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ASYMPTOTIC GLOBAL ROBUSTNESS IN BAYESIAN
DECISION THEORY

BY CHRISTOPHEABRAHAM AND BENOÎT CADRE

ENSAM–INRA and Université Montpellier II

In Bayesian decision theory, it is known that robustness with respect
to the loss and the prior can be improved by adding new observations. In
this article we study the rate of robustness improvement with respect to
the number of observationsn. Three usual measures of posterior global
robustness are considered: the (range of the) Bayes actions set derived from
a class of loss functions, the maximum regret of using a particular loss when
the subjective loss belongs to a given class and the range of the posterior
expected loss when the loss function ranges over a class. We show that the
rate of convergence of the first measure of robustness is

√
n, while it is n

for the other measures under reasonable assumptions on the class of loss
functions. We begin with the study of two particular cases to illustrate our
results.

1. Introduction. In Bayesian analysis, choosing a prior distribution and
choosing a loss function according to prior knowledge and preferences are difficult
tasks. In practice, the decision maker usually chooses convenient approximations
to the subjective prior and the subjective loss. The legitimacy of such approxi-
mations might be investigated by a sensitivity analysis of the results with respect
to the approximations. This is the purpose of robust Bayesian analysis, which re-
cently was overviewed by Ríos Insua and Ruggeri (2000). An interesting approach,
called global robustness, proposes to replace a single prior distribution (resp. loss
function) by a class of priors (resp. loss functions) and then to compute the range
of the ensuing answers as the prior (resp. loss function) varies over the class.

Bayesians mainly focus on sensitivity to the prior distribution, although the
final result can be drastically affected by the loss function. Moreover, Rubin
(1987) showed that the loss function and the prior cannot be separated under
a weak system of axioms for rational behavior. It is worth pointing out that
robustness with respect to the prior can be expressed as a particular case of loss
robustness. This is illustrated by the following example: the computation of the
range of the posterior expectation when the prior densityp ranges over a class�
reduces to the computation of the range of the Bayes actions (i.e., decisions that
minimize the posterior expected loss) when the loss function ranges over the class
{l2p/p0, p ∈ �}, wherel2 is the quadratic loss andp0 is a fixed prior.
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When robustness is lacking, Abraham (2001) showed it can be improved by
adding new observations. It is of practical interest to know how many new
observations are needed to achieve a given robustness. Herein we answer this
question by investigating the asymptotic rate of convergence of three measures
of posterior robustness. Because of the above remark, we focus on robustness with
respect to the loss, since it provides a general framework including many prior
robustness problems.

The asymptotic of global robustness measures (e.g., the range of posterior
means or set probabilities) with respect to the prior has been investigated
for particular classes (mainlyε-contamination classes) by Sivaganesan (1988),
Pericchi and Walley (1991), Moreno and Pericchi (1993) and Ruggeri and
Sivaganesan (2000). The local point of view has been studied by Gustafson and
Wasserman (1995), Gustafson, Srinivasan and Wasserman (1996) and Sivaganesan
(1996). For a recent account of the theory, refer to Sivaganesan (2000).

In Sections 4–6, we proceed with the study of three measures of posterior global
robustness. Section 4 is devoted to the study of the Bayes actions set derived from a
class of loss functions. We show that the Bayes actions set tends to a limit set with
rate

√
n, wheren is the number of observations. In Section 5, we are concerned

with the regret of choosing a decision associated with a particular loss function
when the true loss function varies over a given class. We show that the rate of
convergence of the supremum of the regrets is

√
n or n, according to the class

of loss functions. Section 6 deals with the range of the posterior expected loss,
which has asymptotic rate

√
n or n as well. Section 2 provides two examples. For

one of them, the above asymptotic rates are actually achieved for every finiten.
In Section 3 we set up notation and terminology. In particular, we indicate that
the posterior distribution can be calculated under misspecified models, that is, we
contemplate that the observations are realizations from a convenient probability
distribution with densityhσ (σ is the parameter), while the true distributionQ
may not correspond tohσ for all values ofσ . Finally, we compile some auxiliary
results in Section 8.

2. Examples. In this section, we present two examples based on tractable
classes of loss functions. Such classes have already been considered in Martín,
Ríos Insua and Ruggeri (1998) and Abraham and Daurés (1999, 2000).

2.1. Squared-error loss. Whereas squared-error loss is frequently used to
approximate nearly symmetric loss functions [Berger (1985)], it is of practical
interest to investigate robustness with respect to variations around this loss. It is
also of theoretical interest because it makes the calculations relatively simple.

The set� of parameters and the setD of decisions are both assumed to beR.
Fix 0 < k1 < k2, depending on the incomplete information on the true loss, and
defineU :� × D → R

+ as

U(σ,d) = (k2{d ≥ σ } + k1{d < σ })l0(σ, d),(2.1)
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where{C} denotes the usual indicator function ofC and l0(σ, d) = 0.5(d − σ)2

denotes the convenient loss chosen by the decision maker. DefineL by inter-
changingk1 and k2 in the definition ofU . Let D01l stand for the derivative
of l :� × D → R

+ with respect tod and introduce the classF of loss functions
l :� × D → R

+ such that for allσ ∈ �, D01l(σ, ·) is continuous,l(σ, σ ) = 0 and
D01L ≤ D01l ≤ D01U .

Assume thatX1, . . . ,Xn are independent and identically distributed from
a normal N(µ,λ−1) distribution, where the varianceλ−1 is known. Take
a N(µ0, λ

−1
0 ) prior. The posteriorπn is then normalN(µn,λ

−1
n ) with µn =

(λ0µ0+λ(X1+· · ·+Xn))/λn and precisionλn = λ0+nλ. Denoting, for alll ∈ F ,
dn
l as a minimizer ofln(·) = ∫

� l(σ, ·)πn(dσ ), elementary calculations show that
Un andLn admit only one minimizer given by

dn
U = µn + r1/

√
λn and dn

L = µn + r2/
√

λn,

wherer2 < 0 < r1 are constants depending onk1 andk2.
Let us now investigate the computation of the three measures of posterior

robustness. Since, by Abraham and Daurés (1999),{dn
l , l ∈ F } = [dn

U , dn
L], the

diameter of{dn
l , l ∈ F } is equal to(r1 − r2)/

√
λn, which gives the first measure

of robustness. Write now regn
l (d) = ln(d)− infD ln for the posterior regret. By the

definition ofF , if d2 ≥ d1, we have for alll ∈ F ,

ln(d2) − ln(d1) =
∫ d2

d1

D01l
n(t) dt =

∫ d2

d1

∫
�

D01l(σ, t)πn(dσ ) dt.

Hence, we deduce that

sup
l∈F

regnl (d) = max{regnU (d), regnL(d)}.(2.2)

Let dn
0 = µn be the Bayes rule associated with the squared-error loss functionl0.

After some calculations, we obtain that for some constantsc1 andc2,

Un(dn
0) − Un(dn

U) = c1/λn and Ln(dn
0) − Ln(dn

L) = c2/λn,

and hence

sup
l∈F

regnl (d
n
0 ) = max(c1, c2)/λn,

which gives the second measure of robustness. Finally, ifS = k2l0 and I =
k1l0, then I, S ∈ F and I ≤ l ≤ S for all l ∈ F . Then if we write rann(d) =
supl∈F ln(d) − infl∈F ln(d) for the range of the posterior expected loss, we
obviously have

rann(dn
0 ) = Sn(dn

0 ) − In(dn
0)

= 0.5(k2 − k1)/λn,

hence the third measure of robustness.
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We emphasize that the constantsr1, r2, c1 andc2 can be numerically computed
and that similar calculations can be done with different functionsU , L andl0. As
a conclusion, we proved that, for the classF , the speed of convergence of the
diameter of{dn

l , l ∈ F } is
√

n, while the speed of convergence of the posterior
regret and the range of the posterior expected loss aren.

