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We describe here a framework for a certain class of multiscale likeli-
hood factorizations wherein, in analogy to a wavelet decomposition of an
L2 function, a given likelihood function has an alternative representation as
a product of conditional densities reflecting information in both the data and
the parameter vector localized in position and scale. The framework is de-
veloped as a set of sufficient conditions for the existence of such factoriza-
tions, formulated in analogy to thoseunderlying a standard multiresolution
analysis for wavelets, and hence can be viewed as a multiresolution analy-
sis for likelihoods. We then consider the use of these factorizations in the
task of nonparametric, complexity penalized likelihood estimation. We study
the risk properties of certain thresholding and partitioning estimators, and
demonstrate their adaptivity and near-optimality, in a minimax sense over a
broad range of function spaces, based on squared Hellinger distance as a loss
function. In particular, our results provide an illustration of how properties of
classical wavelet-based estimators can be obtained in a single, unified frame-
work that includes models for continuous, count and categorical data types.

1. Introduction. Wavelet-based methods have had a decided impact on the
field of nonparametric function estimation in the past decade, particularly where
concerned with inhomogeneous objects, as might be encountered in applications
such as signal and image processing. The near-optimality of their risk properties
(in a minimax sense) and their adaptivity to various ranges of unknown degrees
of smoothness, combined with simple and efficient algorithms for practical
implementation, have all contributed to this impact. See Donoho, Johnstone,
Kerkyacharian and Picard (1995), for example, and the discussions therein.

Much of this work rests upon a framework that assumes a standard Gaussian
“signal-plus-noise model,” that is,Xi = f (i/N) + Zi , where theZi are i.i.d.
standard normal random variables and thef (i/N) are equispaced samples of an
unknown functionf on the unit interval. This model is then combined with an
expansion

f (t) = ∑
(j,k)∈Z2

ωj,kψj,k(t),(1)
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through which the details inf gained between certain approximations at scales
indexed byj and j + 1 (formally, scales 2−j and 2−(j+1)), in the vicinity of
locations indexed byk, are captured by the coefficientsωj,k ≡ 〈f,ψj,k〉. The
ψj,k(t) ≡ 2j/2ψ(2j t − k) are orthonormal dilations–translations of a wavelet
function ψ(t) satisfying the admissibility condition

∫
ψ(t) dt = 0, as well as

various other conditions on smoothness, symmetry or such as desired.
Little or no work, however, has been done extending the wavelet paradigm to

certain other common noise models. We have in mind, in particular, models for
count and categorical data, such as Poisson or multinomial. Count data of this
sort arises in a variety of contexts, such as high-energy astrophysics or medical
imaging, while a good example of such categorical data might be the images found
in landcover classification from remote sensing data. The authors of this paper, in
addition to various collaborators, have in recent years pursued a program that seeks
to extend wavelet-based frameworks in such directions through the use of various
multiscale probabilitymodels [e.g., Kolaczyk (1999a), Timmermann and Nowak
(1999), Nowak and Kolaczyk (2000) and Kolaczyk and Huang (2001)]. At the
heart of this program is the concept of a multiscale factorization of a given data
likelihood,p(X|θ), in analogy to the orthogonal wavelet decomposition in (1), that
is, expressions like

p(X|θ) ∝∏
j,k

p(Xj+1,2k|Xj,k,ωj,k),(2)

where Xj,k contains information in the original dataX local to scalej and
position k, Xj+1,2k contains information within a refined subregion of that and
the parametersωj,k reflect similar information in the original parameterθ . Note
that the pursuit of such factorizations differs from attempting to simply work with
the likelihood induced by applying a wavelet transform to the original data, as
the latter approach tends quickly to lead to model expressions that suffer from
difficulty of interpretation and computational intractability outside of the Gaussian
case [Kolaczyk (1999b)].

Our goal in this paper is to show that a systematic approach can be taken to
the topic of multiscale probability models, in which for a certain class of such
models the relevant characteristics of traditional wavelet-based models and their
extensions are paralleled quite closely. In particular, our contribution consists
of two related components. First, we show that factorizations like that in (2)
arise when conditions for a “multiresolution analysis (MRA)” of likelihoods
are satisfied, where the conditions are a blending of concepts from the fields
of wavelets, recursive partitioning and graphical models. These conditions are
then shown to characterize the Gaussian, Poisson and multinomial models.
Hence, such multiscale probability models provide an example of a unified
framework for modeling data of continuous, count and categorical types in a
fashion sensitive to location–scale variation. Second, we quantify the risk behavior
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of certain nonparametric, complexity penalized likelihood estimators based on
our factorizations. We show that a near-optimality and adaptivity completely
analogous to that of wavelet-based estimators holds for these disparate data types,
for appropriately defined smoothness classes, using the squared Hellinger distance
as a loss function. The technical details behind these results rely on upper bounds
on the risk in the spirit of recent work by Birgé and Massart [e.g., Barron, Birgé and
Massart (1999) and references therein], but these bounds are derived by adapting
a technique of Li (1999) and Li and Barron (2000). In addition to the above two
primary contributions, we also comment briefly on the algorithmic efficiency with
which our various estimators may be calculated, an indication of their relevance to
practice as well as theory.

The body of the paper is arranged as follows. In Section 2 we present our
multiresolution analysis for likelihoods. Then in Section 3 we provide necessary
details for a certain class of models for continuous, count and categorical data
types, and introduce three estimators of the relevant underlying function. Risk
properties of these estimators are then stated in Section 4. Proofs of these results
are detailed in Section 5, and some final comments and discussion are compiled
in Section 6. Finally, a result on the algorithmic complexity of our estimators is
proven in the Appendix.

2. A multiresolution analysis for likelihoods. Consider a stochastic pro-
cessX(t) on the interval[0,1) that, either by choice or perhaps by the limitations
of measuring instruments, is observed only discretely on the intervalsIi ≡
[i/N, (i + 1)/N), i = 0, . . . ,N − 1. Furthermore, suppose that corresponding
to this process is a functionθ(t), t ∈ [0,1). We will assume that the effect of
the discretization is to yield a vector of measurementsX ≡ (X0, . . . ,XN−1),
associated with a vector of parametersθ ≡ (θ0, . . . , θN−1), where each pair
(Xi, θi) corresponds to the intervalIi and is obtained by sampling the functionθ(·)
and then samplingXi , in a manner to be made precise later. We will denote the
likelihood of X, given the parameter valueθ , by p(X|θ) generically for both
discrete and continuous distributions onX [i.e., p(·) is to be understood to be
defined with respect to an appropriate measureν]. At times, when convenient, we
may abbreviate this notation aspθ .

Informally speaking, a simple yet standard multiscale analysis of the dataX is
achieved by defining the dyadic intervalsIj,k ≡ [k/2j , (k + 1)/2j ), for j =
0, . . . , J − 1, k = 0, . . . ,2j − 1, andJ = log2(N) (i.e., with N assumed to be
a power of 2, for convenience), and associating with each a summary statistic
Xj,k ≡ ∑i/N∈Ij,k

Xi . That is, we define an analysis separating the information
in X into its components at various combinations of scale and position(j, k). This
strategy, of course, underlies the analysis ofX with respect to an orthonormal basis
of dyadic Haar wavelets, specifically, analysis through the discrete inner products
of X with functionshj,k(i) ≡ (χj+1,2k+1(i) − χj+1,2k(i))/N

1/2
j,k , defined on the
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index set{0,1, . . . ,N −1}, whereχj,k is the characteristic function for the discrete
analogue of the intervalIj,k , that is,{i : Ii ⊆ Ij,k}, andNj,k is the cardinality of
this set.

This particular notion of multiscale analysis can be generalized by generalizing
the underlying notion of partitioning. Specifically, beginning with the unit
interval [0,1), we partition that interval in a recursive fashion, where split points
are constrained to the endpoints of the original sampling intervalsIi , until a
complete recursive partition (C-RP)P ∗ ≡ {Ii}N−1

i=0 is achieved. That is, beginning
with the trivial partition [0,1), we split that into two pieces at one of the
points {i/N}N−1

i=1 . Then, proceeding in a recursive fashion, given a partitionP
intermediate to[0,1) andP ∗, we refine that partition by splitting one and only one
of the intervalsI ∈ P at one of the remaining allowable points (i.e., those points in
the intersection of{i/N}N−1

i=1 and the interior ofI ). We often will call the intervalI
in such cases the “parent” interval, and the two corresponding subintervals, say
Ich(I ),l andIch(I ),r, the left and right interval “children.” PartitionsP ′ produced
further along in the recursive process than a partitionP will be said to be
refinements ofP , which we will denoteP ≺ P ′ (refinement that includes
potential equivalence will be denoted using “
”). Finally, for a givenP 
 P ∗,
let I(P ) be the collection of all intervalsI found in at least one partitionP ′ 
 P ,
and letINT(P ) be all such nonterminal intervals [i.e., all intervalsI ∈ I(P ) that
arenot in P itself].

