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Given a hypergraph � = (�,X ) and a sequence p = (pω)ω∈� of val-
ues in (0,1), let �p be the random subset of � obtained by keeping every
vertex ω independently with probability pω. We investigate the general ques-
tion of deriving fine (asymptotic) estimates for the probability that �p is an
independent set in �, which is an omnipresent problem in probabilistic com-
binatorics. Our main result provides a sequence of upper and lower bounds on
this probability, each of which can be evaluated explicitly in terms of the joint
cumulants of small sets of edge indicator random variables. Under certain nat-
ural conditions, these upper and lower bounds coincide asymptotically, thus
giving the precise asymptotics of the probability in question. We demonstrate
the applicability of our results with two concrete examples: subgraph contain-
ment in random (hyper)graphs and arithmetic progressions in random subsets
of the integers.

1. Introduction. Let � = (�,X ) be a hypergraph and, given a sequence p = (pω)ω∈� ∈
(0,1)�, let �p be a random subset of � formed by including every ω ∈ � independently with
probability pω. What is the probability that �p is an independent set in �? This very general
question arises in many different settings.

EXAMPLE 1. Let F be a graph and let n be a positive integer. Define � as the edge
set E(Kn) = ([n]

2

)
of the complete graph with vertex set [n] = {1, . . . , n} and let X be the

collection of the edge sets of all copies of F in Kn. Fix some p ∈ (0,1) and define p by
setting pω = p for every ω ∈ �. Then we are asking for the probability that the Erdős–Rényi
random graph Gn,p is F -free, that is, does not contain F as a (not necessarily induced)
subgraph.

EXAMPLE 2. An arithmetic progression of length r ∈ N (an r-AP for short) is a subset
of the integers of the form {a + kb : k ∈ [r]}, where b �= 0. Let � = [n] and let X be the set
of all r-APs in [n]. Given p ∈ (0,1), we define p by setting pω = p for every ω ∈ �. Then
we are asking for the probability that the p-random subset [n]p of [n] is r-AP-free.

EXAMPLE 3. Let � be a finite set of points in the plane. Include a triple {i, j, k} in X if
the points i, j , k lie on a common line. Now we are asking for the probability that the random
subset �p of points is in general position.

It is not hard to find other natural examples that provide further motivation for studying
this question. It is convenient to introduce some notation. Given � = (�,X ) and p ∈ (0,1)�,
we shall fix an (arbitrary) ordering of the elements of X as γ1, . . . , γN . We then let Xi denote

Received November 2017; revised April 2019.
MSC2010 subject classifications. 60C05, 05C65, 05C69, 05C80.
Key words and phrases. Janson’s inequality, Harris’s inequality, joint cumulants.

493

http://www.imstat.org/aop/
https://doi.org/10.1214/19-AOP1371
http://www.imstat.org
mailto:moussetfrank@gmail.com
mailto:samotij@tauex.tau.ac.il
mailto:anoever@inf.ethz.ch
mailto:kpanagio@math.lmu.de
http://www.ams.org/mathscinet/msc/msc2010.html


494 MOUSSET, NOEVER, PANAGIOTOU AND SAMOTIJ

the indicator variable of the event that γi ⊆ �p and set X = X1 + · · · + XN . Thus, X counts
the number of edges of � that are fully contained in �p and our goal is to compute the
probability that X = 0. Of course, these notations all depend on the given pair (�,p), but we
shall always suppress this dependence as it will be clear from the context.

Most of the time, we will be interested in the case where � = �(n) and p = p(n) (and
hence also X = X(n)) depend on some parameter n that tends to infinity and ask:

What are the asymptotics of the probability P[X = 0] as n → ∞?

The above question can also be viewed as a computational problem: we want to derive closed
formulas that are asymptotic to P[X = 0], at least for various ranges of the density parame-
ter p.

For technical convenience, we shall exclude the border case where pω ∈ {0,1} for some ω.
That case can always be addressed by changing � or by a continuity argument.

1.1. The Harris and Janson inequalities. The main reason why computing P[X = 0] is
challenging is that the random variables X1, . . . ,XN are usually not independent. However,
this is not to say that there is no structure at all: each random variable Xi is a nondecreasing
function on the product space {0,1}�. An important inequality that applies in this case is the
Harris inequality:

THEOREM 4 (Harris inequality [10]). Let � be a finite set and let X and Y be random
variables defined on a product probability space over {0,1}�. If X and Y are both nonde-
creasing (or nonincreasing), then

E[XY ] ≥ E[X]E[Y ].
If X is nondecreasing and Y is nonincreasing, then

E[XY ] ≤ E[X]E[Y ].
In our setting, for every V ⊆ [N ], the random variable

∏
i∈V (1 − Xi) is nonincreasing, so

we easily deduce from Harris’s inequality that

(1) P[X = 0] = E
[ ∏
i∈[N]

(1 − Xi)

]
≥ ∏

i∈[N]

(
1 −E[Xi]).

Note that (1) would be true with equality if X1, . . . ,XN were independent. An upper bound
on P[X = 0] is given by Janson’s inequality, which states that the reverse of (1) holds up to a
multiplicative error term that is an explicit function of the pairwise dependencies between the
indicator random variables X1, . . . ,XN . Formally, we write i ∼ j if i �= j and γi ∩ γj �= ∅,
and define the sum of joint moments

(2) �2 = ∑
i∼j

E[XiXj ].

THEOREM 5 (Janson’s inequality [2, 15]). For all � and p as above,

P[X = 0] ≤ exp
(−E[X] + �2

)
.

To compare this with (1), we will now assume that the individual probabilities of Xi = 1
are not too large, say E[Xi] ≤ 1 − ε for some positive constant ε. In this case, we may use
the inequality 1 − x ≥ exp(−x − x2/ε) for x ∈ [0,1 − ε] to obtain from (1)

(3) P[X = 0] ≥ ∏
i∈[N]

(
1 −E[Xi]) ≥ exp

(−E[X] − δ1/ε
)
,
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where

(4) δ1 = ∑
i∈[N]

E[Xi]2.

Combining this lower bound with the upper bound given by Janson’s inequality, we get the
approximation

(5) P[X = 0] = exp
(−E[X] + O(δ1 + �2)

)
.

If δ1 + �2 = o(1), then (5) gives the correct asymptotics of P[X = 0]. The condition
�2 = o(1) in particular requires that the pairwise correlations between the indicator variables
Xi vanish asymptotically in a well-defined sense. This rather strict requirement is not satisfied
in many natural settings, including the ones presented in Examples 1–3 for certain choices
of p. It is therefore an important question to obtain better approximations of P[X = 0] in
cases when the pairwise dependencies among the Xi are not negligible. This is the starting
point of our investigations.

1.2. Triangles in random graphs. Even though our results will be phrased in the general
framework introduced above and are thus widely applicable, we believe that it is useful to
keep in mind the following well-studied instance of the problem that will serve as a guiding
example.

EXAMPLE 6. Assume p = p(n) ∈ (0,1) and let X = X(n) denote the number of tri-
angles in Gn,p , as in Example 1 with F = K3. Since each triangle has three edges, we
have E[Xi] = p3 for all i. Thus, E[X] = (n

3

)
p3 and δ1 = O(n3p6). Moreover, we have

�2 = O(n4p5), because if two distinct triangles intersect, then their union is the graph with
4 vertices and 5 edges. Thus, (5) implies that as long as p = o(n−4/5), we have

P[X = 0] = exp
(−n3p3/6 + o(1)

)
.

Extending this result, Wormald [25] and later Stark and Wormald [23] obtained asymptotic
expressions for P[X = 0] even when p = �(n−4/5) and thus (5) no longer gives an asymp-
totic bound. In particular, it was shown by Stark and Wormald in [23] that if p = o(n−7/11),
then

P[X = 0] = exp
(
−n3p3

6
+ n4p5

4
− 7n5p7

12
+ n2p3

2
− 3n4p6

8
+ 27n6p9

16
+ o(1)

)
.

One goal of this paper is to give a simple interpretation of the individual terms in this formula.
Indeed, we will formulate a general result from which the above formula may be obtained by
a few short calculations. More precisely, we will prove a generalisation of (5) that takes into
account the k-wise dependencies between the variables Xi for all k ≥ 2.

1.3. Joint cumulants, clusters, dependency graphs. Let A = {Z1, . . . ,Zm} be a finite set
of real-valued random variables. The joint moment of the variables in A is

(6) �(A) = E[Z1 · · ·Zm].
The joint cumulant of the variables is

(7) κ(A) = ∑
π∈�(A)

(|π | − 1
)!(−1)|π |−1

∏
P∈π

�(P ),
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where �(A) denotes the set of all partitions of A into nonempty sets. In particular,

κ
({X}) = E[X],

κ
({X,Y }) = E[XY ] −E[X]E[Y ],

κ
({X,Y,Z}) = E[XYZ] −E[X]E[YZ] −E[Y ]E[XZ] −E[Z]E[XY ]

+ 2E[X]E[Y ]E[Z].
The joint cumulant κ(A) can be regarded as a measure of the mutual dependence of the vari-
ables in A. For example, κ({X,Y }) is simply the covariance of X and Y , and so κ({X,Y }) = 0
if X and Y are independent. More generally, the following holds.

PROPOSITION 7. Let A be a finite set of real-valued random variables. If A can be
partitioned into two subsets A1 and A2 such that all variables in A1 are independent of all
variables in A2, then κ(A) = 0.

In fact, Proposition 7 remains valid when one replaces the independence assumption with
the weaker assumption that �(B1 ∪ B2) = �(B1)�(B2) for all B1 ⊆ A1 and B2 ⊆ A2. An
elegant proof of Proposition 7 can be found in [1]. The proposition motivates the definition
of the following notion.

DEFINITION 8 (decomposable, cluster). A set A of random variables is decomposable
if there exists a partition A = A1 ∪ A2 such that the variables in A1 are independent of the
variables in A2. A nondecomposable set is also called a cluster.

In our setting, the notion of a cluster has a natural combinatorial interpretation. Given
� = (�,X ) and p ∈ (0,1)�, we define the dependency graph G� as the graph on the vertex
set [N ] whose edges are all pairs {i, j} such that i ∼ j , that is, γi ∩γj �= ∅. It is then clear that
a set V ⊆ [N ] induces a connected subgraph in G� if and only if the set of random variables
{Xi : i ∈ V } is a cluster (this is one reason why it is convenient to assume pω /∈ {0,1} for all
ω ∈ �). In particular, the joint cumulant κ({Xi : i ∈ V }) vanishes unless G�[V ] is connected.

Motivated by this, we shall write Ck for the collection of all k-element subsets V ⊆ [N ]
such that G�[V ] is connected, and define

(8) κk = ∑
V ∈Ck

κ
({Xi : i ∈ V }) and �k = ∑

V ∈Ck

�
({Xi : i ∈ V }).