2.2. The dam construction problem.Following Ulmo and Bernier (1973), the
economical consequence of constructing a damd meters high is the sum of the
cost construction and the cost due to a potential flood, 10d +100(H −d) {H > d},
whereH is the peak water level. Note that the consequence is a random variable.
Assuming thatH is exponentially distributed with densityhσ (x) = σe−σx and
taking the expectation yields the loss

l0(σ, d) = 10d + 100σ−1 exp(−dσ ).

A similarly constructed utility functioncan be found in Berger[(1985), page 58].
The lossl0 can be viewed as a convenient approximation to the true loss. Let
us proceed similarly to Section 2.1 to study the robustness of the Bayes action.
Consider the classF of functionsl such thatD01L ≤ D01l ≤ D01U . Whereas the
minimum of l0(σ, ·) is obtained whendσ = log10, we define

U(σ,d) = (
�(dσ − log10) + 0.5

)
l0(σ, d)

and

L(σ, d) = (
1.5− �(dσ − log10)

)
l0(σ, d),

where� denotes the cumulative distribution function ofN(0,1). Letdn
l anddn

0 be
generic notation for the Bayes actions associated with the loss functionsl andl0,
respectively. It can be proved thatU(σ, ·) andL(σ, ·) are convex functions with
a unique minimizer. Thus, the set of Bayes actions is still[dn

U , dn
L] and the largest

posterior regret can be calculated by (2.2). The posterior distribution is derived
from n independent observations with densityhσ and a reference priorπ(σ ) =
σ−1 (πn ∼ Gamma(n,

∑n
i=1 Xi)). We simulatedn = 100 observations with respect

to h0.5 and computed numerically
∑100

i=1 xi = 193.6, dn
U = 2.7, dn

L = 7.7, dn
0 = 4.5

and supl∈F regn
l (d

n
0) = 19.5. Thus, the optimal dam size is somewhere between

2.7 and 7.7 m, and using the optimal decision associated withl0 gives an excess
posterior loss less than 19.5. Can we get more precise results by adding new
observations? Sections 4 and 5 answer in the negative. Indeed, Theorem 4.1
applied toL = {U,L} shows that the range of the optimal sizes approaches
dθ
L − dθ

U with rate
√

n, whereθ is the true value of the parameterσ , anddθ
L and

dθ
U are the minimizers ofU(θ, ·) andL(θ, ·). From the data we can guessθ to be

about 0.5 (because 1/x̄ = 0.51) and deduce thatdθ
L − dθ

U is around 5 by numerical
computation ofdθ

L anddθ
U for θ = 0.5. Sincedn

L − dn
U = 5, we cannot expect to

improve the result. Note that the classF is large since, even whenθ is given, it
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is only known that the optimal size is somewhere betweendθ
U anddθ

L. Also note
that if we had chosen a classF such thatdθ

U = dθ
L, the range of the optimal sizes

could have been arbitrarily reduced by adding observations [see Abraham (2001)
for a description of the limit of the Bayes actions set]. Similarly, we know from
Theorem 5.1 that the largest posterior regret approaches max{regθ

L(dθ
0), regθU (dθ

0)},
which remains about 20, wheredθ

0 denotes the minimizer ofl0(θ, ·).

3. Preliminaries and notation.

3.1. The model. Let X = (X1,X2, . . .) be a sample sequence of independent
and identically distributed random variables defined on some measurable space
(X0,B0), whereB0 denotes the Borelσ -field of X0. In the sequelQ refers to the
joint distribution on(X,B) of the sequenceX, whereX = XN

0 andB denotes
the Borelσ -field of X.

We introduce the family of probability densities{hσ ,σ ∈ �} with respect to
someσ -finite measureµ on (X0,B0), where the parameter space� is R

k with
Borelσ -fieldB�. Note that the model may be misspecified since we do not assume
thatQ corresponds to any of the densitieshσ . For technical reasons, we make the
additional assumption that(σ, x0) → hσ (x0) is B� ⊗ B0 measurable.

From now on, we fix a prior distributionπ on (�,B�). The existence of the
posterior distribution for misspecified models was studied by Berk (1970). For
simplicity, we assume that the posterior distributionπn, defined for allA ∈ B� by

πn(A) =
∫
A

n∏
i=1

hσ (Xi)π(dσ )

/∫
�

n∏
i=1

hσ (Xi)π(dσ ),

does existQ-almost surely.
We assume the modelhσ to be regular enough so that the maximum

likelihood estimateθn is asymptotically normal [i.e., for someθ ∈ �,
√

n(θn − θ)

converges in distribution to a normal random variableZθ ] and the posterior
distribution concentrates around the true value of the parameter asn → ∞. The
precise assumptions M on the model are given in the beginning of Section 8.
Sufficient conditions for the existence and the asymptotic normality ofθn (i.e.,
assumption M1) with misspecified models were given by White (1982) for the
case when� is compact. Moreover, Abraham and Cadre (2002) studied the
concentration ofπn around the true value of the parameter; see also Strasser (1976)
when the model is correctly specified. More precisely, both works give sufficient
conditions so that M2–M4 hold.

3.2. The basic class of loss functions.For simplicity, let D = R
p be the

decision space. In the sequel a loss function is defined to be a function
l · � × D → R

+ such thatl(·, d) is measurable for eachd ∈ D and l(σ, ·) is
twice continuously differentiable for eachσ ∈ �.
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If σi (resp.di ) denotes theith component ofσ ∈ � (resp.d ∈ D ), we write,
when they exist,

D01l =
(

∂l

∂di

)
i=1,...,p

, D10l =
(

∂l

∂θi

)
i=1,...,k

,

D02l =
(

∂2l

∂di ∂dj

)
i,j=1,...,p

, D20l =
(

∂2l

∂θi ∂θj

)
i,j=1,...,k

,

D11l =
(

∂2l

∂di ∂θj

)
i = 1,...,p

j = 1,...,k

,

wherei andj stand for the row index and the column index, respectively.
In this article a classL of loss functions is said to be locallyπ -dominated if, for

all d ∈ D , there exist a functiong ∈ L1(π) which is bounded on a neighborhood
of θ , and an open ballB(d, r) with centerd and radiusr > 0 such that

sup
l∈L

sup
t∈B(d,r)

‖D0γ l(σ, t)‖ ≤ g(σ ), σ ∈ �, γ = 0,1,2,

with the notationD00l = l. Here and in the sequel‖a‖ denotes the maximum
of the absolute values of the coordinates of a vector or a matrixa with real
coefficients. Thus, a locallyπ -dominated class is also locallyπn-dominated on
the event{∫ g(σ )πn(dσ ) < ∞}, the probability of which tends to 1 whenn → ∞
by Lemma 8.1. Since this article deals with convergence in probability and in
distribution, we may restrict our attention to the elements of this set.

To shorten notation, we writeln(d) = ∫
� l(σ, d)πn(dσ ) as the expectation of

l(·, d) with respect toπn. Note that in a locallyπ -dominated class differentiation
and integration can be inverted, and we let

D0γ ln(d) =
∫
�

D0γ l(σ, d)πn(dσ ), γ = 1,2.

Furthermore, ifD0γ l(σ, ·) is continuous forπ -almost allσ , D0γ ln is continuous
as well.

3.3. The Bayes action process.Since, for each loss functionl, ln(d) is
a measurable function ofx and a continuous function ofd , it is possible, for each
x ∈ X such that arg mind∈D ln(d) 
= ∅, to select a minimizing decisiondn

l (x) in
such a manner that the functionx �→ dn

l (x) is B measurable [Rockafellar and West
(1998), Theorem 14.37]. The decisiondn

l is called the Bayes action associated with
the lossl.

We use the outer probability theory to avoid strong assumptions onL that
ensure the measurability of(dn

l )l∈L. We denote byQ∗ the outer probability

derived fromQ, by Yn
Q∗→Y the convergence in outer probability and byYn � Y

the weak convergence (with respect toQ∗) of Yn to Y . For more details about outer
probability, refer to van der Vaart and Wellner (1996).
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Throughout this articleL denotes a locallyπ -dominated class of loss functions
such that the outer probability that arg mind∈D ln(d) = ∅ for somel ∈ L is zero.
We then define a Bayes actions process to be a family(dn

l )l∈L of minimizing
decisions. We equip the space of functions fromL into the space of matrices with
real coefficients with the supremum norm.