The multiscale analysis ofX corresponding toP ∗ is then composed of the
statisticsXI ≡∑i/N∈I Xi , for all intervalsI ∈ I(P ∗). This analysis can be linked
in turn to analysis with respect to an orthonormal basis of so-called unbalanced
Haar wavelets [Girardi and Sweldens (1997)]

hI (i) = c′
I

[
χch(I ),r(i)

Nch(I ),r
− χch(I ),l(i)

Nch(I ),l

]
,(3)

whereNI = #{i : Ii ⊆ I } is the discrete length of an intervalI , andc′
I = (N−1

ch(I ),r +
N−1

ch(I ),l)
−1/2 is a normalizing constant. Note that the dyadic analysis above is seen

to be the special case in which parent intervals are split only into two interval
“children” of equal size, that is,Nch(I ),l = Nch(I ),r = NI/2, yielding the complete
recursive dyadic partition (C-RDP)P ∗

Dy and the dyadic Haar waveletshj,k .
Our goal in this section is to show how the above concepts may be used to

produce a probabilistic analogue of an orthonormal wavelet expansion like that
in (1). We do so by introducing a formal analogue of the key conceptual framework
underlying the latter, that is, multiresolution analysis.

2.1. Development of a formal multiresolution analysis.

2.1.1. Function space multiresolution analysis. Fundamental to the concept
of wavelets is the notion of a multiresolution analysis (MRA). Briefly, the idea



504 E. D. KOLACZYK AND R. D. NOWAK

behind this method is to construct a sequence of subspacesVj ⊆ L2(R), across
scalesj , whose members contain successively finer approximations to functions
f ∈ L2(R). The classical multiresolution analysis [e.g., see Daubechies (1992)]
requires the following three sets of characteristics of these subspaces.

(A) Hierarchy of nested subspaces. The subspacesVj satisfy the condition

· · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · ,
where

⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj = L2(R).

(B) Orthonormal basis withinV0. There exists a functionφ such that the
collection{φ(· − k)}k∈Z forms an orthonormal basis forV0.

(C) Scaling between and translation within subspaces.

g ∈ Vj ⇐⇒ g(2−j ·) ∈ V0,

g ∈ V0 �⇒ g(· − k) ∈ V0 ∀ k ∈ Z.

Our interest in the above characteristics (gathered into these three labeled
categories for our own later convenience of exposition) centers primarily on the
fact that they form a set of sufficient conditions for the existence of a (wavelet)
function ψ ∈ L2(R) for which the collection{ψj,k} forms an orthonormal
basis ofL2(R), as in (1). In other words, these conditions assure a multiscale
decomposition or “decoupling” of any given functionf ∈ L2(R) into components
of L2 “energy” localized to certain combinations of scalej and positionk. The fact
that this decoupling is with respect to an orthonormal basis implies that knowledge
of these components (i.e., the coefficients and their corresponding wavelets) is
equivalent to knowledge of the functionf itself—only the representation has
changed.

2.1.2. Likelihood multiresolution analysis. In analogy to the three conditions
(A)–(C) outlined in Section 2.1.1, we provide four conditions (A∗)–(D∗) sufficient
to insure a certain multiscale likelihood factorization. The first three conditions
will be seen to play roles that parallel those of (A)–(C). However, to obtain a
factorization fully analogous to an orthonormal basis decomposition, the fourth
condition (D∗) is needed. Our conditions are as follows.

(A∗) Hierarchy of recursive partitions. A hierarchy of recursively defined
partitions

· · ·P�−1 ≺ P� ≺ P�+1 · · · ,
beginning with[0,1) and ending with a C-RPP ∗ = {Ii}N−1

i=0 .



MULTISCALE LIKELIHOOD ANALYSIS 505

(B∗) Independence withinP ∗. The components ofX are statistically inde-
pendent, the components ofθ are L-independent with respect to the likelihood
of X, that is,

p(X|θ) =
N−1∏
i=0

p(Xi |θi),

and the p.d.f. for eachXi is a member of some common parametric family
F ≡ {p(·|θ) : θ ∈ � ⊆ R}.

(C∗) Reproducibility between partitions. The familyF is reproducible inθ ,
in the sense that, for allI ∈ I(P ∗) and∀ θ ∈ �NI , the p.d.f. ofXI ≡∑i/N∈I Xi

is p(XI |θI ) ∈ F , whereθI ≡∑i/N∈I θi .

(D∗) “Decoupling” of parameters with partitions (i.e., cuts). For anyXi ∼
p(·|θi) ∈ F , i ∈ {i1, i2}, there exists some reparameterization(θi1, θi2) → (θ,ω)

such that

p
(
Xi1,Xi2|θi1, θi2

)= p(X|θ)p(Xi1|X,ω),

whereX ≡ Xi1 +Xi2 andθ ≡ θi1 +θi2. That is, the sumX is a cut [e.g., Barndorff-
Nielsen (1978)] for(Xi1,Xi2).

Some remarks on these conditions are useful prior to stating our main result
on likelihood factorizations. First, note that through (A∗) the notion of multiple
resolutions takes the form of recursive partitioning (or, conversely, hierarchical
aggregation) of our data space. Second, in condition (B∗), the assumption of a
likelihood factorization in the original data space, with respect to the index set
{0, . . . ,N − 1}, and in components identical up to the parametersθi , mirrors the
spirit and function of the orthonormal basis{φ(· − k)} in V0. The condition of
L-independence requires that the domain of variation ofθ be equal to the product
of the domains of the componentsθi and that the role ofθ in the likelihoodp(X|θ)

can be separated in one-to-one correspondence with the statistically independent
likelihood components of theXi [Barndorff-Nielsen (1978)]. Third, for each
interval I ∈ I(P ∗), it is desirable to combine the information in{Xi1, . . . ,XiNI

}
into a single summary statistic, in analogy to orthogonal projection of a function
onto subspacesVj . We do so using the simplest approach, direct summation, that
is, XI =∑i/N∈I Xi . Condition (C∗) dictates that the distributional familyF is
in some sense “invariant” under this summation—a scale-invariance, in a sense.
Practically speaking, there are in fact a number of similar definitions available. We
use the very simplest definition here, found, for example, in Wilks (1962), which
describes the well-known behavior of such distributions as the Gaussian, Poisson,
Cauchy and others.

Our perspective in introducing these conditions is one in which we view an
orthonormal basis decomposition essentially as a “decoupling” of information
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over some meaningful index space. In the case of wavelets, the indexing(j, k)

refers to information local in scale and position. For likelihoods, a fully analogous
decoupling requires both independence andL-independence in this indexing,
such as we assume holds true in the original indexingi through condition (B∗).
Conditions (A)–(C) are sufficient to guarantee a multiscale decoupling of a
function f in the manner of (1). However, conditions (A∗)–(C∗) yield only
statistical independence in the multiscale indexing, and notL-independence.
Put another way, we have a factorization ofp(X|θ) into components that are
functions of onlylocal information in X, but possiblyglobal information in θ .
Condition (D∗) remedies this situation.

We now state the main result of this section.

THEOREM 1. Assume that the conditions (A∗)–(D∗) hold. Then there exists a
factorization of the form

p(X|θ) = p
(
XI00|θI00

) ∏
I∈INT(P ∗)

p
(
Xch(I ),l|XI ,ωI

)
,(4)

with respect to some reparameterization {θI00,ω} of θ , for I00 ≡ [0,1) and θI00 ≡∑N−1
i=0 θi .

Proof of the theorem follows immediately, in light of the conditions and the
above discussion. Alternatively, this result may be viewed as a consequence
of the fact that conditions (A∗) and (B∗) imply a so-called directed, local
Markov property for the graphical model given by{XI }I∈I(P ∗), where the
underlying graph is just a binary treeT ∗ ≡ T (P ∗) equipped with arrows
denoting parent–child relationships. Equation (4) then follows as an example of
a recursive factorization [e.g., Lauritzen (1996), Theorem 3.27]. The fact that the
conditional distributions in the factorization are of the same family follows from
condition (C∗), and the reparameterization follows from condition (D∗).

For a random variableX associated with familyF for which (A∗)–(D∗) are
satisfied, we will say thatF allows a likelihood MRA with respect to θ . In consid-
ering the factorization in (4), note that the role of a wavelet coefficient–function
pair (ωj,k,ψj,k), in capturing detail lost between scalesj + 1 andj in approxi-
matingf ∈ L2(R), is played here by the conditional densityp(Xch(I ),l|XI ,ωI ),
a natural form of expressing the information lost between the aggregations dictated
by a partitionP ≺ P ∗ and its immediate predecessor.

