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THE EFFICIENCY OF THE ESTIMATORS OF THE PARAMETERS
IN GARCH PROCESSES

BY ISTVÁN BERKES1 AND LAJOS HORVÁTH2

Hungarian Academy of Sciences and University of Utah

We propose a class of estimators for the parameters of a GARCH(p, q)

sequence. We show that our estimators are consistent and asymptotically nor-
mal under mild conditions. The quasi-maximum likelihood and the likelihood
estimators are discussed in detail. We show that the maximum likelihood
estimator is optimal. If the tail of the distribution of the innovations is
polynomial, even a quasi-maximum likelihood estimator based on exponen-
tial density performs better than the standard normal density-based quasi-
likelihood estimator of Lee and Hansen and Lumsdaine.

1. Introduction. The generalized autoregressive conditional heteroscedastic
(GARCH) process was introduced by Bollerslev (1986). The GARCH process has
received considerable attention from applied as well as from theoretical points of
view. We say that{yk,−∞ < k < ∞} is a GARCH(p, q) process if it satisfies the
equations

yk = σkεk(1.1)

and

σ 2
k = ω + ∑

1≤i≤p

αiy
2
k−i + ∑

1≤j≤q

βjσ
2
k−j ,(1.2)

where

ω > 0, αi ≥ 0, 1≤ i ≤ p, βj ≥ 0, 1 ≤ j ≤ q(1.3)

are constants. We also assume that

{εi,−∞ < i < ∞} are independent,
identically distributed random variables.

(1.4)

Throughout this paper we assume that (1.1)–(1.4) hold.
The GARCH(1,1) model was studied by Nelson (1991) who showed that (1.1)

and (1.2) have a unique stationary solution if and only ifE log( β1 + α1ε
2
0) < 0.
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The general case was investigated by Bougerol and Picard (1992a, b). Let

τ n = ( β1 + α1ε
2
n,β2, . . . , βq−1) ∈ R

q−1,

ξn = (ε2
n,0, . . . ,0) ∈ R

q−1

and

α = (α2, . . . , αp−1) ∈ R
p−2.

[Clearly, without loss of generality, we may and shall assume min(p, q) ≥ 2.]
Define the(p + q − 1) × (p + q − 1) matrix An, written in block form, by

An =




τn βq α αp

I q−1 0 0 0
ξn 0 0 0
0 0 Ip−2 0


 ,

whereI q−1 andIp−2 are the identity matrices of sizeq −1 andp−2, respectively.
The norm of anyd × d matrix M is defined by

‖M‖ = sup{‖Mx‖d/‖x‖d : x ∈ R
d,x �= 0},

where‖ · ‖d is the usual (Euclidean) norm inRd . The top Liapounov exponentγL
associated with the sequence{An,−∞ < n < ∞} is

γL = inf
1≤n<∞

1

n + 1
E log‖A0A1 · · ·An‖,

assuming that

E(log‖A0‖) < ∞.(1.5)

Bougerol and Picard (1992a, b) showed that if (1.5) holds, then (1.1) and (1.2)
have a unique stationary solution if and only if

γL < 0.(1.6)

The estimation of the parameterθ = (ω,α1, . . . , αp,β1, . . . , βq) has been
studied by several authors. Lee and Hansen (1994) and Lumsdaine (1996) used
the quasi-maximum likelihood method to estimate the parameters from the
sampley1, . . . , yn in GARCH(1,1) models. The idea behind the quasi-maximum
likelihood method is the following. The likelihood function is derived under the
assumption thatε0 is standard normal. The estimator is the point where the
likelihood function reaches its largest value. The estimator in Lee and Hansen
(1994) and Lumsdaine (1996) is “local” since the likelihood function is maximized
in a small neighborhood ofθ . They show that the quasi-maximum likelihood
estimator is consistent and asymptotically normal without assuming the normality
of ε0. However, very strict conditions are assumed on the distribution ofε0 and
the value ofθ . Berkes, Horváth and Kokoszka (2003) investigated the asymptotic
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properties of the quasi-maximum likelihood estimator forθ in GARCH(p, q)

models. Berkes, Horváth and Kokoszka (2003) obtained their asymptotic results
under weak conditions. Berkes and Horváth (2003) showed that the quasi-
maximum likelihood estimator cannot ben−1/2-consistent ifE|ε0|κ = ∞ for
some 0< κ < 4. This shows the limitations of the quasi-maximum likelihood
estimation method. The existence of the GARCH(p, q) sequence requires only
that E| logε2

0| < ∞ but the estimation works only ifE|ε0|κ < ∞ with some
κ > 4. The quasi-maximum likelihood estimator does not use the distribution of
ε0 and therefore, as we shall see, it is not efficient. IfEε0 = 0 andEε2

0 = 1,
thenσ 2

k is the conditional variance ofyk given the past. However, without any
moment conditions,σk is the conditional scaling parameter ofyk .

Sinceσk is defined by a recursion, we use a recursion to define our estimator.
Let u = (x, s, t) ∈ R

p+q+1, x ∈ R, s ∈ R
p and t ∈ R

q . We start with the initial
conditions: ifq ≥ p, then

c0(u) = x
/(

1− (t1 + · · · + tq)
)
,

c1(u) = s1,

c2(u) = s2 + t1c1(u),

...

cp(u) = sp + t1cp−1(u) + · · · + tp−1c1(u),

cp+1(u) = t1cp(u) + · · · + tpc1(u),

...

cq(u) = t1cq−1(u) + · · · + tq−1c1(u),

and ifq < p, the equations above are replaced with

c0(u) = x
/(

1− (t1 + · · · + tq)
)
,

c1(u) = s1,

c2(u) = s2 + t1c1(u),

...

cq+1(u) = sq+1 + t1cq(u) + · · · + tqc1(u),

...

cp(u) = sp + t1cp−1(u) + · · · + tqcp−q(u).

In general, ifi > R = max(p, q), then

ci(u) = t1ci−1(u) + t2ci−2(u) + · · · + tqci−q(u).(1.7)
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We choose an arbitrary positive functionh and define

L̂n(u) = 1

n

∑
1<k≤n

log
{

1

ŵ
1/2
k (u)

h
(
yk/ŵ

1/2
k (u)

)}
,

where

ŵk(u) = c0(u) + ∑
1≤i<k

ci(u)y2
k−i .

Let 0< u < u, 0< ρ0 < 1, qu < ρ0 and define

U = {
u : t1 + t2 + · · · + tq ≤ ρ0 and

u ≤ min(x, s1, s2, . . . , sp, t1, t2, . . . , tq)

≤ max(x, s1, s2, . . . , sp, t1, t2, . . . , tq) ≤ u
}
.