4. Asymptotic of the Bayes actions process. This section is devoted to the
study of the Bayes actions process. To get asymptotic results, it is necessary to
put some restrictions onL. We assume throughout thatL satisfies the following
properties [recall thatθ is fixed (see Section 3.1)]:

1a. For everyl ∈ L, argminl(θ, ·) = {dθ
l }.

1b. There exists a neighborhoodVθ of θ such that, for alll ∈ L, D01l(·, dθ
l ) is

continuously differentiable onVθ .
1c. supl∈L‖D11l(θ, dθ

l )‖ < ∞, supl∈L‖D02l(θ, dθ
l )‖ < ∞ and infl∈L|detD02l(θ,

dθ
l )| > 0.

1d. The families{D11l(·, dθ
l )|Vθ

, l ∈ L}, {D02l(·, dθ
l )|Vθ

, l ∈ L} and{l(·, d)|Vθ
,

l ∈ L, d ∈ K} are equicontinuous atθ for any compactK ⊂ D .

Let B(c, r) be generic notation for an open ball with centerc and radiusr > 0.

1e. For everyη > 0, there existsρη ∈ L1(π) with supσ∈Vθ
ρη(σ ) →η→0 0 and

such that for allσ ∈ � we have

sup
l∈L

sup
d∈B(dθ

l ,η)

‖D02l(σ, d) − D02l(σ, dθ
l )‖ ≤ ρη(σ ).

1f. There existr > 0 and a compact setK ⊂ D such that

sup
l∈L

inf
d∈K

l(θ, d) < inf
l∈L

inf
σ∈B(θ,r)

inf
d∈Kc

l(σ, d).

1g. For everyη > 0,

κ(η) = inf
l∈L

inf
d∈Bc(dθ

l ,η)
[l(θ, d) − l(θ, dθ

l )] > 0.

The homogeneity ofL is ensured by conditions 1b–1e. From 1f we prove that
the Bayes actions remain in a compact set (Lemma 8.2). Let us illustrate the
assumptions by the following examples.

EXAMPLE 4.1 (Prior robustness). Let� be a class of densities with re-
spect to (w.r.t.) the Lebesgue measurem on R and assumeπ has a posi-
tive density w0 w.r.t. m. Consider the classL of functions l(σ, d) = (d −
a(σ ))2w(σ)/w0(σ ) with w ∈ �. For instance, we takea(σ ) = σ or a(σ ) =
{σ ∈ S} whether we are interested in the posterior expectation or the poste-
rior probability of a setS. For simplicity, let us choosea(σ ) = σ . Assume
that w0 and eachw ∈ � are continuously differentiable on a neighborhoodVθ

of θ . If furthermore supw∈� supσ∈Vθ
w(σ ) < ∞, supw∈� supσ∈Vθ

|w′(σ )| < ∞ and
infw∈� infσ∈Vθ

w(σ ) > 0, assumptions 1a–1g are fulfilled.
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Classes as in Example 4.1 include density band classes, mixture classes and
ε-contamination classes with adequate conditions. [Conditions on the
ε-contamination class are those used by Sivaganesan (1996).]

EXAMPLE 4.2. Consider the case� = D = R. Assume that
∫
� |σ |p ×

π(dσ ) < ∞ and let g :R → [0,∞) be a polynomial of degreep. Consider
the classG of three times differentiable non-negative functionsf such that
|f (3)(t)| ≤ g(t). Assume further thatf is decreasing on(−∞,0] and increasing
on [0,∞) with a unique minimizer at 0 and that there existsM > 0 such that
supf ∈F f (0) < ∞, supf ∈F f (0) < inff ∈F inf|t|>M f (t) and 0< inff ∈F f ′′(0) ≤
supf ∈F f ′′(0) < ∞. Then the classL of loss functionsl(σ, d) = f (d −σ), f ∈ G,
satisfies every assumption of Section 3.2 and 1a–1g of Section 4.

This example includes, for instance, parametric classes (with Linex losses) and
ε-contamination classes with adequate conditions [for definitions and examples of
classes of loss functions, refer to Ríos Insua and Ruggeri (2000)].

To shorten notation, we writeϕ(l) instead of[D02l(θ, dθ
l )]−1D11l(θ, dθ

l ).

THEOREM 4.1. Under the assumptionsM:

(i)
√

nsupl∈L ‖(dn
l − dθ

l ) + ϕ(l)(θn − θ)‖ Q∗→0.

(ii)
√

n(dn
l − dθ

l )l∈L � (ϕ(l)Zθ )l∈L.
(iii)

√
nsupl∈L ‖dn

l − dθ
l ‖ � supl∈L ‖ϕ(l)Zθ‖.

From a robust point of view it is of interest to know the rate of convergence of
the Bayes actions set with respect to the Hausdorff metrich. Let A = {dθ

l , l ∈ L}
andAn = {dn

l , l ∈ L}. Recall thath(An,A) < δ if and only if every point inA
is within distanceδ of at least one point inAn and vice versa. Thus,h(A,An) ≤
supl∈L ‖dn

l − dθ
l ‖ and, by Theorem 4.1,

√
n/unh(A,An)

Q∗→0

for any sequence of positive numbers such thatun → ∞, thus improving the main
result in Abraham (2001). Clearly, the same result holds ifh(A,An) is replaced by
(diameterAn − diameterA). Assuming moreover thatD = � = R anddθ

l = dθ is
independent ofl ∈ L, we get from Theorem 4.1,√

ndiameterAn � sup
l∈L

(
ϕ(l)Zθ

) − inf
l∈L

(
ϕ(l)Zθ

)
.

EXAMPLE 4.1 (continued). Assume that for somew ∈ � with
∫
� σ 2 ×

w(σ)dσ < ∞ we havew ≤ w for all w ∈ �. The classL is thenπ -dominated.
Write l̃n(d) = ∫

�(d − σ)2wn(dσ ), wherewn is the posterior distribution derived
from the prior densityw, and denote byÃn the set of posterior expectations. Since
ϕ(l) = −1 andÃn = An, we deduce from above that

√
ndiameterÃn � 0.
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EXAMPLE 4.2 (continued). Sinceϕ(l) = −1, we have
√

ndiameterAn � 0.

PROOF OFTHEOREM 4.1. Recall that integration and differentiation can be
interchanged in a locallyπ -dominated class. By definition ofdn

l , 0= D01l
n(dn

l ).
For s ∈ [0,1] write tnl,s = dθ

l + s(dn
l − dθ

l ). By Taylor’s formula we have

0 = √
nD01l

n(dθ
l ) + √

n

∫ 1

0
D02l

n(tnl,s )
t (dn

l − dθ
l ) ds

= √
n
(
D01l

n(dθ
l ) − D11l(θ, dθ

l )(θn − θ)
)

+
[∫ 1

0
D02l

n(tnl,s )
t ds

]√
n(dn

l − dθ
l ) + D11l(θ, dθ

l )
√

n(θn − θ)

= αn(l) + An(l)
√

n(dn
l − dθ

l ) − Rn(l)

with evident definitions ofαn(l), An(l) andRn(l). By Theorem 8.1 the supremum
whenl ranges overL of αn(l) tends to 0 in outer probability. Then (i) is straight-
forward from Lemmas 8.4 and 8.6. By Slutsky’s lemma and M1, (i) gives (ii).
Taking into account the continuity of the applicationz → supl∈L ‖z(l)‖, wherez

is a function fromL to R
k , we easily deduce (iii) from (ii). �

5. Posterior regret. Let l0 ∈ L. From now on we think ofl0 as a convenient
approximation of the true loss. For simplicity of notation we writedθ

0 and dn
0

instead ofdθ
l0

and dn
l0

. We let S0 ⊂ L be a class which satisfies the following
conditions (recall thatVθ andρη were defined by 1b and 1e):

2a. For everyl ∈ S0, l(·, dθ
0) is continuously differentiable onVθ .