2.2. Characterization. The conditions of Theorem 1 may be used to character-
ize certain familiesF that allow a multiresolution analysis. We illustrate with the
canonical case in whichF is a one-parameter natural exponential family (NEF),
that is,

p(Xi |ηi) = a(ηi)b(Xi)exp{ηiXi}
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with respect to some sigma-finite measureν(·), for natural parameterη ∈ E ⊂ R.
Specifically, we have the following result.

THEOREM 2. Suppose that F is a (minimal and steep) one-parameter NEF.
Then it follows that:

(i) F allows a likelihood MRA with respect to the natural parameterization
θ ≡ η if and only if F is the family of Gaussian distributions;

(ii) F allows a likelihood MRA with respect to the mean parameterization
θ ≡ µ(η) if and only if F is either the family of Gaussian distributions or the
family of Poisson distributions.

Proof of Theorem 2 follows from the use of results in the literature on
reproducibility and cuts. One begins by noting that the collection of NEFs
F satisfying (C∗) must be contained within the collection of suchF which do
so in the case of i.i.d. random variables, that is, whereη0 = · · · = ηN−1 ≡ η, for
someη ∈ E. A characterization of this latter case, under a slight generalization
of our own definition of reproducibility, is provided in Bar-Lev and Enis (1986).
Specifically, among various other results, these authors show that reproducibility
implies thatF must have a power variance function (PVF) and that there are
only four NEF-PVF families. Examination of the cumulant generating function
for these four families yields the candidate distributions under cases (i) and (ii) of
the theorem. The result follows by confirming that the sum of independent random
variables forms a cut for the joint distribution in the case of the Gaussian and
Poisson families, hence satisfying condition (D∗), which is straightforward [e.g.,
Barndorff-Nielsen (1978)].

Theorem 2 thus establishes formally a role for the Gaussian and Poisson
distributions in our class of multiscale probability models. These models have
been derived from first principles in previous work [e.g., Kolaczyk (1999a),
Timmermann and Nowak (1999) and Nowak (1999)]. Similarly, a moment’s
thought reveals that the factorization in (4) holds as well for the case in which
X follows a multinomial distribution, given the appearance of that distribution
when conditioning a vector of independent Poisson random variables on their total
(i.e., XI00). In fact, it can be shown using results from the literature on cuts for
discrete NEFs [e.g., Barndorff-Nielsen (1978) or, alternatively, the work of Joshi
and Patil (1970)], that (4) holds for all members of the class of sum-symmetric
power series distributions (SSPSD), that is, whereX has probability mass function
of the form

p(X|θ) = b(X)
θ

X0
0 · · · θXN−1

N−1

g(θ)
,(5)

where the generating functiong(·) depends onθ only throughθ0 + · · · + θN−1.
The Poisson and multinomial families are two members of this class, with the
former being the unique member for which the components ofX are uncorrelated.
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Hence, this result also indicates that the statistical independence assumed in
condition (B∗), while sufficient, is not necessary for the result of Theorem 1.

To what degree these results may be extended remains an open question.
The above discussion suggests that extensions are unlikely without significant
relaxation of conditions (A∗)–(D∗). While such extensions potentially could be
interesting, for example, in the event that they may necessarily parallel certain
aspects of the “second generation” [Sweldens (1998)] extensions of the classical
MRA underlying conditions (A)–(C), it is not clear whether they would lead to
methods of practical interest.

3. Multiscale penalized maximum likelihood estimation. We now turn our
attention to the problem of estimating the unknown parameter vectorθ from
dataX, when the underlying distributional family allows a likelihood MRA. In
light of the results of the previous section, for the remainder of this paper we
will restrict our attention to three models, those of the Gaussian, Poisson and
multinomial families, as canonical examples of models for continuous, count and
categorical measurements. Additionally, in preparation for the results of our risk
analysis in Section 4, and the corresponding proofs in Section 5, we will again
make use of the functionθ(·) underlyingθ [although the role ofX(·) will remain
implicit throughX].

Let � be a generic function space to be defined later, such as the space of
functions of bounded variation or a Besov space. We define our three models as
follows.

(G) Gaussian model. Letθ ∈ �, and defineθi = N
∫
Ii

θ(t) dt to be the average
of θ over Ii . Sample theXi independently asXi |θi ∼ Gaussian(θi, σ

2), where
σ 2 is assumed fixed and known.

The multiscale components in (4) then take the form

Xch(I ),l |XI ,ωI ∼ Gaussian
(

Nch(I ),l

NI

XI − ωI , cIσ
2
)
,

with

ωI = cI

(
θch(I ),r

Nch(I ),r
− θch(I ),l

Nch(I ),l

)
,

for cI = Nch(I ),lNch(I ),r/NI . The coarse scale component takes the formXI00|
θI00 ∼ Gaussian(θI00,NI00σ

2).

(P) Poisson model. Letθ ∈ �, where θ(t) ∈ [c,C], ∀ t ∈ [0,1], for 0 <

c < C. Define θi = N
∫
Ii

θ(t) dt to be the average ofθ over Ii . Sample the
Xi independently asXi ∼ Poisson(θi).

The multiscale components in (4) then take the form

Xch(I ),l|XI ,ωI ∼ Binomial(XI ;ωI),
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with ωI = θch(I ),l/θI , while the coarse scale component takes the formXI00|θI00 ∼
Poisson(θI00).

(M) Multinomial model. Let θ ∈ �, where θ(t) ∈ [c,C] ∀ t ∈ [0,1], for
0 < c < C, and

∫ 1
0 θ(t) dt = 1. Defineθi = ∫Ii

θ(t) dt . Let the componentsXi

arise through (singular) multinomial sampling, that is,X ∼ Multinomial(n; θ), for
somen ∼ N .

The multiscale components in (4) then take the form

Xch(I ),l |XI ,ωI ∼ Binomial(XI ;ωI),

with ωI = θch(I ),l/θI , as in the Poisson model, but the coarse scale component is
now a point mass atn.

Model (G) is just the Gaussian “signal-plus-noise” model with average-
sampling of the underlying functionθ(·), while model (P) is the Poisson analogue.
Model (M) can be viewed as a discretized density estimation model, where a
sample of sizen from the densityθ is implicit. The criterion thatN be such
that n ∼ N in this model may be satisfied, for example, by selectingN to be
the smallest power of 2 greater than or equal ton. This choice aids in producing
computationally efficient implementations of the estimators defined in the next
section, and has been found to work well in practice. The fact that the Poisson
and multinomial models share the same multiscale components follows from the
shared properties of the SSPSD class of distributional families, as explained above.

3.1. Complexity penalized estimators. The construction underlying the mul-
tiscale factorization in (4) involves intimate connections between factorizations,
partitions and orthonormal bases, the exploitation of which is important for the cre-
ation of adaptive estimators and efficient algorithms for their calculation. That the
factorization is closely linked to recursive partitioning is clear (i.e., throughP ∗).
However, through the latter, the former is also linked to a certain class of wavelet
bases. To see this it is enough to note that, in the construction of any given
C-RPP ∗, the splitting of each parent intervalI into its two children can be as-
sociated with a functionhI , as defined in (3). This function is a generalization of
the dyadic Haar functionhj,k defined earlier and the collection of all suchhI , for
I ∈ INT(P ∗), along with a single scale function on the full interval[0,1), are an
example of what Girardi and Sweldens (1997) term an “unbalanced” Haar basis
(UHB).

The multiscale coefficientsωI in model (G) actually are proportional to the
UHB coefficients〈θ, hI 〉, differing only by their constantscI andc′

I . Therefore,
in particular,ωI = 0 if and only if 〈θ, hI 〉 = 0. On the other hand, in models
(P) and (M) theωI arise as ratios of (left) child to parent sums of the appropriate
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components ofθ . However, these ratios can be expressed as simple functions of
the corresponding Haar coefficients, that is,

ωI = θch(I ),l

θI

= c′
I

(
c′
I

Nch(I ),r
− 〈θ, hI 〉

θI

)
.(6)

Note thatωI = Nch(I ),l/NI ≡ ρI if and only if 〈θ, hI 〉 = 0. The value ofρI is the
ratio of the (discrete) lengths of the intervalI and its (left) child, and indicates
homogeneity (smoothness) inθ at the scale and position ofI , just asωI = 0 does
in the Gaussian–wavelet case.

