > 0 for which�(τ(w),w) = 1. If we defineτ (w) = 0 for w ≥ w0, it
follows thatw → τ (w) is a continuous decreasing function ofw ∈ [0,1]. We will
repeatedly use the functionτ in our subsequent argument.

A simple consequence of these definitions is that forw1 < w0,

�
(
τ (w1),w

) = w

1− w

1− w1

w1
≥ 1, if w ≥ w1.(34)

Finally, for x > τ , we clearly have

�(x) = �(τ)exp
∫ x

τ
{(logg)′ − (logϕ)′}.(35)

5.2. Properties of the posterior median.

LEMMA 2. Assume (26) and (27).The posterior median µ̂(x;w) is

(i) monotone in x: if x1 ≤ x2, then µ̂(x1) ≤ µ̂(x2),
(ii) antisymmetric: µ̂(−x) = −µ̂(x),
(iii) a shrinkage rule: 0 ≤ µ̂(x) ≤ x for x ≥ 0,

(iv) a threshold rule: there exists t (w) > 0 such that µ̂(x) = 0 if and only if
|x| ≤ t (w),
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(v) bounded shrinkage: there exists a constant b such that for all w,x,

|µ̂(x;w) − x| ≤ t (w) + b.

REMARK 1. The lemma demonstrates that the posterior median has all the
properties needed for the estimation error bounds that will be derived for Gaussian
errors in the subsequent sections. The bounded shrinkage property essentially
means that rare large observations are more or less reliably assigned to a sparse
signal rather than noise in our Bayesian model; conditions (26) and (27) indicate
that a sufficient condition for this is that the tails of the prior be heavier than
the tails of the noise distribution. At least in this situation, one may expect the
qualitative features of our theory to remain true; it is left to future work to
investigate whether there are differences in quantitative thresholds and, perhaps,
in rates of convergence.

PROOF OF LEMMA 2. Suppose thatµ has general prior densityf , with
respect to a suitable dominating measure. Then the posterior density

f (µ|x) = C(x)ϕ(x − µ)f (µ),

so that, for anyu < v andx2 > x1,

f (v|x2)f (u|x1)

f (u|x2)f (v|x1)
= ϕ(x2 − v)

ϕ(x2 − u)

ϕ(x1 − u)

ϕ(x1 − v)
≥ 1,

so that

f (v|x1)f (u|x2) ≤ f (u|x1)f (v|x2).

Now, for anym, integrate with respect to the dominating measure over−∞ < u ≤
m andm < v < ∞ to obtain

P (µ > m|x1)P (µ ≤ m|x2) ≤ P (µ > m|x2)P (µ ≤ m|x1),

so that the odds thatµ ≤ m are greater forX = x1 than forX = x2. Letting µ̂(x)

be the posterior median ofµ, givenX = x, it follows that µ̂(x2) ≥ µ̂(x1), so the
posterior median is a monotonic function ofx.

Return now to the mixture prior (2). The antisymmetry of the posterior median
is immediate from the symmetry of the prior and the error distribution. Ifw > 0,
the probabilitiesP (µ < 0|X = x) andP (µ = 0|X = x) will be nonzero for allx
and each will vary continuously as a function ofx. By symmetry,P (µ < 0|X =
0) = P (µ > 0|X = 0) < 1

2 and so there will be a range of values ofx containing 0
for which the posterior median is 0. By symmetry and the monotonicity ofµ̂ there
will be some thresholdt (w) such that the posterior median is zero if and only
if −t ≤ x ≤ t. The posterior median ofµ, given X = τ , is necessarily zero, so
τ (w) < t(w).
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Supposex > 0. By the assumption thatγ is symmetric and unimodal,
γ (x − v) ≥ γ (x + v) for all v ≥ 0. Hence, multiplying byϕ(v)/g(x), if x > 0,

f (x − v|X = x,µ �= 0) ≥ f (x + v|X = x,µ �= 0) for all v ≥ 0.(36)

Integrating over 0< v < ∞,

P (µ ≤ x|X = x,µ �= 0) ≥ P (µ > x|X = x,µ �= 0).

Therefore,

P (µ > x|X = x) ≤ P (µ > x|X = x,µ �= 0) ≤ 1
2,

and so the posterior median satisfiesµ̂(x) ≤ x for all x > 0. By the monotonicity
of µ̂ we have the shrinkage property 0≤ µ̂(x) ≤ x for all x > 0; by symmetry it is
also the case that 0≥ µ̂(x) ≥ x for x < 0.

Finally we show that the maximum amount of shrinkage is appropriately
bounded: the approach is to find a constanta such that for all sufficiently largex,

P (µ > x − a|X = x)

= P (µ > x − a|X = x,µ �= 0)P (µ �= 0|X = x) > 1
2.

(37)

The termP (µ > x − a|X = x,µ �= 0) does not depend onw, and we consider
it first. SetB = sup|u|≤M γ (u)e�u/γ (M)e�M . For u ≤ 0 and foru ≥ M , u →
γ (u)e�u is increasing and so for anyc > M we have

Odds(µ > c|X = x,µ �= 0)

=
∫∞
c γ (u)ϕ(x − u)du∫ c
−∞ γ (u)ϕ(x − u)du

≥
∫∞
c e−�uϕ(u − x) du

B
∫ c
−∞ e−�uϕ(u − x) du

.
(38)

Since� < ρ, we have
∫∞
−∞ e−�vϕ(v) dv < ∞, and so there is a valuea such that∫ ∞

−a
e−�vϕ(v) dv > 3B

∫ −a

−∞
e−�vϕ(v) dv.(39)

As long asx > a + M , from (38) and (39) we will then have

Odds(µ > x − a|X = x,µ �= 0) ≥
∫∞
−a e−�vϕ(v) dv

B
∫ −a
−∞ e−�vϕ(v) dv

> 3,(40)

so that

P (µ > x − a|X = x,µ �= 0) > 3
4.(41)

Now setε = (ρ −�)/2. Taking into account (26), (27) and (31), chooseτ1 ≥ M

large enough so that for|u| ≥ τ1 we have

(logg)′(u) ≥ −� − ε, (logϕ)′(u) ≤ −ρ.(42)



EMPIRICAL BAYES FOR SPARSE SEQUENCES 1621

Choosew1 so thatτ (w1) = τ1, and definec1 = 2(ρ−�)−1 log 2. Supposew ≤ w1,
so thatτ (w) ≥ τ1. It follows from (35) and (42) that, ifx > τ(w) + c1, then

Odds(µ �= 0|X = x) = �(x,w) ≥ �
(
τ (w),w

)
e(ρ−λ)(x−τ)/2 ≥ 2.(43)

On the other hand, ifw > w1 we will have�(x,w) > �(x,w1) ≥ 2 as long as
x > τ1 + c1. In either case, it follows thatP (µ �= 0|X = x) ≥ 2

3.

Combining this bound with (41), it follows that (37) is guaranteed whenever
x ≥ max{a+M,τ(w)+c1, τ1+c1}; otherwise, all we can say is thatx−µ̂(x) ≤ x.

Hence, for allx > 0 andw ∈ [0,1],
x − µ̂(x) ≤ max{a, a + M,τ(w) + c1, τ1 + c1} ≤ τ (w) + b

with b = τ1 + a ∨ c1, which yields the required shrinkage bound sinceτ (w) ≤
t (w). �

5.3. Properties of posterior median for Gaussian errors. For the remainder of
the paper we specialize to the Gaussian error densityφ in model (1) and to the
global boundedness assumption (7) on the logarithmic derivative of the priorγ .
Property (31) is then strengthened to

sup
∣∣∣∣ d

du
logg(u)

∣∣∣∣ ≤ � < ∞.(44)

Whenϕ = φ, the representation (33) yields

1+ β(y) = (g/φ)(y) = 2
∫ ∞

0
cosh(yt)e−t2/2γ (t) dt.(45)

Since coshyt is an even convex positive function for eacht , it follows that 1+β(y)

is also. Also, from (45) 0< 1 + β(0) < 1, so that−1 < β(0) < 0. We denote
by β−1 the positive inverse ofβ, defined on the interval[β(0),∞). We also have
the following simple bounds:

|β(y)| ≤ C(g/φ)(y), for all y,(46)
1
2(g/φ)(y) ≤ β(y) ≤ (g/φ)(y), if y > β−1(1).(47)

For a lower bound on the second derivative ofβ, from (45) we have, fory > 0,

β ′′(y) =
∫ ∞
−∞

t2 cosh(yt)e−t2/2γ (t) dt >

∫ ∞
−∞

t2e−t2/2γ (t) dt = β ′′(0) > 0.(48)

We now develop an explicit form for the equation defining the thresholdt (w).
Defineg+(x) = ∫∞

0 φ(x −µ)γ (µ)dµ andg−(x) = ∫ 0
−∞ φ(x −µ)γ (µ)dµ. Then

P (µ > 0|X = x) = wg+(x)

(1− w)φ(x) + wg(x)
.

Therefore, the thresholdt satisfies

2wg+(t) = (1− w)φ(t) + wg(t).(49)
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Dividing by wφ(t) and rearranging yields

1

w
= 1+ g+(t) − g−(t)

φ(t)
= 1+ 2

∫ ∞
0

sinh(tµ)e−µ2/2γ (µ)dµ.(50)

This equation shows that the posterior median thresholdt (w) is continuous and
strictly decreasing from∞ atw = 0 to zero atw = 1.