From now on we replace (1.3) with the somewhat stronger condition

θ is in the interior ofU.(1.8)

We use| · | to denote the maximum norm of vectors and matrices. Letx ∨ y =
max(x, y). In this paper we study the asymptotic properties of

θ̂n = argmax
u∈U

L̂n(u).

We note that̂Ln(u) is a continuously differentiable function, so standard numerical
methods can be used to computeθ̂n.

In our first result we give a sufficient criterion for|θ̂n − θ | → 0 a.s. To state this
result we will need some additional regularity conditions:

the polynomialsα1x + α2x
2 + · · · + αpxp and

1− β1x − β2x
2 − · · · − βqxq are coprimes

in the set of polynomials with real coefficients,
(1.9)

ε2
0 is a nondegenerate random variable(1.10)

and

lim
t→0

t−µP {ε2
0 ≤ t} = 0, with someµ > 0.(1.11)

Condition (1.8) is somewhatstronger than (1.3) butβ1+· · ·+βq < 1 is a necessary
condition for the existence of a GARCH(p, q) sequence [cf. Berkes, Horváth and
Kokoszka (2003)]. Assumptions (1.9) and (1.10) are needed to uniquely identify
the parameterθ . So far all our conditions are related to the structure of the
GARCH(p, q) process. The following set of conditions concerns the moments
of ε0 and the smoothness ofh:

E|ε2
0|κ < ∞ with someκ > 0,(1.12)
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and there is 0< C0 < ∞ such that

E| logh(ε0t)| ≤ C0(t
ν0 + 1) for all t > 0, with some 0≤ ν0 < 2κ.(1.13)

Let

g(y, t) = log{th(yt)}, −∞ < y < ∞, t > 0,

and

g1(y, t) = ∂

∂t
g(y, t), −∞ < y < ∞, t > 0.

We also assume that there is a functionC1(y) such that

|g1(y, t)| ≤ C1(y)(tν1 + 1)/t for all 0< t < ∞ andy ∈ R,
(1.14)

with some 0≤ ν1 < 2κ,

and

EC1(ε0) < ∞.(1.15)

If h is a density, then condition (1.14) means that the density functionth(yt) is
smooth in the parametert .

We will show in Lemma 4.1 that

L(u) = E log
{

1

(w0(u))1/2h
(
y0/(w0(u))1/2)}

exists for allu ∈ U , where

wk(u) = c0(u) + ∑
1≤i<∞

ci(u)y2
k−i .

We note that

wk(θ) = σ 2
k .

The following condition will imply [see (4.6)] thatL(u) has a unique maximum
in U at θ :

Eg(ε0, t) < Eg(ε0,1) for all 0 < t < ∞, t �= 1.(1.16)

THEOREM 1.1. If (1.5), (1.6)and (1.8)–(1.16)hold, then

θ̂n → θ a.s.

The proof of Theorem 1.1 will be given in Section 4.
Next we discuss the asymptotic normality ofn1/2(θ̂n − θ). We need further

smoothness conditions onth(yt). Let g2(y, t) and g3(y, t) be the second and
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third derivatives ofg(y, t) with respect tot . We assume that there are functions
C2 andC3 such that

|g2(y, t)| ≤ C2(y)(tν2 + 1)/t2 for all 0< t < ∞ andy ∈ R,
(1.17)

with some 0≤ ν2 < ∞,

EC2(ε0) < ∞,(1.18)

|g3(y, t)| ≤ C3(y)(tν3 + 1)/t3 for all 0< t < ∞ andy ∈ R,
(1.19)

with some 0≤ ν3 < ∞,

and

EC3(ε0) < ∞.(1.20)

We usew′
k(u) to denote the row vector of the derivatives ofwk(u) andw′′

k (u)

the matrix of the second-order partial derivatives ofwk(u) (the Hessian matrix).
Berkes, Horváth and Kokoszka (2003) showed that

A = E
(
w′

0(θ)/w0(θ)
)T (

w′
0(θ)/w0(θ)

)
exists and is nonsingular (T denotes the transpose). We also assume that

0< Eg2
1(ε0,1) < ∞,(1.21)

E|g2(ε0,1)| < ∞ and Eg2(ε0,1) �= 0.(1.22)

If (1.21) and (1.22) hold, then

0 < τ2 = Eg2
1(ε0,1)

(Eg2(ε0,1))2
< ∞.

The multivariate normal distribution with mean0 and covariance matrixD will be
denoted byN(0, D).

THEOREM 1.2. If (1.5), (1.6)and (1.8)–(1.22)hold, then

n1/2(θ̂n − θ )
D→ N(0,4τ2A−1).

This result will be proven in Section 4.

REMARK 1.1. Letf (y) denote the density function ofε0 andIf (t) the Fisher
information number of the scale familytf (xt), t > 0. If ε1, . . . , εn is known, then
t̂n = arg max{∏1≤i≤n tf (εi t) : t > 0} can be used to estimate the scale parameter.
One can verify that under suitable regularity conditionsn1/2(t̂n − 1) will be
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asymptotically normal with mean 0 and varianceτ2. So by Lehmann [(1991),
page 406] we conclude that

τ2 ≥ 1

If (1)
,(1.23)

and we have the equality in (1.23) whenh = f .

REMARK 1.2. Newey and Steigerwald (1997) consider more general models
which include the GARCH(p,q) sequence. They point out that identification
of the parameters in the drift term might be difficult. In our paper we study
the estimation of the parameters in the error process of the Newey–Steigerwald
model. This is the part which makes GARCH different from other time series.
Our results cannot be applied directly to other versions of GARCH but our
method can be used to investigate the properties of estimators in LGARCH
[Bollerslev (1986)], NGARCH [Engle and Ng (1993)], MGARCH [Geweke
(1986)], EGARCH [Nelson (1991)] and VGARCH [Engle and Ng (1993)].

REMARK 1.3. Lee and Hansen (1994) assume that the observed sequence
yk is a stationary and ergodic martingale. They also assume that

Ey2
0 < ∞.

We do not impose this moment condition. Under our conditions we have only that

E|y0|δ < ∞, with someδ > 0.

It would be interesting and practically useful to extend the results of Lee and
Hansen (1994) to the present situation.

REMARK 1.4. Drost and Klaassen (1997) showed that there is a reparame-
trization of GARCH(1,1) such that the efficient score functions in the parametric
model of the autoregression parameters are orthogonal to the tangent space gen-
erated by the nuisance parameter, thus suggesting that adaptive estimation of the
parameters is possible. Drost and Klaassen (1997) construct adaptive and hence
efficient estimators in the reparametrized GARCH(1,1) in a mean-type context.