Hence the well-known exploitation of “sparseness” associated with wavelet
expansions in Gaussian denoising problems also carries over to the Poisson and
multinomial models, in that a piecewise-homogeneous vectorθ will have a large
proportion of itsωI equal to the correspondingρI . This point suggests the promise
of extensions of “keep-or-kill” thresholding algorithms to models (P) and (M), in
which individual multiscale parametersωI are either set to their empirical value
Xch(I ),l/XI (i.e., “keep”) or to the default valueρI (i.e., “kill”), as determined
by whether a certaincriterion function exceeds a threshold or not. In addition, in
analogy to the results of Donoho (1997), in which the equivalence of a certain
form of CART [Breiman, Friedman, Olshen and Stone (1984)] and algorithms
based on constrained thresholding of appropriately defined Haar expansions are
detailed, one might instead choose to base an estimator upon some optimal choice
of recursive partitionP among all such partitionsP 
 P ∗, for some fixed choice
of C-RPP ∗. For example, the complete recursive dyadic partitionP ∗

Dy is a natural
choice. Lastly, if one were to consider searching only with respect to a given
C-RP P ∗ to be too constraining, a natural extension is to the entire libraryL
of all (N − 1)! possible C-RP’sP ∗ of the interval[0,1).

We therefore consider here estimators of thresholding, recursive dyadic parti-
tioning and (general) recursive partitioning types, generically for each of our three
models (G), (P) and (M). In the remaining sections we present results regarding the
risk properties of certain simple versions of these types of estimators. Formally, we
express the estimators in the form

θ̂(X) ≡ arg min
θ ′∈�

{− logp(X|θ ′) + 2 pen(θ ′)},(7)

pen(θ ′) ≡ λ · #{ωI (θ
′) nontrivial},(8)

where “nontrivial” means nonzero in the Gaussian case and not equal toρI in
the Poisson and multinomial cases,λ is a penalty factor to be defined later (e.g.,
Theorem 4) and� is the space of possible values for a given estimator, defined as
follows:

1. thresholding (T),

�T ≡
{
θ ′ ∣∣∣ θ ′

i = β0 +∑
I∈I

βIhI (i) for I ⊆ INT(P ∗
Dy)

}
;(9)
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2. recursive dyadic partitioning (RDP),

�RDP≡
{
θ ′ ∣∣∣ θ ′

i = β0 + ∑
I∈INT(P )

βIhI (i) for P 
 P ∗
Dy

}
;(10)

3. recursive partitioning (RP),

�RP≡
{
θ ′ ∣∣∣ θ ′

i = β0 + ∑
I∈INT(P )

βIhI (i) for P 
 P ∗,P ∗ ∈ L

}
.(11)

In the definition of our spaces� in (9)–(11), which we have expressed in terms
of the UHB functions (3) for simplicity and comparison [and recallINT(P ) is
the set of all nonterminal intervals encountered in the construction of a recursive
partition P ], it is to be understood that the coefficient vectorsβ are constrained
accordingly in each of the models (G), (P) and (M). That is, while there are
no constraints in model (G), positivity ofθ ′ is required in model (P), and
both positivity and unit summability in model (M). These latter two sets of
constraints are enforced naturally in actual computations by virtue of working
in the reparameterization(θ ′

I00
,ω′

I ). Hence the multiscale reparameterizations are
important not only algorithmically, through their role in the decoupling of terms
in (4), but also mathematically in enforcing original constraints onθ ′ in a natural
manner.

Concerning the optimization in (7), by comparing the factorized form of the
likelihood in (4) with the summability of the penalty in the same multiscale
indexing in (8), it is not difficult to see that the estimatorθ̂T is equivalent to
performing a set of independent generalized likelihood ratio tests for eachI ∈
INT(P ∗

Dy). (Note that our choice ofP ∗ = P ∗
Dy here is arbitrary and made for

convenience.) For model (G), since the log-likelihood is simply a sum of squares,
this is in fact penalized least-squares with a counting penalty, which reduces to
so-called hard-thresholding. On the other hand, for models (P) and (M) the index
setI for the optimal estimatêθT corresponds to those indicesI for which the
null hypothesisH(0)

I :ωI = ρI is rejected in favor ofH(1)
I :ωI �= ρI , with respect

to the local binomial likelihood functions. The estimatorθ̂RDP is the analogue
of the penalized least-squares estimator defined in Donoho (1997), wherein it is
noted that recursive dyadic partitioning estimators like this are in fact thresholding
estimators with hereditary constraints placed on which components may be “kept”
or “killed” (i.e., resulting from the requirement that the partitioning be recursive).
Finally, the estimator̂θRP is an extension of this framework and reasoning to the
larger spaceL.

On a final note, we mention that all three of the estimators defined above may be
computed in a computationally efficient manner, as summarized in the following.
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THEOREM 3. For models (G), (P)and (M), the following hold:

(i) θ̂T may be computed using an O(N) thresholding procedure;
(ii) θ̂RDP may be computed using an O(N) optimal tree pruning algorithm;
(iii) θ̂RP may be computed using an O(N3) dynamic programming algorithm.

Proof of the theorem may be found in the Appendix.

4. Risk analysis. We state briefly in this section the main results deriving
from a risk analysis for the estimatorsθ̂T, θ̂RDP and θ̂RP under the models (G),
(P) and (M). In this section and the remainder of the paper, we will usex to denote
an arbitrary element from the range of the random variableX. We will measure the
loss associated with estimatingθ by θ̂ in terms of the (squared) Hellinger distance
between the corresponding densities, that is,

L(θ̂, θ) ≡ H 2(p
θ̂
,pθ )

=
∫ [√

p(x|θ̂) −
√

p(x|θ)
]2

ν(x),

(12)

whereν is the dominating measure. The risk will be defined then asR(θ̂, θ) ≡
(1/N)E[L(θ̂, θ)], where the expectation is with respect toθ .

We assign properties to the values of the trueθ through properties of the
function θ(·) from which it was sampled. Given the role of Haar-like functions
in our framework, a natural space� to consider is a ball� = BV(C) of functions
of bounded variation, that is, for which

sup
M≥2

sup
t1≤···≤tM

M∑
m=2

∣∣θ(tm) − θ(tm−1)
∣∣< C.(13)

We then have the following result regarding upper bounds on the risk.

THEOREM 4. Assume � = BV(C) and the conditions of either model (G),
(P) or (M). Let the constant λ in (8) be of the form γ logN , for γ ≥ 3/2
and N ≥ 3. Then the risks of the estimators θ̂T and θ̂RP are bounded above
by O((logN/N)2/3), while the risk of the estimator θ̂RDP is bounded above by
O((log2N/N)2/3).

Proof of this result and all others given in this section can be found in Section 5.
Note that the performances of the estimators are bounded identically for the three
models. A minor variation in the overall proof leads to risk statements similar to
those of Theorem 4 when loss functions of squared-error type are used.
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COROLLARY 1. The same upper bounds hold when risk is measured for the
models (G), (P) and (M) as (1/4N)E[‖θ − θ̂‖2], (1/N)E[‖θ1/2 − θ̂1/2‖2] and
(1/N)E[‖(nθ)1/2 − (nθ̂)1/2‖2], respectively.

As mentioned in the Introduction, two key properties of wavelet-based thresh-
olding estimators are their near-optimal risk behavior and their adaptivity. To es-
tablish near-optimality of our multiscale estimators we need the following lower
bound on the minimax risk.

THEOREM 5. Assume the conditions of Theorem 4 and Hellinger loss. Then
the minimax risk obeys a lower bound of O(N−2/3) in each of the models (G), (P)
and (M).

Hence, in particular, combining the upper and lower bounds in Theorems
4 and 5, we obtain that the estimatorsθ̂T andθ̂RPcome within the same logarithmic
factor of minimax risk, while the estimatorθ̂RDP comes within the square of that
factor, for each of the models (G), (P) and (M).

Adaptivity of our estimators then follows from the fact that similar near-
optimality statements hold in other spaces of varying smoothness, despite the fact
that the estimators have no a priori knowledge of which space(s) containsθ(·).
For example, for an appropriately defined range of Besov spacesB

ξ
p,q we have the

following.

THEOREM 6. Suppose � = B
ξ
p,q([0,1]) is a Besov space, with 0 < ξ < 1

and 1 ≤ p < ∞ such that 1/p < ξ + 1/2, and q > 0. Then the conclusions of
Theorems 4 and 5, as well as Corollary 1, hold with the exponent 2/3 replaced by
2ξ/(2ξ + 1).