Note that this definition of �k is consistent with the definition of �2 given by (2). Moreover,
it follows from (7) and Harris’s inequality that |κk| ≤ Kk�k for some Kk depending only
on k.

1.4. Our main result. Let � = (�,X ) and p ∈ (0,1)� be as above. Given a subset V ⊆
[N ], we write

∂(V ) = NG�(V ) \ V

for the external neighbourhood of V in the dependency graph and let

λ(V ) = ∑
i∈∂(V )

E
[
Xi

∣∣∣ ∏
j∈V

Xj = 1
]

be the expected number of external neighbours i of V in the dependency graph such that
γi ⊆ �p, conditioned on γj ⊆ �p for all j ∈ V . For all k ∈ N, we define

�k(�,p) = max
{
λ(V ) : V ⊆ [N ] and 1 ≤ |V | ≤ k

}
.

It can be intuitively helpful to think of �k(�,p) as a measure of (non)expansion of the de-
pendency graph G� .
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THEOREM 9. For every n ∈ N, let �(n) = (�(n),X (n)) be a hypergraph and let p(n) ∈
(0,1)�(n). Assume that for every constant k ∈N,

lim
n→∞ max

ω∈�(n)
pω(n) = 0 and lim sup

n→∞
�k

(
�(n),p(n)

)
< ∞.

Let X(n) denote the number of edges of �(n) that are fully contained in �(n)p(n). Then, for
every constant k ∈ N,

P
[
X(n) = 0

] = exp
(−κ1 + κ2 − · · · + (−1)kκk + O(δ1 + �k+1)

)
as n → ∞, where δ1, κ1, . . . , κk , and �k+1 are defined as above.

The condition max {pω(n) : ω ∈ �(n)} = o(1) implies κk = �k + o(�k) for every fixed
k, as can be seen from the definition (7) of κk . In such cases, the first-order behaviour of
κk is thus given by �k . However, this does not mean that we can then replace κ1, . . . , κk by
�1, . . . ,�k in the formula for P[X(n) = 0] given by Theorem 9, because the lower-order
terms can be nonnegligible; see the proof of Corollary 15 below, for instance.

The fact that κ1 = E[X] shows that the case k = 1 of Theorem 9 gives (a slight weaken-
ing of) Janson’s inequality (5). Unlike (5), Theorem 9 requires the additional assumptions
maxω∈�(n) pω(n) = o(1) and �k(�(n),p(n)) = O(1) for all constant k. Both conditions are
perhaps not strictly necessary. As we will see further below, the latter condition implies that
�k+1 = O(�k) for all constant k, which gives at least an indication of the type of assumption
that is involved.

It is natural to ask under which conditions Theorem 9 can give asymptotically sharp
bounds. While computing the first error term δ1 is generally straightforward, it is not so obvi-
ous how one should estimate �k+1. Here we will focus on the rather common situation where
each edge of �(n) has bounded size and there is some p(n) ∈ (0,1) such that pω(n) = p(n)

for all ω ∈ �(n). We then write simply �(n)p(n) instead of �(n)p(n). This is the situation
that we encounter in all of our applications.

Generally, for a hypergraph � = (�,X ) and a subset �′ ⊆ �, define the j th codegree of
�′ by

dj

(
�′) = ∣∣{γ ∈ X : �′ ⊆ γ and |γ | = ∣∣�′∣∣ + j

}∣∣,
and let

D(�,p) = max
j≥1

max
∅ �=�′⊆�

dj

(
�′)pj ;

one can think of this as a weighted maximum codegree of �. The following is a specialised
version of Theorem 9 that gives an easily verifiable condition ensuring �k+1 = o(1) for some
constant k.

THEOREM 10. Let r be a fixed positive integer. For every n ∈ N, let �(n) = (�(n),X (n))

be a hypergraph whose edges all have size at most r and let p(n) be a real number in (0,1).
Assume

lim
n→∞p(n) = 0 and lim sup

n→∞
D

(
�(n),p(n)

)
< ∞.

Let X(n) denote the number of edges of �(n) that are fully contained in �(n)p(n). Then, for
every constant k ∈ N,

P
[
X(n) = 0

] = exp
(−κ1 + κ2 − · · · + (−1)kκk + O(δ1 + �k+1)

)
as n → ∞, where δ1, κ1, . . . , κk , and �k+1 are defined as above.

Moreover, if D(�(n),p(n)) ≤ |�(n)|−ε for some positive ε, then there is a positive integer
k = k(ε, r) such that �k+1 = o(1).
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Let us briefly illustrate the applicability of this result by considering again the example of
triangle-free random graphs.

EXAMPLE 6 (continuing from page 495). The hypergraph � of triangles in Kn is 3-
uniform, so we can choose r = 3 in Theorem 10. One easily verifies that D(�,p) ≤ p +np2.
We recall from our earlier discussion that δ1 ≤ n3p6. Therefore, Theorem 10 implies that for
every fixed positive integer k and all p = o(n−1/2), we have

P[X = 0] = exp
(−κ1 + κ2 − · · · + (−1)kκk + O(�k+1) + o(1)

)
.

Moreover, if p ≤ n−1/2−ε for some positive constant ε, then there exists a constant k such
that

P[X = 0] = exp
(−κ1 + κ2 − · · · + (−1)kκk + o(1)

)
,

that is, the asymptotics of P[X = 0] are given by a finite formula that we could in principle
compute by analysing the finitely many possible “shapes” of clusters formed by at most k

triangles in Kn.

We shall derive both of the above theorems from a more general result, Theorem 11 below,
which has the advantage that it can be applied in certain nonsparse settings. Its disadvantage
lies in the fact that the error terms are somewhat less transparent. For a set A of random
variables, we define

δ(A) = �(A) · max
{
E[X] : X ∈ A

}
.

Given k ∈ N, we set

(9) δk = ∑
V ∈Ck

δ
({Xi : i ∈ V }),

analogously to (8), and

(10) ρk = max
V ⊆[N]

1≤|V |≤k

P
[
Xi = 1 for some i ∈ V ∪ ∂(V )

]
.

Observe that this definition of δk generalises (4).

THEOREM 11. For every k ∈ N and ε > 0, there is a K = K(k, ε) such that the following
holds. Let � = (�,X ) be a hypergraph and let p ∈ (0,1)�. If ρk+1 ≤ 1 − ε, then

∣∣logP[X = 0] + κ1 − κ2 + κ3 − · · · + (−1)k+1κk

∣∣ ≤ K · (δ1,K + �k+1,K),

where

δ1,K =
K∑

i=1

δi and �k+1,K =
K∑

i=k+1

�i.

We will derive Theorems 9 and 10 from Theorem 11 in Section 2. The proof of Theo-
rem 11, which is the main part of this paper, will be presented in Section 3.
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1.5. Application: Random graphs and hypergraphs. A fundamental question studied by
the random graphs community, raised already in the seminal paper of Erdős and Rényi [8],
is to determine the probability that Gn,p contains no copies of a given “forbidden” graph F

(as in Example 1). The classical result of Bollobás [5], proved independently by Karoński
and Ruciński [16], determines this probability asymptotically for every strictly balanced1 F ,
but only for p such that the expected number of copies of F in Gn,p is constant. (In the case
when F is a tree or a cycle, this was done earlier by Erdős and Rényi [8] and in the case when
F is a complete graph, by Schürger [22].) It was later proved by Frieze [9] that the same
estimate remains valid as long as the expected number of copies of F in Gn,p is o(nε) for
some positive constant ε that depends only on F . Wormald [25] and later Stark and Wormald
[23] obtained asymptotic formulas for significantly larger ranges of p in the special case
where F is a triangle. Prior to those papers and the present work, the strongest result of this
form (i.e., determining the probability of being F -free asymptotically) for a general graph F

followed from Harris’s and Janson’s inequalities; see (5). Finally, we remark that for several
special graphs F , the probability that Gn,p is F -free can be computed very precisely either
when p = 1/2 or, in some cases, even for all sufficiently large p = o(1) using the known
precise structural characterisations of F -free graphs; see [4, 11, 17–19].

Using Theorem 10, we can answer this question for a large class of graphs and a wide range
of densities. We will take a rather general point of view and consider the analogous problem
in random r-uniform hypergraphs, where instead of just avoiding a single graph F , our goal
is to avoid every graph in some finite family F . Let G

(r)
n,p denote the random r-uniform

hypergraph (r-graph for short) on n vertices containing every possible edge (r-element subset
of the vertices) with probability p, independently of other edges. In particular, G(2)

n,p is simply
the binomial random graph Gn,p . Given a family F = {F1, . . . ,Ft } of r-graphs, we consider

the problem of determining the probability that G
(r)
n,p is F -free, that is, it simultaneously

avoids all copies of all r-graphs in F .
Since removing isomorphic duplicates from F does not affect the probability that we are

interested in, we can assume that the r-graphs in F are pairwise nonisomorphic. Similarly,
we can assume that no hypergraph in F has isolated vertices.

We encode this problem in a hypergraph � = (�,X ) by proceeding similarly as we did
in Example 1. That is, we let � = ([n]

r

)
be the edge set of K

(r)
n , the complete r-graph with

vertex set [n], and we let X be the collection of edge sets of subhypergraphs of K
(r)
n that are

isomorphic to one of the r-graphs in F . The probability that Gn,p is F -free is then precisely
the probability that the p-random subset �p contains no edges of �.

Note that the maximal size of an edge in � is bounded from above by the largest number
of edges of an r-graph in F , which does not depend on n. By applying Theorem 10 to this
hypergraph, we can therefore get the asymptotics for the probability that G

(r)
n,p is F -free in a

certain range of p. To quantify this range, given an r-graph F , define

m∗(F ) = min
{

eF − eH

vF − vH

: H ⊆ F with vH < vF and eH > 0
}
,

where we use the convention min∅ = ∞ and where vG and eG denote, respectively, the
numbers of vertices and edges in a (hyper)graph G. For a family F of r-graphs, we then set

m∗(F) = min
{
m∗(F ) : F ∈ F

}
and d(F) = min {eF /vF : F ∈F}.

It is easy to see that δ1 ≤ |F | · max {nvF p2eF : F ∈ F} and thus δ1 = o(1) if np2d(F) = o(1).
Moreover, for any nonempty set �′ of edges in K

(r)
n whose union forms an r-graph H with

1A graph F is strictly balanced if eF /vF > eH /vH for every proper nonempty subgraph H of F .
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eH > 0 edges, we have

max
j≥1

dj

(
�′)pj = O

(
max

{
nvF −vH peF −eH : H ⊆ F ∈ F and vH < vF

})
.

It follows that D(�,p) = (npm∗(F))�(1). Theorem 10 then immediately implies the following
result.