5.4. The link between threshold and pseudothreshold. It will be useful to find
bounds on the threshold of the posterior median function in terms of the weightw.
It will be convenient to define thepseudothreshold ζ(w) by

ζ = β−1(w−1).

The following result sets out relations between the pseudothresholdζ(w) and the
true thresholdt (w) of the posterior median function. In most of our discussion the
dependence oft andζ on w is not expressed explicitly, and, indeed, any two oft ,
ζ andw can be regarded as functions of the third.

LEMMA 3. For all w ∈ (0,1],
1+ β{t (w)} < β{ζ(w)} < 2+ β{t (w)}.(51)

PROOF. The bounds are a straightforward consequence of (50) definingt (w),
which may be rewritten in the form

β(ζ ) = β(t) + 2− 2g−(t)/φ(t).

Clearly,

0 < g−(t) =
∫ 0

−∞
φ(t − µ)γ (µ)dµ < φ(t)

∫ 0

−∞
γ (µ)dµ = 1

2φ(t).

Thus, 0< 2g−(t)/φ(t) < 1, which establishes (51).�

From the properties ofβ we can derive two important corollaries. First, we have
0 ≤ t < ζ for all finite t andζ , so that

t2 < ζ 2.(52)

Second, from the property (48) thatβ ′′(y) > C for all y, it follows that, fory > 0,
β ′(y) > Cy. Therefore,

d

du
β
(√

u
) = 1

2
u−1/2β ′(√u

)
>

1

2
C,

so that

β(ζ ) − β(t) = β
(√

ζ 2 )− β
(√

t2
)
> 1

2C(ζ 2 − t2).
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Therefore,

ζ 2 − t2 < 2C−1{β(ζ ) − β(t)} ≤ 4C−1,(53)

so (for a different value ofC) −t2 < −ζ 2 + C and so finally, for some constant
C > 0,

φ(t) < Cφ(ζ ).(54)

5.5. Properties of the posterior mean. In this section we consider the effects of
using the posterior mean as an estimate instead of the posterior median. We begin
by considering the behavior of the posterior distribution conditional onµ �= 0,
which is also the unconditional casew = 1. Given anyx, define

µ̃1(x) = Epost(µ|X = x,µ �= 0) =
∫∞
−∞ uφ(x − u)γ (u) du∫∞
−∞ φ(x − u)γ (u) du

.

A simple argument using the propertyφ′(t) = −tφ(t) shows thatµ̃1(x) = x +
(logg)′(x), and, hence, using the bound (44),

|µ̃1(x) − x| ≤ �.(55)

Definingµ̃(x,w) to be the posterior meanE(µ|X = x), we then have

µ̃(x,w) = P (µ �= 0|X = x)E(µ|X = x,µ �= 0) = w̃(x,w)µ̃1(x).(56)

From (36), ifx > 0, the posterior meañµ1(x) ≤ x; by a similar argument, for
v > 0,

fµ(v|X = x,µ �= 0) > fµ(−v|X = x,µ �= 0)

and soµ̃1(x) > 0. Also, by a simple extension of the corresponding argument at
the beginning of Section 5.2,̃µ1 is an increasing function ofx. Hence,µ̃1 is a
shrinkage rule, and from (56), so isµ̃(·,w).

For eachx the the posterior weight̃w(x,w) is monotone increasing inw; for
x > 0 it follows from (56) that so also is the posterior meanµ̃(x,w).

Bounded shrinkage properties of the posterior mean. From (55) and (56)
we have

x − µ̃(x,w) = (1− w̃)x − w̃(logg)′(x).

Choosew1 so thatτ (w1) = �, and letτ2 = τ (w ∧ w1) ≥ �. Using (35) and (44),
we have

�(x) ≥ exp
{∫ x

τ2

(u − �)du

}
≥ exp

{∫ x

τ2

(u − τ2) du

}
= exp

{1
2(u − τ2)

2}.
From (34),�(τ2) = �(τ(w ∧ w1),w) ≥ 1 and so forx > τ2,

1− w̃ ≤ 1/�(x) ≤ exp
{−1

2(x − τ2)
2}.
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Combining this with bound (44), we obtain forx > τ2,

x − µ̃(x,w) ≤ (x − τ2)(1− w̃) + τ2 + |(logg)′(x)|
≤ (x − τ2)exp

{−1
2(x − τ2)

2}+ τ2 + � ≤ e−1/2 + 2� + t (w).

If 0 ≤ x ≤ τ2, then trivially x − µ̃ ≤ x < τ2 < � + t (w), so that we have shown
that the posterior mean is a bounded shrinkage rule relative to the thresholdt (w).

5.6. Bounds for integrals of exponential growth.

LEMMA 4. If (logh)′(z) ≥ (logk)′(z) for z ∈ [ζ1, ζ ], then

{h(ζ )}−1
∫ ζ

ζ1

h(z) dz ≤ {k(ζ )}−1
∫ ζ

ζ1

k(z) dz

≤
{

γ −1[1− e−γ (ζ−ζ1)
]
, if k(z) = eγ z,

4(γ ζ )−1, if k(z) = eγ z2−αz,

where in the second case we require also that ζ1 ≥ 0 and γ ζ ≥ max(α,0).

PROOF. The first inequality is seen easily by writingh(z)/h(ζ ) =
exp{−∫ ζ

z (logh)′}, applying the assumed inequality and integrating. The second

inquality for k(z) = eγ z is trivial. Fork(z) = eγ z2−αz, we first note that change of
scale shows that it suffices to prove the bound forγ = 1/2. Replacingζ1 by 0 and
completing the square, we then find that the desired bound is implied by∫ ζ−α

−α
ev2/2dv ≤ 4

ζ
e(ζ−α)2/2.(57)

If ζ > 2 max(α,0), thenα < ζ − α and the integral on the left is bounded by
2
∫ ζ−α
0 ev2/2dv. Equation (57) now follows from the inequalities

e−w2/2
∫ w

0
ev2/2dv =

∫ w

0
e−(w−v)(w+v)/2dv

≤
∫ w

0
e−(w−v)w/2dv ≤

∫ ∞
0

e−xw/2dx = 2/w. �

COROLLARY 1. If g = γ � φ and γ satisfies (7), then∫ ζ

0
(g/φ)q(x)φ(x − µ)dx ≤ Hq(ζ ;�,µ)(g/φ)q(ζ )φ(ζ − µ),(58)

where

Hq(ζ ;�,µ) =


8/[(q − 1)ζ ], if q > 1, ζ > 2q�/(q − 1),

ζ, if q = 1, µ > �,

(e�ζ − 1)/�, if q = 1, 0≤ µ ≤ �.

(59)
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PROOF. Let h(x) = (g/φ)q(x)φ(x − µ). Then

(logh)′(x) = q(logg)′(x) + qx − (x − µ) ≥
{

µ − �, q = 1,

(q − 1)x + µ − q�, q > 1.

If q = 1, we apply the preceding lemma with logk(z) = (µ − �)z andζ1 = 0 and
obtain factorH1(ζ ;�,µ) according asµ > � or not. Forq > 1, we use the version
with logk quadratic,γ = (q − 1)/2 andα = q� − µ, so thatγ ζ ≥ max(α,0)

becomesζ ≥ (2/(q − 1)max(q� − µ,0). �

6. Risk properties of thresholding procedures. In this section we study
the risk behavior of thresholding procedures. Because the thresholds obtained by
the empirical Bayes procedure are data-dependent, some care is appropriate in
deriving the risk. We begin with risk bounds for hard thresholding using fixed,
nonrandom thresholds. These lead to comparison inequalities and so to bounds for
the risk for general random thresholds. The latter continue to hold if the threshold
is replaced by a pseudothreshold that is easier to find for the mixture prior model.
Analogs for the posterior mean are studied as well.

6.1. Risk bounds for fixed thresholds. As a tool for later work, we develop risk
bounds for hard thresholding,

µ̂HT(x, t) = xI {|x| ≥ t}
in Lq error for 0< q ≤ 2. For the posterior mean estimatorµ̃(x,w) of (56),
a bound of similar structure holds forq > 1, based on the pseudothreshold
ζ = β−1(w−1) in place oft.

PROPOSITION1. (a)Fix q ∈ (0,2]. There exists a constant cq ≤ 4 such that
for t ≥ √

2 and for all µ,

E|µ̂HT(X, t) − µ|q ≤ cq[|µ|q + tq−1φ(t)].(60)

(b) Now suppose q ∈ (1,2]. There exists a constant c′
q such that for ζ ≥ ζ(γ )

and all µ,

E|µ̃(X,w) − µ|q ≤ c′
q[|µ|q + ζ q−1φ(ζ )].(61)

The main use of these bounds is to control risks whenµ is not too large, and
especially whenµ → 0. The second term in each bound is, up to constants, a sharp
representation of the risk atµ = 0 as a function oft or ζ .

REMARK 2. If q = 1, it can be shown that the risk for the posterior mean at
zero,

E|µ̃(Z,w)| ≥ cw ≥ cφ(ζ )/g(ζ ),

is already of larger order than in (61), and so our methods for the analysis of the
behavior of the posterior mean cannot immediately be extended beyond the range
1 < q ≤ 2. More remarks will be made in Section 10.
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PROOF OF PROPOSITION 1. We begin with a simple bound valid for any
shrinkage rulêµ(x). Indeed, for anyµ andx,

|µ̂(x) − µ|q ≤ max{|µ|q, |x − µ|q} ≤ |µ|q + |x − µ|q .(62)

Hence, ifX ∼ N(µ,1) andaq = E|Z|q,
E|µ̂(X) − µ|q ≤ |µ|q + aq.(63)

From this we immediately have, when|µ| ≥ 1,

E|µ̂(X) − µ|q ≤ (1+ aq)|µ|q ≤ 2|µ|q,(64)

and so, for the rest of the proof, we confine attention to|µ| ≤ 1, and, indeed, in
view of symmetry of the risk functions, to 0≤ µ ≤ 1.