In summary, the results of this section describe, for smoothness classes
appropriate to Haar-like bases, how all three of our multiscale complexity
penalized likelihood estimators exhibit the same sort of adaptivity and near-
optimality properties as classical wavelet-based models—but simultaneously for
certain continuous, count and categorical data types. As the proofs in the next
section demonstrate, this success is due primarily to (i) the role of Haar-like
multiresolution structures in our framework and (ii) the ability to decouple
the information in the data through likelihood factorizations that mirror these
structures. Extensions of these results to classes of smoother objects (e.g., Besov
spaces withξ > 1) would seem to require wavelets smoother than those in a Haar
basis. However, achieving similar likelihood factorizations in this context is a
much more difficult problem, and one for which it seems unrealistic to expect
the type of complete multiscale decoupling of information in data and parameters
inherent in (4).
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5. Proof of main results. We establish proofs of the results in Section 4
here. Although the case of model (G) could be handled using arguments from the
existing literature on wavelets and Gaussian noise models, such arguments do not
immediately extend to the cases of models (P) and (M). Hence, since our interest
is in part to illustrate how all three models may be handled in a unified fashion, we
introduce a generally applicable result in Section 5.1. The results for model (G),
within this general framework, are then presented in Section 5.2, while the results
for models (P) and (M) follow in Section 5.3.

5.1. A fundamental risk bound. Our proof of Theorem 4, and hence the near-
optimality of our estimators, rests primarily upon a fundamental upper bound on
the expected (squared) Hellinger distance. The form of this bound is much like
those in Barron, Birgé and Massart (1999). However, whereas the proof of their
(quite general) bounds relies on recent advances in isoperimetric inequalities and
a great deal of careful technical work, our own bounds adapt recent arguments of
Li (1999) and Li and Barron (2000) for mixture-based density estimation which,
in particular, rely on the discretization (quantization) of the space� of estimates
[in the spirit of earlier work by Barron and Cover (1991)] to produce a relatively
simple proof, applicable to all three models under consideration here.

Let H 2(pθ (1) , pθ (2) ) be the (squared) Hellinger distance between two densities
p(x|θ (1)) andp(x|θ (2)), as introduced earlier. Additionally, define the Kullback–
Leibler divergence between these densities as

K
(
pθ (1) , pθ (2)

)= ∫ log
p(x|θ (1))

p(x|θ (2))
p
(
x|θ (1)

)
ν(x).(14)

The following theorem bounds the expected (squared) Hellinger distance in terms
of the Kullback–Leibler divergence.

THEOREM 7. Let �N be a finite collection of estimators θ ′ for θ , and pen(·)
a function on �N satisfying the condition∑

θ ′∈�N

e−pen(θ ′) ≤ 1.(15)

Let θ̂ be a penalized maximum likelihood estimator of the form

θ̂(X) ≡ arg min
θ ′∈�N

{− logp(X|θ ′) + 2 pen(θ ′)
}
.(16)

Then

E
[
H 2(p

θ̂
,pθ )

]≤ min
θ ′∈�N

{
K(pθ ,pθ ′) + 2 pen(θ ′)

}
.(17)
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PROOF. The proof uses the same key ideas as found in Li (1999) and Li and
Barron (2000). Begin by noting that

H 2(pθ (1) , pθ (2)

)= ∫ [√p
(
x|θ (1)

)−√p
(
x|θ (2)

) ]2
ν(x)

= 2
(

1−
∫ √

p
(
x|θ (1)

)
p
(
x|θ (2)

)
ν(x)

)
(18)

≤ −2 log
∫ √

p
(
x|θ (1)

)
p
(
x|θ (2)

)
ν(x),

whereν is the dominating measure. Taking the expectation with respect toX, we
then have

E
[
H 2(p

θ̂
,pθ )

]≤ 2E log

(
1∫ [√p(x|θ̂)p(x|θ) ]ν(x)

)

≤ 2E log

(
p1/2(X|θ̂)e−pen(θ̂)

p1/2(X|θ̃)e−pen(θ̃)

1∫ [√p(x|θ̂)p(x|θ) ]ν(x)

)
,

where θ̃ is the argument that minimizes the right-hand side of the expression
in (17), which is simply the theoretical analogue ofθ̂ . However, the last expression
above may be broken into two pieces, being equal to

E

[
log

p(X|θ)

p(X|θ̃)

]
+ 2 pen(θ̃)(19)

+ 2E log

(
p1/2(X|θ̂)

p1/2(X|θ)

e−pen(θ̂)∫ [√p(x|θ̂)p(x|θ) ]ν(x)

)
.(20)

Noting that the expression in (19) is just the right-hand side of (17), the rest of
the proof entails showing that the expression in (20) is bounded above by zero.
Specifically, applying Jensen’s inequality we have the upper bound

2 logE

[
e−pen(θ̂)

√
(p(X|θ̂)/p(X|θ))∫ [√p(x|θ̂)p(x|θ) ]ν(x)

]
.(21)

The integrand in the expectation in (21) can be upper bounded by

∑
θ ′∈�N

e−pen(θ ′)
√

(p(X|θ ′)/p(X|θ))∫ [√p(x|θ ′)p(x|θ) ]ν(x)
,(22)

which, sinceθ ′ does not depend onX, produces the following upper bound
for (20):

2 log
∑

θ ′∈�N

e−pen(θ ′) E[√(p(X|θ ′)/p(X|θ)) ]∫ [√p(x|θ ′)p(x|θ) ]ν(x)
.(23)
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Now the integration
∫ [√p(x|θ ′)p(x|θ)]ν(x) in the denominator can be rewritten

as an expectation with respect to the distribution ofX through multiplication
by p(x|θ)/p(x|θ). However, this yields the same expectation as appears in the
numerator of each term in (23), and hence (23) is equal to 2 log

∑
θ ′∈�N

e−pen(θ ′).
This and the condition in (15) yield that (23) is bounded by zero.�

The result of Theorem 7 holds quite generally, and in particular for each of the
densities of models (G), (P) and (M). Use of this bound for statements regarding
the estimatorŝθT, θ̂RDP and θ̂RP requires that the inequality in (15) holds, for
which it is sufficient to establish the following.

LEMMA 1. Let �N be the collection of all N -length vectors θ ′ with
components θ ′

i ∈ DN [R1,R2], for some R1 < R2, where DN [R1,R2] denotes a
discretization of the interval [R1,R2] into N1/2 equispaced values. Let #(θ ′) count
the number of constant-valued sequences in the vector θ ′, that is, in analogy to the
number of pieces of a piecewise constant function. Then∑

θ ′∈�N

e−γ logN#(θ ′) ≤ 1,(24)

for γ ≥ 3/2 and N ≥ 3.

PROOF. Begin by writing �N = ⋃N
d=1�

(d)
N , where �

(d)
N is the subset of

values θ ′ that is composed ofd constant-valued sequences. For example,
(1,1,2,2,3) and(1,2,3,3,3) might be two such sequences in�

(3)
5 . Each of the

members of�(d)
N has the same value for the summand in (24), and there are

(N1/2)d distinct values that may be taken on by the set ofd constant-valued
components of each member. Also, there areN − 1 choosed − 1 possible
d-component vectors of lengthN . So we have

∑
θ ′∈�N

e−γ logN#(θ ′) =
N∑

d=1

(
N − 1
d − 1

)
e−(γ−1/2)d logN

=
N−1∑
d ′=0

(
N − 1

d ′
)

e−(γ−1/2)(d ′+1) logN

≤
N−1∑
d ′=0

(N − 1)d
′

d ′! N−(γ−1/2)(d ′+1)

≤ N−(γ−1/2)
N−1∑
d ′=0

1

d ′! ≤ N−(γ−1/2)e,

which is bounded by 1 under the conditions given.�

In the cases of̂θT and θ̂RP, the number of nontrivialωI defining the penalty
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in (8) is in fact the same as the penalty in the statement of the lemma. The spaces
�T and�RP, with appropriate discretization (to be defined below), are equivalent
to �N . For the case of̂θRDP, it is enough to note the inclusion�RDP⊂ �RP.

5.2. The Gaussian case.

PROOF OFTHEOREM4—MODEL (G). Assume without loss of generality that
σ ≡ 1. Using inequality (17) and the fact that the Kullback–Leibler divergence in
the Gaussian case is simply proportional to a (squared)�2-norm, we have that

R(θ̂, θ) ≤ min
θ ′∈�N

{
1

2N
‖θ − θ ′‖2

�2
+ 2γ logN

N
#(θ ′)

}
.(25)

The minimization in (25) essentially seeks an optimal balancing of bias and
variance terms, respectively. We will bound this quantity by bounding the bias
term over�(d)

N , for each fixedd , and then optimizing our resulting overall bound
in d . In producing a bound on the bias, the following result from Donoho (1993)
is central.