2b. For everyη > 0 andσ ∈ �, we have

sup
l∈S0

sup
d∈B(dθ

0 ,η)

‖D01l(σ, d) − D01l(σ, dθ
0)‖ ≤ ρη(σ ).

2c. The families{D01l(·, dθ
0)|Vθ

, l ∈ S0} and{D10l(·, dθ
0)|Vθ

, l ∈ S0} are equicon-
tinuous atθ .

2d. supl∈S0
‖D01l(θ, dθ

0)‖ < ∞ and supl∈S0
‖D10l(θ, dθ

0)‖ < ∞.

Similarly, the classS ⊂ L is defined by replacingdθ
0 by dθ

l andS0 by S in
conditions 2a–2d. In the remainder of this section we restrict our attention to a
class of loss functionsL1 ⊂ S ∩ S0.

For everyl ∈ L1 and everyd ∈ D , write

regnl (d) = ln(d) − inf
d∈D

ln(d) and regθl (d) = l(θ, d) − inf
d∈D

l(θ, d).

This section is devoted to the study of the posterior regret process for the decision
dn

0 associated with the convenient lossl0. This measure of robustness was used by
Berger (1984).
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THEOREM 5.1. Under the assumptionsM,√
n
(
regnl (d

n
0) − regθ

l (d
θ
0)

)
l∈L1

�
([−D01l(θ, dθ

0)tϕ(l) + D10l(θ, dθ
0)t − D10l(θ, dθ

l )t ]Zθ

)
l∈L1

.

Taking into account the continuity of the applicationz → supl∈L1
‖z(l)‖ defined

on the functions fromL1 to R
k , we deduce from Theorem 5.1 the asymptotic

bound for everyu ∈ R,

lim sup
n

Q∗
(√

n sup
l∈L1

| regnl (d
n
0) − regθl (d

θ
0)| ≥ u

)
≤ Q

(
sup
l∈L1

|Ml| ≥ u

)
,

where (Ml)l∈L1 is the limit process that appears in Theorem 5.1. The above
inequality provides information on the value ofn that we need to obtain an
arbitrarily robust analysis. For instance, chooseα arbitrarily small andu ∈ R so
that the right-hand term is less thanα. Then with probability greater than 1− α,
the posterior regret regn

l (d
n
0) associated with any loss functionl ∈ L1 is less than

u/
√

n + supl∈L1
regθ

l (d
θ
0) for largen.

PROOF OFTHEOREM 5.1. By Proposition 8.1 we have
√

n sup
l∈L1

|ln(dn
l ) − l(θ, dθ

l ) − D10l(θ, dθ
l )t (θn − θ)| Q∗→0

and √
n sup

l∈L1

|ln(dn
0 ) − l(θ, dθ

0 )

− D01l(θ, dθ
0)t (dn

0 − dθ
0) − D10l(θ, dθ

0)t (θn − θ)| Q∗→0.

The conclusion easily follows from Theorem 4.1 and Slutsky’s lemma.�

From a practical point of view, it is of interest to consider the particular case
where the optimal decisiondθ

l is actually independent ofl, as is the case in
estimation problems. If we assume moreover thatl0 is such thatdθ

0 = dθ
l , then

by Theorem 5.1, √
n sup

l∈L1

regnl (d
n
0 ) � 0.

In this situation, we can expect to obtain a better rate of convergence. As a matter
of fact, it turns out that the rate of convergence of the posterior regret is of ordern.

THEOREM 5.2. Assume thatdθ
0 = dθ

l for every l ∈ L1. Then under the
assumptionsM,

n sup
l∈L1

regnl (d
n
0 ) � 1

2 sup
l∈L1

[
Zt

θ

(
ϕ(l0) − ϕ(l)

)t
D02l(θ, dθ

l )
(
ϕ(l0) − ϕ(l)

)
Zθ

]
.
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The theorem gains in interest if we consider the special case whereD = �,
andl0 and everyl ∈ L1 are functions ofd − σ , which is a very common situation
in estimation problems. In this case,ϕ(l) = −Ip, whereIp is thep × p identity
matrix and

n sup
l∈L1

regnl (d
n
0 ) � 0.

It is easy to check that every assumption of this section is satisfied by the class of
Example 4.2. Thus, the result above also holds for this class.

EXAMPLE 4.1 (continued). The assumptions of Section 5 are fulfilled with
l0(σ, d) = (d − σ)2. Definep(w,n) such that̃ln(d) = p(w,n) ln(d) and assume
that supw∈� p(w,n) remains bounded inQ∗ probability [this holds, e.g., if there
existsw such thatw ≥ w for all w ∈ � and if w andw0 satisfy the conditions
of Strasser (1976) or Abraham and Cadre (2002)]. We deduce from the above
remark thatnsupw∈�(

∫
(dn

0 −σ)2wn(dσ )−V (wn)) � 0, wheredn
0 andV (wn) are,

respectively, the posterior expectation derived from the priorw0 and the posterior
variance derived from the priorw.

PROOF OF THEOREM 5.2. SinceD01l
n(dn

l ) = 0, we have, by Taylor’s
formula,

regn
l (d

n
0) = ln(dn

0 ) − ln(dn
l )

=
∫ 1

0
(1− s)(dn

0 − dn
l )tD02l

n(
dn
l − s(dn

0 − dn
l )

)
(dn

0 − dn
l ) ds.

However, by Theorem 4.1 and Lemma 8.4,

sup
l∈L1

sup
s∈[0,1]

∥∥D02l
n(

dn
l − s(dn

0 − dn
l )

) − D02l(θ, dθ
l )

∥∥ Q∗→0.

Moreover, we easily get by Theorem 4.1 that
√

n(dn
0 − dn

l )l∈L1 �
((

ϕ(l0) − ϕ(l)
)
Zθ

)
l∈L1

.

Hence

n sup
l∈L1

∣∣regnl (d
n
0 ) − 1

2(dn
0 − dn

l )tD02l(θ, dθ
l )(dn

0 − dn
l )

∣∣ Q∗→0.

We conclude by using again the asymptotic behavior of
√

n(dn
0 − dn

l )l∈L1. �

6. Range of the posterior expected loss. The beginning of this section is
devoted to the study of the range of the posterior expected loss,

rann
S0

(d) = sup
l∈S0

ln(d) − inf
l∈S0

ln(d),(6.1)

whered ∈ D andS0 is defined in Section 5.
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THEOREM 6.1. Assume thatdθ
0 = dθ

l and l(θ, dθ
0) = l′(θ, dθ

0) for everyl and
l′ ∈ S0. Then, under the assumptionsM,

√
n rannS0

(dn
0) � sup

l∈S0

[D10l(θ, dθ
0)tZθ ] − inf

l∈S0
[D10l(θ, dθ

0)tZθ ].

PROOF. SinceD01l(θ, dθ
0 ) = 0, Proposition 8.1 shows that

√
n sup

l∈S0

|ln(dn
0) − l(θ, dθ

0) − D10l(θ, dθ
0)t (θn − θ)| Q∗→0.