COROLLARY 12. Let F be a finite family of r-uniform hypergraphs and assume that
p = p(n) ∈ (0,1) satisfies

(11) npm∗(F) = o(1) and np2d(F) = o(1).

Then, for every constant k ∈N, we have

P
[
G(r)

n,p is F-free
] = exp

(−κ1 + κ2 − · · · + (−1)kκk + O(�k+1) + o(1)
)

as n → ∞. Moreover, if npm∗(F) ≤ n−ε for some positive ε, then there is a positive integer
k = k(ε,F) such that �k+1 = o(1).

The conditions in (11) can be further simplified under certain natural assumptions on the
family F . Recall that the r-density of an r-graph F with at least two edges is

mr(F ) = max
{

eH − 1

vH − r
: H ⊆ F with eH > 1

}

and that F is r-balanced if this maximum is achieved with H = F , that is, if mr(F ) =
(eF − 1)/(vF − r). Observe that for every F with at least two edges, we have

mr(F ) ≥ eF − 1

vF − r
≥ m∗(F ).

We claim that if F is r-balanced, then in fact mr(F ) = m∗(F ). Indeed, writing αK = (eK −
1)/(vK − r), we see that for every H ⊆ F with vH < vF and eH > 1,

eF − eH

vF − vH

= αF (vF − r) − αH (vH − r)

(vF − r) − (vH − r)
≥ mr(F ),

since mr(F ) = αF ≥ αH (as F is r-balanced) and this inequality continues to hold if eH = 1.
Thus, m∗(F ) ≥ mr(F ) and so m∗(F ) = mr(F ).

Another simplification is possible in the important special case r = 2. In this case, the
second condition in (11) follows from the first condition, since 2eF /vF ≥ (eF − 1)/(vF − 2)

for every graph F and consequently m∗(F) ≤ 2d(F) for every family of graphs F .

COROLLARY 13. Let F be a finite family of 2-balanced graphs with at least two edges
each and let p = p(n) ∈ (0,1) be such that p = o(n−1/m2(F )) for every F ∈ F . Then, for
every fixed k ∈ N, we have

P[Gn,p is F-free] = exp
(−κ1 + κ2 − · · · + (−1)kκk + O(�k+1) + o(1)

)
,

as n → ∞. Moreover, if p ≤ n−1/m2(F )−ε for some positive ε and all F ∈ F , then there is a
positive integer k = k(ε,F) such that �k+1 = o(1).

Of course, neither Corollary 12 nor Corollary 13 would be particularly useful if one could
not compute the values κk for at least several small integers k. In Section 4, we outline a
general approach for doing so and perform the calculations for two special cases.
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COROLLARY 14. If p = o(n−4/5), then the probability that Gn,p is simultaneously K3-
free and C4-free is asymptotically

exp
(
−n3p3

6
− n4p4

8
+ n6p7

4
+ 2n5p6

3

)
.

COROLLARY 15. If p = o(n−7/11), then the probability that Gn,p is triangle-free is
asymptotically

exp
(
−n3p3

6
+ n4p5

4
− 7n5p7

12
+ n2p3

2
− 3n4p6

8
+ 27n6p9

16

)
.

As mentioned above, Corollary 15 was obtained independently by Stark and Wormald
[23]. It extends a result of Wormald [25] that applies to a smaller range of p. However, the
derivation of Corollary 15 from Theorem 10 is very short compared to the proofs in [23] and
[25].

1.6. Application: Arithmetic progressions. As a second application, we will estimate the
probability that [n]p , the p-random subset of [n], is r-AP-free, that is, does not contain
any arithmetic progression of length r . As in Example 2, we encode this problem in the
hypergraph � = (�,X ) on � = [n] whose edge set is the collection X of r-APs in [n].

Since any two distinct integers are contained at most
(r
2

) = O(1) common r-APs, it is easy
to see that δ1 = O(n2p2r ) and D(�,p) = O(p + npr−1). Therefore, Theorem 10 has the
following corollary.

COROLLARY 16. Let r ≥ 3 be a fixed integer and assume p = p(n) ∈ (0,1) satisfies
p = o(n−1/(r−1)). Then, for every fixed k ∈ N, we have

P
[[n]p is r-AP-free

] = exp
(−κ1 + κ2 − · · · + (−1)kκk + O(�k+1) + o(1)

)
as n → ∞. Moreover, if p = o(n−1/(r−1)−ε) for some positive constant ε, then there exists a
positive integer k = k(ε, r) such that �k+1 = o(1).

In Section 4, we will perform the necessary calculations to determine the precise asymp-
totics of P[[n]p is r-AP-free] for p = o(n−4/7).

COROLLARY 17. If p = o(n−4/7), then the probability that [n]p is 3-AP-free is asymp-
totically

exp
(
−n2p3

4
+ 7n3p5

24

)
.

1.7. Related work and open problems. Janson’s inequality was first proved (by Svante
Janson himself) during the 1987 conference on random graphs in Poznań, in response to
Bollobás’s announcement of his estimate [6] for the chromatic number of random graphs,
which requires a strong upper bound on the probability that a random graph contains no
large cliques. A related estimate was found, during the same conference, by Łuczak. Janson’s
original proof was based on the analysis of the moment-generating function of X, whereas
Łuczak’s proof used martingales. Both of these arguments can be found in [14]. Our proof
of Theorem 11 is inspired by a subsequent proof of Janson’s inequality that was found soon
afterwards by Boppana and Spencer [7]; it uses only the Harris inequality. Somewhat later,
Janson [12] showed that his proof actually gives bounds for the whole lower tail, and not just
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for the probability P[X = 0]. Around the same time, Suen [24] proved a correlation inequality
that is very similar to Janson’s. Suen’s inequality gives a slightly weaker estimate (which was
later sharpened by Janson [13]), but is applicable in a much more general context. Another
generalisation of Janson’s inequality was obtained recently by Riordan and Warnke [20].

In [25], Wormald proved that if p = o(n−2/3), then

(12) P[Gn,p is K3-free] = exp
(
−n3p3

6
+ n4p5

4
− 7n5p7

12
+ o(1)

)
,

whereas for Gn,m with m = d
(n

2

)
and d = o(n−2/3), we have

P[Gn,m is K3-free] = exp
(
−n3d3

6
+ o(1)

)
.

These results were strengthened recently by Stark and Wormald [23], who obtained the ap-
proximation in Corollary 15 (which implies (12)) and also

P[Gn,m is K3-free] = exp
(
−n3d3

6
+ n2d3

2
− n4d6

8
+ o(1)

)
,

where m = d
(n

2

)
, which holds when d = o(n−7/11). In fact, they were able to obtain a more

general result, which states that in the range where Corollary 13 is applicable, the probability
that Gn,p or Gn,m is F -free is approximated by the exponential of the first few terms of a
power series in n and p (resp. d) whose terms depend only on F . However, the way in which
these terms are computed is rather implicit. In contrast, in the setting of binomial random
subsets such as Gn,p , our Theorem 9 explains what these terms are.

While our results (and our methods) apply only to binomial subsets (e.g., Gn,p and not
Gn,m), the results for Gn,p could conceivably be transferred to Gn,m using the identity

P[Gn,m is F -free] = P[Gn,p is F -free] · P[e(Gn,p) = m | Gn,p is F -free]
P[e(Gn,p) = m] .

It was shown by Stark and Wormald [23] that the conditional probability in the right-hand
side can be computed explicitly for a carefully chosen p of the same order of magnitude as d .
However, this is not at all an easy task.

It would be interesting to establish a similar relationship in the more abstract and general
setting of random induced subhypergraphs. If this was possible, Theorem 9 could be used
to count independent sets of a given (sufficiently small) cardinality in general hypergraphs.
In some sense, this would complement the counting results that can be obtained with the
so-called hypergraph container method developed by Balogh, Morris, and Samotij [3] and
by Saxton and Thomason [21]. Whereas the container method applies to somewhat large
independent sets, which exhibit a “global” structure, our Theorem 9 would yield estimates
on the number of smaller independent sets that only exhibit “local” structure. In particular,
the container method can be used to estimate the probability that Gn,p is F -free whenever
p = ω(n−1/m2(F )) for every nonbipartite graph F . For p in this range, Gn,p conditioned on
being F -free is approximately (χ(F ) − 1)-partite with very high probability. On the other
hand, our method (and the method of [23]) applies whenever p = o(n−1/m2(F )), provided
that F is 2-balanced. For p in this range, the edges of Gn,p conditioned on being F -free are
still distributed very uniformly with probability close to one.

2. Proofs of Theorems 9 and 10. In this section, we will show that Theorem 11 implies
Theorems 9 and 10. To prove Theorem 9, we need the following lemma, which also clarifies
the definition of �k .
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LEMMA 18. For every hypergraph � = (�,X ), every p ∈ (0,1)�, and every positive
integer k, we have

�k+1/�k ≤ �k(�,p) and δk+1/δk ≤ �k(�,p).

PROOF. For every V ∈ Ck+1 there exist at least two distinct i ∈ V such that V \ {i} ∈ Ck .
Indeed, every connected graph with at least two vertices has at least two noncut vertices.
Therefore, for each V ∈ Ck+1, we can make a canonical choice of a set V − ⊂ V such that
V − ∈ Ck and

(13) max
{
E[Xi] : i ∈ V

} = max
{
E[Xi] : i ∈ V −}

.

Denoting by iV the unique element in V \ V −, we have iV ∈ ∂(V −) because G�[V ] is con-
nected. Moreover,

�
({Xi : i ∈ V }) = �

({
Xi : i ∈ V −}) ·E

[
XiV

∣∣∣ ∏
i∈V −

Xi = 1
]

and, analogously,

δ
({Xi : i ∈ V }) = δ

({
Xi : i ∈ V −}) ·E

[
XiV

∣∣∣ ∏
i∈V −

Xi = 1
]
.

It follows that

�k+1 ≤ ∑
V −∈Ck

�
({

Xi : i ∈ V −}) ∑
j∈∂(V −)

E
[
Xj

∣∣∣ ∏
i∈V −

Xi = 1
]

= ∑
V −∈Ck

�
({

Xi : i ∈ V −}) · λ(
V −) ≤ �k · �k(�,p)

and, similarly, δk+1 ≤ δk · �k(�,p). �

PROOF OF THEOREM 9 FROM THEOREM 11. Assume that �(n) = (�(n),X (n)) and
p(n) = (pω(n))ω∈�(n) are as in the statement of the theorem.