Next we consider three special choices ofh.

2. Examples.

EXAMPLE 2.1. Leth(t) = (2π)−1/2 exp(−t2/2) (the standard normal density
function). Using this function in the definition of̂Ln, we get the quasi-maximum
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likelihood estimator investigated by Lee and Hansen (1994) and Lumsdaine
(1996). Elementary calculations give that| logh(yt)| ≤ C0(y

2t2 + 1),

g1(y, t) = (1− y2t2)/t, |g1(t)| ≤ (1+ y2)(1+ t2)/t,

g2(y, t) = −(1+ y2t2)/t2, |g2(t)| ≤ (1+ y2)(1+ t2)/t2

andg3(y, t) = 2/t3. It is easy to see thatt = 1/Eε2
0 is the unique solution of the

equationEg1(ε0, t) = 0 andEg(ε0, t) has a unique maximum at 1/Eε2
0. If we

assume that

Eε2
0 = 1,(2.1)

then condition (1.16) is satisfied. We note that (2.1) is a standard condition
assumed by Lee and Hansen (1994) and Lumsdaine (1996). Clearly,g1(ε0,1) =
1− ε2

0 andg2(ε0,1) = −1− ε2
0. Hence (1.21) holds if and only ifEε4

0 < ∞. Also,
Eg2(ε0,1) = −2 by (2.1) andτ2 = E(1−ε2

0)
2/4 = (Eε4

0 −1)/4. Hence the quasi-
maximum likelihood estimator is almost sure consistent ifE|ε2

0|κ < ∞ with some
κ > 1 and asymptotically normal ifEε4

0 < ∞.

EXAMPLE 2.2. Leth(t) = (1/2)exp(−|t|) (two-sided exponential distribu-
tion). Elementary calculations show that| logh(yt)| ≤ 1 + |y|t, E| logh(ε0t)| ≤
1+ tE|ε0|, g(y, t) = logt − log2− |y|t,

g1(y, t) = (1− |y|t)/t, |g1(t)| ≤ (1+ |y|)(1+ t)/t,

g2(y, t) = −1/t2 andg3(y, t) = 2/t3. Hence the unique solution of the equation
Eg1(ε0, t) = 0 is t = 1/E|ε0|, which will be 1 if and only ifE|ε0| = 1. Assuming
that

E|ε0| = 1,(2.2)

we get that (1.16) holds. Clearly,g1(ε0,1) = 1 − |ε0| andg2(ε0,1) = −1. Hence
(1.22) is always satisfied and (1.21) holds if and only ifEε2

0 < ∞. Also, τ2 =
E(1− |ε0|)2 = Eε2

0 − 1. Hence the exponential density based estimator is almost
sure consistent ifE|ε2

0|κ < ∞ with someκ > 1/2 and asymptotically normal if
Eε2

0 < ∞.

EXAMPLE 2.3. Leth(t) = {(ϑ − 1)/2}(1+ |t|)−ϑ with someϑ > 1. We note
thatE| logh(ε0t)| ≤ C0(E log(|ε0| + 1) + log(1+ t) + 1),

g(y, t) = log t + log
(
(ϑ − 1)/2

) − ϑ log(1+ |y|t),
g1(y, t) = 1/t − ϑ |y|/(1+ |y|t), |g1(y, t)| ≤ C1/t,

g2(y, t) = − 1

t2 + ϑt
y2

(1+ |y|t)2 , |g2(y, t)| ≤ C2/t2
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and|g3(y, t)| ≤ C3/t3. The unique solution of the equationEg1(ε0, t) = 0 is t = 1
if and only if

E

( |ε0|
1+ |ε0|

)
= 1

ϑ
(2.3)

and sinceg2(y, t) < 0, Eg(ε0, t) has a unique maximum att = 1; that is, (1.16)
holds. By (1.10) we have (1.21) and

Eg2(ε0,1) = −1+ ϑE

( |ε0|
1+ |ε0|

)2

< −1+ ϑE

( |ε0|
1+ |ε0|

)
= 0,

showing that (1.22) holds. Thus we can estimateθ using this h as long as
E|ε2

0|κ < ∞ with someκ > 0.

EXAMPLE 2.4. Leth(t) = f (t), wheref is the density function ofε0. Since
− log is strictly convex, Jensen’s inequality shows that

E log{tf (ε0t)/f (ε0)} < logE{tf (ε0t)/f (ε0)} = 0(2.4)

if

tf (ε0t)/f (ε0) is nonconstant.(2.5)

If, following Lehmann [(1991), page 409], we assume that the distributions
determined by the scale family of densitiestf (yt), t > 0, are distinct, then (2.5)
holds, with the exception oft = 1, and therefore (1.16) holds. Also,g1(ε0,1) =
1+ ε0f

′(ε0)/f (ε0),

g2(ε0,1) = −1+ ε2
0

{
f ′′(ε0)

f (ε0)
−

(
f ′(ε0)

f (ε0)

)2}

and τ2 = 1/If (1), whereIf (t) is the Fisher information number of the scale
family tf (yt), t > 0. In this case (1.13)–(1.19) are analogous to the conditions
used by Lehmann (1991), Section 6.2, to establish the asymptotic normality of the
maximum likelihood estimator of the scale parameter of the familytf (yt) based
on independent, identically distributed observations.

Condition (1.16) connectsh and the distribution of the innovations. We have
seen in Example 2.4 that (1.16) is always satisfied if the maximum likelihood
method is used. However, using anotherh, we may have to scale the model
[cf. (2.1)–(2.3)]. Next we study the effect of scaling on the estimators and their
asymptotic distributions. Let us assume that our model is

yk = σ̃kε̃k,(2.6)

σ̃ 2
k = ω̃ + ∑

1≤i≤p

α̃iy
2
k−i + ∑

1≤j≤q

β̃j σ̃
2
k−j .(2.7)
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The parameter of (2.6) and (2.7) isθ̃ = (ω̃, α̃1, . . . , α̃p, β̃1, . . . , β̃q). The scaling
of ε̃k will result in εk = ε̃k/d , d > 0 andσk = dσ̃k. Thus (1.1) and (1.2) hold with
θ = (d2ω̃, d2α̃1, . . . , d

2α̃p, β̃1, . . . , β̃q). We choosed such that (1.16) holds. By
Theorem 2.2 we have that

n1/2(θ̂n − θ)
D→N(0,4τ2A−1).