This gives (
√

n(ln(dn
0 ) − l(θ, dθ

0)))l∈S0 � (D10l(θ, dθ
0)tZθ )l∈S0 according to

Theorem 4.1, but, by assumption,

rann
S0

(dn
0 ) = sup

l∈S0

[ln(dn
0 ) − l(θ, dθ

0 )] − inf
l∈S0

[ln(dn
0) − l(θ, dθ

0)],

so that the conclusion follows from a continuity argument as in the proof of
Theorem 4.1(iii). �

It is worth pointing out that rannS0
(d) = Sn(d)− In(d) when there existI andS

in S0 such that supl∈S0
l = S and infl∈S0 l = I . Because of the above remark, let

us define another class of loss functions which is well adapted to the study of
the range of posterior expected loss. LetI ∈ S0 and S ∈ S0, and define[I, S]
to be the class of loss functionsl :� × D → R

+ such thatI ≤ l ≤ S. Such a
class was considered in Abraham (2001). The important point to note here is that
regularity assumptions are only required onI , S andl0. Thus, this class includes
very irregular losses as soon as they are bounded byI andS. This is very attractive
from a practical point of view sincel0 can be regarded as a tractable approximation
of the true loss, the accuracy of which is now given byI and S. It is also of
computational interest because it involves only two loss functions. For simplicity
of notation, we write rannIS(d) instead of rann[I,S](d), where the previous expression
is defined by replacingS0 by [I, S] in (6.1). Similarly, we write

ranθ
IS(d) = sup

l∈[I,S]
l(θ, d) − inf

l∈[I,S] l(θ, d).

THEOREM 6.2. Under the assumptionsM,
√

n
(
rannIS(dn

0) − ranθ
IS(dθ

0)
)

�
[[D10(S − I )(θ, dθ

0)]t − [D01(S − I )(θ, dθ
0 )]t ϕ(l0)

]
Zθ .

PROOF. SinceS ∈ S0, Proposition 8.1 yields

√
n|Sn(dn

0) − S(θ, dθ
0 ) − D01S(θ, dθ

0 )t (dn
0 − dθ

0) − D10S(θ, dθ
0)t (θn − θ)| Q∗→0.
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The same result holds withS replaced byI . Theorem 6.2 is then an immediate
consequence of Theorem 4.1 and assumption M2, since by assumption

rannIS(dn
0 ) − ranθ

IS(dθ
0) = [Sn(dn

0) − S(θ, dθ
0 )] + [I (θ, dθ

0) − In(dn
0)]. �

Observe that ifS, I andl0 are functions ofd − σ , Theorem 6.2 reduces to
√

n
(
rannIS(dn

0 ) − ranθ
IS(dθ

0)
)
� 0.

In this case we can improve the rate of convergence.

THEOREM 6.3. Assume thatI (·, dθ
0) and S(·, dθ

0 ) are twice continuously

differentiable, D10I (θ, dθ
0) = D10S(θ, dθ

0 ) andD01I (θ, dθ
0) = D01S(θ, dθ

0 ). Then
under the assumptionsM,

n
(
rann

IS(dn
0 ) − ranθIS(dθ

0)
)
� 1

2[Zt
θ (NS − NI)Zθ + LS − LI ],

where

NS = ϕ(l0)
tD02S(θ, dθ

0 )ϕ(l0) + D20S(θ, dθ
0) − 2D11S(θ, dθ

0)tϕ(l0),

NI is defined by replacingS by I in the above formula, and the constants
LS and LI are defined in Section8 by replacingf by S(·, dθ

0 ) and I (·, dθ
0),

respectively, in (8.6).Furthermore, if D01S(θ, dθ
0 ) = D10S(θ, dθ

0 ) = 0, then

n
(
Sn(dn

0 ) − S(θ, dθ
0)

)
� 1

2[Zt
θNSZθ + LS].(6.2)

The same result holds ifS is replaced byI in (6.2) under the assumptions
D01I (θ, dθ

0) = D10I (θ, dθ
0) = 0.

Consider again the usual case wherel0, S andI may be expressed as functions
of d − σ . Then we haveϕ(l0) = −Ip, D02S = D20S = −D11S and finally
NS = NI = 0, so that, by Theorem 6.3,

n
(
rannIS(dn

0 ) − ranθ
IS(dθ

0)
)
� 1

2(LS − LI ).

EXAMPLE 4.1 (continued). TakewI andwS in � and consider the density

ratio class�′ = {w ∈ L1(m) :wI ≤ w ≤ wS}. If p(wS,n)
Q∗→w0(θ)/wS(θ) [which

holds under the conditions of Strasser (1976) or Abraham and Cadre (2002)], it
can be proved from (6.2) that

n sup
w∈�′

∫
�
(dn

0 − σ)2wn(dσ )

(
Iθ

∫
�

τ2Fθ(dτ )

)−1

remains asymptotically in the interval[1,wS(θ)/wI (θ)].



1354 C. ABRAHAM AND B. CADRE

PROOF OF THEOREM 6.3. Write � = S − I . Let us first examine the
convergence of the sequencen(�n(dn

0) − �(θ, dθ
0 )). By Taylor’s formula,

�n(dn
0) − �n(dθ

0 )

= D01�
n(dθ

0)t (dn
0 − dθ

0)

+
∫ 1

0
(1− s)(dn

0 − dθ
0)tD02�

n
(
dθ

0 + s(dn
0 − dθ

0)
)
(dn

0 − dθ
0 ) ds

= A + B,

whereA andB are obviously defined. Theorems 4.1 and 8.1 show that

n|A − (θn − θ)tD11�(θ, dθ
0 )t (dn

0 − dθ
0)| Q→0.

Moreover, by Lemma 8.4 and Theorem 4.1, we have

n
∣∣B − 1

2(dn
0 − dθ

0 )tD02�(θ, dθ
0 )(dn

0 − dθ
0)

∣∣ Q→0.

Finally, sinceD10�(θ, dθ
0) = 0, Theorem 8.2 shows that

n
∣∣�n(dθ

0 ) − �(θ, dθ
0 ) − 1

2(θn − θ)tD20�(θ, dθ
0 )(θn − θ) − 1

2L�

∣∣ Q→0.

Therefore, it follows from Theorem 4.1 that

n
∣∣�n(dn

0 ) − �(θ, dθ
0 ) − 1

2[(θn − θ)tN�(θn − θ) + L�]∣∣ Q→0.

The second part of Theorem 6.3 is obtained by replacing� by S and I ,
respectively, in the above calculations.�

7. Discussion. We give in this article sufficient conditions to get optimal rates
of convergence. Let us investigate whether they are necessary. We mainly discuss
the existence of the secondd derivative.

Consider the classF of Section 2.1 and define a new classF̃ by replacing
U and L, respectively, byŨ (σ, d) = f (d − σ) and L̃(σ, d) = f (σ − d) in
the construction ofF , wheref (t) = e−t + t − 1. Note that the quadratic loss
l0 defined in Section 2.1 belongs tõF . From the arguments of Section 2.1,
the diameter of{dn

l , l ∈ F̃ } is equal to the diameter of{dn

Ũ
, dn

L̃
}. Thus, from

Section 4 (Example 4.2 applied toL = {Ũ , L̃}), √
ndiameter{dn

l , l ∈ F̃ } � 0
while

√
ndiameter{dn

l , l ∈ F } � r1 − r2 > 0. The difference in the limit indicates
different rates of convergence, which are due to the fact thatD02U(θ, θ) does not
exist whileD02Ũ(σ, θ) ≈ D02Ũ (θ, θ) for σ close toθ . From a technical point of
view the termD02l

n(tnl,s ), defined in the proof of Theorem 4.1, no longer converges
to D02l(θ, dθ

l ) whenl = U , but switches fromk1 andk2 according to the sign of
dn
U − θ even for largen. Consequently, it is no longer possible to derive in this

way the limit of
√

n(dn
U − θ) and Theorem 4.1 does not hold forL = {L,U }.
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[A theoretical asymptotic study of such classes can be found in Abraham (2002).]
The default of smoothness [i.e.,D02U(θ, θ) does not exist] slows down the rate of
convergence. Analogous situations have already been noted in prior robustness:
classes with point mass priors have slower rates of convergence [Sivaganesan
(1988)].

8. Auxiliary assumptions and results.

8.1. The assumptionsM.

M1. There existθ ∈ � and a matrixIθ such that
√

n(θn − θ) converges in
distribution to a centered normal random variableZθ with covariance
matrix Iθ .

M2. For everyg ∈ L1(π) andα > 0, there existsη > 0 such that

eηn
∫
‖σ−θ‖≥α

g(σ )πn(dσ ) → 0 in Q probability.