(a) Write rq(µ, t) for the riskE|XI {|X| > t} − µ|q of hard thresholding. We
have

rq(µ, t) = µq[�(t − µ) − �(−t − µ)] +
(∫ ∞

t−µ
+
∫ −t−µ

−∞

)
|z|qφ(z) dz.

By partial integration we obtain the upper bound

rq(0, t) = 2
∫ ∞
t

zqφ(z) dz ≤ bqt
q−1φ(t),(65)

wherebq may be taken as 2 forq ≤ 1 and as 4 when 1< q ≤ 2 andt ≥ √
2. By

subtraction,

rq(µ, t) − rq(0, t) = µq[�(t − µ) − �(−t − µ)] + �(µ, t),(66)

where

�(µ) = �(µ, t) =
(∫ t

t−µ
−
∫ t+µ

t

)
zqφ(z) dz.

The functionφq(t) = tqφ(t) is positive on(0,∞) for all q, and forq ≥ 0 attains
its maximum valueφ∗

q = φ(0)(q/e)q/2 at t = √
q. We remark thatφ∗

q ≤ 1/2 when
0 ≤ q ≤ 3. Setφq(t,µ) = φq(t − µ) + φq(t + µ): some calculation then shows
that when 0≤ µ ≤ t,

�′′(µ) = φq+1(t,µ) − qφq−1(t,µ) ≤ φq+1(t,µ) ≤ 2φ∗
q+1.

Since �(0) = �′(0) = 0, we therefore have�(µ) ≤ φ∗
q+1µ

2, at least for
0 ≤ µ ≤ t. Combining this with (66), we have

rq(µ, t) ≤ rq(0, t) + µq + φ∗
q+1µ

2.

If µ ≤ 1, thenµ2 ≤ µq, and bringing in (65), we obtain (60) withcq ≤ 4.
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(b) In view of (62) and (65), we have, for 0≤ µ ≤ 1
2 andζ ≥ 2,

E[|µ̃ − µ|q, |X| ≥ ζ ] ≤ 2
∫ ∞
ζ

[µq + |x − µ|q ]φ(x − µ)dx

≤ 2[µq(ζ − µ)−1 + 2(ζ − µ)q−1]φ(ζ − µ)(67)

≤ 5ζ q−1φ(ζ − µ).

On the interval 0≤ x ≤ ζ we have here 1/c0 = g(0)/φ(0) ≤ 1 + wβ(x) ≤ 2,

and so

w̃ = wg(x)/φ(x)

1+ wβ(x)
≤ c0wg(x)/φ(x).

Together with (55) this shows thatµ̃(x,w) ≤ c0w(ζ + �)(g/φ)(x), and so

E[|µ̃ − µ|q, |X| ≤ ζ ]
(68)

≤ 2q−1µq + [2c0w(ζ + �)]q
∫ ζ

0
(g/φ)q(x)φ(x − µ)dx

≤ 2µq + [8/(q − 1)ζ ][3c0wζ(g/φ)(ζ )]qφ(ζ − µ),(69)

using (58) and (59), valid forζ > 2q�/(q − 1), and noting that for suchζ , we
have alsoζ + � ≤ 3ζ/2. Sinceβ(ζ ) = w−1 ≥ 1, we always have(g/φ)(ζ ) =
β(ζ ) + 1 ≤ 2β(ζ ) = 2w−1. Inserting these remarks into (69) and combining
with (67) yields, forµ ∈ [0, 1

2] andζ ≥ ζ0 = max{2, β−1(1),2q�/(q − 1)}, that

E|µ̃ − µ|q ≤ 2µq + cqζ
q−1φ(ζ − µ).

For 0< µ < 1/ζ , one hasφ(ζ − µ) ≤ eφ(ζ ), while for 1/ζ < µ < 1
2, some

calculus shows thatζ q−1φ(ζ − µ) ≤ µ2 ≤ µq. This completes the proof of (61)
for 0 ≤ µ ≤ 1

2, while forµ > 1
2 the bound follows by a simple modification of (64).

�

6.2. Risk bounds for general random thresholds. We begin with a simple
bound. Suppose thatδ is a shrinkage rule with the bounded shrinkage property,
and thatt̂ is a random threshold witĥt ≤ t with probability one on the eventA.
Then

E|δ(X, t̂ ) − µ|qIA ≤ 2E[|δ(X, t̂ ) − X|q + |X − µ|q]IA

≤ 2{|t + b|qP (A) + [E|X − µ|2q]1/2P (A)1/2}(70)

≤ 4{tq + bq + 1}P (A)1/2.

[We have usedE|Z|2q ≤ (EZ4)2q/4 ≤ 3 for q ≤ 2.]
We now consider more specific risk bounds for random thresholds. The first will

be particularly useful for small values of the true meanµ, in conjunction with a
constantt which is with high probability a lower bound for the thresholdt̂ .



1628 I. M. JOHNSTONE AND B. W. SILVERMAN

LEMMA 5. (a) Suppose that 0 < q ≤ 2, that X ∼ N(µ,1) and that t̂ is a
random threshold that may depend both on X and on other data. Suppose that δ is
a thresholding rule with the bounded shrinkage property, and let

µ̂ = δ(X, t̂ ).

Suppose that t ≥ √
2. Then for all µ,

E|µ̂ − µ|q ≤ cq[|µ|q + tq−1φ(t) + (tq + bq + 1){P (t̂ < t)}1/2].(71)

(b) If 1 < q ≤ 2, a similar result holds for the posterior mean with estimated
pseudothreshold ζ . For ζ ≥ ζ0(q, γ ) and for all µ,

E|µ̃(x, ŵ) − µ|q ≤ c′
q [|µ|q + ζ q−1φ(ζ ) + (ζ q + bq + 1){P (ζ̂ < ζ)}1/2].(72)

PROOF. The method for both parts is essentially identical, so we concentrate
on the thresholding case (a). Denote byµ∗(X) the effect of applying toX the hard
thresholding rule with thresholdt . If t̂ is a data dependent threshold witht̂ ≥ t,

then it follows from the shrinkage and thresholding properties ofµ̂ andµ∗ that
both

sign(µ̂) = sign(µ∗) and 0≤ |µ̂| ≤ |µ∗|.(73)

Hence,

|µ̂ − µ|q ≤ max{|µ|q, |µ∗ − µ|q} ≤ |µ|q + |µ∗ − µ|q.
If we remove the overall constraint thatt̂ ≥ t , it remains the case that

|µ̂ − µ|qI [t̂ ≥ t] ≤ |µ|q + |µ∗ − µ|q.
The inequality (60) for the risk of the hard thresholding ruleµ∗ with fixed
thresholdt shows that fort ≥ √

2,

E|µ̂ − µ|qI [t̂ ≥ t] ≤ cq[|µ|q + tq−1φ(t)].(74)

Now consider the casêt < t . By the bounded shrinkage property and (70) it follows
that

E|µ̂ − µ|qI [t̂ < t] ≤ 4(tq + bq + 1){P (t̂ < t)}1/2.(75)

Putting together the twobounds (74) and (75) completes the proof of (71).
For the posterior mean, we use the pseudothresholdζ and set µ̂(x) =

µ̃(x,w(ζ̂ )) andµ∗(x) = µ̃(x,w(ζ )) in the above argument. The key monotonicity
property (73) follows from that ofw → µ̃(x,w), and the analog of (74) uses (61).
Finally, we use the bounded shrinkage property of the posterior mean.�

The second lemma will be used in practice for larger values ofµ.
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LEMMA 6. Make the same assumptions as Lemma 5 but relax the condition
that δ is necessarily a strict thresholding rule; it is still required that δ has the
bounded shrinkage property. Suppose that t̂ satisfies the inequality

t̂ ≤ √
d logn with probability 1.(76)

Let t be a nonrandom threshold, possibly depending on n. Then

E|µ̂ − µ|q ≤ 8[tq + bq + 1+ (d logn)q/2{P (t̂ > t)}1/2].(77)

PROOF. To prove Lemma 6, suppose first thatt̂ ≤ t. From (70) withA = {t̂ ≤
t}, we have

E|µ̂ − µ|qI [t̂ ≤ t] ≤ 4(tq + bq + 1).(78)

Now use (70) again, now withA = {t̂ > t} and note that̂t ≤ √
d logn w.p.1 onA,

so that

E|µ̂ − µ|qI [t̂ > t] ≤ 4
(
(d logn)q/2 + bq + 1

){P (t̂ > t)}1/2.(79)

Combining the two results (78) and (79) completes the proof of Lemma 6.�

REMARK 3. Lemma 6 applies in particular to the posterior mean ruleµ̂ =
µ̂(x,w(ζ̂ )) with estimated pseudothresholdζ̂ .

It also follows from (52) and (54) that the bounds in Lemmas 5 and 6 remain
valid if thresholdst are replaced by pseudothresholdsζ throughout.