Fix any k ∈ N and ε ∈ (0,1) and let K = K(k, ε) be as given by Theorem 11. We ver-
ify that �(n) and p(n) satisfy the assumption of Theorem 11 for all sufficiently large n.
For this, consider some nonempty V ⊆ [N ] of size at most k + 1. Since p = o(1), we have∑

i∈V E[Xi] ≤ (1 − ε)/2 for all sufficiently large n. Additionally, if i ∈ ∂(V ), then γi inter-
sects

⋃
j∈V γj . Therefore,

∑
i∈∂(V )

E[Xi] ≤ λ(V ) · max
{
pω(n) : ω ∈ ⋃

j∈V

γj

}
≤ (1 − ε)/2.

By the union bound, this implies

ρk+1 = max
V ⊆[N]

1≤|V |≤k+1

P
[
Xi = 1 for some i ∈ V ∪ ∂(V )

] ≤ 1 − ε.

Therefore, Theorem 11 yields∣∣logP[X = 0] + κ1 − κ2 + · · · + (−1)k+1κk

∣∣ ≤ K · (δ1,K + �k+1,K).

Using Lemma 18 and our assumption that �i(�(n),p(n)) = O(1) for all constant i (in par-
ticular, for all 1 ≤ i ≤ K), we get

K · δ1,K = K ·
K∑

i=1

δi = O(δ1) and K · �k+1,K = K ·
K∑

i=k+1

�i = O(�k+1),

which completes the proof. �
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LEMMA 19. For all positive integers k and r , there exist k′ = k′(k, r) ≥ 1 and K =
K(k, r) such that, for every p ∈ (0,1) and every hypergraph � = (�,X ) with all edges of
size at most r ,

�k′/�k ≤ K · max
{
D(�,p),D(�,p)k

′}
.

PROOF. Define D(j) = max∅ �=�′⊆� dj (�
′) for every j ≥ 1 and note that then D(�,p) =

maxj≥1 D(j)pj . It is convenient to also define D(0) = 1.
We choose k′ = 2rk . Note that if V ∈ Ck′ , then there is an ordering of the elements of

V as i1, . . . , ik′ such that the set {i1, . . . , i�} belongs to C� for all � ∈ [k′]. For every �, let
j� = |γi� \ (γi1 ∪ · · · ∪ γi�−1)|. Since |γi | ≤ r for all i, there are at most 2rk − 1 edges of �

that are completely contained in γi1 ∪ · · · ∪ γik . Therefore, by our choice of k′, at least one of
jk+1, . . . , jk′ must be nonzero. Since there are at most 2r� choices for the intersection of γi�

and γi1 ∪ · · · ∪ γi�−1 , it then follows that

�k′/�k ≤ ∑
0≤jk+1,...,jk′≤r
jk+1+···+jk′≥1

k′∏
�=k+1

2r�D(j�)pj� ≤ K · max
{
D(�,p),D(�,p)k

′}

for an appropriate choice of K . �

PROOF OF THEOREM 10 FROM THEOREM 9. Suppose that �(n) = (�(n),X (n))

and p(n) ∈ (0,1) are as in the statement of the theorem. Define the sequence p(n) =
(pω(n))ω∈�(n) by pω(n) = p(n) for all ω ∈ �(n). For every V ⊆ [N ], we have |⋃i∈V γi | ≤
r|V |, and so

λ(V ) = ∑
i∈∂(V )

E
[
Xi

∣∣∣ ∏
j∈V

Xj = 1
]

≤ 2r|V | + ∑
∅ �=�′⊆⋃

i∈V γi

(r − 1)max
j≥1

dj

(
�′)p(n)j

≤ 2r|V |(1 + (r − 1)D
(
�(n),p(n)

))
.

Using our assumption on D(�(n),p(n)), this implies �k(�(n),p(n)) = O(1) for every fixed
k ∈N. Since we also assume p(n) → 0, Theorem 9 implies the first statement of Theorem 10.

To see the second statement, assume D(�(n),p(n)) ≤ |�(n)|−ε for a positive ε. By
Lemma 19, iterated r/ε times, we find that there are k = k(ε, r) and K = K(ε, r) such that
�k ≤ K · |�(n)|−r · �1. Since �1 ≤ |�(n)|rp(n), we obtain �k ≤ Kp(n) = o(1). �

3. Proof of Theorem 11. Let � and p be as in the statement of the theorem. We start
the proof by establishing some notational conventions. Given a subset V ⊆ [N ], we use the
abbreviations

XV = ∏
i∈V

Xi and XV = ∏
i∈V

(1 − Xi).

Note that these are the indicator variables for the events “γi ⊆ �p for all i ∈ V ” and “γi ��p
for all i ∈ V ”, respectively. Besides being positively correlated by Harris’s inequality, the
variables XV satisfy the stronger FKG lattice condition

(14) E[XU ]E[XV ] ≤ E[XU∪V ]E[XU∩V ] for all U,V ⊆ X .
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To see that this is true, rewrite (14) using E[XW ] = ∏
ω∈⋃

W pω, take logarithms of both
sides, and note that∑

ω∈⋃
i∈U∪V γi

logpω

= ∑
ω∈⋃

i∈U γi

logpω + ∑
ω∈⋃

i∈V γi

logpω − ∑
ω∈(

⋃
i∈U γi)∩(

⋃
i∈V γi)

logpω

≥ ∑
ω∈⋃

i∈U γi

logpω + ∑
ω∈⋃

i∈V γi

logpω − ∑
ω∈⋃

i∈U∩V γi

logpω,

since logpω < 0 for all ω ∈ � and
⋃

i∈U∩V γi ⊆ ⋃
i∈U γi ∩ ⋃

i∈V γi .
We will also use the notation

μπ = ∏
P∈π

E[XP ]

whenever π is a set of subsets of [N ] (usually a partition of some subset of [N ]). Thus, for a
nonempty subset V ⊆ [N ], the value

(15) κ(V ) = ∑
π∈�(V )

(−1)|π |−1(|π | − 1
)!μπ

is the joint cumulant of {Xi : i ∈ V }. For the sake of brevity, we will from now on write κ(V )

instead of the more cumbersome κ({Xi : i ∈ V }).
Recall that we denote by ∂(V ) the external neighbourhood of V in the dependency graph,

that is,

∂(V ) = NG�(V ) \ V

for every nonempty subset V ⊆ [N ]. We define

(16) ρV = P
[
Xi = 1 for some i ∈ V ∪ ∂(V )

]
,

so that ρk+1 = max {ρV : V ⊆ [N ] and 1 ≤ |V | ≤ k + 1}. Moreover, we set

I (V ) = [N ] \ (
V ∪ ∂(V )

)
.

Neglecting the distinction between an index i and the variable Xi , we may say that ∂(V )

contains the variables outside of V that are dependent on V and I (V ) contains those that are
independent of V . As above, we write Ci for the collection of all i-element sets V ⊆ [N ] such
that G�[V ] is connected. We will also write Ci (�) for the subset of Ci comprising all A ∈ Ci

with maxA = �.
Assume that k ∈ N and ε > 0 are such that ρk+1 ≤ 1 − ε. Note that this implies, in partic-

ular, that E[Xi] ≤ 1 − ε for all i ∈ [N ]. Then we need to show that, for some K = K(k, ε),∣∣∣∣logP[X = 0] + ∑
i∈[k]

(−1)i+1κi

∣∣∣∣ ≤ K · (δ1,K + �k+1,K),

where

δ1,K =
K∑

i=1

δi and �k+1,K =
K∑

i=k+1

�i.

To do so, we first write out the probability that X = 0 using the chain rule:

P[X = 0] = ∏
�∈[N]

P[X� = 0 | X[�−1] = 1] = ∏
�∈[N]

(
1 −E[X� | X[�−1] = 1]).
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Note that by the Harris inequality, E[X� | X[�−1] = 1] ≤ E[X�] ≤ 1 − ε. Taking logarithms
of both sides of the above equality and using the fact that | log(1 − x) + x| ≤ x2/ε for x ∈
[0,1 − ε], we get∣∣∣∣logP[X = 0] + ∑

�∈[N]
E[X� | X[�−1] = 1]

∣∣∣∣ ≤ ∑
�∈[N]

E[X� | X[�−1] = 1]2/ε.

Hence, using again E[X� | X[�−1] = 1] ≤ E[X�],
(17)

∣∣∣∣logP[X = 0] + ∑
�∈[N]

E[X� | X[�−1] = 1]
∣∣∣∣ ≤ ∑

�∈[N]
E[X�]2/ε = δ1/ε.

Thus, our main goal becomes estimating the sum

(18)
∑

�∈[N]
E[X� | X[�−1] = 1].

We shall do this by approximating (18) by an expression involving the quantities

(19) q(V,S) = (−1)|V |−1E[XV ]
E[XS\I (V ) | XS∩I (V ) = 1] .

This ratio is well defined for all V,S ⊆ [N ] because

E[XS\I (V ) | XS∩I (V ) = 1] ≥ E[XS\I (V )] > 0,

which is a consequence of the Harris inequality and the assumption that pω < 1 for all ω ∈ �.
The relationship between (18) and (19) is made precise in the following lemma:

LEMMA 20. Let k ∈ N and ε > 0 be such that ρk+1 ≤ 1 − ε. Then∣∣∣∣ ∑
�∈[N]

E[X� | X[�−1] = 1] − ∑
�∈[N]

∑
i∈[k]

∑
V ∈Ci (�)

q
(
V, [� − 1])∣∣∣∣ ≤ �k+1/ε.

We postpone the proof of Lemma 20 to Section 3.1 and instead show how it implies the
assertion of the theorem. Before we can do this, we need several additional definitions.

DEFINITION 21 (Attachment). Given subsets U,V ⊆ [N ], we say that U attaches to V ,
in symbols U ↪→ V , if every connected component of G�[U ∪V ] contains a vertex of V (see
Figure 1).

We state the following simple facts for future reference:

(i) We have ∅ ↪→ V for every V ⊆ [N ].
(ii) If i ∈ ∂(V ), then {i} ↪→ V .

(iii) If U ↪→ V and W ↪→ V , then also U ∪ W ↪→ V .
(iv) If V ∈ C|V | and U ↪→ V , then U ∪ V ∈ C|U∪V |.

FIG. 1. The set U attaches to V , that is, U ↪→ V , but not vice-versa.



ON THE PROBABILITY OF NONEXISTENCE IN BINOMIAL SUBSETS 507

FIG. 2. A partition in �C
V (W). Note that V is the union of components of the subgraph induced by the part P

containing it. If the dashed edge were in G� , then the partition would no longer be in �C
V (W).

DEFINITION 22. Suppose that ∅ �= V ⊆ W ⊆ [N ]. We define

�C
V (W) ⊆ �(W)

to be the set of all partitions π of W that contain a part P ∈ π such that V ⊆ P and V is the
union of connected components of G�[P ] (see Figure 2).

Next, for ∅ �= V ⊆ W ⊆ [N ], we define

(20) κV (W) = ∑
π∈�C

V (W)

(−1)|π |−1(|π | − 1
)!μπ.