Write for all k > 0,

Wk
n = {

σ ∈ � :‖T (σ )‖ ≤ √
k logn

}
,

whereT (σ ) = √
nI

−1/2
θ (σ − θn). Let Fn be the probability distribution induced

by T applied toπn and letBk
n be the closed ball with centerθ and radius

√
k logn.

M3. For all r > 0, there existk > 0 andc > 0 such that

Q
(
πn(� \ Wk

n ) > cn−r
) → 0.

M4. There exist a probability distribution with zero meanFθ such that∫
Bk

n

g(σ )Fn(dσ ) →
∫
�

g(σ )Fθ(dσ )

in Q probability, for allg :� → R with |g(σ )| ≤ c(1+‖σ‖2) for somec > 0
and allσ ∈ �.

8.2. Asymptotics for the posterior expectation.Throughout this section, we
denote byGf (σ) the gradient atσ ∈ � of a functionf :� → R.

8.2.1. First order result. We denote byPθ a set of functionsf :� → R with
the following properties:

A1. For allf ∈ Pθ , f (θ) = 0.
A2. There exists an open neighborhoodV ′

θ of θ on which anyf ∈ Pθ is
continuously differentiable and supf ∈Pθ

‖Gf (θ)‖ < ∞.
A3. The family{Gf |V ′

θ
, f ∈ Pθ } is equicontinuous atθ .
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A4. There exist aπ -integrable functionq :� → R andδ0 > 0 such that

sup
f ∈Pθ

|f (σ )| ≤ q(σ ) ∀σ ∈ � and sup
‖σ−θ‖≤δ0

q(σ ) < ∞.

THEOREM 8.1. Under the assumptionsM,
√

n sup
f ∈Pθ

∣∣∣∣
∫
�

f (σ )πn(dσ ) − Gf (θ)t (θn − θ)

∣∣∣∣ Q∗→0.

PROOF. We proceed analogously to the proof of Theorem 1 of Strasser (1975).
We separate the proof into two steps.

STEP 1. Let us prove that for everyc > 0, there existsk > 0 such that

Q∗
(√

n sup
f ∈Pθ

∫
�\Wk

n

|f (σ )|πn(dσ ) > c

)
→ 0.

Let i = inf‖σ‖=1‖I−1/2
θ σ‖ andδ = iδ0, whereδ0 is the real number of A4. Clearly,

we havei > 0 and henceδ > 0. Moreover, we also have, by A4,

α := sup
‖I

−1/2
θ (σ−θ)‖≤δ

q(σ ) ≤ sup
‖σ−θ‖≤δ0

q(σ ) < ∞.

Fix c > 0. By A4, we have, for allk > 0,
√

n sup
f ∈Pθ

∫
�\Wk

n

|f (σ )|πn(dσ ) > c �⇒ √
n

∫
�\Wk

n

q(σ )πn(dσ ) > c,

and if the latter property holds, then

‖I−1/2
θ (θn − θ)‖ ≥ δ/2 or

(8.1) (√
n

∫
�\Wk

n

q(σ )πn(dσ ) > c, ‖I−1/2
θ (θn − θ)‖ <

δ

2

)
.

The probability of the event associated with the first property tends to 0 by M1.
We now focus on the second property. Let us denote byE the subset of� defined
as

E = {
σ ∈ � :‖I−1/2

θ (σ − θ)‖ < δ
}
.

There existsN ≥ 1 such that if‖I−1/2
θ (θn−θ)‖ < δ/2, then for alln ≥ N , Wk

n ⊂ E .
Thus, if the second property in (8.1) holds,(√

n

∫
�\E

q(σ )πn(dσ ) >
c

2

)
or

(√
n

∫
E\Wk

n

q(σ )πn(dσ ) >
c

2
,Wk

n ⊂ E

)
.

Using the obvious notation, letA andB be the events associated with the above
properties. On one hand, the probability ofA tends to 0 by M2. On the other hand,

B ⊂ {
α
√

nπn(� \ Wk
n ) > c/2

}
and, for somek > 0, the probability of the latter event tends to 0 by M3.
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STEP 2. Let us prove that for allk, c > 0,

Q∗
(√

n sup
f ∈Pθ

∣∣∣∣
∫
Wk

n

f (σ )πn(dσ ) − Gf (θ)t (θn − θ)

∣∣∣∣ > c

)
→ 0.

We obviously have, for allf ∈ Pθ ,∫
Wk

n

f (σ )πn(dσ ) =
∫
Bk

n

f
(
T −1(τ )

)
Fn(dτ ),(8.2)

whereT andBk
n are defined in Section 3 [recall thatT −1(τ ) = θn + n−1/2I

1/2
θ τ ].

If T −1(τ ) ∈ V ′
θ , then there existsλ ∈]0,1[ such that, according to A1,

f
(
T −1(τ )

) = Gf
(
θ + λu(τ )

)t
u(τ ),(8.3)

whereu(τ ) = θn − θ + n−1/2I
1/2
θ τ . Let us denote byH the property

∀ τ ∈ Bk
n T −1(τ ) ∈ V ′

θ and θ + λu(τ ) ∈ V ′
θ .

It is easy to check that there exists > 0 andN ≥ 1 such that, for alln ≥ N ,
‖θn − θ‖ ≤ s �⇒ H . Then, if the property

√
n sup

f ∈Pθ

∣∣∣∣
∫
Wk

n

f (σ )πn(dσ ) − Gf (θ)t (θn − θ)

∣∣∣∣ > c

holds, we have‖θn − θ‖ > s or(√
n sup

f ∈Pθ

∣∣∣∣
∫
Wk

n

f (σ )πn(dσ ) − Gf (θ)T (θn − θ)

∣∣∣∣ > c,H

)
.(8.4)

By M1 we need only to focus on the latter property. IfH holds, we have, according
to (8.2) and (8.3),

sup
f ∈Pθ

∣∣∣∣
∫
Wk

n

f (σ )πn(dσ ) − Gf (θ)t (θn − θ)

∣∣∣∣

= sup
f ∈Pθ

∣∣∣∣
∫
Bk

n

Gf
(
θ + λu(τ )

)t
u(τ )Fn(dτ ) − Gf (θ)t (θn − θ)

∣∣∣∣

≤ sup
f ∈Pθ

∣∣∣∣
∫
Bk

n

(
Gf

(
θ + λu(τ )

) − Gf (θ)
)t

u(τ )Fn(dτ )

∣∣∣∣(8.5)

+ sup
f ∈Pθ

∣∣Gf (θ)t (θn − θ)
(
Fn(B

k
n) − 1

)∣∣

+ sup
f ∈Pθ

n−1/2
∣∣∣∣Gf (θ)t I

1/2
θ

∫
Bk

n

τFn(dτ )

∣∣∣∣.

Let γ > 0. By A3 there existsβ > 0 such that, for allσ ∈ V
′
θ with ‖σ − θ‖ ≤ β,

sup
f ∈Pθ

‖Gf (σ) − Gf (θ)‖ ≤ γ.
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Let ᾱ = supf ∈Pθ
‖Gf (θ)‖, which is finite by A2. For alln ≥ N , if the property

in (8.4) holds, we have, by (8.5),
(‖θn − θ‖ + n−1/2‖I1/2

θ ‖√k logn > β
)
,(

γ
√

n‖θn − θ‖ + γ ‖I1/2
θ ‖

∫
Bk

n

‖τ‖Fn(dτ ) >
c

3

)
,

(
ᾱ
√

n‖θn − θ‖ |Fn(B
k
n) − 1| > c

3

)

or (
ᾱ‖I1/2

θ ‖
∥∥∥∥
∫
Bk

n

τFn(dτ )

∥∥∥∥ >
c

3

)
.