7. Moments of the score function. In this section we derive properties of the
score functionS(w) that will facilitate our detailed consideration of the behavior
of ŵ. Suppose thatZ ∼ N(0,1) and definem1(µ,w) = E β(Z + µ,w) and
m2(µ,w) = E β(Z + µ,w)2. We first note that

∂

∂µ
mk(µ,w) =

∫ ∞
0

kβk−1(x)β ′(x)[1 + wβ(x)]−k−1[φ(x − µ) − φ(x + µ)]dx.

Fork = 1, this shows thatµ → m1(µ,w) is increasing forµ ≥ 0.

7.1. The moments m̃(w) and mk(µ,w) as functions of w. We give a special
name to the mean zero case and study it first:

m̃(w) := −m1(0,w) = −2
∫ ∞

0
β(z,w)φ(z) dz.(80)

LEMMA 7. The function w → m̃(w) is nonnegative and increasing in w ∈
[0,1] and satisfies m̃(0) = 0. If ζ = β−1(w−1) is the pseudothreshold discussed in
Section 5.4,then

m̃(w) 
 ζ κ−1g(ζ ) as w → 0.(81)
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LEMMA 8. Fix µ > 0. The function w → m1(µ,w) is decreasing in w ∈ [0,1]
and satisfies m1(µ,0) > 0. In terms of ζ = β−1(w−1), for sufficiently small
w < w0(γ ) (not depending on µ) we have

m1(µ,w) ≥ 1
2β(ζ )�̃(ζ − µ),(82)

m2(µ,w) ≤ Cw−1m1(µ,w), µ ≥ 1,(83)

while

m1(ζ,w) ∼ 1
2w−1 as w → 0.(84)

PROOF OFLEMMA 7. For eachz �= β−1(0), β(z,w) is a decreasing function
of w and som̃(w) is increasing. It follows that, asw ↘ 0,

m̃(w) ↘ m̃(0) = −
∫ ∞
−∞

β(z)φ(z) dz =
∫ ∞
−∞

{φ(z) − g(z)}dz = 0.

To study the asymptotic behavior of̃m(w) as w → 0, use the property∫∞
−∞ β(y)φ(y) dy = 0 to obtain

m̃(w) = 2
∫ ∞

0

wβ(z)2

1+ wβ(z)
φ(z) dz.

Defineζ = β−1(w−1). On the rangez < ζ, we havewβ(z) < 1, so that 1+β(0) ≤
1 + wβ(z) ≤ 2. On the other hand, forz ≥ ζ we havewβ(z) < 1 + wβ(z) <

2wβ(z). It follows that

m̃(w) 

∫ ζ

0
wβ(z)2φ(z) dz +

∫ ∞
ζ

β(z)φ(z) dz.(85)

Appealing to (46), (58) and (59), we then have forζ ≥ 4�,∫ ζ

0
β(u)2φ(u) du ≤ C

∫ ζ

0
g(u)2/φ(u) du ≤ 8Cζ−1g(ζ )2/φ(ζ )

(86) ∼ Cζ−1β(ζ )g(ζ ) = Cw−1ζ−1g(ζ ),

using (47) and assuming also thatζ ≥ ζ0. Hence, the first integral in (85) is
bounded by a term of orderζ−1g(ζ ).

Becauseβ(u)φ(u) ∼ g(u) asu → ∞, the second integral in (85) is asymptotic,
via (30) to ∫ ∞

ζ
g(u) du 
 ζ κ−1g(ζ ).

This term strictly dominates the boundζ−1g(ζ ) and, therefore, we can conclude
thatm̃(w) is bounded above and below by multiples ofζ κ−1g(ζ ). �
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PROOF OFLEMMA 8. Note first that the expression

m1(µ,w) =
∫ ∞
−∞

β(t,w)φ(t − µ)dt

shows thatm1(µ,w) increases monotonically asw → 0. The limiting value is

m1(µ,0) =
∫ ∞
−∞

β(t)φ(t − µ)dt =
∫ ∞
−∞

(
g(t)

φ(t)
− 1

)
φ(t − µ)dt

=
∫ ∞
−∞

exp
(
µt − 1

2
µ2

)
g(t) dt − 1= e−µ2/2Mg(µ) − 1,

whereMg denotes the moment generating function ofg. Sinceg is the convolution
of γ andφ, andγ is symmetric,

e−µ2/2Mg(µ) = e−µ2/2Mγ (µ)Mφ(µ) = Mγ (µ)

= 2
∫ ∞

0
cosh(µt)γ (t) dt > 1,

so thatm1(µ,0) > 0. [If g has sufficiently heavy tails, thenm1(µ,0) may be
infinite.]

For sufficiently smallw, we have∫ ζ

−∞
β(t,w)φ(t − µ)dt ≥ 0,(87)

since the limiting value of this expression ism1(µ,0) > 0. It follows that

m1(µ,w) ≥
∫ ∞
ζ

β(t)

1+ wβ(t)
φ(t − µ)dt ≥ 1

2
w−1

∫ ∞
ζ

φ(t − µ)dt.

We turn to the bound onm2(µ,w). Notice first that

|β(x,w)| ≤
{

C = |β(0)|/{1+ β(0)}, if β(x) < 0,

w−1, if β(x) ≥ 0.
(88)

Hence,

E|β(µ + Z,w)| = m1(µ,w) + E{|β(µ + Z,w)| − β(µ + Z,w)}
≤ m1(µ,w) + 2C ≤ Cm1(µ,w)

for sufficiently smallw andµ ≥ 1, since we then havem1(µ,w) ≥ m1(1,w) ≥ C.

It also follows from (88) that, again for sufficiently smallw, |β(t,w)| ≤ w−1 for
all t , and so

m2(µ,w) ≤ E{β(µ + Z,w)2} ≤ w−1E|β(µ + Z,w)| ≤ Cw−1m1(µ,w).

Turning finally to the proof of (84), we have

m1(ζ,w) =
∫

β(z + ζ )

1+ wβ(z + ζ )
φ(z) dz = w−1

∫
r(ζ, z)φ(z) dz,
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where

r(ζ, z) = β(ζ + z)

β(ζ ) + β(ζ + z)
→ I {z > 0}

as ζ → ∞, since lettingO1(�z) denote a quantity bounded in absolute value
by |�z|,

β(ζ )

β(ζ + z)
∼ g(ζ )

g(ζ + z)

φ(ζ + z)

φ(ζ )

= exp{O1(�z) − ζz − z2/2} →
{

0, z > 0,

∞, z < 0.
The conclusion (84) follows from the dominated convergence theorem, since
|r(ζ, z)| < 1 [at least forζ large enough thatβ(ζ ) > 2|β(0)|]. �

7.2. The moments mk(µ,w) as functions of µ. We shall need a series of
bounds formk(µ,w), each successively more refined asµ is constrained to be
closer to zero.

LEMMA 9. There are constants Ci such that for all w, defining c as in (88),

m1(µ,w) ≤


−m̃(w) + C1ζ(w)µ2, for |µ| < 1/ζ(w),

C2φ(ζ/2)w−1, for |µ| ≤ ζ(w)/2,

(w ∧ c)−1, for all µ

(89)

and

m2(µ,w) ≤


C3ζ(w)−κw−1m̃(w), for |µ| < 1/ζ(w),

C4ζ
−1φ(ζ/2)w−2, for |µ| ≤ ζ(w)/2,

(w ∧ c)−2, for all µ.

(90)

PROOF. We first remark that the global boundsmk(µ,w) ≤ (w ∧ c)−k follow
trivially from (88). We derive a bound on the behavior ofm1(µ,w)−m1(0,w) for
smallµ �= 0. Assume that|µ| ≤ ζ−1 and thatζ > 2. Then for ally ∈ [−ζ, ζ ],

φ(y − µ) = φ(y)exp
(
µy − 1

2µ2) ≤ eφ(y)(91)

and

|φ′′(y − µ)| = |(y − µ)2 − 1|φ(y − µ) ≤ c(1+ y2)φ(y),(92)

where the absolute constantc′ < 1.25e. Using the property that|β(z,w)| is
bounded above by min{w−1, β(z)} if β(z) > 0 and by {1 + β(0)}−1|β(z)| if
β(z) < 0, it follows that

∂2m1(µ,w)

∂µ2 ≤
∫ ∞
−∞

|β(z,w)φ′′(z − µ)|dz(93)

≤ C

∫ ζ

−ζ
|β(z)|(1+ z2)φ(z) dz + 2w−1

∫
|z|>ζ

φ′′(z − µ)dz.(94)
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Sinceg(z) ≤ C(1+ z2)−1 for all z, it follows that

|β(z)|φ(z) ≤ |g(z) − φ(z)| ≤ C(1+ z2)−1

and hence that ∫ ζ

−ζ
|β(z)|(1+ z2)φ(z) dz ≤ Cζ.(95)

For |µ| ≤ ζ−1 andζ > 2 we have

w−1
∫
|z|>ζ

φ′′(z − µ)dz

≤ 2w−1
∫ ∞
ζ

φ′′(z − |µ|) dz

(96) = −2w−1φ′(ζ − |µ|) = 2w−1(ζ − |µ|)φ(ζ − |µ|)
≤ Cζβ(ζ )φ(ζ ) ≤ Cζ(1 + ζ 2)−1.

Combining (95) and (96), recalling thatC can be a different constant in different
expressions, we can conclude that, for|µ| ≤ ζ−1 andζ > 2,

∂2m1(µ,w)

∂µ2 ≤ Cζ.