The definitions ofci(u),0 ≤ i < ∞, yield that

w′
k(θ)

wk(θ)
= M

w′
k(θ̃)

wk(θ̃)
,

whereM = {M(i, j),0 ≤ i, j ≤ p + q}, M(i, j) = 0 if i �= j , M(i, i) = 1/d2 if
0 ≤ i ≤ p andM(i, i) = 1 if p < i ≤ p + q. Hence

n1/2(θ̂n − θ)
D→N

(
0,4τ2M−1E

(
w′

k(θ̃)

wk(θ̃)

)T (
w′

k(θ̃)

wk(θ̃)

)
M−1

)

and therefore

n1/2((θ̂0,n/d
2, θ̂1,n/d

2, . . . , θ̂p,n/d
2, θ̂p+1,n, . . . , θ̂p+q,n) − θ

)
D→N

(
0,4τ2E

(
w′

k(θ̃)

wk(θ̃)
,

)T (
w′

k(θ̃)

wk(θ̃)

))
,

(2.8)

whereθ̂n = (θ̂0,n/d
2, θ̂1,n/d

2, . . . , θ̂p,n/d
2, θ̂p+1,n, . . . , θ̂p+q,n). The limit result

in (2.8) means that the only term which depends onh in the limit is τ = τ (ε̃/d).

So the efficiency of the estimator is determined byτ only.
Let us assume that the innovationsε̃k in (2.6) and (2.7) are standard normal

random variables. Using the quasi-maximum likelihood method of Example 2.1
(which is the likelihood method of Example 2.4 in this case), we get that
τ2

quasi= 1/2. If we use the method of Example 2.2, we must rescale since it is
assumed that the expected value of the absolute value of the innovations is 1, so
the standard normal innovation must be divided by

√
2/π . Henceτ2

exp = π/2− 1.

Clearly,τ2
quasi< τ2

exp.
Now we assume that the innovationsε̃k are two-sided exponential random

variables. In this case the methods of Examples 2.2 and 2.4 are the same and
τ2

exp = 1. If we use the method of Example 2.1, we need that the second moment

is 1, so the innovations must be divided by
√

2. Henceτ2
quasi= 5/4 in Example 2.1.

This means that the variance of the estimators forβ1, . . . , βq (β1, . . . , βq are
invariant for rescaling the innovations) will be 25% more if the quasi-maximum
likelihood method is used instead of the likelihood method.

Let ε̃i be independent, identically distributed random variables with den-
sity function f (t) = {(ϑ − 1)/2}(1 + |t|)−ϑ , whereϑ > 5. Elementary calcu-
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lations show thatE|ε̃i| = 1/(ϑ − 2),E|ε̃i|2 = 2/((ϑ − 2)(ϑ − 3)) and E|ε̃i|4 =
24/((ϑ − 2)(ϑ − 3)(ϑ − 4)(ϑ − 5)). If the quasi-maximum likelihood method is
used, we useεi = ε̃i/(E|ε̃i|2)1/2 and therefore

τ2
quasi=

1

4

{
6(ϑ − 2)(ϑ − 3)

(ϑ − 4)(ϑ − 5)
− 1

}
.

If we use the method of Example 2.2, that is, the two-sided exponential density in
the definition ofL̂n(u), we use the innovationsεi = ε̃i/E|ε̃i| and we get

τ2
exp= 2(ϑ − 2)

ϑ − 3
− 1.

Elementary calculations show thatτ2
quasi > τ2

exp for any ϑ > 5. If ϑ = 6, then

τ2
quasi= 8.75 while τ2

exp ≈ 1.67. If ϑ is large thenτ2
quasi≈ 1.25 while τ2

exp ≈ 1.

The parametersβ1, . . . , βq are invariant for scaling, so the two-sided exponential
method gives smaller asymptotic variance than the quasi-maximum method. We
note that the likelihood method of Example 2.4 provides the smallest possible
variance for the estimation ofβ1, . . . , βq . However, this example illustrates that
if the density is unknown and we suspect that the tail of the distribution of the
innovations is polynomial, the two-sided exponential method performs better than
the quasi-maximum likelihood.

If we are interested in the estimation ofd in the examples above, we can
use the residuals. The residuals are defined asε̂i = yi/ŵi(θ̂n),1 < i ≤ n. Let
us assume that the estimation is done under the scaling assumption (1.16). Then
d̂n = (

∑
1<i≤n ε̂i

2
/(n − 1))1/2 can be used when we move to a model with

scaling assumptionε2
0 = 1. However, replacingd with d̂ in (2.8) will change

the asymptotic variance. Using differenth’s in L̂n(u), we study models based
on different scaling assumptions. Since the parameters in (1.1) and (1.2) are
not uniquely defined, scaling assumptions or reparametrizations [cf. Drost and
Klaassen (1997) and Newey and Steigerwald (1997)] are required.

3. Preliminary results. The first six lemmas are from Berkes, Horváth and
Kokoszka (2003).

LEMMA 3.1. If the conditions of Theorem 1.1are satisfied and σ 2
0 = w0(u∗)

with some u∗ ∈ U , then u∗ = θ .

PROOF. This result is part of the proof of Lemma 5.5 in Berkes, Horváth and
Kokoszka (2003). �

Let log+x = logx if x > 1 and 0 otherwise.

LEMMA 3.2. Let ϕ0, ϕ1, ϕ2, . . . be identically distributed random variables
satisfying E log+ |ϕ0| < ∞. Then

∑
1≤k<∞ ϕkz

k converges a.s. for all |z| < 1.
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LEMMA 3.3. If (1.5), (1.6)and (1.12)hold, then there is δ > 0 such that

E|y2
0|δ < ∞ and E|σ 2

0 |δ < ∞.(3.1)

LEMMA 3.4. If (1.5), (1.6) and (1.8) hold, then there are constants 0 <

C∗, C∗∗ < ∞ and 0 < ρ < 1 such that

C∗ ≤ wk(u) ≤ C∗∗
(

1+ ∑
1≤i<∞

ρiy2
k−i

)
, u ∈ U,(3.2)

and

C∗ ≤ ŵk(u) ≤ C∗∗
(

1+ ∑
1≤i<∞

ρiy2
k−i

)
, u ∈ U,

for any −∞ < k < ∞.

LEMMA 3.5. If (1.2), (1.5), (1.6), (1.8), (1.11)and (1.12) hold, then, for
any 0 < κ∗ < κ ,

E

(
sup
u∈U

σ 2
k

wk(u)

)κ∗
< ∞.