LEMMA 2. Let θ(·) ∈ BV. Define θ̃ (·) to be the best d-term approximant
to θ(·) in the dyadic Haar basis for L2([0,1]). Then ‖θ − θ̃‖L2 = O(1/d).

Define θ̃ to be the average sampling of̃θ on the intervalsIi , where the
dependence of̃θ on d is to be understood. Then letθ̃

′ ≡ [θ̃ ] be the result of
quantizing the elements ofθ̃ to the setDN [−C,C], whereC is the radius of the
BV ball in the statement of Theorem 4. By the triangle inequality it follows that

(1/N)
∥∥θ − θ̃

′∥∥2
�2

≤ (1/N)
∥∥θ − θ̃

∥∥2
�2

+ (1/N)
∥∥θ̃ − θ̃

′∥∥2
�2

(26) + (2/N)
∥∥θ − θ̃

∥∥
�2

∥∥θ̃ − θ̃
′∥∥

�2
.

The first term on the right-hand side is a measure of approximation error in�2(N),
which may be bounded by the correspondingL2 approximation error by exploiting
the piecewise constant nature of the Haar basis and our use of average sampling.
Specifically, let hj,k(i) be the (j, k)th Haar function on the discrete space
{0,1, . . . ,N − 1}, as defined in Section 2, and lethc

j,k(t) be its analogue on the

interval[0,1]. Then it follows that〈θ, hj,k〉�2 = N1/2〈θ,hc
j,k〉L2 and therefore

(1/N)
∥∥θ − θ̃

∥∥2
�2

= (1/N)
∑

(j,k)∈JN

(〈θ, hj,k〉�2 − 〈θ̃, hj,k〉�2

)2
(27) = ∑

(j,k)∈JN

(〈θ,hc
j,k〉L2 − 〈θ̃ , hc

j,k〉L2

)2
,

whereJN is the set of(j, k) with j = 0,1, . . . , J − 1 andk = 0,1, . . . ,2j − 1.
However, the last term in (27) is bounded by a similar sum over all(j, k), which
in turn is equal to the (squared)L2 approximation error‖θ − θ̃‖2

L2
.
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Hence the first term in (26) is of orderO(d−2). The second term is simply a
discretization error, which is controlled through the conditions of Lemma 1 to be
of orderO(1/N). Therefore the cross-term in (26) is of orderO(d−1N−1/2). In the
case of estimation through the thresholding or recursive partitioning strategies, the
quantity #(θ̃) will be proportional tod . Combining the above results [and ignoring
the negligibleO(1/N) term] yields the bound

min
θ ′∈�

(d)
N

{
1

2N

∥∥θ − θ ′∥∥2
�2

+ 2γ logN

N
#(θ ′)

}

≤ O(d−2) + O(d−1N−1/2) + O(dN−1 logN),

(28)

which is minimized ford ∼ (N/ logN)1/3. Substitution then yields the result that
R(θ̂, θ) is bounded by a quantity of orderO((logN/N)2/3). A similar argument
holds for estimation via recursive dyadic partitioning (RDP), where #(θ̃) instead
behaves liked logN , yielding the boundO((log2

e(N)/N)2/3). �

PROOF OF COROLLARY 1—MODEL (G). Proof of this corollary, for all
three models, is inherent in the proof of Theorem 7. Specifically, following
Li (1999), define the “affinity” between two densitiesp and q as A(p, q) ≡∫
(p(x)q(x))1/2ν(x). Then (18) can be rewritten as

H 2(pθ (1) , pθ (2)

)≤ −2 logA
(
pθ (1) , pθ (2)

)
,(29)

and therefore Theorem 7 equivalently can be viewed as a bound on minus twice
the log-affinity and related quantities thereof. For example, under independent
sampling we have thatA(pθ (1) , pθ (2) ) =∏i A(p

θ
(1)
i

, p
θ

(2)
i

), and a short calculation

shows that for model (G)−2 logA(pθi
, p

θ̂i
) = (1/4)(θi − θ̂i)

2. �

PROOF OFTHEOREM 5—MODEL (G). In the Gaussian case this follows from
standard arguments, as have been used for analogous statements for wavelet-based
estimators with the Gaussian signal-plus-noise model. See Donoho (1993), for
example. The approach is based on the so-called method of hyperrectangles of
Donoho, Liu and MacGibbon (1990). That is, one defines an object

Hj ≡
{ 2j−1∑

k=0

βj,kh
c
j,k(t) :

∣∣βk

∣∣≤ �j

}
,(30)

where the choice of�j ∝ 2−3j/2 is made to produce a hypercube “just barely”
in our BV ball � = BV(C), and j = j∗ is chosen to satisfy the constraint
23j/2 ∼ N1/2 so as to produce the hardest possible estimation problem on such
hyperrectangles. Because the�2 risk for estimating objects inHj is simply the
sum of the�2 risks for estimating the individualβj,k in this setting, and because
this latter can be bounded below by 2j∗

ε2, whereε ∝ N−1/2 is the noise level, the
lower bound ofN−2/3 on the minimax risk follows. �
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PROOF OF THEOREM 6—MODEL (G). The analogue of Theorem 4 in this
context is proven simply by modifying the statement of Lemma 2 accordingly.
That is, for Besov spaces in the range specified, the bestd-term approximant in
the dyadic Haar basis forL2([0,1]) has an error‖θ − θ̃‖L2 of order O(d−ξ ).
See DeVore (1998), for example. The effect of this change is to change the lead
term in (28) fromO(d−2) to O(d−2ξ ), and the cross-term similarly, from which
the upper bounds follow. Corollary 1 then follows as before. Finally, proof of
Theorem 5 follows as in the case of BV, but with the appropriate changes made to
the definition of� andj∗. �

5.3. The Poisson and multinomial cases.

PROOF OFTHEOREM 4—MODELS (P) AND (M). As remarked previously,
the bound in Theorem 7 holds for these two models as well. However, the
Kullback–Leibler divergence in these cases is not equivalent to an�2-norm.
Nevertheless, we may pursue a strategy similar to that in the Gaussian case by
bounding the size of the Kullback–Leibler term when evaluated at a particular
estimate relating to an optimal nonlinear Haar approximant associated with the
functionθ(·).

Begin with model (P). Let̃θ(·) be the bestd-term nonlinear approximant toθ(·),
in the sense of Lemma 2, and defineθ̃i = N

∫
Ii

θ̃ (t) dt through average-sampling.
Now the condition that the functionθ(·) ∈ [c,C] and the use of average-sampling
ensure that for the elements ofθ we haveθi ∈ [c,C] as well. However, we also
have thatθ̃i ∈ [c,C]. This results from the fact that thẽθi derive from average-
sampling the functioñθ(·), and this latter has a range restricted to[c,C]. This last
statement follows from noting that, by definition of minimizing‖θ −f ‖L2(0,1) in a
Haar basis, the functioñθ equivalently is defined by a set of characteristic functions
on some dyadic subintervalsI that partition[0,1] and associated constantsαI =
|I |−1 ∫

I θ(t) dt . TheαI clearly are bounded byc andC.

Continuing, letθ̃
′ ≡ [θ̃ ] be the result of quantizing the elements ofθ̃ to the

setDN [c,C]. Then the Kullback–Leibler divergence may be bounded as

1

N
K
(
pθ ,pθ̃

′
)= 1

N

N−1∑
i=0

θ̃ ′
i − θi + θi log

(
θi

θ̃ ′
i

)

≤ 1

N

N−1∑
i=0

θ̃ ′
i − θi + θi

(
θi

θ̃ ′
i

− 1
)

(31)

= 1

N

N−1∑
i=0

(
1

θ̃ ′
i

)(
θ̃ ′2

i + θ2
i − 2θ̃ ′

i θi

)

≤ 1

Nc

∥∥θ − θ̃
′∥∥2

�2
,
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where the first inequality follows from log(z) ≤ z−1 and the second follows from
the fact that̃θ ′

i ∈ [c,C] ∀ i. The inequality in (31) leaves us in essentially the same
position with which we started in the Gaussian case. Hence, arguing in an entirely
analogous fashion we are led to the same inequality as in (28), and the result of
Theorem 4 is proven for model (P).

The argument for model (M) is similar in structure to that for model (P), but
differs with respect to certain important technical details, deriving from the fact
that θ̃

′
must be both positive and sum to 1. Specifically, we begin by writing

θ(t) = 1+ (θ(t)− 1) ≡ 1+ g(t). Then, letg̃(·) be the bestd-piece nonlinear Haar
approximant tog(·). Sinceθ ∈ � ⇒ g ∈ �, it follows that‖g − g̃‖L2 = O(d−1).