Since by symmetry∂m1(µ,w)/∂µ = 0 whenµ = 0, it follows that, forµ ≤ ζ−1,

m1(µ,w) − m1(0,w) ≤ Cζµ2,

which completes the proof of (89).
Turn now to the second moment. Suppose throughout that|µ| ≤ ζ−1 andζ > 2

and, without loss of generality, thatµ ≥ 0. By the bounds on|β(z)/{1+ wβ(z)}|
and onφ(z − µ) as above,

m2(µ,w) ≤ C

∫ ζ

−ζ
β(z)2φ(z − µ)dz +

∫
|z|>ζ

β(ζ )2φ(z − µ)dz

≤ C

∫ ζ

0
β(z)2φ(z) dz + 2β(ζ )2�̃(ζ − µ)(97)

≤ Cw−1ζ−1g(ζ ) + Cβ(ζ )2φ(ζ − µ)/(ζ − µ)(98)

by using (86). To deal with the second term in (98), use the bounds onφ(ζ − µ)

and the property thatζ − µ > ζ/2 to conclude that

β(ζ )2φ(ζ − µ)/(ζ − µ) ≤ Cζ−1β(ζ )2φ(ζ ) ≤ Cζ−1β(ζ )g(ζ ).

It follows that, for|µ| ≤ ζ−1 andζ > 2,

m2(µ,w) ≤ Cζ−1β(ζ )g(ζ ).
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Now use the property (81) thatg(ζ ) ≤ Cζ 1−κ m̃(w) to complete the proof of (90).
We now turn to the proof of the intermediate bounds. Note first that

mk(µ,w) ≤ 2
∫ ∞

0

[
β(x)

1+ wβ(x)

]k

φ(x − µ)dx.

On [0, ζ ] we have 1+ wβ(x) ≥ 1 + β(0) > 0, so that[1 + wβ]−1 ≤ C, while on
[ζ,∞] clearlywβ/(1+ wβ) ≤ 1. Hence

mk(µ,w) ≤ C

∫ ζ

0
βk(x)φ(x − µ)dx + 2w−k

∫ ∞
ζ

φ(x − µ)dx

= CIk,ζ + 2w−kI ′
k,ζ .

Sinceβ(ζ ) = w−1, we have for|µ| ≤ (1− a)ζ ,

I ′
k,ζ = �̃(ζ − µ) ≤ φ(aζ )/aζ.

Turning now toIk,ζ ≤ C
∫ ζ
0 (g/φ)k(x)φ(x − µ)dx, we apply (58) and (59): since

(g/φ)(ζ ) ≤ 2w−1 andφ(ζ − µ) ≤ exp{−ζ(ζ − 2µ)/4}φ(ζ/2) for 0 ≤ µ ≤ ζ/2,
we have

Ik,ζ ≤ 2kw−kφ(ζ/2)Hk(ζ ;�,µ)exp{−ζ(ζ − 2µ)/4}.
The desired conclusion fork = 2 follows. Fork = 1 one may check that

sup
ζ>8�,0≤µ≤ζ/2

H1(ζ ;�,µ)exp{−ζ(ζ − 2µ)/4} ≤ C(�),

while a direct argument shows that forζ ≤ 8�, regardless ofµ, I1,ζ ≤ Cw−1 ≤
Cφ(ζ/2)w−1. �

8. The marginal maximum likelihood weight and its risk properties. The
marginal maximum likelihood method yields a random weightŵ, dependent on
all the dataX1, . . . ,Xn, and, hence, to a random threshold and pseudothreshold.
In this section we study the properties ofŵ in order to use the risk bounds of
Section 6.2 to bound the risk for the whole procedure and, hence, complete the
proof of Theorem 1. The structure of the proof is essentially the same for both
nearly black and�p sparseness classes, and to avoid unnecessary repetition of
arguments, it is helpful to define

p̃ =
{

p, if p > 0,

1, if p = 0.
(99)

The bounds obtained in Theorems 1 and 2 do not change asp increases above 2.
Furthermore, forp ≥ 2 we have�p[η] ⊂ �2[η] and so demonstrating the bounds
for p = 2 will imply that they hold for all largerp. Therefore, for the whole of the
subsequent argument, we assume without loss of generality thatp ≤ 2.
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The strategy is to consider separately the components of the risk for large and
smallµi . We employ risk decompositions

Rq(µ̂,µ) = n−1
∑

|µi |≤τ

E|µ̂i − µi|q + n−1
∑

|µi |>τ

E|µ̂i − µi |q

(100) = Rq(τ ) + R̃q(τ ),

say. For “global” risk bounds, we takeτ = 1, while for risk bounds over�p[η], we
takeτ roughly of order(2 logη−p̃)1/2.

In each case properties of the estimated weight and corresponding pseudothresh-
old are derived; these are then substituted into the appropriate expression for the
risk. We begin by the consideration of the threshold and risk for the components
with smallµi .

8.1. Small signals: lower bounds for thresholds. Suppose that, for somep
with 0 < p ≤ 2 and for someη > 0, µ lies in an�p ball:

�p[η] =
{
µ :n−1

n∑
i=1

|µi |p ≤ ηp

}

or, if p = 0, that the proportion ofµi that are nonzero is at mostη. Let Zi be
independentN(0,1) random variables, and let̂w be the weight estimated from
the dataµi + Zi by the marginal maximum likelihood procedure. Define the
pseudothreshold̂ζ = β−1(ŵ−1).

One cannot hope to adapt to signals that are too small relative to the sample
sizen; this corresponds to restrictingt (ŵ) to the range[0,

√
2 logn ]. Hence, we

set

η̃p̃ = max
{
ηp̃, n−1(logn)2}

and, with the usual definitionζ = β−1(w−1), define the weightw = w(η,n) by

ζp−κwm̃(w) = η̃p̃.(101)

Writing the left-hand side as the product ofζp−κ/β(ζ ) andm̃(w), both of which
are increasing inw (for w sufficiently small), shows thatw is well defined and
monotonically increasing iñη, at least forη̃ small.

The intent of this definition is to choose a weightw = w(η,n) and pseudo
thresholdζ = ζ(η,n) which is both a lower bound tôζ = ζ(ŵ) for µ ∈ �p[η]
with high probability (Lemma 10) and is of the right size to yield minimax risk
bounds [see (103), (104) and Section 8.2].
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Some properties of w and ζ . Using the definition ofβ and the property (81)
thatm̃(w) 
 ζ κ−1g(ζ ),

η̃p̃ 
 ζp−κwζκ−1g(ζ ) 
 ζp−1[g(ζ )/β(ζ )] 
 ζp−1φ(ζ ).(102)

We immediately obtain a bound,

ζφ(ζ ) 
 η̃p̃ζ 2−p.(103)

Taking logarithms, ∣∣ log η̃−p̃ − 1
2ζ 2 + (p − 1) logζ

∣∣ < C.

Hence, as̃η → 0,

ζ 2 ∼ 2 logη̃−p̃ .(104)

More explicitly, there exist constantsc such that

ζ 2 ≥
{

2 logη−p̃ + (p − 1) log logη−p̃ − c, if ηp̃ ≥ n−1 log2 n,

2 logn − (5− p) log logn − c, if ηp̃ ≤ n−1 log2 n.
(105)

Approximation (104) shows that our pseudothreshold boundζ(η,n) has the
order of the minimax threshold for�p[ηn], and the right-hand side of (103) is
essentially the asymptotic expression for the normalized minimax risk. We now
show thatζ(η,n) is typically a lower bound for the estimated pseudothreshold
when the signal is small.

LEMMA 10. Let the pseudothreshold ζ = ζ(η,n) corresponding to η̃ be
defined by (101).There exist C = C(γ ) and η0 = η0(γ ) such that if η ≤ η0 and

n/ log2 n ≥ η
−p̃
0 , then

sup
µ∈�p[η]

Pµ(ζ̂ < ζ) ≤ exp{−C(logn)3/2}.(106)

It follows from this lemma that ifµ is very sparse (ηp̃ ≤ n−1 log2 n), thent̂ and
ζ̂ are, in relative terms, close to

√
2 logn. On the other hand, ifµ is less sparse,

then t̂ and ζ̂ are at least about
√

2 logη−p̃ . (Recall from (53) that the difference
ζ̂ − t̂ ∈ [0,C/t̂] is small.)

PROOF OFLEMMA 10. This argument leading to (103) also shows that
1
2ζ 2 − (p − 1) logζ ≤ logn − 2 log logn + O(1),

and hence thatt (w) < ζ(w) ≤ √
2 logn for n sufficiently large, so thatw ∈

[wn,1], the interval over which the likelihood�(w) is maximized. Consequently,
{ζ̂ < ζ } = {ŵ > w} = {S(w) > 0}. The summands inS(w) = ∑n

i=1 β(µi +Zi,w)

are independent, and in view of (88), bounded byc0w
−1.

We therefore recall Bernstein’s inequality [e.g., Pollard (1984), page 193],
which gives exponential bounds on the tail probabilities of the sum of uniformly
bounded independent random variables.
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PROPOSITION 2. Suppose that W1,W2, . . . ,Wn are independent random
variables with EWi = 0 and |Wi| ≤ M for i = 1, . . . , n. Suppose that V ≥∑n

i=1 varWi . Then, for any A > 0,

P

(
n∑

i=1

Wi > A

)
≤ exp

{−1
2A2/

(
V + 1

3MA
)}

.