Note that this is very similar to the definition (15) of κ(W), except that we sum over �C
V (W)

instead of �(W). For every k ∈N and all V,S ⊆ [N ] with V �= ∅, we set

(21) κ
(k)
V (S) = ∑

V ⊆W⊆V ∪S
W↪→V|W |≤k

(−1)|W |−1κV (W).

Certainly, this is a very complicated definition, whose meaning is far from clear at this point.
However, it serves as a convenient “bridge” between q(V, [�−1]) and the values κi , as shown
by the following two lemmas:

LEMMA 23. Let k ∈ N and ε > 0 be such that ρk+1 ≤ 1 − ε. Then there is some K =
K(k, ε) such that∣∣∣∣ ∑

�∈[N]

∑
i∈[k]

∑
V ∈Ci (�)

(
q
(
V, [� − 1]) − κ

(k)
V

([� − 1]))∣∣∣∣ ≤ K · (δ1,K + �k+1,K).

LEMMA 24. For every k ∈N, we have∑
�∈[N]

∑
i∈[k]

∑
V ∈Ci (�)

κ
(k)
V

([� − 1]) = ∑
i∈[k]

(−1)i+1κi.

Theorem 11 is an easy consequence of Lemmas 20, 23, and 24. Indeed, assume k ∈ N
and ε > 0 are such that ρk+1 ≤ 1 − ε. It follows from (17), the above three lemmas, and the
triangle inequality that∣∣∣∣logP[X = 0] + ∑

i∈[k]
(−1)i+1κi

∣∣∣∣ ≤ δ1/ε + �k+1/ε + K ′ · (δ1,K ′ + �k+1,K ′)

for some K ′ = K ′(k, ε). The assertion of the theorem now follows simply by observing that
the right-hand side above is at most K · (δ1,K + �k+1,K) for K = K ′ + 1/ε.
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3.1. Proof of Lemma 20. We derive Lemma 20 from the following auxiliary lemma,
which will also be used in the proof of Lemma 23.

LEMMA 25. Assume that V,S ⊆ [N ] are disjoint. Then for every nonnegative integer k,

(22) (−1)k ·E[XV | XS = 1] ≤ (−1)k+|V |−1
∑

U⊆S,U↪→V
|U |≤k

q(V ∪ U,S).

PROOF. We claim that it suffices to prove that for every integer k ≥ 0,

(23) (−1)k ·E[XV XS] ≤ ∑
U⊆S,U↪→V

0≤|U |≤k

(−1)k+|U |E[XV ∪U ]E[XS∩I (V ∪U)].

Indeed, (23) implies (22) because

E[XS∩I (V ∪U)] = P[XS = 1] ·E[XS\I (V ∪U) | XS∩I (V ∪U) = 1]−1

and because definition (19) gives

q(V ∪ U,S) = (−1)|V |+|U |−1E[XV ∪U ]
E[XS\I (V ∪U) | XS∩I (V ∪U) = 1] .

We prove (23) by induction on k. When k = 0, the inequality simplifies to

E[XV XS] ≤ E[XV ]E[XS∩I (V )],
which holds because XS ≤ XS∩I (V ) and because XV and XS∩I (V ) are independent. Assume
now that k ≥ 1 and that (23) holds for all k′ with 0 ≤ k′ < k. It follows from the Bonferroni
inequalities that

(24) (−1)k · XS∩∂(V ) ≤ (−1)k · ∑
U ′⊆S∩∂(V )

|U ′|≤k

(−1)|U ′|XU ′ .

Since S and V are disjoint and ∂(V ) ∪ I (V ) = [N ] \ V , then multiplying (24) through by
XV XS∩I (V ) and taking expectations yields

(25) (−1)k ·E[XV XS] ≤ ∑
U ′⊆S∩∂(V )

|U ′|≤k

(−1)k+|U ′|E[XV ∪U ′XS∩I (V )].

Observe that for every U ′ ⊆ S ∩∂(V ), the sets V ∪U ′ and S ∩I (V ) are disjoint. In particular,
if U ′ is nonempty, then we may appeal to the induction hypothesis (with k ← k − |U ′|) to
bound each term in the right-hand side of (25) as follows. As S ∩ I (V ) ∩ I (V ∪ U ′ ∪ U ′′) =
S ∩ I (V ∪ U ′ ∪ U ′′),

(26)

(−1)k+|U ′| ·E[XV ∪U ′XS∩I (V )]
≤ ∑

U ′′⊆S∩I (V )
U ′′↪→V ∪U ′

0≤|U ′′|≤k−|U ′|

(−1)k+|U ′|+|U ′′|E[XV ∪U ′∪U ′′ ]E[XS∩I (V ∪U ′∪U ′′)].

Finally, observe that every nonempty U ⊆ S such that U ↪→ V can be partitioned into a
nonempty U ′ ⊆ S ∩ ∂(V ) and an U ′′ ⊆ S ∩ I (V ) such that U ′′ ↪→ (V ∪ U ′) in a unique
way. Indeed, one sets U ′ = U ∩ ∂(V ) and U ′′ = U \ U ′; this is the only such partition. Since
∅ ↪→ V by definition, then bounding each term in (25) that corresponds to a nonempty U ′
using (26) and rearranging the sum gives (23). �
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PROOF OF LEMMA 20. Fix � ∈ [N ] and assume k ∈ N and ε > 0 are such that ρk+1 ≤
1 − ε. Invoking Lemma 25 with V = {�} and S = [�− 1] twice, first with k ← k − 1 and then
with k ← k, to get both an upper and a lower bound on E[X� | X[�−1]], we obtain

(27)

∣∣∣∣E[X� | X[�−1] = 1] − ∑
U⊆[�−1],U↪→{�}

|U |≤k−1

q
(
U ∪ {�}, [� − 1])∣∣∣∣

≤
∣∣∣∣ ∑
U⊆[�−1],U↪→{�}

|U |=k

q
(
U ∪ {�}, [� − 1])∣∣∣∣.

Since the sets U ∪{�} with U ⊆ [�−1], U ↪→ {�}, and |U | = i −1 are precisely the elements
of Ci (�), we can rewrite the above inequality as

(28)
∣∣∣∣E[X� | X[�−1] = 1] − ∑

i∈[k]

∑
V ∈Ci (�)

q
(
V, [� − 1])∣∣∣∣ ≤ ∑

V ∈Ck+1(�)

∣∣q(
V, [� − 1])∣∣.

It follows from definition (19) and Harris’s inequality that

∣∣q(V,S)
∣∣ = E[XV ]

E[XS\I (V ) | XS∩I (V ) = 1]

= E[XV ]
1 − P[Xi = 1 for some i ∈ S \ I (V ) | XS∩I (V ) = 1] ≤ E[XV ]

1 − ρV

.

Since ρV ≤ ρk+1 ≤ 1 − ε for all V with |V | = k + 1, summing (28) over all � ∈ [N ] yields∣∣∣∣ ∑
�∈[N]

E[X� | X[�−1] = 1] − ∑
�∈[N]

∑
i∈[k]

∑
V ∈Ci (�)

q
(
V, [� − 1])∣∣∣∣ ≤ �k+1/ε,

which is precisely the assertion of the lemma. �

3.2. Proof of Lemma 23—Preliminaries. The goal of this subsection is to derive a re-
cursive formula for κV (W), stated in Lemma 30 below, which will be used in the proof of
Lemma 23.

DEFINITION 26. Suppose that ∅ �= V ⊆ W ⊆ [N ]. We define �V (W) and �↪→
V (W) as

follows:

1. �V (W) is the set of all partitions of W that contain V as a part;
2. �↪→

V (W) is the set of all partitions π ∈ �V (W) such that P ↪→ V for every part P ∈ π .

Since by now we have defined several different classes of partitions of a set W , it is a good
moment to pause and convince ourselves that

�↪→
V (W) ⊆ �V (W) ⊆ �C

V (W) ⊆ �(W).

As a first step towards the promised recursive formula, we give an alternative expression for
κV (W).

DEFINITION 27 (Degree of a part in a partition). For a partition π of a subset of [N ] and
any part P ∈ π , let dπ(P ) denote the number of parts P ′ ∈ π \ {P } such that G� contains an
edge between P ′ and P . We call dπ(P ) the degree of P in π .
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LEMMA 28. If ∅ �= V ⊆ W ⊆ [N ], then

κV (W) = ∑
π∈�V (W)

(−1)|π |−1χV (π)μπ,

where

χV (π) =
{

1 if |π | = 1,

dπ (V )
(|π | − 2

)! if |π | ≥ 2.

PROOF. Given a π ∈ �C
V (W), let P denote the part of π containing V . Define a map

f : �C
V (W) → �V (W) as follows. If P = V , then let f (π) = π . Otherwise, let f (π) be the

partition obtained from π by splitting P into V and P \ V . Clearly,

κV (W) = ∑
π∈�C

V (W)

(−1)|π |−1(|π | − 1
)!μπ

= ∑
π∈�V (W)

∑
π ′∈f −1(π)

(−1)|π ′|−1(∣∣π ′∣∣ − 1
)!μπ ′ .

Observe that every π ∈ �V (W) has exactly |π | − dπ(V ) preimages via f . One of them is
π itself and there are |π | − 1 − dπ(V ) additional partitions obtained from π by merging V

with some other part Q ∈ π such that G� contains no edges between V and Q. In particular,
there is one preimage of size |π | and there are |π | − 1 − dπ(V ) preimages of size |π | − 1.
Furthermore, note that μπ ′ = μπ for every π ′ ∈ f −1(π). Indeed, for every Q ∈ π with no
edges of G� between Q and V , we have

E[XV ] ·E[XQ] = E[XV XQ] = E[XV ∪Q].
It follows that

κV (W) = ∑
π∈�V (W)

(−1)|π |−1((|π | − 1
)! − (|π | − 1 − dπ(V )

) · (|π | − 2
)!)μπ

= ∑
π∈�V (W)

(−1)|π |−1χV (π)μπ,

as claimed. �

Our next lemma is the main result of this subsection and the essential combinatorial in-
gredient of the proof of Lemma 23. Stating it requires the following definition (illustrated in
Figure 3).

DEFINITION 29 (CutV (P )). Suppose that V ⊆ [N ] is nonempty and P ⊆ [N ] is disjoint
from V and satisfies P ↪→ V . Then we write CutV (P ) for the collection of all sets C ⊆ [N ]
satisfying ∂(V ) ∩ P ⊆ C ⊆ P and C ↪→ V .

FIG. 3. A set C in CutV (P ). Every element of CutV (P ), except for P itelf, is a cutset in G�(V ∪ P) that
disconnects V from some vertices in P .
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LEMMA 30. Suppose that ∅ �= V ⊆ W ⊆ [N ] and W ↪→ V . Then

(29) κV (W) = E[XV ] ∑
π∈�↪→

V (W)

(−1)|π |−1(|π | − 1
)! ∏

P∈π
P �=V

∑
C∈CutV (P )

κC(P ).