LEMMA 3.6. If (1.5), (1.6), (1.8), (1.11)and (1.12)hold, then

E

(
sup
u∈U

|w′
k(u)|

wk(u)

)κ∗
< ∞,

E

(
sup
u∈U

|w′′
k (u)|

wk(u)

)κ∗
< ∞

and

E sup
u∈U

∣∣∣∣w
′′′
k (u)

wk(u)

∣∣∣∣
κ∗

< ∞
for any κ∗ > 0.

For anyu = (x, s1, . . . , sp, t1, . . . , tq) ∈ U andγ > 1, we define

U(γ, u) =
{

u∗ = (x∗, s∗
1, . . . , s∗

p, t∗1 , . . . , t∗q ) ∈ U : max
1≤j≤q

t∗j /tj ≤ γ

}
.(3.3)

LEMMA 3.7. If (1.5), (1.6), (1.8), (1.11)and (1.12) hold, then for any
−∞ < κ∗ < ∞ there is γ > 1 such that

E

(
sup

{
wk(u∗)
wk(u)

: u∗ ∈ U(γ ′, u)

})κ∗
< ∞

for all u ∈ U and 1 ≤ γ ′ ≤ γ .



ESTIMATORS OF THE PARAMETERS IN GARCH 645

PROOF. Due to symmetry we can assume thatκ∗ > 0. We note thatu/(1 −
ρ0) ≤ c0(u) for all u ∈ U and 0≤ ci(u∗) ≤ K1γ

ici(u) with some constantK1 for
all u∗ ∈ U(γ, u) by Lemma 3.1 of Berkes, Horváth and Kokoszka (2003). Thus
Lemma 3.7 will be proven if we show that

E

( ∑
1≤i<∞ γ ici(u)y2

k−i

1+ ∑
1≤i<∞ ci(u)y2

k−i

)κ∗

≤ K2.

By Lemma 3.1 in Berkes, Horváth and Kokoszka (2003) there are constantsc and
0 < ρ < 1 such that

|ck(u)| ≤ cρk for all u ∈ U andk.(3.4)

For anyM ≥ 1 we have∑
1≤i<∞ γ ici(u)y2

k−i

1+ ∑
1≤i<∞ ci(u)y2

k−i

≤ γ M + ∑
M<i<∞

γ ici(u)y2
k−i

≤ γ M + K3
∑

M<i<∞
(γρ)iy2

k−i,

with someK3 on account of (3.4). By the Markov inequality we have

P

{ ∑
M<i<∞

(γρ)iy2
k−i > t/2

}

≤ ∑
M<i<∞

P
{
y2
k−i > (t/2)(γρ)−i

(
1− (γρ)1/2)(γρ)i/2}

= ∑
M<i<∞

P
{|y2

0|δ > (t/2)δ
(
1− (γρ)1/2)δ(γρ)−iδ/2}

≤ E|y2
0|δ(1− (γρ)1/2)−δ(1− (γρ)δ/2)−1

(t/2)−δ(γρ)Mδ/2.

ChoosingM = log(t/2)/ logγ , t > γ 2, we have, for anyκ∗ > 0,

P

{
sup
u∈U

∑
1≤i<∞ γ ici(u)y2

k−i

1+ ∑
1≤i<∞ ci(u)y2

k−i

> t

}

≤ P

{ ∑
M<i<∞

(γρ)iy2
k−i > t/2

}

≤ K4 exp
(−(δ/2)

(
1+ logρ−1/ logγ

)
log(t/2)

)
≤ K5t

−2κ∗

if γ > 1 is close enough to 1, whereK4 andK5 are constants. This completes the
proof of Lemma 3.7. �



646 I. BERKES AND L. HORVÁTH

4. Proofs.

LEMMA 4.1. If (1.5), (1.6)and (1.8)–(1.13) hold, then L(u) is defined for
any u ∈ U .

PROOF. By Lemma 3.3 there is 0< δ ≤ 1 such thatE|y2
0|δ < ∞ and therefore

E

(
1+ ∑

1≤i<∞
ρiy2

k−i

)δ

≤ E

(
1+ ∑

1≤i<∞
ρδi |y2

0|δ
)

= 1+ E|y2
0|δ ∑

1≤i<∞
(ρδ)i < ∞

(4.1)

for all 0< ρ < 1. Therefore by Lemma 3.4 we have

E sup
u∈U

| logw0(u)| < ∞.(4.2)

Sinceε0 andσ0/w
1/2
0 (u) are independent, by (1.13) we obtain

E

∣∣∣∣logh

(
ε0

σ0

w
1/2
0 (u)

)∣∣∣∣ ≤ C0

(
1+ E

(
σ 2

0

w0(u)

)ν0/2)
.

Using Lemma 3.5 and (4.2), we conclude

E sup
u∈U

∣∣∣∣log
{

1

w
1/2
0 (u)

h

(
y0

w
1/2
0 (u)

)}∣∣∣∣ < ∞,(4.3)

and thus Lemma 4.1 is proved.�

Let

Ln(u) = 1

n

∑
1≤k≤n

log
{

1

w
1/2
k (u)

h

(
yk

w
1/2
k (u)

)}
.

LEMMA 4.2. If (1.5), (1.6)and (1.8)–(1.14)hold, then

E

{
sup

1

|u − v| |Ln(u) − Ln(v)| : u ∈ U, v ∈ U

}
< ∞.

PROOF. By the mean value theorem there is a random variableη ∈ U such
that ∣∣g(

εk, σk/w
1/2
k (u)

) − g
(
εk, σk/w

1/2
k (v)

)∣∣
= 1

2
|u − v|

∣∣∣∣g1
(
εk, σk/w

1/2
k (η)

) σk

w
3/2
k (η)

w′
k(η)

∣∣∣∣.
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So by condition (1.14) we conclude

sup
u,v

1

|u − v|
∣∣∣∣g

(
εk,

σk

w
1/2
k (u)

)
− g

(
εk,

σk

w
1/2
k (v)

)∣∣∣∣
≤ 1

2
C1(εk)sup

η

∣∣∣∣
{((

σk

w
1/2
k (η)

)ν1

+ 1
)/(

σk

w
1/2
k (η)

)}
σk

w
1/2
k (η)

w′
k(η)

wk(η)

∣∣∣∣
≤ 1

2
C1(εk)

{
sup

u

((
σ 2

k

wk(u)

)ν1/2

+ 1
)}

sup
v

∣∣∣∣w
′
k(v)

wk(v)

∣∣∣∣.
We note thatεk and {σ 2

k /wk(u), u ∈ U } are independent for anyk. The Hölder
inequality and Lemmas 3.5 and 3.6 yield

EC1(εk)

{
sup

u

((
σ 2

k

wk(u)

)ν1/2

+ 1
)}

sup
v

∣∣∣∣w
′
k(v)

wk(v)

∣∣∣∣
≤ EC1(εk)

{
E

(
sup

u

(
σ 2

k

wk(u)

)ν1/2

+1
)γ }1/γ {

sup
v

∣∣∣∣w
′
k(v)

wk(v)

∣∣∣∣
γ ′}1/γ ′

≤ K1,

with some constantK1, where 1< γ,γ ′ < ∞ satisfy (ν1/2)γ < κ and 1/γ +
1/γ ′ = 1. SinceLn(u) is the average of stationary random variables, the proof of
Lemma 4.2 is now complete.�

LEMMA 4.3. If (1.5), (1.6)and (1.8)–(1.14)hold, then

n sup
u∈U

|L̂n(u) − Ln(u)| = O(1) a.s.