We have

P (ŵ > w) = P {S(w) > 0} = P

(
n∑

i=1

Wi > A

)
,(107)

whereWi = β(µi + Zi,w) − m1(µi,w), M = 2(c ∧ 1)−1w−1 and

A =
n∑

i=1

−m1(µi,w).

Define sets of “small,” “medium” and “large” co-ordinates,

S = {i : |µi | ≤ ζ−1}, M = {i : ζ−1 < |µi | ≤ ζ/2}, L = {i : |µi| > ζ/2}.
For the nearly black case, it suffices to consider only two classes, coalescingM
andS, but it is notationally simpler to use the same argument as for�p.

Using the three parts of (89),∑
m1(µi,w) ≤ ∑

i∈S

[−m̃(w) + C1ζµ2
i ] + C|M|φ(ζ/2)w−1 + |L|w−1.

On the�p-ball �p[η], we have #{i : |µi| > t} ≤ nηp̃t−p and so

|S| ≥ n − nηp̃ζp, |M| ≤ nηp̃ζp, |L| ≤ nηp̃2pζ−p.(108)

On the setS, we haveµ2
i ≤ |µi|pζp−2, and so, on making use of (101),∑

m1(µi,w) ≤ −nm̃(w) + Cnηp̃ζ−pw−1

× [wζ 2pm̃(w) + C1wζ 2p−1 + ζ 2pφ(ζ/2) + 1]
≤ −n[m̃(w) − Cη̃p̃ζ−pw−1]
= −nm̃(w)[1− Cζ−κ ] ≤ −1

2nm̃(w)

for w < w0. Consequently,A ≥ 1
2nm̃(w).

We now obtain a bound onV = ∑
varWi . Using the same decomposition into

small, medium and large coordinates, we have from the three parts of (90),

V ≤ ∑
m2(µi,w) ≤ C3|S|ζ−κw−1m̃(w) + C|M|w−2ζ−1φ(ζ/2) + |L|w−2.
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Using now (108) along with (101), we find that for sufficiently smallw,

V ≤ Cnζ−κw−1m̃(w) + Cnηp̃ζp−1w−2φ(ζ/2) + Cnηp̃ζ−pw−2

≤ Cnw−1m̃(w)[ζ−κ + ζ 2p−κ−1φ(ζ/2) + ζ−κ ]
≤ Cnw−1m̃(w)ζ−κ .

Turning to the exponent in the Bernstein bound, we have forw ≤ w0,[
A2

V + (1/3)MA

]−1

= V

A2 + M

3A
≤ Cnw−1m̃(w)ζ−κ

n2m̃(w)2 + Cw−1

nm̃(w)

= C{nwm̃(w)}−1.

Therefore, applying the definition ofη̃,

A2

V + (1/3)MA
≥ Cnwm̃(w) ≥ Cnη̃p̃ζ κ−p ≥ C(logn)2[ log η̃−p̃

](κ−p)/2
.

Definen0(γ ) so thatn ≥ n0 if and only if n/ log2n ≥ η
−p̃
0 . If κ > p, then for

η < η0 andn ≥ n0 we haveη̃−p̃ = min{η−p̃, n/ log2n} ≥ η
−p
0 , while if κ < p,

thenη̃−p ≤ n and κ−p
2 > −1/2. In either case we have[

log η̃−p̃
](κ−p)/2 ≥ C(logn)−1/2.

Applying the Bernstein inequality to (107) concludes the proof of (106), so long
asw ≤ w0(γ ). Use (101) to definẽη0 as the value of̃η corresponding tow0, and
then setη0 = η̃0 to arrive at the first statement of Lemma 10.�

8.2. Small signals: risk behavior. We apply risk bound (71) of Lemma 5.
Bound (54) permits the inequality to be rewritten in terms of the pseudothresh-
old ζ. We have, for all values ofµi ,

E|µ̂i − µi|q ≤ C{|µi |q + ζ q−1φ(ζ ) + (1+ ζ q)P (ζ̂ < ζ)1/2}.(109)

If η̃ is sufficiently small [less thanη0 = η0(γ ), say], then we may use bounds
(104) and (103) along with the probability bound (106) to yield

E|µ̂i − µi |q ≤ C
{|µi|q + η̃p̃

(
log η̃−p̃)(q−p)/2 + (

log η̃−p̃)q/2
e−C log3/2 n}.

If n > n0(γ ), we have exp{−C(logn)3/2} ≤ n−1(logn)2−p/2 ≤ η̃p̃(log η̃−p̃)−p/2,

and we finally obtain

E|µ̂i − µi|q ≤ C
{|µi|q + η̃p̃( log η̃−p̃)(q−p)/2}

.

If η̃p̃ = n−1(logn)2, then logη̃−p̃ = logn − 2 log logn ∼ logn so that, in
general,

η̃p̃
(
log η̃−p̃

)(q−p)/2 ≤ max
{
ηp̃

(
logη−p̃

)(q−p)/2
,Cn−1(logn)2+(q−p)/2}.
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Combining the last two expressions and summing overi yields

Rq(ζ ) = n−1
∑

|µi |≤ζ

E|µ̂i − µi |q

≤ C

{
n−1

∑
|µi |≤ζ

|µi|q + ηp̃
(
logη−p̃

)(q−p)/2 + n−1(logn)2+(q−p)/2

}
.

If q ≤ p, we have by Hölder’s inequality

n−1
∑ |µi|q ≤

(
n−1

∑ |µi|p
)q/p ≤ ηq,(110)

and alsoηp(logη−p)(q−p)/2 ≤ cp,qη
q for η < e−1. If q > p, we have|µi |q ≤

|µi|pζ q−p, and so, using the property that ifp = 0 at mostnη of the terms will be
nonzero,

n−1
∑

|µi |≤ζ

|µi|q ≤ ηp̃ζ q−p ≤ Cηp̃( logη−p̃)(q−p)/2
.

In every case then, forµ ∈ �p[η], η ≤ η0(γ ) andn ≥ n0(γ ), we have

Rq(ζ ) ≤ C
{
rp,q(η) + n−1(logn)2+(q−p)/2}.(111)

Before leaving the consideration of smallµi , consider the case where there are
no constraints onµ at all. The application of the elementary risk bound (63), along
with aq ≤ 1, then yields an absolute bound on the average risk for smallµ:

n−1
∑

|µi |≤1

E|µ̂i − µi|q ≤ n−1
∑

|µi |≤1

(1+ |µi |q) ≤ 2.(112)

8.3. Large signals: upper bounds for thresholds. Define π̃(τ ;µ) = n−1#{i :
|µi| ≥ τ }. We will be interested in deriving upper bounds on the estimated
pseudothreshold̂ζ when it is known that̃π(τ ;µ) ≥ π for appropriate choices ofτ.

Choosew0 small enough so that both (81) and (83) apply. Define

w(τ,π) = sup{w ≤ w0 :πm1(τ,w) ≥ 2m̃(w)}.(113)

Sincem1(τ,w)/m̃(w) → ∞ asw → 0, certainlyw(τ,π) is well defined. On the
pseudothreshold scale, we writeζτ,π or ζ(τ,π) for β−1(1/w(τ,π)).

LEMMA 11. There exist C = C(γ ) and π0 = π0(γ ) such that if π < π0, then
for all τ ≥ 1,

sup
µ : π̃(τ ;µ)≥π

Pµ(ζ̂ > ζτ,π ) ≤ exp{−Cnζκ−1
τ,π φ(ζτ,π)}.(114)
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PROOF. If nπ of the µi for which |µi| ≥ τ are shrunk to±τ , and all the
otherµi are set to zero, then the distribution of each|µi +Zi | will be stochastically
reduced. Sinceβ(y,w) is an increasing function of|y| for eachw, it follows that
S(w) will be stochastically reduced, and soP (S(w) < 0) will be, if anything,
increased. Thus, the maximum value ofP (ζ̂ > ζ) subject to the constraint that at
leastnπ of the |µi | exceedτ will be taken when exactlynπ of the |µi | are equal
to τ and the remainder are zero. We shall therefore assume that this is the case.

We now return to the problem of bounding the probability thatS(w) is negative,
for w = w(τ,π). We have, following (107) but changing the sign,

P (ŵ < w) = P
(
S(w) < 0

) = P

{
n∑

i=1

Wi > A

}
,

where, on this occasion,

Wi = m1(µi,w) − β(µi + Zi,w) and A =
n∑

i=1

m1(µi,w).

Just as above,|Wi| ≤ 2c0w
−1 for all i. To obtain a bound onA, we have, making

use of the definition (113) ofw,

n−1A = (1− π)m1(0,w) + πm1(τ,w)

≥ −1
2πm1(τ,w) + πm1(τ,w) = 1

2πm1(τ,w).

We now seek an upper bound on the sum of the variances of theWi . Making
use of the bound (90) form2(0,w), bound (83) form2(τ,w) and (113),

n−1
n∑

i=1

varWi ≤ m2(0,w) + πm2(τ,w)

≤ Cζ(w)−κw−1m̃(w) + Cw−1πm1(τ,w)

≤ Cw−1πm1(τ,w).