Next note that the Haar scale coefficient ofg(·) at j = 0 is zero, from which
it follows that that scale coefficient will be zero forg̃(·) as well, and therefore
the latter is defined purely in terms ofd nonzero wavelet coefficients. Since the
wavelets have zero integral, definingθ̃ (t) ≡ 1 + g̃(t) results in an approximant
to θ that integrates to 1. Hencẽθ(·) will be a proper density if it is nonnegative.
However, an argument similar to that of the Poisson case can be used to show that
g ∈ (c − 1,C − 1) implies the same for̃g(·), from which it follows thatθ̃ ∈ (c,C).

Defineθ̃ through integration (i.e.,not average-sampling) viãθi ≡ ∫Ii
θ̃ (t) dt and

note that̃θ will be a proper probability mass function on the set{0,1, . . . ,N − 1},
with elementsθ̃i bounded below byc/N . It remains for us to quantizẽθ in such
a manner as to preserve this property, which we accomplish by working instead
with N θ̃ . Noting thatNθ̃i ∈ [c,C] ∀ i, we quantize each of these elements away
from zero in the positive (i.e., toward+∞) direction onDN [c,C]. Similar to the
Gaussian and Poisson cases, this means that| [Nθ̃i]−Nθ̃i | ∼ N−1/2, by definition
of DN [c,C].

Division of [N θ̃] by N would produce an object on the same scale asθ̃ , with
components in[c,C], but it would no longer be a proper probability mass function
because our method of quantization leads to an inflation of the overall mass by the
amountµ ≡ −N +∑N−1

i=0 [Nθ̃i]. We can correct for this increase by subtracting
δ ≡ µ/N ∼ O(N−1/2) from each element of[N θ̃ ]. ForN sufficiently large, say
c/2 > N−1/2, our final estimator̃θ

′ ≡ ([N θ̃ ] − δ)/N is a proper probability mass
function and is bounded below byc/(2N).

Now, similar to (31), bound the Kullback–Leibler divergence betweenpθ and
p

θ̃
′ as

1

N
K
(
pθ ,pθ̃

′
)= 1

N

N−1∑
i=0

nθi log
(

θi

θ̃ ′
i

)

= n

N

N−1∑
i=0

θ̃ ′
i − θi + θi log

(
θi

θ̃ ′
i

)
(32)

≤ n

N

2N

c

∥∥θ − θ̃
′∥∥2

�2
,
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where the factor ofN in the numerator of the last line comes from̃θ ′
i ≥ c

2N
.

Under the conditionn ∼ N in model (M), we are left with something that behaves
like N‖θ − θ̃

′‖2
�2

in (32). Similar to the previous cases, this may be bounded by
terms involving approximation error, discretization (quantization) error and a cross
term, using the triangle inequality. Noting that the use of simple integration (as
opposed to average-sampling) here leads to the alternative relation〈θ, hj,k〉�2 =
N−1/2〈θ,hc

j,k〉L2 between the discrete and continuous Haar coefficients, we find
that the quantityN‖θ − θ̃‖2

�2
may be bounded above by‖θ − θ̃‖2

L2
= ‖g − g̃‖2

L2
=

O(d−2). Similarly, by construction we have‖θ̃ − θ̃
′‖2

�2
= O(N−2), and so the

discretization error is againO(N−1). Therefore, an inequality like that in (28)
holds, and the result of Theorem 4 is proven for model (M).�

Note that, as a consequence of our argument, the conditionn ∼ N arises in a
natural manner. The interpretation of this condition is, viewed from the context
of density estimation, that the number of total possible binsN should be chosen
on the order of the number of samplesn. The underlying algorithms will choose
an optimal number less than or equal ton (in fact, likely much less), due to the
fact that the caseN > n assures that there will be empty bins and these will be
aggregated over.

PROOF OF COROLLARY 1—MODELS (P) AND (M). Model (P) involves
independent sampling, and thus it suffices to note that a short calculation produces
the expression−2 logA(pθi

, p
θ̂i
) = (θ

1/2
i − θ̂

1/2
i )2. Now consider model (M),

where we have

A
(
pθ ,pθ̂

)= ∑
x :
∑

xi=n

(
n

x0, . . . , xN−1

)N−1∏
i=0

(
θi θ̂i

)xi/2 =
(

N−1∑
i=0

(
θi θ̂i

)1/2
)n

.

The right-hand side of the above equation is itself an affinity to the powern, since
both θ and θ̂ sum to 1. Therefore minus twice the logarithm of this quantity is
an upper bound onn times the (squared) Hellinger distance between these two
vectors. �

PROOF OFTHEOREM5—MODELS (P) AND (M). Our argument here is in the
spirit of the method of orthogonal hyperrectangles outlined in the Gaussian case,
but with a number of technical differences. Consider the Poisson case first and
begin by noting that it is not difficult to show that the constraintθ(·), θ ′(·) ∈ [c,C]
implies that the Kullback–Leibler divergence and (squared) Hellinger distance
between densities corresponding toθ andθ ′ are within a constant factor of each
other, where the constant is a function ofc andC. Hence it suffices to provide a
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lower bound on the quantity

inf
θ̂

sup
θ

1

N
E
[
K
(
pθ ,pθ̂

)]
.(33)

Because the Kullback–Leibler divergence is simply an expected log-likelihood
ratio, and the Poisson model has a multiscale likelihood factorization involving
binomial conditional probabilities, we find (adopting a dyadic analysis and
ignoring the coarsest scale term) that

K
(
pθ ,pθ ′

)∼∑
j,k

E

[
log

p(Xj+1,2k|Xj,k,ωj,k)

p(Xj+1,2k|Xj,k,ω
′
j,k)

]

(34)
=∑

j,k

θj,k

[
ωj,k log

(
ωj,k

ω′
j,k

)
+ (1− ωj,k) log

(
1− ωj,k

1− ω′
j,k

)]
.

Next, define a hypercube (actually we use just the boundary or shell) inω-space
in analogy to that in (30) by specifying (i)θ0,0 is fixed and known, (ii)ωj,k ≡ 1/2
∀ j �= j∗, and (iii)ωj,k = 1/2+sk� for j = j∗, wheresk = ±1 is an unknown sign
and� ≡ �(j∗) ∈ (0,1/2) is a perturbation of known magnitude. Then, for this
particular subproblem, estimation ofθ reduces to estimation of thesk. Since, for
appropriately defined values ofj∗ and�, our hypercube will be contained within
the set ofθ induced by our function space� = BV(C), it follows using (34) that

1

N

2j∗−1∑
k=0

θj∗,k inf
ŝk

sup
sk

r(ŝk, sk)(35)

lower-bounds the quantity in (33), where

r(ŝ, s) ≡ E

[(
1

2
+ s�

)
log
(

1/2+ s�

1/2+ ŝ�

)
+
(

1

2
− s�

)
log
(

1/2− s�

1/2− ŝ�

)]
.(36)

However, the optimization problem inf supr(ŝ, s) is equivalent to a standard
decision problem with binomial observations, a two-point action space, and 0/1
loss. Therefore, restricting attention to estimators of the formŝ = ±1 we find that
the expression forr(ŝ, s) can be simplified to[

2� log
(

1/2+ �

1/2− �

)]
Pr(ŝ �= s).(37)

Neyman–Pearson theory then yields that each individual probability Pr(ŝk �= sk)

is minimized by the estimator̂sk = sgn(Xj∗+1,2k − Xj∗+1,2k+1), and therefore
approximately equal to

p∗ ≡ Pr
{
Z < −(θj∗+1,2k − θj∗+1,2k+1

)/√
θj∗,k

}
(38)

for sufficiently largeθj∗+1,2k andθj∗+1,2k+1, whereZ is a standard normal random
variable. Note that by construction of our hypercube the valuep∗ is the same for
all k.
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Finally, we address the issue of choice of� andj∗. First note that functions
within our hypercube are simply piecewise constant functions of a fixed mag-
nitude. Recalling the definition of theθj,k by average-sampling and the relation
θj+1,2k = θj,kωj,k , simple calculations yield that the height of any drop or rise in
this function is simply proportional to 2� [where the constant of proportionality
is due to

∫ 1
0 θ(t) dt , which may be arbitrarily set to 1]. With respect to the total

variation seminorm defined in (13), this implies that for such functions to be in
the space BV(C) we must have� ≤ (C/4)2−j∗

. Next, analogous to the Gaussian
case, we choosej∗ to satisfy the constraint 23j/2 = (C/2)N1/2. This choice can be
motivated, for example, by selecting that value ofj for which the signal-to-noise
ratio in the empirical Haar coefficients〈X, hj,k〉 is 1.