PROOF. We use (3.4). Let

ξ = ∑
1≤i<∞

ρiy2−i .

We note that by Lemmas 3.2 and 3.3 the series definingξ converges a.s. Using the
definitions ofwk(u), ŵk(u) and (3.4), we conclude

sup
u∈U

|wk(u) − ŵk(u)| ≤ c
∑

k<i<∞
ρiy2

k−i = cρkξ.(4.4)

Using next the mean value theorem, there isη ∈ (σk/ŵ
1/2
k (u), σk/w

1/2
k (u)) such

that ∣∣g(
εk, σk/w

1/2
k (u)

) − g
(
εk, σk/ŵ

1/2
k (u)

)∣∣
=

∣∣∣∣g1(εk, η)

(
σk

w
1/2
k (u)

− σk

ŵ
1/2
k (u)

)∣∣∣∣.
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Applying condition (1.14) and Lemma 3.4, we get∣∣∣∣g1(εk, η)

(
σk

w
1/2
k (u)

− σk

ŵ
1/2
k (u)

)∣∣∣∣
≤ C1(εk)

{
(ην1 + 1)/η

}
σk

∣∣∣∣ wk(u) − ŵk(u)

w
1/2
k (u)ŵ

1/2
k (u)(w

1/2
k (u) + ŵ

1/2
k (u))

∣∣∣∣

≤ C1(εk)

{(
σk

ŵ
1/2
k (u)

)ν1

+ 1
}
w

1/2
k (u)

σk

σk

w
1/2
k (u)

|wk(u) − ŵk(u)|
2C∗

≤ K2C1(εk)(σ
ν1
k + 1)ξρk

for anyk. Applying (4.2) withu = θ , we see thatE| logσ0| < ∞. We can assume
without loss of generality thatC1 in (1.14) is larger than 1 and thus by (1.15) we
conclude thatE| log(C1(ε0)(σ

ν1
0 + 1))| < ∞. Thus we can apply Lemma 3.2 to

get

n sup
u∈U

|Ln(u) − L̂n(u)| ≤ K2ξ
∑

1≤k<∞
C1(εk)(σ

ν1
k + 1)ρk < ∞ a.s.

�

PROOF OFTHEOREM1.1. Since log(w−1/2
k (u)h(ykw

−1/2
k (u))) is a stationary

sequence with finite meanL(u) and by Theorem 3.5.8 of Stout (1974) it is also
ergodic, the ergodic theorem implies thatLn(u) → L(u) a.s. for any fixedu ∈ U.

Thus Lemma 4.2 yields

sup
u∈U

|Ln(u) − L(u)| → 0 a.s.

Using now Lemma 4.3, we conclude that

sup
u∈U

|L̂n(u) − L(u)| → 0 a.s.(4.5)

We note that

L(θ) − L(u) = E
{
g(ε0,1) − g

(
ε0, σ0/w

1/2(u)
)}

.(4.6)

Since ε0 and {σ0/w
1/2
0 (u), u ∈ U } are independent, by (1.16) we have that

L(θ) ≥ L(u) and we have thatL(θ) = L(u) if and only if σ0 = w
1/2
0 (u). Using

Lemma 3.1, we get thatL(u) has a unique maximum atθ . The functionL(u)

is continuous, and thus the uniform a.s. convergence ofL̂n(u) to L(u) implies
θ̂n → θ , proving Theorem 1.1.

Since

Ln(u) = 1

n

∑
1≤k≤n

g
(
εk, σk/w

1/2
k (u)

) − 1

n

∑
1≤k≤n

logσk,
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we get that

L′
n(u) = 1

n

∑
1≤k≤n

g1
(
εk, σk/w

1/2
k (u)

)(−1

2

σk

w
1/2
k (u)

w′
k(u)

wk(u)

)
(4.7)

and

L′′
n(u) = 1

n

∑
1≤k≤n

g2
(
εk, σk/w

1/2
k (u)

)

×
(
−1

2

σk

w
1/2
k (u)

w′
k(u)

wk(u)

)T (
−1

2

σk

w
1/2
k (u)

w′
k(u)

wk(u)

)

+ 1

n

∑
1≤k≤n

g1
(
εk, σk/w

1/2
k (u)

)

×
(

3

4

σk

w
1/2
k (u)

(
w′

k(u)

wk(u)

)T w′
k(u)

wk(u)
− 1

2

σk

w
1/2
k (u)

w′′
k (u)

wk(u)

)
.

(4.8)

Similarly,

L′(u) = Eg1
(
ε0, σ0/w

1/2
0 (u)

)(−1

2

σ0

w
1/2
0 (u)

w′
0(u)

w0(u)

)
(4.9)

and

L′′(u) = E

{
g2

(
ε0, σ0/w

1/2
0 (u)

)(−1

2

σ0

w
1/2
0 (u)

w′
0(u)

w0(u)

)T (
−1

2

σ0

w
1/2
0 (u)

w′
0(u)

w0(u)

)

+ g1
(
ε0, σ0/w

1/2
0 (u)

)(3

4

σ0

w
1/2
0 (u)

(
w′

0(u)

w0(u)

)T w′
0(u)

w0(u)
(4.10)

− 1

2

σ0

w
1/2
0 (u)

w′′
0(u)

w0(u)

)}
.