Substituting into the expression needed for the application of Bernstein’s
inequality, we have

n

(
V

A2 + M

3A

)
≤ Cw−1π−1m−1

1 (τ,w),

so that

A2

V + (1/3)MA
≥ Cnwπm1(τ,w)

≥ Cnwm̃(w) ≥ Cnζκ−1β(ζ )−1g(ζ )

≥ Cnζκ−1φ(ζ ),

(sincew ≤ w0). �
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8.4. Large signals: risk behavior. Let ζ = ζ(τ, π̃(τ ;µ)), whereτ remains
unspecified for the moment. For eachµi , we have from (77) and (52),

E|µ̂i − µi|q ≤ C{1+ ζ q + (logn)q/2P (ζ̂ ≥ ζ )1/2}.
We then consider two cases. Ifζ 2 > logn, then the right-hand side is bounded by
C(1+ 2ζ q). On the other hand, ifζ 2 ≤ logn, then

nζκ−1 exp
{−1

2ζ 2} ≥ Cnexp
{−3

4ζ 2} > Cn1/4,

so that from (114),

(logn)q/2P (ζ̂ ≥ ζ )1/2 < lognexp(−Cn1/4) ≤ 1

if n ≥ n0. It follows that, for sufficiently smallπ and n > n0, whether or not
ζ 2 > logn,

E|µ̂i − µi |q ≤ C{1+ ζ q).(115)

Hence,

R̃q(τ ) = n−1
∑

|µi |≥τ

E|µ̂i − µi|q ≤ Cπ̃(τ ;µ)
[
1+ ζ q

(
τ, π̃(τ,µ)

)]
.(116)

For the global risk bound needed for Theorem 1, we setτ = 1. Let π = π̃(1;µ).
We seek a bound forζ = ζ(1, π). Sincem̃(w) 
 ζ κ−1g(ζ ) by (81), it follows that
for sufficiently smallπ and, hence,w,

π−1 = m1(1,w)

2m̃(w)
≥ Cζ−κeζ .

Taking logarithms, we have

logπ−1 ≥ c − κ logζ + ζ

and, hence, for sufficiently smallπ ,

ζ q = ζ(1, π)q ≤ 2q(logπ−1)q .(117)

In combination with (116), this yields, regardless of the value ofπ = π̃(1;µ),

R̃q(1) ≤ Cπ [1+ (logπ−1)2] ≤ C.(118)

Write ζ1 for the pseudothresholdζ(η,n) defined by (101). Our main goal now
is to establish a large signal complement to inequality (111), namely,

R̃q(ζ1) ≤ C
{
rp,q(η) + n−1(logn)2+(q−p)/2}.(119)

The approach will be to apply Lemma 11 withτ = ζ2 = ζ2(µ) defined by

ζ2 = ζ(ζ1, π), π = π̃(ζ1;µ).(120)
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Let us first verify that, as one would expect forµ ∈ �p[η], ζ2 > ζ1. Since
m̃(w) 
 ζ κ−1g(ζ ) by (81), and m1(ζ1,w1) ∼ (2w1)

−1 by (84), we have,
using (102),

m1(ζ1,w1)

m̃(w1)

 1

2

β(ζ1)

g(ζ1)
ζ 1−κ

1 
 ζ 1−κ
1

φ(ζ1)

 η̃−p̃ζ

p−κ
1 .

For p > 0 we now use the bound
∑ |µi|p ≤ nηp, while for p = 0 we simply use

π ≤ η. Both cases are encompassed by the inequality

π ≤ ηp̃ζ
−p
1 ≤ η̃p̃ζ

−p
1 ,(121)

and so

m1(ζ1,w1)

m̃(w1)
≤ Cζ−κ

1 π−1 � 2π−1 for ζ1 large,

which shows thatζ2 > ζ1 (and, in particular, thatζ2 > 1).
In this notation the bound (116) becomes

R̃q(ζ1) ≤ Cπ(1+ ζ
q
2 ) ≤ Cπζ

q
2 .

Although (121) places an upper bound onπ , in fact, it may be arbitrarily
much smaller. The analysis to follow considers separately cases in whichπ is
comparable to, or much smaller than,η̃p̃ζ

−p
1 .

Recalling the lower bound (82) thatm1(ζ1,w) ≥ 1
2β(ζ )�̃(ζ − ζ1), it follows

thatζ2 ≤ ζ3 = ζ(w3), wherew3 is the solution to

�̃
(
ζ(w) − ζ1

) = 4π−1wm̃(w).(122)

ζ3 is intended as a more manageable version ofζ2.
Suppose first thatζ3 > ζ1 + 1. Then from (122),

πζ
q
2 ≤ Cζ

q+κ−1
3

g(ζ3)

β(ζ3)

ζ3 − ζ1

φ(ζ3 − ζ1)

≤ Cζ
κ+q
3

φ(ζ3)

φ(ζ3 − ζ1)
= Cζ

κ+q
3 e−(ζ3−ζ1)ζ1φ(ζ1).

Using (103) and the fact thatζ3 → ζ
κ+q
3 e−(ζ3−ζ1)ζ1 is decreasing, at least for

ζ3 ≥ ζ1 + 1, we get

πζ
q
2 ≤ Cη̃p̃ζ

1−p
1 (ζ1 + 1)κ+qe−ζ1.

From (104), we then conclude that forζ1 sufficiently large,

πζ
q
2 ≤ max

{
Cηp̃

(
2 logη−p̃

)−2
ζ

κ+3+q−p
1 e−ζ1,Cn−1ζ

κ+7+q−p
1 e−ζ1

}
≤ C max

{
ηp̃

(
2 logη−p̃

)−2
, n−1}.
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Now suppose thatζ3 ≤ ζ1+1 (and, hence,ζ2 ∈ [ζ1, ζ1+1]). Since�̃(ζ3−ζ1) ≥
�̃(1), it follows thatζ3 is smaller than the solution to

�̃(1) = 4wm̃(w)π−1 
 ζ κ−1 g(ζ )

β(ζ )
π−1 
 ζ κ−1φ(ζ )π−1.

Taking logarithms, the equation becomes

ζ 2/2− (κ − 1) logζ + logc = logπ−1,

from which it follows that

ζ 2
2 ≤ 2 logπ−1 + log logπ−1 + C.

Consequently, sinceπ [2 logπ−1 + log logπ−1 + C]q/2 is increasing inπ for
sufficiently smallπ , andπ ≤ ηp̃ζ

−p
1 , we get

πζ
q
2 ≤ Cηp̃ζ

−p
1

[
2 log

(
η−p̃ζ

p
1

)]q/2 ≤ Cηp̃
(
2 logη−p̃)q/2(2 logη̃−p̃)−p/2

.

If q < p, the right-hand side may be bounded further byCηq . If q ≥ p, consider
separately the two casesηp̃ > n−1 log2n and ηp̃ ≤ n−1 log2n. In all cases we
obtain (119) for sufficiently smallη andn > n0.

To complete the proof of Theorem 1, combine the bounds (112) forRq(1)

and (118) forR̃q(1). For the adaptivity bound, similarly combine bounds (111)
for Rq(ζ1) and (119) forR̃q(ζ1).

9. Proof of Theorem 2. The proof of Theorem 2 requires small but significant
modifications to the proof of Theorem 1.

Consider first the caseηp̃ > n−1 log2n, so that η̃ = η. To show that parts
(a) and (b) of the theorem remain true withµ̂A in place of µ̂, simply observe
that

E|δ(X, t̂A) − µ|q = E{|δ(X, t̂ ) − µ|q, t̂ ≤ tn} + E{|δ(X, tA) − µ|q, t̂ > tn}.
Ignoring the event{t̂ ≤ tn} in the first term leads to

Rq(µ̂A,µ) ≤ Rq(µ̂,µ) + Sq(µ̂F
A,µ),

where

Sq(µ̂F
A,µ) = n−1

∑
i

E{|δ(Xi, tA) − µi |q, t̂ > tn}.(123)

The superscriptF emphasizes the fixed thresholdtA.
The bound of Theorem 1 applies toRq(µ̂,µ), so it remains to consider

Sq(µ̂F
A,µ). Analogously to (100), decompose (123) according to terms with large

and small values ofµi , obtaining

Sq(µ̂
F
A,µ) = Sq(τ ) + S̃q(τ ),(124)
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where, for example,

S̃q(τ ) = n−1
∑

|µi |≥τ

E{|δ(Xi, tA) − µi|q, t̂ > tn}.

We will need the following risk bounds from Section 6. First, from (71),

E|δ(X, tA) − µ|q ≤ cq{|µ|q + t
q−1
A φ(tA)},(125)

while from (70), for any eventB,

E{|δ(X, tA) − µ|q,B} ≤ 4(t
q
A + bq + 1)P (B)1/2.(126)

Consider first part (a), namely, global boundedness. For smallµi one uses (125)
to obtain

Sq(1) ≤ n−1
∑

|µi |≤1

E|δ(Xi, tA) − µi|q

≤ cqn
−1

∑
|µi |≤1

{|µi |q + t
q−1
A φ(tA)}(127)

≤ cq{1+ t
q−1
A φ(tA)} ≤ 2cq.

For largeµi , as in Section 8.4, introduceπ = π̃(1,µ) and ζ(µ) defined as
ζ(1, π), where ζ(τ,π) is as defined before Lemma 11. Note throughout that
ζ(µ) ≥ β−1(1) > 0. Arguing as at (117), we also observe that

ζ(µ) ≤ 2 logπ−1.

Two cases arise. Ifζ(µ) > log1/2n, then

tA = √
2(1+ A) logn ≤ cζ(µ) ≤ c logπ−1,

and so, from (126),

E|η(Xi, tA) − µi|q ≤ c(logπ−1)q

and hence

S̃q(1) ≤ cπ(logπ−1)q ≤ C.