PROOF. Denote the right-hand side of (29) by rV (W). We need to show κV (W) =
rV (W). Let us first rewrite the inner sum in (29). To this end, fix some nonempty P ⊆ W \ V

such that P ↪→ V . By the definition of κC(P ) (see (20)),

(30)
∑

C∈CutV (P )

κC(P ) = ∑
C∈CutV (P )

∑
π∈�C

C(P )

(−1)|π |−1(|π | − 1
)!μπ.

We may write this double sum more compactly as follows. For brevity, let ∂P (V ) := ∂(V ) ∩
P . Denote by �̃V (P ) the set of all partitions π ∈ �(P ) such that some Q ∈ π contains all
neighbours of V in P , that is, such that ∂P (V ) ⊆ Q for some Q ∈ π . We claim that

(31)
∑

C∈CutV (P )

κC(P ) = ∑
π∈�̃V (P )

(−1)|π |−1(|π | − 1
)!μπ.

Indeed, this follows from (30) because, letting

Q(V ,P ) = {
(C,π) : C ∈ CutV (P ) and π ∈ �C

C(P )
}
,

the projection p2 : Q(V ,P ) � (C,π) �→ π ∈ �(P ) is a bijection between Q(V ,P ) and
�̃V (P ). This is because for every (C,π) ∈ Q(V ,P ), C is the union of those connected
components of G�(Q) that intersect ∂P (V ). Furthermore, observe that the right-hand side of
(31) is simply the joint cumulant of the set

PV = {
Xi : i ∈ P \ ∂P (V )

} ∪ {X∂P (V )},
which is obtained from P by replacing {Xi : i ∈ ∂P (V )} with the single variable X∂P (V ).
Therefore, it follows from (31) that

(32) rV (W) = E[XV ] ∑
π∈�↪→

V (W)

(−1)|π |−1(|π | − 1
)! ∏

P∈π
P �=V

κ(PV ).

Let �′
V (W) be the set of all partitions in �V (W) whose every part, except possibly V

itself, contains a neighbour of V . We claim that the product in the right-hand side of (32) is
zero for every π ∈ �′

V (W)\�↪→
V (W) and hence we may replace �↪→

V (W) with �′
V (W) in the

range of summation in (32). Indeed, if π ∈ �′
V (W) \ �↪→

V (W), then there is a P ∈ π \ {V }
such that ∂P (V ) �= ∅ but P �↪→ V . In particular, some connected component of G�[P ] is
disjoint from ∂P (V ) and hence κ(PV ) = 0. Expanding κ(PV ) again, we obtain

(33)

rV (W) = E[XV ] ∑
π∈�′

V (W)

(−1)|π |−1(|π | − 1
)!

× ∏
P∈π
P �=V

∑
π ′∈�̃V (P )

(−1)|π ′|−1(∣∣π ′∣∣ − 1
)!μπ ′ .

Let us write P to denote the set of all pairs (π,π∗) ∈ �′
V (W) × �V (W) obtained as

follows. Choose an arbitrary partition π ∈ �′
V (W) and refine every P ∈ π \ {V } by replacing

it by some πP ∈ �̃V (P ), so that ∂P (V ) is contained in a single part of πP ; finally, let π∗ be
the resulting partition of W .
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Suppose that (π,π∗) ∈ P . Enumerate the parts of π as V , P1, . . . ,Pt and suppose that π∗
was obtained from π by refining each Pj into ij + 1 parts, so that |π∗| = t + 1 + i1 +· · ·+ it .
Then, letting

f
(
π,π∗) = ft (i1, . . . , it ) := (−1)t t ! ∏

j∈[t]
(−1)ij ij ! = (−1)|π∗|−1t ! ∏

j∈[t]
ij !,

we may rewrite (33) as

(34) rV (W) = ∑
(π,π∗)∈P

f
(
π,π∗)

μπ∗ .

Fix some π∗ ∈ �V (W) and note that π∗ contains dπ∗(V ) parts other than V that intersect
∂(V ). Let us write s = |π∗|, t = dπ∗(V ), and π∗ = {V,P ∗

1 , . . . ,P ∗
s−1}, so that P ∗

1 , . . . ,P ∗
t

are the parts intersecting ∂(V ). Fix an arbitrary permutation σ of [s − 1] such that σ(1) ∈ [t].
Such a σ can be used to define a π such that (π,π∗) ∈ P in the following way. Consider the
sequence P ∗

σ = (P ∗
σ(1), . . . ,P

∗
σ(s−1)). For every i ∈ [t], let Pi be the union of P ∗

i and all the
P ∗

j , with j ∈ [s − 1] \ [t], for which P ∗
i is the right-most element among P ∗

1 , . . . ,P ∗
t that

is to the left of P ∗
j in P ∗

σ . (Since σ(1) ∈ [t], then each P ∗
j with j ∈ [s − 1] \ [t] has one of

P ∗
1 , . . . ,P ∗

t left of it.) A moments thought reveals that each partition π with (π,π∗) ∈ P is
obtained this way from exactly |f (π,π∗)| permutations σ . It follows that

rV (W)

= ∑
π∗∈�V (W)

(−1)|π∗|−1μπ∗
∑

π∈�′
V (W)

(π,π∗)∈P

∣∣f (
π,π∗)∣∣

= ∑
π∗∈�V (W)

(−1)|π∗|−1μπ∗ · ∣∣{σ ∈ Sym
(∣∣π∗∣∣ − 1

) : σ(1) ∈ {
1, . . . , dπ∗(V )

}}∣∣
= ∑

π∗∈�V (W)

(−1)|π∗|−1μπ∗ · χV

(
π∗)

,

where χV (π∗) is as defined in Lemma 28. By Lemma 28, we conclude that rV (W) = κV (W),
as required. �

3.3. Proof of Lemma 23. For V,S ⊆ [N ] and k ∈ N such that |V | ≤ k, we define

(35) κ̃
(k)
V (S) = (−1)|V |−1E[XV ] ∑

0≤i≤k−|V |

( ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

κ
(k−|V |)
U

(
S ∩ I (V )

))i

and

(36) q(k)(V ,S) = (−1)|V |−1E[XV ] ∑
0≤i≤k−|V |

( ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

q
(
U,S ∩ I (V )

))i

.

Our proof of Lemma 23 consists of three steps. First, in Lemma 31, we show that q(V,S) ≈
q(k)(V ,S). Second, in Lemma 32, we show that κ

(k)
V (S) ≈ κ̃

(k)
V (S). Finally, the fact that

q(k)(V ,S) and κ̃
(k)
V (S) satisfy similar recurrences (given the above approximate equalities)

allows us to prove that also q(V,S) ≈ κ
(k)
V (S). Lemma 23 then follows easily. The precise

definition of “≈” above will be expressed by the following quantities. For integers k and K

satisfying 1 ≤ k ≤ K , define

(37) �k(V ) = ∑
U↪→V|U∪V |=k

E[XU∪V ] and �k,K(V ) =
K∑

i=k

�i(V ),
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and

(38) δk,K(V ) = ∑
U↪→V

k≤|U∪V |≤K

E[XU∪V ]max
{
E[Xi] : i ∈ U ∪ V

}
.

LEMMA 31. Let ε > 0 and k ∈N be such that ρk ≤ 1 − ε. Then there exists K = K(k, ε)

such that for all V,S ⊆ [N ] with 1 ≤ |V | ≤ k,∣∣q(V,S) − q(k)(V ,S)
∣∣ ≤ K · (

δ1,K(V ) + �k+1,K(V )
)
.

PROOF. Fix V and S as in the statement of the lemma and set

ρ = P
[
Xi = 1 for some i ∈ S \ I (V ) | XS∩I (V ) = 1

]
.

Then, by definition,

(39) q(V,S) = (−1)|V |−1E[XV ]
E[XS\I (V ) | XS∩I (V ) = 1] = (−1)|V |−1E[XV ]

1 − ρ
.

Since, by Harris’s inequality and |V | ≤ k, we have 0 ≤ ρ ≤ ρV ≤ ρk ≤ 1 − ε, then (39) and
the identity (1 − ρ)−1 = 1 + ρ + · · · + ρk−|V | + ρk−|V |+1(1 − ρ)−1 yield

(40)
∣∣q(V,S) − (−1)|V |−1E[XV ] · (

1 + ρ + · · · + ρk−|V |)∣∣ ≤ ε−1E[XV ]ρk−|V |+1
V .

We now observe that

E[XV ]ρk−|V |+1
V ≤ E[XV ]

( ∑
i∈V ∪∂(V )

E[Xi]
)k−|V |+1

= E[XV ] ∑
i1,...,ik−|V |+1

k−|V |+1∏
j=1

E[Xij ]

and note that if i1, . . . , ik−|V |+1 are distinct elements of ∂(V ), then

E[XV ]
k−|V |+1∏

j=1

E[Xij ] ≤ E[XV ∪{i1,...,ik−|V |+1}]

by Harris’s inequality; if, on the other hand, either ij ∈ V for some j or some two ij are
equal, then Harris’s inequality and the fact that |E[Xi]| ≤ 1 for each i imply the stronger
bound

E[XV ]
k−|V |+1∏

j=1

E[Xij ]

≤ E[XV ∪{i1,...,ik−|V |+1}] · max
{
E[Xi] : i ∈ V ∪ {i1, . . . , ik−|V |+1}}.

In particular, the right-hand side of (40) is bounded from above by

ε−1 · (
k − |V | + 1

)! · �k+1(V ) + ε−1 · kk−|V |+1 · δ1,k(V ),

which yields

(41)

∣∣q(V,S) − (−1)|V |−1E[XV ] · (
1 + ρ + · · · + ρk−|V |)∣∣

≤ K1 · (
�k+1(V ) + δ1,k(V )

)
for some constant K1 that depends only on k and ε.
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We claim that there is a constant K2 = K2(k, ε) such that, for all 0 ≤ i ≤ k − |V |,

(42)

E[XV ] ·
∣∣∣∣ρi −

( ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

q
(
U,S ∩ I (V )

))i ∣∣∣∣
≤ K2 · (

δ1,K2(V ) + �k+1,K2(V )
)
.

Observe that (41) and (42) imply that∣∣q(V,S) − q(k)(V ,S)
∣∣ ≤ K · (

δ1,K(V ) + �k+1,K(V )
)

for some K = K(k, ε), giving the assertion of the lemma. It thus remains to prove (42).
We first consider the case i = 1. By the Bonferroni inequalities, for every positive j ,

(−1)j−1 · ρ ≤ (−1)j−1 · ∑
U ′⊆S\I (V )
1≤|U ′|≤j

(−1)|U ′|−1E[XU ′ | XS∩I (V ) = 1].