SinceFθ is centered,
∫
Bk

n
τFn(dτ ) → 0 in probability by M4. Hence the proba-

bility of the event associated with the latter property vanishes. The probabilities
of the events related with the other properties tend to 0 by M2 and M4, for some
choiceγ . Step 2 is then proved and the theorem is a straightforward consequence
of Steps 1 and 2. �

8.2.2. Second order result.Throughout this section we denote byHf (σ) the
Hessian matrix atσ ∈ � of a functionf :� → R that satisfies the following
properties:

B1. There exists an open neighborhoodV ′′
θ of � on whichf is twice continuously

differentiable.
B2. f (θ) = 0 andGf (θ) = 0.
B3. f is π -integrable.

We introduce the notation

Lf =
∫
�
(I

1/2
θ τ )tHf (θ)(I

1/2
θ τ )Fθ(dτ ),(8.6)

provided such a quantity may be defined. Note thatFθ is normal under usual
models [Strasser (1976)].

THEOREM 8.2. Under the assumptionsM,

n

∣∣∣∣
∫
�

f (σ )πn(dσ ) − 1
2(θn − θ)tHf (θ)(θn − θ) − 1

2Lf

∣∣∣∣ → 0

in probability.

PROOF. Following the arguments of the first step of the proof of Theorem 8.1,
we can prove that for allc > 0 there existsk > 0 such that

Q

(
n

∫
�\Wk

n

|f (σ )|πn(dσ ) > c

)
→ 0.
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Hence, we need only to prove that for allk > 0,

n

∣∣∣∣
∫
Wk

n

f (σ )πn(dσ ) − 1
2(θn − θ)tHf (θ)(θn − θ) − 1

2Lf

∣∣∣∣ → 0

in probability. We use the notation of the proof of Theorem 8.1. According to B2,
if T −1(τ ) ∈ V ′′

θ , then there existsλ ∈]0,1[ such that

f
(
T −1(τ )

) = 1
2u(τ )tHf

(
θ + λu(τ )

)
u(τ ).(8.7)

Fix k > 0 and denote byH ′ the property

∀ τ ∈ Bk
n T −1(τ ) ∈ V ′′

θ and θ + λu(τ ) ∈ V ′′
θ .

For somes > 0 andN ≥ 1, we have‖θn − θ‖ ≤ s �⇒ H ′ for all n ≥ N . If H ′
holds, then according to (8.2) and (8.7),

∣∣∣∣
∫
Wk

n

f (σ )πn(dσ ) − 1

2
(θn − θ)tHf (θ)(θn − θ) − 1

2
Lf

∣∣∣∣

≤ 1

2

∣∣∣∣
∫
Bk

n

u(τ )t
(
Hf

(
θ + λu(τ )

) − Hf (θ)
)
u(τ )Fn(dτ )

∣∣∣∣

+ 1

2
‖θn − θ‖2‖Hf (θ)‖|Fn(B

k
n) − 1|(8.8)

+ 1√
n
‖Hf (θ)‖‖θn − θ‖‖I1/2

θ ‖
∥∥∥∥
∫
Bk

n

τFn(dτ )

∥∥∥∥

+ 1

2n

∣∣∣∣
∫
Bk

n

(I
1/2
θ τ )tHf (θ)(I

1/2
θ τ )Fn(dτ ) − Lf

∣∣∣∣.

Let γ > 0. According to B1, there existsβ > 0 such that ifσ ∈ V ′′
θ with

‖σ − θ‖ ≤ β,

‖Hf (σ) − Hf (θ)‖ ≤ γ.

Fix c > 0 and let

Ln =
∫
Bk

n

(I
1/2
θ τ )tHf (θ)(I

1/2
θ τ )Fn(dτ ).

We deduce from (8.8) that if we have

n

∣∣∣∣
∫
Wk

n

f (σ )πn(dσ ) − 1
2(θn − θ)tHf (θ)(θn − θ) − 1

2Lf

∣∣∣∣ > c,
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then for alln ≥ N ,

(‖θn − θ‖ > s) or
(
‖θn − θ‖ + 1√

n
‖I1/2

θ ‖√k logn > β

)
,

(
nγ

2

∫
Bk

n

‖u(τ )‖2Fn(dτ ) >
c

4

)
,

(
n

2
‖θn − θ‖2‖Hf (θ)‖|Fn(B

k
n) − 1| > c

4

)
,(8.9)

(√
n‖Hf (θ)‖‖θn − θ‖‖I1/2

θ ‖
∥∥∥∥
∫
Bk

n

τFn(dτ )

∥∥∥∥ >
c

4

)
or

(
1

2
|Ln − Lf | >

c

4

)
.

According to M2 and M4, the sequence(n
∫
Bk

n
‖u(τ )‖2Fn(dτ ))n is stochastically

bounded and hence, for someγ , we have

Q

(
n
γ

2

∫
Bk

n

‖u(τ )‖2Fn(dτ ) >
c

4

)
→ 0.

Moreover, the probability of the events associated with the other properties of (8.9)
obviously vanishes according to M2 and M4.�

8.3. Technical results for the classesL, S andS0.

LEMMA 8.1. Let g be aπ -integrable and nonnegative real-valued function
such that there exists a bounded neighborhood ofθ on whichg is bounded. Then
under the assumptionsM,

Q

(∫
�

g(σ )πn(dσ ) < ∞
)

→ 1.

PROOF. Denote byB the bounded neighborhood ofθ . For t ≥ 1 let fn(t) =
Q(

∫
Bc g(σ )πn(dσ ) ≥ t). By M2 we have

sup
t≥1

|fn(t)| ≤ Q

(∫
Bc

g(σ )πn(dσ ) ≥ 1
)

→ 0.

Furthermore, limt→∞ fn(t) exists sincefn is decreasing and bounded, so that
limn→∞ lim t→∞ fn(t) = lim t→∞ limn→∞ fn(t) = 0. We conclude by noting that

Q

(∫
�

g(σ )πn(dσ ) = ∞
)

≤ lim
t↗∞Q

(∫
B

g(σ )πn(dσ ) ≥ t

)
+ lim

t↗∞fn(t),

hence the lemma, sinceg is bounded onB. �
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LEMMA 8.2. Under the assumptionsM, there exists a compact setK ⊂ D
such thatQ∗(∃ l ∈ L, dn

l ∈ Kc) → 0.

PROOF. Taker > 0 andK compact as in 1f and introduceα and 0< ε < 1
such that

sup
l∈L

inf
d∈K

l(θ, d) < (1− ε)α < α < inf
l∈L

inf
σ∈B(θ,r)

inf
d∈Kc

l(σ, d).

Then, ifd ∈ Kc, we have

ln(d) =
∫
B(θ,r)

l(σ, d)πn(dσ ) +
∫
Bc(θ,r)

l(σ, d)πn(dσ )

> απn

(
B(θ, r)

)
.

Thus

∃ l ∈ L, dn
l ∈ Kc

�⇒ ∃ l ∈ L, ∃d ∈ Kc, ln(d) ≤ inf
t∈K

ln(t)

�⇒ ∃ l ∈ L, απn

(
B(θ, r)

)
< inf

t∈K
ln(t)

�⇒
(
∃ l ∈ L, απn

(
B(θ, r)

)
< inf

t∈K
l(θ, t) + ε

α

2

)
or

(
∃ l ∈ L, inf

t∈K
ln(t) > inf

t∈K
l(θ, t) + ε

α

2

)

�⇒
(
α

(
−ε

2
+ πn

(
B(θ, r)

)) ≤ sup
l∈L

inf
t∈K

l(θ, t)

)
or

(
sup
l∈L

sup
t∈K

|ln(t) − l(θ, t)| > ε
α

2

)

�⇒
(
πn

(
Bc(θ, r)

) ≥ ε

2

)
or

(∫
sup
l∈L

sup
t∈K

|l(σ, t) − l(θ, t)|πn(dσ ) > ε
α

2

)
.