The expected value in (4.9) exists, since by (1.14) and (1.15) and the independence
of ε0 andσ0/w

1/2(u) we have

E

∣∣∣∣g1

(
ε0,

σ0

w
1/2
0 (u)

)(
σ0

w
1/2
0 (u)

w′
0(u)

w0(u)

)∣∣∣∣
≤ EC1(ε0)

((
σ0

w
1/2
0 (u)

)ν1

+ 1
)∣∣∣∣w

′
0(u)

w0(u)

∣∣∣∣
≤ EC1(ε0)E

((
σ0

w
1/2
0 (u)

)ν1

+ 1
)∣∣∣∣w

′
0(u)

w0(u)

∣∣∣∣ < ∞

(4.11)

on account of the Hölder inequality and Lemmas 3.5 and 3.6. A similar argument
shows that the expected value in (4.10) also exists for allu ∈ U. �
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LEMMA 4.4. If (1.5), (1.6), (1.8)–(1.14), (1.17)and (1.18)hold, then there
exists U∗, a neighborhood of θ , such that

sup
u∈U∗

|L′
n(u) − L′(u)| → 0 a.s.(4.12)

If, in addition, (1.19)and (1.20)are satisfied, then

sup
u∈U∗

|L′′
n(u) − L′′(u)| → 0 a.s.(4.13)

Also, E{(w′
0(u)/w0(u))T w′

0(u)/w0(u)} is a nonsingular matrix for any u ∈ U∗.

PROOF. Let U∗ = U(γ, θ) with someγ to be chosen later. Applying (1.17),
we obtain ∣∣∣∣

(
g1

(
εk,

σk

w
1/2
k (u)

))′∣∣∣∣
=

∣∣∣∣g2

(
εk,

σk

w
1/2
k (u)

)
σk

(
−1

2

)
w′

k(u)

w
3/2
k (u)

∣∣∣∣(4.14)

≤ C2(εk)

((
σk

w
1/2
k (u)

)ν2

+ 1
)(

σk

w
1/2
k (u)

)−1∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣.
Using (4.7), (4.14) and conditions (1.14) and (1.17), we get

1

|θ − u|n|L′
n(θ) − L′

n(u)|

≤ 1

|θ − u|
∑

1≤k≤n

∣∣∣∣g1

(
εk,

σk

w
1/2
k (θ)

)
−g1

(
εk,

σk

w
1/2
k (u)

)∣∣∣∣
∣∣∣∣ σk

w
1/2
k (θ)

w′
k(θ)

wk(θ)

∣∣∣∣
+ 1

|θ − u|
∑

1≤k≤n

∣∣∣∣g1

(
εk,

σk

w
1/2
k (u)

)∣∣∣∣
∣∣∣∣ σk

w
1/2
k (θ)

w′
k(θ)

wk(θ)
− σk

w
1/2
k (u)

w′
k(u)

wk(u)

∣∣∣∣
≤ ∑

1≤k≤n

C2(εk)

(
sup

v∈U∗

((
σk

w
1/2
k (v)

)ν2

+1
)(

σk

w
1/2
k (v)

)−1)
sup
u∈U

∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣
2

+ ∑
1≤k≤n

C1(εk)

(
sup

v∈U∗

((
σk

w
1/2
k (v)

)ν1

+1
)(

σk

w
1/2
k (v)

))−1

× sup
z∈U∗

σk

w
1/2
k (z)

sup
u∈U

(
3

2

∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣
2

+
∣∣∣∣w

′′
k (u)

wk(u)

∣∣∣∣
)

= ∑
1≤k≤n

(Ik,1 + Ik,2).

Using the Cauchy inequality and the independence ofεk and{wk(u), u ∈ U }, we
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conclude from Lemmas 3.7 and 3.6 that

EIk,1 = EC2(εk)E

(
sup

v∈U∗

((
σk

w
1/2
k (v)

)ν2

+1
)(

σk

w
1/2
k (v)

)−1

sup
u∈U

∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣
2)

≤ EC2(εk)

(
E

(
sup

v∈U∗

((
σk

w
1/2
k (v)

)ν2

+1
)(

σk

w
1/2
k (v)

)−1)2)1/2

×
(
E sup

u∈U

∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣
4)1/2

< ∞,

providedγ > 1 is chosen close enough to 1. Similarly,

EIk,2 < ∞.

Thus Ik,1 and Ik,2 are stationary sequences with finite expectations and by
Theorem 3.4.8 of Stout (1974) they are also ergodic. Hence our previous estimates
and the ergodic theorem imply

sup
u∈U∗

1

|θ − u| |L
′
n(θ) − L′

n(u)| = O(1) a.s.(4.15)

SinceL′
n(u) is an average of a stationary, ergodic sequence with finite expectation

[cf. (4.11)], another application of the ergodic theorem gives, for anyu ∈ U∗,

L′
n(u) → L′(u) a.s.(4.16)

Putting together (4.15) and (4.16), we get (4.12). Similar arguments yield (4.13).
Berkes, Horváth and Kokoszka (2003) proved thatE(w′

0(u))T w′
0(u)/w2

0(u) is
a continuous function and it is nonsingular atu = θ , so the proof of Lemma 4.4 is
complete. �

Let θn = arg max{Ln(u) : u ∈ U }.

LEMMA 4.5. If (1.5), (1.6)and (1.8)–(1.22)are satisfied, then

n1/2(θn − θ)

= 1

n1/2

∑
1≤k≤n

g1(εk,1)
2

Eg2(ε0,1)

w′
k(θ)

wk(θ)
A−1(1+ o(1)

)
a.s.

(4.17)

and

n1/2(θn − θ)

= 1

n1/2

∑
1≤k≤n

g1(εk,1)
2

Eg2(ε0,1)

w′
k(θ)

wk(θ)
A−1 + oP (1).

(4.18)
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PROOF. We showed [cf. (4.9) and (4.11)] thatL(u) is differentiable for all
u ∈ U and proved after (4.6) thatL(u) has a unique maximum atu = θ . Thus
L′(θ) = 0. By the independence ofε0 andw′

0(θ)/w0(θ) and (4.9), we have

L′(θ) = Eg1(ε0,1)

(
−1

2
E

w′
0(θ)

w0(θ)

)
.

Berkes, Horváth and Kokoszka (2003) showedEw′
0(θ)/w0(θ) �= 0, so we have

Eg1(ε0,1) = 0.(4.19)

By (4.5) it follows easily thatθn → θ a.s. Hence there is a random variablen0 such
that θn ∈ U∗ if n ≥ n0, whereU∗ is defined in Lemma 4.4. Clearly,U∗ ⊂ U is
compact and forγ > 1 sufficiently close to 1 it does not have common points with
the boundary ofU . SinceLn(u) is twice differentiable and it reaches a maximum
at θn, we have

L′
n(θn) = 0 if n ≥ n0,(4.20)

and thus

L′
n(θn) − L′

n(θ) = −L′
n(θ).