Applying Lemma 25 with k ← j − |U ′|, V ← U ′, and S ← S ∩ I (V ), we get that for each
U ′ ⊆ S \ I (V ) with 1 ≤ |U ′| ≤ j ,

(−1)j−|U ′|E[XU ′ | XS∩I (V ) = 1] ≤ ∑
U ′′⊆S∩I (V ),U ′′↪→U ′

|U ′′|≤j−|U ′|

(−1)j−1q
(
U ′ ∪ U ′′, S ∩ I (V )

)
.

Next, observe that any nonempty U ⊆ S with U ↪→ V of size at most j can be written
uniquely as the disjoint union of U ′ and U ′′, where U ′ ⊆ V ∪ ∂(V ) and U ′′ ⊆ I (V ) and
U ′′ ↪→ U ′. The previous two inequalities then imply that

(43) (−1)j−1 · ρ ≤ (−1)j−1 · ∑
U⊆S,U↪→V

1≤|U |≤j

q
(
U,S ∩ I (V )

)
.

Invoking (43) twice, first with j ← k − |V | and then with j ← k − |V | + 1, to get both an
upper and a lower bound on ρ, we obtain

(44)

∣∣∣∣ρ − ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

q
(
U,S ∩ I (V )

)∣∣∣∣ ≤
∣∣∣∣ ∑

U⊆S,U↪→V
|U |=k−|V |+1

q
(
U,S ∩ I (V )

)∣∣∣∣

≤ ∑
U⊆S,U↪→V

|U |=k−|V |+1

ε−1E[XU ],

where the last inequality uses the definition of q(U,S ∩ I (V )) and the assumption that ρk ≤
1 − ε; see the discussion below (39).

Finally, we show how to deduce (42) from (44). Let

y = ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

q
(
U,S ∩ I (V )

)
,

so that the left-hand side of (42) is E[XV ] · |ρi − yi |, and observe that, as in (44),

|y| ≤ z := ∑
U↪→V

1≤|U |≤k−|V |
ε−1E[XU ].

Fix an i ∈ {1, . . . , k − |V |}. Since |ρ| ≤ 1, then

∣∣ρi − yi
∣∣ ≤ |ρ − y| ·

i−1∑
j=0

∣∣ρjyi−1−j
∣∣ ≤ (1 + z)i−1 · |ρ − y|,
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which together with (44) implies that

E[XV ] · ∣∣ρi − yi
∣∣ ≤ (1 + z)i−1E[XV ] ∑

U↪→V|U |=k−|V |+1

ε−1E[XU ].

Note that for pairwise disjoint U1, . . . ,Uj ⊆ [N ], Harris’s inequality gives

j∏
�=1

E[XU�
] ≤ E[XU1∪···∪Uj

]

and if U1, . . . ,Uj ⊆ [N ] are not pairwise disjoint, then the stronger FKG lattice condition
(14) implies that

j∏
�=1

E[XU�
] ≤ E[XU1∪···∪Uj

] · max
{
E[Xi] : i ∈ U1 ∪ · · · ∪ Uj

}
.

In particular, using a similar reasoning as used for deriving the bound (41) from (40), we
obtain

(1 + z)i−1E[XV ] ∑
U↪→V|U |=k−|V |+1

ε−1E[XU ] ≤ K4 · (
δ1,ik(V ) + �k+1,ik+1(V )

)

for sufficiently large K4 = K4(k, ε). This shows (42) and hence the lemma. �

LEMMA 32. For every k ∈ N there exists some K = K(k) such that, for all V,S ⊆ [N ]
with 1 ≤ |V | ≤ k, we have∣∣κ(k)

V (S) − κ̃
(k)
V (S)

∣∣ ≤ K · (
δ1,K(V ) + �k+1,K(V )

)
.

PROOF. Fix k, S, and V as in the statement of the lemma and let

x = ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

κ
(k−|V |)
U

(
S ∩ I (V )

)
,

so that

(45) κ̃
(k)
V (S) = (−1)|V |−1E[XV ](1 + x + x2 + · · · + xk−|V |).

Using the definition (21), we may rewrite

(46) x = ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

∑
U⊆W⊆U∪(S∩I (V ))
W↪→U,|W |≤k−|V |

(−1)|W |−1κU(W).

Recalling from Definition 29 that

CutV (W) = {
U ⊆ W : U ↪→ V and ∂(V ) ∩ W ⊆ U

}
,

we may switch the order of summation in (46) to obtain

x = ∑
W⊆S,W↪→V
1≤|W |≤k−|V |

∑
U∈CutV (W)

(−1)|W |−1κU(W).

For the sake of brevity, write

f (W) = ∑
U∈CutV (W)

(−1)|W |−1κU(W).
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We may now rewrite (45) as

(47) κ̃
(k)
V (S) = (−1)|V |−1E[XV ]

k−|V |∑
i=0

∑
W1,...,Wi⊆S
W1,...,Wi↪→V

1≤|W1|,...,|Wi |≤k−|V |

f (W1) · · ·f (Wi).

Consider first the total contribution κ̃1 to the right-hand side of (47) coming from terms
corresponding to W1, . . . ,Wi ⊆ S \ V that are pairwise disjoint and whose union has size at
most k−|V |. Each such term may be regarded as a partition of the set W = V ∪W1 ∪· · ·∪Wi ,
which satisfies V ⊆ W ⊆ S and |W | ≤ k; this partition {V,W1, . . . ,Wi} belongs to �↪→

V (W).
Conversely, given a W with these properties, every partition π ∈ �↪→

V (W) corresponds to
exactly (|π | − 1)! such terms; this is the number of ways to order the elements of π \ {V } as
W1, . . . ,Wi . Therefore,

κ̃1 = (−1)|V |−1E[XV ] ∑
V ⊆W⊆V ∪S

W↪→V,|W |≤k

∑
π∈�↪→

V (W)

(|π | − 1
)! ∏

P∈π
P �=V

f (P ).

In particular, Lemma 30 gives

κ̃1 = (−1)|V |−1
∑

V ⊆W⊆V ∪S
W↪→V,|W |≤k

(−1)|W |−|V |κV (W) = κ
(k)
V (S).

Every term in the right-hand side of (47) corresponding to W1, . . . ,Wi that is not included in
κ̃1 either satisfies |V ∪W1 ∪· · ·∪Wi | > k or the sets V , W1, . . . ,Wi are not pairwise disjoint.
Let κ̃2 = κ̃

(k)
V (S)− κ̃1 denote the total contribution of these terms. Since for every W , Harris’s

inequality implies∣∣f (W)
∣∣ ≤ ∑

U⊆W

∣∣κU(W)
∣∣ ≤ ∑

π∈�(W)

|π |!μπ ≤ |W ||W |E[XW ],

there is a constant K1 that depends only on k such that

|κ̃2| ≤ K1E[XV ] ∑
W1,...,Wi

i∏
j=1

E[XWj
],

where the sum ranges over all i ≤ k − |V | and W1, . . . ,Wi ⊆ S, each of size at most k − |V |
and attaching to V , such that either |V ∪ W1 ∪ · · · ∪ Wi | > k or the sets V , W1, . . . ,Wi are
not pairwise disjoint. An argument analogous to the one given at the end of the proof of
Lemma 31, employing Harris’s inequality and the stronger FKG lattice condition (14), gives

|κ̃2| ≤ K · (
δ1,K(V ) + �k+1,K(V )

)
for some K that depends only on k. �

LEMMA 33. Let k ∈ N be such that ρk ≤ 1 − ε. Then there exists K = K(k, ε) such that
for all V,S ⊆ [N ] with 1 ≤ |V | ≤ k, we have∣∣q(V,S) − κ

(k)
V (S)

∣∣ ≤ K · (
δ1,K(V ) + �k+1,K(V )

)
.

PROOF. We prove the lemma by complete induction on k. To this end, let k ≥ 0 and
suppose that the statement holds for all k′ ∈ N with k′ < k. By the triangle inequality∣∣q(V,S) − κ

(k)
V (S)

∣∣ ≤ ∣∣q(V,S) − q(k)(V ,S)
∣∣

+ ∣∣q(k)(V ,S) − κ̃
(k)
V (S)

∣∣
+ ∣∣κ̃ (k)

V (S) − κ
(k)
V (S)

∣∣.
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Lemmas 31 and 32 imply that∣∣q(V,S) − q(k)(V ,S)
∣∣ + ∣∣κ̃ (k)

V (S) − κ
(k)
V (S)

∣∣ ≤ K1 · (
δ1,K1(V ) + �k+1,K1(V )

)
for some sufficiently large K1 = K1(k, ε) and thus it suffices to show that there is some
K2 = K2(k, ε) such that

(48)
∣∣q(k)(V ,S) − κ̃

(k)
V (S)

∣∣ ≤ K2 · (
δ1,K2(V ) + �k+1,K2(V )

)
.

To this end, observe first that since k − |V | < k, then the induction hypothesis states that
there is a constant K ′ = K ′(k, ε) such that

(49)
∣∣q(

U,S ∩ I (V )
) − κ

(k−|V |)
U

(
S ∩ I (V )

)∣∣ ≤ K ′ · (
δ1,K ′(U) + �k−|V |+1,K ′(U)

)
for all U such that 1 ≤ |U | ≤ k − |V |. Let

x = ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

κ
(k−|V |)
U

(
S ∩ I (V )

)

and, as in the proof of Lemma 31,

y = ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

q
(
U,S ∩ I (V )

)
.

Observe that

|y| ≤ z := ∑
U↪→V

1≤|U |≤k−|V |
ε−1E[XU ],

as in the proof of Lemma 31, and that (49) implies that

(50) |x − y| ≤ w := K ′ · ∑
U↪→V

1≤|U |≤k−|V |

(
δ1,K ′(U) + �k−|V |+1,K ′(U)

)
.

For any i ≥ 1, we have

∣∣xi − yi
∣∣ ≤ |x − y| ·

i−1∑
j=0

∣∣xjyi−1−j
∣∣ ≤ |x − y| · (|x| + |y|)i−1 ≤ w(2z + w)i−1.

It follows that

(51)
∣∣q(k)(V ,S) − κ̃

(k)
V (S)

∣∣ ≤ ∑
1≤i≤k−|V |

E[XV ] · w(2z + w)i−1.