Combining the expressions in (35), (37) and (38), and exploiting the fact that
the θj∗,k are equal for allk, we find that our lower bound on the minimax risk
in (33) behaves like

2j∗

N
θj∗,0

[
2� log

(
1/2+ �

1/2− �

)]
p∗.(39)

To complete our proof, we note that the argument of the probability in (38) is in
fact the Haar coefficient signal-to-noise ratio (i.e., the ratio of the expected value to
the standard deviation), and hencep∗ ≈ Pr(Z < −1) may be treated as a constant
in (39). Additionally, sinceθj,k = θ0,0/2j andθ0,0 = N

∫ 1
0 θ(t) dt , it follows that

2j∗
N

θj∗,0 reduces to a constant. Lastly, a Taylor series expansion shows that the
term within brackets behaves like 8�2. From our definition of� and choice ofj∗
it follows that � ∼ N−1/3, from which the minimax lower bound rate ofN−2/3

stated in the theorem follows.
For the multinomial case, the proof proceeds in an almost identical manner.

As the multinomial likelihood too has a multiscale likelihood factorization with
binomial conditional probabilities, the expression in (34) holds in this case as
well, although withθj,k replaced bynθj,k . The hypercube is defined as before,
but with θ0,0 ≡ 1 by virtue of θ(·) being a density, and the same underlying
decision problem and optimal solution result. The discussion leading to our choice
of � remains unchanged, and the constraint of 23j/2 ∼ N1/2 (with appropriately
defined constants) again rendersp∗ a constant. Finally, the quantity to the left of
the bracketed expression in (39) now is(2j∗

/N)nθj∗,0, which is approximately 1
by the defining conditionn ∼ N in our specification of model (M). The rest of the
argument is identical to that of the Poisson case.�

PROOF OFTHEOREM 6—MODELS (P) AND (M). As the proof of Theorem 4
for models (P) and (M) exploited theL2 approximation error properties of optimal
nonlinear Haar approximants in a manner analogous to that of model (G), proof of
Theorem 6 and the other results for these models follow using precisely the same
modifications described earlier for model (G).�
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6. Discussion. In this paper we lay a succinct conceptual foundation for the
existence of certain multiscale likelihood factorizations. We also establish adap-
tivity and near-optimality of certain multiscale complexity penalized likelihood
estimators, based on these factorizations, through study of their risk behavior.
A key feature of our formulation and analysis is that canonical models of continu-
ous, count and categorical data—Gaussian, Poisson and multinomial—are handled
with common estimators, algorithms and risk analysis. The properties of our esti-
mators derive essentially from their ability to exploit the fact that the decoupling
inherent in the underlying multiscale factorizations for these models mirrors the
decomposition deriving from an associated Haar basis.

In a sense this paper can be viewed also as providing some degree of explanation
of and justification for the performance of other earlier work by the authors
and colleagues with multiscale factorizations in specific methodological contexts,
such as the analysis of Poisson time series [Kolaczyk (1999a, b)] and images
[Timmermann and Nowak (1999)], Poisson linear inverse problems [Nowak
and Kolaczyk (2000)] and the spatial analysis of continuous and count data in
geography [Kolaczyk and Huang (2001)]. The multiscale likelihood approach
analyzed here, based on average-sampling of the continuous object, fits quite
naturally in many imaging applications in which the instrumentation involves
spatially binning photon detections and a Poisson model. Similar comments
apply in histogram and density estimation contexts involving binned data and
the multinomial model. Moreover, it is in contexts like that of this last paper that
some particularly interesting aspects of the flexibility of the multiscale likelihood
framework come to light. For example, in the geographical analysis of census data
the notion of “multiscale” might arise through a desire to consider the effects
of various levels of geopolitical aggregation (e.g., towns, counties, states) on,
say, changes in population dynamics between two decennial censuses. A spatial–
temporal analysis of this type may be set up and executed using a framework
completely analogous to that underlying the recursive dyadic partitioning estimator
considered in this paper. See Kolaczyk and Huang (2001) for details.

Lastly, we include two comments regarding details in our method of proof for
risk analysis. First, we note the role that our adaptation of results of Li (1999)
and Li and Barron (2000) plays in our derivation of upper bounds for the risk.
The bound presented in Theorem 7 is quite general, and our subsequent usage
of that bound suggests its usefulness in other problems of complexity penalized
likelihood estimation in the nonparametric context. Second, we point out that,
while our proof of the upper bounds on the risk (i.e., Theorem 4) does not explicitly
use the decoupled structure of our likelihood factorizations, this structure does
play a key role in our adaptation of the method of hyperrectangles for providing
lower bounds on the risk (i.e., Theorem 5) in the Poisson and multinomial cases,
wherein Kullback–Leibler divergences are simply�2 risks in the standard Gaussian
sequence model.
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APPENDIX

PROOF OFTHEOREM 3. By virtue of the likelihood factorization (4), and the
additivity of penalty function (8) in the multiscale indexingI ∈ INT(P ∗), for all
three estimators (9), (10) and (11) the objective function to be optimized in (7) is
simply of the form

∑
I∈INT(P ∗) WI , where theWI are functions of the dataX and

parametersθ . In particular, for each estimator there is at eachI a choice being

made betweenH(0)
I : {ωI is trivial}, versusH

(1)
I : {ωI is nontrivial}. TheWI are

either the negative log-likelihood under the nullH
(0)
I or that under the alternative

H
(1)
I plus a penalty in the amount of 2λ.
In the case of thresholding, determining the value forWI for eachI corresponds

to performingN independent generalized likelihood ratio tests, and hence is
of O(N) algorithmic complexity trivially.

The case of recursive dyadic partition estimators follows arguments parallel to
those in Donoho (1997). Specifically, any RDP of[0,1) can be matched in one-
to-one correspondence with a dyadic Haar basis in which there is a “hereditary”
constraint on which coefficients are “kept” and which are “killed.” That is, if
a coefficient is to be kept, all of its ancestors must be kept as well; conversely, if a
coefficient is killed, all of its descendents are killed as well. Hence, searching for
an optimal RDP, saŷP 
 P ∗

Dy, is equivalent to a type of constrained thresholding.
The constraint may be enforced by recursively moving from fine scales to coarse,
and at each intervalIj,k choosing the optimal subpartition̂P (Ij,k) on Ij,k to be
either (i) the union of the optimal subpartitionŝP (Ij+1,2k) andP̂ (Ij+1,2k+1) on
the children ofIj,k or (ii) the trivial subpartition in whichIj,k is partitioned no
further. These decisions are based on the same type of generalized likelihood
ratio tests underlying the thresholding estimators, indexed in theIj,k ∈ INT(P ∗

Dy).
Therefore, this is the same as the optimal pruning algorithm for CART, which
requires on the order ofN operations [Donoho (1997) and Breiman, Friedman,
Olshen and Stone (1984), algorithm 10.1, page 294].

Finally, we consider the case of the general recursive partitioning estimators.
First note there are a total ofN(N+1)

2 unique subintervalsI ⊆ [0,1) that may be
composed of theN finest resolution intervalsIi . For any lengthNI ≥ 1, there
are exactlyN − NI + 1 of these subintervals of lengthNI . Also note that any
interval of cardinalityNI = m may be partitioned into two children intervals in
exactlym− 1 ways. Therefore, in total, among the(N − 1)! possible C-RPs, there

are only
∑N

m=1 m(N − m) = N2(N+1)
2 − N(N+1)(2N+1)

6 ∼ N3

6 unique parent–child
pairs. By exploiting both this redundancy and the inheritance property underlying
the RDP case, an efficient dynamic programming algorithm can be obtained. Here,
however, the end result of the algorithm is not only an optimal partitionP̂ , but an
accompanying C-RPP ∗(P̂ ) as well. Beginning with intervalsI of cardinality
NI = 2, and working recursively overNI = 3,4, . . . , one can computeWI under
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both hypothesesH(0)
I andH

(1)
I , and pass the optimal decision (i.e., partition or

not) for each interval “upward” (i.e., toward the coarsest interval[0,1)). That
is, for a given intervalI of length NI = m [which may or may not appear in
the definition of the final C-RPP ∗(P̂ )], we determine and record the optimal
subpartitionP̂ (I ) on I and the associated optimal sub-C-RPP ∗(P̂ (I )), and we
record the complexity value ∑

I ′∈INT(P ∗(P̂ (I ))

WI ′ .(40)

This optimal (sub)partition and its complexity value can be found via a maxi-
mization overO(m) terms involving the corresponding optimal subpartitions and
complexity values determined previously for each of them − 1 pairs of possible
children of I . The maximization over all possible blocks in all possible C-RPs
therefore requires roughlyN3/6 comparisons. Once we reach the top, we are left
with P̂ andP ∗(P̂ ). �
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