By (4.13) we have thatL′
n(θn) − L′

n(θ) = (θn − θ)(L′′(θ) + o(1)) a.s. Observing
that L′′(θ) = Eg2(ε0,1)1

4A, and using (4.7), the proof of (4.17) is complete. By
the orthogonality and stationarity of the summands in (4.17), and in view of (1.21),
the variance of the sum isO(1/n) and therefore (4.18) follows from (4.17).�

A simple calculation shows, in analogy with (4.7),

L̂′
n(u) = 1

n

∑
1≤k≤n

g1
(
εk, σk/ŵ

1/2
k (u)

)(−1

2

σk

ŵ
1/2
k (u)

ŵ′
k(u)

ŵk(u)

)
.(4.21)

LEMMA 4.6. If (1.5), (1.6)and (1.8)–(1.22)are satisfied, then

sup
u∈U

∣∣L̂′
n(u) − L′

n(u)
∣∣ = O

(
1

n

)
a.s.(4.22)

PROOF. Berkes, Horváth and Kokoszka (2003) showed that there are con-
stantsc and 0< ρ∗ < 1 such that

|c′
i (u)| ≤ cρi∗ and |c′′

i (u)| ≤ cρi∗
for all u ∈ U and 0≤ i < ∞. Hence

sup
u∈U

|w′
k(u) − ŵ′

k(u)| ≤ c
∑

k<i<∞
ρi∗y2

k−i = cρk∗ξ∗,(4.23)

whereξ∗ = ∑
1≤i<∞ ρi∗y2

k−i converges a.s. by Lemmas 3.2 and 3.3. By (1.14),
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(1.17), (4.7), (4.21) and̂wk(u) ≤ wk(u), we have

n|L̂′
n(u) − Ln(u)|
≤ ∑

1≤k≤n

∣∣∣∣g1

(
εk,

σk

ŵ
1/2
k (u)

)
− g1

(
εk,

σk

w
1/2
k (u)

)∣∣∣∣
∣∣∣∣ σk

w
1/2
k (u)

w′
k(u)

wk(u)

∣∣∣∣
+ ∑

1≤k≤n

∣∣∣∣g1

(
εk,

σk

ŵ
1/2
k (u)

)∣∣∣∣
∣∣∣∣ σk

ŵ
1/2
k (u)

ŵ′
k(u)

ŵk(u)
− σk

w
1/2
k (u)

w′
k(u)

wk(u)

∣∣∣∣
≤ ∑

1≤k≤n

C2(εk)

((
σk

ŵ
1/2
k (u)

)ν2

+ 1
)(

σk

w
1/2
k (u)

)−2

×
∣∣∣∣ σk

w
1/2
k (u)

− σk

ŵ
1/2
k (u)

∣∣∣∣
∣∣∣∣ σk

w
1/2
k (u)

w′
k(u)

wk(u)

∣∣∣∣
+ ∑

1≤k≤n

C1(εk)

((
σk

ŵ
1/2
k (u)

)ν1

+ 1
)(

σk

ŵ
1/2
k (u)

)−1

× σk

∣∣∣∣ ŵ′
k(u)

ŵ
3/2
k (u)

− w′
k(u)

w
3/2
k (u)

∣∣∣∣
= Jn,1(u) + Jn,2(u).

By Lemma 3.4 and (4.4), usingξ andρ in the proof of Lemma 4.3, we get

Jn,1(u) ≤ ∑
1≤k≤n

C2(εk)

((
σk

ŵ
1/2
k (u)

)ν2

+ 1
)(

σk

w
1/2
k (u)

)−1

×
∣∣∣∣w

′
k(u)

wk(u)

∣∣∣∣
∣∣∣∣ σk

w
1/2
k (u)

− σk

ŵ
1/2
k (u)

∣∣∣∣
≤ ∑

1≤k≤n

C2(εk)

((
σk

ŵ
1/2
k (u)

)ν2

+ 1
)

×
∣∣∣∣w

′
k(u)

wk(u)

∣∣∣∣
∣∣∣∣ wk(u) − ŵk(u)

ŵ
1/2
k (u)(ŵ

1/2
k (u) + w

1/2
k (u))

∣∣∣∣
≤ K3

∑
1≤k≤n

C2(εk)(σ
ν2
k + 1) sup

u∈U

∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣ sup
u∈U

|wk(u) − ŵk(u)|

≤ K3ξ
∑

1≤k≤n

C2(εk)(σ
ν2
k + 1) sup

u∈U

∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣ρk

≤ K3ξ
∑

1≤k<∞
C2(εk)(σ

ν2
k + 1) sup

u∈U

∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣ρk < ∞ a.s.
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In the last step we also used Lemma 3.2 and the observation thatC2(εk)(σ
ν2
k +1)×

supu∈U |w′
k(u)/wk(u)| is a stationary sequence with

E

∣∣∣∣log
(
C2(εk)(σ

ν2
k + 1) sup

u∈U

∣∣∣∣w
′
k(u)

wk(u)

∣∣∣∣
)∣∣∣∣ < ∞.

Hence supu∈U Jn,1 = O(1) a.s. Replacing (4.4) with (4.23), similar arguments
show that supu∈U Jn,2 = O(1) a.s., completing the proof of (4.22).�

LEMMA 4.7. If (1.5), (1.6)and (1.8)–(1.22)are satisfied, then

|θ̂n − θn| = O

(
1

n

)
a.s.(4.24)

PROOF. Similarly to the proof of Lemma 4.5 there is a random variablen0
such that

L̂′
n(θ̂n) = 0 and θ̂n ∈ U∗ if n ≥ n0,(4.25)

where the setU∗ is defined in the proof of Lemma 4.5. By (4.13) we have

L′
n(θn) − L′

n(θ̂n) = (θn − θ̂n)L
′′(θ)

(
1+ o(1)

)
a.s.

and therefore

(θn − θ̂n) = (
L′

n(θn) − L′
n(θ̂n)

)
(L′′(θ))−1(1+ o(1)

)
a.s.

We recall thatL′
n(θn) = 0. Lemma 4.6 and (4.25) yield thatL′

n(θ̂n) = L̂′
n(θ̂n) +

O(1/n) = O(1/n) a.s., completing the proof of Lemma 4.7.�

PROOF OF THEOREM 1.2. By Lemma 4.7, relation (4.18) remains valid if
we replaceθn by θ̂n. Observe now thatg1(εk,1)w′

k(θ)/wk(θ) is a stationary
martingale difference sequence with respect to theσ -algebra generated by
{εj , j < k}. By Theorem 3.4.8 of Stout (1974) it is also ergodic. Using the Cramér–
Wold device [cf. Billingsley (1968), page 49] and Theorem 23.1 of Billingsley
[(1968), page 206], we obtain the multivariate central limit theorem expressed by
Theorem 1.2. �
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