By M2, Q(πn(B
c(θ, r)) ≥ ε/2) → 0. Moreover, if the last condition on the right-

hand side holds, then for allρ > 0,∫
B(θ,ρ)

sup
l∈L

sup
t∈K

|l(σ, t) − l(θ, t)|πn(dσ ) > ε
α

4

or ∫
Bc(θ,ρ)

sup
l∈L

sup
t∈K

|l(σ, t) − l(θ, t)|πn(σ ) > ε
α

4
.
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By 1d we chooseρ small enough so that the outer probability of the event
associated with the first property tends to 0. Then, for the second property, bound
the integrand byg1 ∈ L1(π) and conclude by the concentration assumption M2.
SinceL is π -dominated, the existence ofg1 is deduced from the compactness
of K . �

LEMMA 8.3. Under the assumptionsM,

sup
l∈L

‖dn
l − dθ

l ‖ Q∗→0.

PROOF. According to Lemma 8.2, we may restrict our attention to those
x ∈ {x ∈ X, ∀ l ∈ L, dn

l (x) ∈ K}, whereK is a compact set. By 1f there is no
loss of generality in assuming thatdθ

l ∈ K for l ∈ L. Let ε > 0. Note that, for
l ∈ L andd ∈ Bc(dθ

l , ε), the propertyln(d) ≤ ln(dθ
l ) implies that

ln(d) − l(θ, d) ≤ −(
l(θ, d) − l(θ, dθ

l )
) + (

ln(dθ
l ) − l(θ, dθ

l )
)

≤ −κ(ε) + (
ln(dθ

l ) − l(θ, dθ
l )

)
,

where the last inequality follows from 1g. According to the above remark, we have,
for all r > 0,

sup
l∈L

‖dn
l − dθ

l ‖ > ε

�⇒ ∃ l ∈ L, ∃d ∈ Bc(dθ
l , ε) ∩ K, ln(d) ≤ ln(dθ

l )

�⇒
(

sup
l∈L

sup
d∈Bc(dθ

l ,ε)∩K

|ln(d) − l(θ, d)| ≥ κ(ε)

2

)
or

(
sup
l∈L

|ln(dθ
l ) − l(θ, dθ

l )| ≥ κ(ε)

2

)

�⇒ sup
l∈L

sup
d∈K

|ln(d) − l(θ, d)| ≥ κ(ε)

2

�⇒ sup
l∈L

sup
d∈K

sup
σ∈B(θ,r)

|l(σ, d) − l(θ, d)|

+
∫
Bc(θ,r)

sup
l∈L

sup
d∈K

|l(σ, d) − l(θ, d)|πn(dσ ) ≥ κ(ε)

2
.

By 1d, we can chooser > 0 such that

sup
l∈L

sup
d∈K

sup
σ∈B(θ,r)

|l(σ, d) − l(θ, d)| < κ(ε)

4

and we thus get

sup
l∈L

‖dn
l − dθ

l ‖ > ε �⇒
∫
Bc(θ,r)

sup
l∈L

sup
d∈K

|l(σ, d) − l(θ, d)|πn(dσ ) ≥ κ(ε)

4
.
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Taking into account the compactness ofK , we can deduce from the definition of a
locally π -dominated class that there existsg1 ∈ L1(π) such that

sup
l∈L

sup
d∈K

|l(σ, d) − l(θ, d)| ≤ g1(σ ) ∀σ ∈ �.

The conclusion then follows from M2 and 1g.�

LEMMA 8.4. For everyn ≥ 1, s ∈ [0,1] andl ∈ L, let tnl,s :X → D be a map

such thatsupl∈L sups∈[0,1] ‖tnl,s − dθ
l ‖ Q∗→0. Then, under the assumptionsM,

sup
l∈L

sup
s∈[0,1]

‖D02l
n(tnl,s ) − D02l(θ, dθ

l )‖ Q∗→0.

PROOF. Fix ε > 0. By 1e takeη > 0 such that supσ∈Vθ
ρη(σ ) < ε/2. Then

sup
l∈L

sup
s∈[0,1]

‖D02l
n(tnl,s ) − D02l

n(dθ
l )‖ > ε

�⇒
(

sup
l∈L

sup
s∈[0,1]

‖tnl,s − dθ
l ‖ > η

)
or

(∫
Vθ

c
ρη(σ )πn(dσ ) >

ε

2

)
.

The outer probability of the events associated with the above properties tends to 0
by assumption and M2. Consequently, it remains to prove that

sup
l∈L

sup
s∈[0,1]

‖D02l
n(dθ

l ) − D02l(θ, dθ
l )‖ Q∗→0.

By 1d takeβ > 0 such that

sup
l∈L

sup
σ∈B(θ,β)

‖D02l(σ, dθ
l ) − D02l(θ, dθ

l )‖ ≤ ε

2
.

Then by splitting the integral according to� = B(θ,β) ∪ B(θ,β)c, we have

sup
l∈L

∥∥∥∥
∫
�

(
D02l(σ, dθ

l ) − D02l(θ, dθ
l )

)
πn(dσ )

∥∥∥∥ > ε

�⇒
∫
B(θ,β)c

sup
l∈L

(‖D02l(σ, dθ
l )‖ + ‖D02l(θ, dθ

l )‖)
πn(dσ ) >

ε

2
.

Taking into account thatL is locally π -dominated, the outer probability of the
event associated with the above property tends to 0 by M2.�

Following the arguments of the proof of Lemma 8.4, we obtain the result below.
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LEMMA 8.5. For everyn ≥ 1, s ∈ [0,1] andl ∈ S0, let tnl,s :X → D be a map

such thatsupl∈S0
sups∈[0,1] ‖tnl,s − dθ

0‖ Q∗→0. Then, under the assumptionsM,

sup
l∈S0

sup
s∈[0,1]

‖D01l
n(tnl,s ) − D01l(θ, dθ

0)‖ Q∗→0.

The result is still true ifdθ
0 andS0 are replaced bydθ

l andS, respectively, in which
caseD01l(θ, dθ

l ) = 0.

PROPOSITION8.1. Under the assumptionsM,√
n sup

l∈S0

|ln(dn
0) − l(θ, dθ

0)

− D01l(θ, dθ
0)t (dn

0 − dθ
0) − D10l(θ, dθ

0 )t (θn − θ)| Q∗→0.

The result is still true ifdθ
0 , dn

0 andS0 are replaced bydθ
l , dn

l andS, respectively,
in which caseD01l(θ, dθ

l ) = 0.

PROOF. Let l ∈ S0. Then

ln(dn
0) − l(θ, dθ

0) = (
ln(dn

0) − ln(dθ
0)

) + (
ln(dθ

0) − l(θ, dθ
0)

)
.

By Taylor’s formula, the first term on the right-hand side equals∫ 1

0
D01l

n
(
dθ

0 + s(dn
0 − dθ

0)
)t

(dn
0 − dθ

0) ds,

so that, by Lemma 8.5 and Theorem 4.1,
√

n sup
l∈S0

|ln(dn
0) − ln(dθ

0) − D01l(θ, dθ
0)t (dn

0 − dθ
0)| Q∗→0.

Moreover, by Theorem 8.1,
√

n sup
l∈S0

|ln(dθ
0 ) − l(θ, dθ

0 ) − D10l(θ, dθ
0)t (θn − θ)| Q∗→0,

which proves the proposition.�

8.4. Technical result related to weak convergence.Let F(L) be the set of
mappings fromL into R and letMi,j (F (L)) be the set ofi × j matrices with
coefficient inF(L). For A ∈ Mi,j (F (L)), write ‖A‖∞ = supl∈L ‖A(t)‖. The
proof of the following lemma is left to the reader.

LEMMA 8.6. For all n ≥ 1, consider the mapsMn :X → Mp,1(F (L)),
An :X → Mp,p(F (L)) and Rn :X → Mp,1(F (L)). Let A ∈ Mp,p(F (L)) such

that infl∈L |detA(l)| > 0 and ‖A‖ < ∞. Assume thatAn
Q∗→A, Rn � R, where

R :X → Mp,1(F (L)) is Borel measurable and‖AnMn − Rn‖∞
Q∗→0. Then we

have‖Mn − A−1Rn‖∞
Q∗→0.
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