In the second caseζ(µ) ≤ log1/2n ≤ tn and so, using the propertŷζ = ζ(t̂ ) > t̂

and Lemma 11,

P (t̂ > tn) ≤ P (ζ̂ > tn) ≤ P {ζ̂ > ζ(µ)}
≤ exp[−Cnζ(µ)k−1φ{ζ(µ)}] ≤ exp(−Cn1/4).

Consequently, using (126) withB = {τ̂ > tn},
S̃q(1) ≤ 4π(t

q
A + bq + 1)exp(−Cn1/4) ≤ c exp(−Cn1/4) logn ≤ C.
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Now turn to part (b), adaptivity over�p[η]. The caseq ≤ p is simple; from
(125) and bound (110), we have

Sq(µ̂
F
A,µ) ≤ cqn−1

∑
i

{|µi|q + t
q−1
A φ(tA)} ≤ cqη

q + Cn−(1+A) log1/2n.

For q > p, we follow a strategy broadly similar to that of Section 8.4. In (124)
we takeτ = ζ1 = ζ(η,n), the pseudothreshold defined by (101). Applying (125)
in a similar manner to (127), we find that

Sq(ζ1) ≤ cqn
−1

∑
|µi |≤ζ1

{|µi|q + t
q−1
A φ(tA)} ≤ cqη

p̃ζ
q−p
1 + cqt

q−1
A φ(tA),

which is bounded by the right-hand side of (19) in view of (104).
To bound the large signal term̃Sq(ζ1), we again apply Lemma 11 withτ = ζ2 =

ζ2(µ) defined as in (120). We first observe, using (126) withB = {t̂ > tn}, that

S̃q(ζ1) ≤ cπt
q
A{P (t̂ > tn)}1/2 ≤ cηp̃ζ−pt

q
A{P (t̂ > tn)}1/2.(128)

Consider now three cases. First suppose thatµ is such thatζ2(µ) < tn. Using
initially the property that̂ζ = ζ(t̂ ) > t̂ , and then appealing to Lemma 11, we have

P (t̂ > tn) ≤ P (ζ̂ > tn) ≤ P (ζ̂ > ζ2)

≤ exp{−Cnζκ−1
2 φ(ζ2)} ≤ exp{−Cntκ−1

n φ(tn)}.
Using the definition oftn, and the fact thattκ−1

n ≥ 1 for n ≥ 13,

ntκ−1
n φ(tn) ≥ φ(0) log5/2n.

Hence, from (128) and using the fact thatη ≤ η0,

S̃q(ζ1) ≤ Cηp̃(logn)q/2 exp(−C log5/2n) ≤ Cηp̃ ≤ Crp,q(η).

Second, considerµ for which ζ 2
1 ≥ logn. In this case 2 logη−p̃ 
 ζ 2

1 ≥ logn,
and so, from (128)

S̃q(ζ1) ≤ Cηp̃(logn)(q−p)/2 ≤ Crp,q(η).

Finally, suppose bothζ 2
1 ≤ logn andζ2(µ) ≥ tn. In this case

ζ3 − ζ1 ≥ ζ2 − ζ1 ≥ tn − log1/2n ≥ 1
2 log1/2n

if n ≥ n0. We use (122) definingζ3 to derive an upper bound onπ . The equation
implies

�̃(ζ3 − ζ1) = 4π−1m̃(w3)/β(ζ3)


 4π−1ζ κ−1
3 g(ζ3)/β(ζ3)


 4π−1ζ κ−1
3 φ(ζ3).
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In other words, using (103),

π 
 ζ κ−1
3 (ζ3 − ζ1)φ(ζ3)/φ(ζ3 − ζ1)

≤ ζ κ
3 exp{−(ζ3 − ζ1)ζ1}φ(ζ1)


 ηpζ
1−p
1 ζ κ

3 exp{−(ζ3 − ζ1)ζ1}.
Using the first inequality of (128), we have

S̃q(ζ1) ≤ Cηp̃t
q
Aζ κ+1

3 exp{−(ζ3 − ζ1)ζ1}
≤ Cηp̃t

q
A(ζ3 − ζ1)

κ+1 exp{−(ζ3 − ζ1)ζ1},
where we have used the fact thatζ3−ζ1 ≥ 1

2 log1/2n ≥ 1
2ζ1, so thatζ3 ≤ 3(ζ3−ζ1).

Using these properties again, as well as the property thatζ1 ≥ β−1(1), we have

S̃q(ζ1) ≤ Cηp̃(logn)(κ+1+q)/2 exp
(−ζ1

√
logn

) ≤ Cηp̃ ≤ Crp,q(η).

This completes the proof that the results of Theorem 1 continue to hold for the
modified estimator forηp̃ > n−1 log2 n.

Now turn to the caseηp̃ ≤ n−1 log2n. Reuse decomposition (100) withτ =
ζ(η,n) defined after (101). First use bound (71) witht = tA:

E|µ̂A,i − µi|q ≤ cq[|µi |q + t
q−1
A φ(tA) + (t

q
A + bq + 1){P (t̂A < tA)}1/2].(129)

By the definition oftA, we have

t
q−1
A φ(tA) = φ(0)n−1−A[2(1+ A) logn](q−1)/2 ≤ Cn−1−A log(q−1)/2n.(130)

To boundP (t̂A < tA), observe from (53) thatt2(ζ ) ≥ ζ 2 − C. In combination
with (105), this implies, forηp̃ ≤ n−1 log2n, that

t2(ζ ) ≥ t2
n + p log logn − c − C,

so thatt2(ζ ) ≥ t2
n for n > n(p,γ ). Consequently,

{t̂A < tA} = {t̂ < tn} ⊂ {t̂ < t (ζ )} = {ζ̂ < ζ }
and so we conclude from (106) that whenηp̃ ≤ n−1 log2 n andn > n(p,γ ),

(t
q
A + bq + 1)P (t̂A < tA) ≤ c(logn)q/2 exp{−C(logn)3/2} = o(n−1−A).(131)

We now have

n−1
∑
i

|µi|q ≤


(
n−1

∑
i

|µi|p
)q/p

≤ ηq = rp,q(η), for q ≤ p,

n−1‖µ‖q
p ≤ n(q−p)/pηq, for q > p > 0.

(132)

Averaging (129) over alli and inserting (130)–(132) proves (23) for the caseq ≤ p

and (24) forq > p.
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To prove (23) forq > p, argue as in Section 8.2 to give

n−1
∑

|µi |≤ζ

|µi|q ≤ Crp,q(η),(133)

so that, summing only over|µi| ≤ ζ ,

Rq(ζ ) ≤ Crp,q(η) + cn−1−A log1/2n.(134)

For q > p and |µi| > ζ , we apply bound (78), noting that̂tA ≤ tA with
probability one, to obtain

E|µ̂A,i − µi|q ≤ 4(t
q
A + bq + 1) ≤ C(logn)q/2.

As in the previous section, comparing (120) and (121), we have

π = n−1#{i : |µi| > ζ } ≤ ηp̃ζ−p,

and so, recalling from (105) thatζ >
√

logn,

R̃q(ζ ) ≤ πC(logn)q/2 ≤ Cηp̃(logn)(q−p)/2.

But ηp̃ ≤ n−1 log2n implies that logη−p̃ ≥ logn − 2 log logn and, hence, that
logn ≤ C logη−p̃, so forn large andηp̃ ≤ n−1 log2n we have

R̃q(ζ ) ≤ Crp,q(η);
combining this result with (134) completes the proof of Theorem 2.�

10. Remarks on the posterior mean. In proving results for the posterior
mean, we have assumed throughout thatq > 1. The failure of the posterior mean
to be a strict thresholding rule has a substantive effect on the overall risk if
q ≤ 1. Concentrate attention on the case whereγ is the Laplace distribution with
parameter 1, and defineψ(n) = exp(

√
2 logn ) so thatg(

√
2 logn)−1 
 ψ(n) as

n → ∞.

An important contributor to our arguments wast (ŵ) ≤ √
2 logn, from which it

follows thatτ (ŵ) ≤ √
2 logn. By the definition ofτ , we have

ŵ

1− ŵ
≥ φ(

√
2 logn )

g(
√

2 logn )
≥ Cn−1ψ(n),

so thatŵ ≥ Cn−1ψ(n). Sinceg(x)/φ(x) is bounded below away from zero, it
follows that, for some constantC and for allx, the posterior weight̃w(x, ŵ) ≥
Cn−1ψ(n).

On the other hand, the odd functioñµ1 satisfiesµ̃′
1(0) > 0 and is strictly

increasing withµ̃1(x) ≥ x−� for all x; therefore,x−1µ̃1(x) is uniformly bounded
below away from zero forx �= 0. It follows that, for allx �= 0,

|µ̃(x, ŵ)| = w̃(x, ŵ)|µ̃1(x)| ≥ C|x|n−1ψ(n).
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If µ = 0 andX ∼ N(0,1), it follows that

E|µ̃(X, ŵ) − µ|q ≥ Cqn−qψ(n)qE|X|q = Cn−qψ(n)q

so that, however small the value ofη, the risk bound cannot be reduced below
Cn−qψ(n)q, making it impossible for the estimate to attain the full range of
adaptivity given by the posterior median. The restrictions become more severe
the lower the value ofq.
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