Similarly as in the proofs of Lemmas 31 and 32, one sees that the FKG lattice condition
(14) implies that the right hand side of (51) is bounded from above by K2 · (δ1,K2(V ) +
�k+1,K2(V )), provided K2 = K2(k, ε) is sufficiently large, as claimed. �

PROOF OF LEMMA 23. It follows from Lemma 33 that there is K1 = K1(k, ε) such that

(52)

∣∣∣∣ ∑
�∈[N]

∑
i∈[k]

∑
V ∈Ci (�)

(
q
(
V, [� − 1]) − κ

(k)
V (S)

)∣∣∣∣
≤ ∑

�∈[N]

∑
i∈[k]

∑
V ∈Ci (�)

K1 · (
δ1,K1(V ) + �k+1,K1(V )

)
.

But if we choose K sufficiently large then the right-hand side is at most K · (δ1,K +�k+1,K),
as required. �
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3.4. Proof of Lemma 24. Fix an integer k and an � ∈ [N ]. Recalling (21), we rewrite the
�th term of the sum from the statement of the lemma as follows:∑

i∈[k]

∑
V ∈Ci (�)

κ
(k)
V

([� − 1]) = ∑
i∈[k]

∑
V ∈Ci (�)

∑
V ⊆W⊆V ∪[�−1]

W↪→V|W |≤k

(−1)|W |−1κV (W).

It follows from Definition 21 that if V is connected then W ↪→ V if and only if W is con-
nected. Therefore, changing the order of the last two sums in the right-hand side of the above
identity yields

(53)
∑
i∈[k]

∑
V ∈Ci (�)

κ
(k)
V

([� − 1]) = ∑
i∈[k]

∑
W∈Ci (�)

∑
V ∈CW

(−1)|W |−1κV (W),

where CW denotes the collection of all connected sets V ⊆ W satisfying maxV = maxW .
We claim that for each W ∈ Ci (�),

(54) κ(W) = ∑
V ∈CW

κV (W).

Observe first that establishing this claim completes the proof of the lemma. Indeed, substitut-
ing (54) into (53) and summing over all � gives∑

�∈[N]

∑
i∈[k]

∑
V ∈Ci (�)

κ
(k)
V

([� − 1]) = ∑
i∈[k]

∑
�∈[N]

∑
W∈Ci (�)

(−1)|W |−1κ(W)

= ∑
i∈[k]

(−1)i−1
∑

W∈Ci

κ(W) = ∑
i∈[k]

(−1)i−1κi.

Therefore, we only need to prove the claim. To this end, fix a W ∈ Ci (�). Recalling (15) and
(20), it clearly suffices to show that {�C

V (W) : V ∈ CW } is a partition of �(W). Obviously,
�C

V (W) ⊆ �(W) for each V ∈ CW . Conversely, given an arbitrary π ∈ �(W), let P ∈ π

be the part containing maxW and let V be the connected component of maxW in G�[P ].
Clearly, V ∈ CW and π ∈ �C

V (W). Moreover, the connected component of maxW in G�[P ]
is the only set V with this property, and so the sets �C

V (W) and �C
U(W) are disjoint for

distinct U,V ∈ CW .

4. Computations. The goal of this section is to carry out the necessary computations for
proving Corollaries 14, 15, and 17.

4.1. Corollaries 14 and 15. Assume that F = {F1, . . . ,Ft } is a collection of pair-
wise nonisomorphic r-graphs without isolated vertices and let the associated hypergraph
� = (�,X ) be defined as in Section 1.5. To prove Corollaries 14 and 15, we need to com-
pute the quantities κk for small values of k. This can be done using the following general
approach: We first enumerate all “isomorphism types” of clusters in Ck . Then we compute
the joint cumulant for each isomorphism type. Finally we multiply each value with the size
of the respective isomorphism class. This is made more precise as follows.

DEFINITION 34. An F -complex is a nonempty set of subgraphs of Kn, each of which
is isomorphic to a graph in F . An F -complex B is irreducible if it cannot be written as the
union of two F -complexes B1 and B2 where every graph in B1 is edge-disjoint from every
graph in B2. The set of all irreducible F -complexes of cardinality k is denoted by Ck(F). The
underlying graph GB of an F -complex B is the subgraph of Kn formed by taking the union
of (the edge sets of) the graphs in B .
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Note that there is a natural bijection φ between the sets V ⊆ [N ] of size k and the F -
complexes of size k: φ maps V = {i1, . . . , ik} to the F -complex B = {G1, . . . ,Gk}, where
Gj is the subgraph of Kn spanned by the edges in γij (recall that γij is a set of edges in Kn

and that we assume that none of the graphs in F have isolated vertices). Note also that φ|Ck

is a bijection between Ck and Ck(F). We can therefore write κ(B) for the joint cumulant of
{Xi : i ∈ φ−1(B)} without ambiguity, obtaining

κk = ∑
B∈Ck(F)

κ(B).

Using (7) we easily express κ(B) in terms of GB :

(55) κ(B) = ∑
π∈�(B)

(|π | − 1
)!(−1)|π |−1

∏
B ′∈π

p
eG

B′ .

DEFINITION 35. Let B1 and B2 be F -complexes. A map f : V (GB1) → V (GB2) is a
homomorphism from B1 to B2 if for every graph H ∈ B1, the graph f (H) (with vertex set
f (V (H)) and edge set {{f (u), f (v)} : {u, v} ∈ E(H)}) belongs to B2. If f is bijective and
both f and f −1 are homomorphisms, then f is an isomorphism. We denote by Aut(B) the
group of automorphisms of B , that is of isomorphisms from B to B .

It is easy to see that κ assigns equal values to isomorphic F -complexes. The following
simple lemma can then be used to compute the values κk . In the sequel, we will denote by ni

the falling factorial n(n − 1) · · · (n − i + 1).

LEMMA 36. Let Ck(F)/∼= be the set of isomorphism types of F -complexes in Ck(F).
Then

∑
B∈Ck(F)

κ(B) = ∑
[B]∈Ck(F)/∼=

κ(B) · n
vGB

|Aut(B)| .

PROOF. For each isomorphism type [B], there are n
vGB ways to place the vertices of

GB into Kn; this way, every element of Ck(F) isomorphic to B is counted once for every
automorphism of B . �

PROOF OF COROLLARY 14. Suppose that F = {K3,C4} and that p = o(n−4/5). Since
both K3 and C4 are 2-balanced and

min
{
m2(K3),m2(C4)

} = min{2,3/2} ≥ 5/4,

we can apply Corollary 13, which states that the probability that Gn,p is simultaneously K3-
free and C4-free is

exp
(−κ1 + κ2 − κ3 + O(�4) + o(1)

)
.

Figure 4 shows all seven nonisomorphic irreducible F -complexes of size at most two.
Using Lemma 36, the contribution to κk from a given F -complex B of size k is

κ(B) · n
vGB

|Aut(B)| .
For the complexes shown in Figure 4, we can easily calculate |Aut(B)| manually; going
through the figure from the top left to the bottom right, we obtain the values

6,8,4,4,4,2,2.



520 MOUSSET, NOEVER, PANAGIOTOU AND SAMOTIJ

FIG. 4. The irreducible {K3,C4}-complexes of size at most two. Copies of K3 are represented by solid triangles
and copies of C4 by hatched or dotted quadrilaterals.

Therefore,

κ1 = n3p3

6
+ n4p4

8

and, since p = o(n−4/5),

κ2 = n4(p5 − p6)

4
+ n6(p7 − p8)

4
+ n5(p6 − p8)

4

+ n5(p6 − p7)

2
+ n4(p5 − p7)

2

= n6p7

4
+ 3n5p6

4
+ o(1).

When calculating κ3, we first observe that the underlying graphs of the third F -complex
and the fifth F -complex in Figure 4 each contain a C4 that is not already part of the complex
and that the graph of the bottom right F -complex contains a triangle that is not a part of
the complex. Let κ ′

3 denote the contribution of the two F -complexes of size three that are
obtained from one of these three complexes of size two by adding the “extra” C4 or K3. Then

κ ′
3 = n4(p5 − 2p8 − p9 + 2p10)

4
+ n5(p6 − 3p10 + 2p12)

12
= n5p6

12
+ o(1).

On the other hand, the contribution of every other F -complex of to κ3 is at most in the order
of (p + np2 + n2p3) · κ2, because, except in the two cases mentioned above, the graph of a
complex of size three is obtained from the graph of a complex of size two by adding either
a new edge, or a new vertex and two new edges, or two new vertices and three new edges.
Using the assumption p = o(n−4/5), we get(

p + np2 + n2p3) · κ2 = O
(
n6p8 + n5p7 + n7p9 + n8p10) = o(1),

and therefore

κ3 = n5p6

12
+ o(1).

Since the F -complexes accounted for by κ ′
3 are “complete” (in the sense that their graphs do

not contain either a K3 or a C4 that is not already a part of the complex), a similar reasoning
shows that

�4 ≤ O
((

p + np2 + n2p3) · κ ′
3
) + O

((
1 + p + np2 + n2p3) · (

κ3 − κ ′
3
)) = o(1).

Since our assumption on p implies that max{κ1, κ2, κ3} = o(n), we can replace ni by ni in
the expressions for κ1, κ2, κ3, incurring only an additive error of o(1). Thus, the probability
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that Gn,p with p = o(n−4/5) is simultaneously triangle-free and C4-free is asymptotically

exp
(
−n3p3

6
− n4p4

8
+ n6p7

4
+ 2n5p6

3

)
,

as claimed. �

PROOF OF COROLLARY 15. Suppose that F = {K3} and p = o(n−7/11). Since K3 is
2-balanced and m2(K3) = 2 ≥ 11/7, we can apply Corollary 13, which tells us that the prob-
ability that Gn,p is triangle-free is

exp
(−κ1 + κ2 − κ3 + κ4 + O(�5) + o(1)

)
.

In Figure 5, we see representations of all isomorphism types of irreducible F -complexes
of size up to four. Generating a similar list of complexes of size five would most likely require
the help of a computer.

By Lemma 36, the contribution to κk from the isomorphism type of an F -complex B of
size k is

κ(B) · n
vGB

|Aut(B)| .

For the complexes shown in Figure 5, it is not too difficult to calculate |Aut(B)| by hand.
In fact, since the automorphism group of K3 comprises all 3! permutations of V (K3), au-
tomorphisms of {K3}-complexes are simply automorphisms of the 3-uniform hypergraphs
involved.2 For example, the leftmost F -complex in the second row has exactly two automor-
phisms: the trivial one, and the unique automorphism exchanging the vertices belonging to

FIG. 5. The irreducible {K3}-complexes of size at most four. The four complexes in the bottom row are negligible
when p = o(n−7/11).

2But for general F , it is wrong to think of an F -complex isomorphism as a hypergraph isomorphism.
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exactly one triangle. Under our assumptions on p, we have κk = �k + o(1) for k ∈ {3,4}.
This is the case because |κk − �k| = O(p�k) and

p�3 ≤ O
(
n5p8 + n4p7) = o(1) and p�4 ≤ p · O(

1 + p + p2n
) · �3 = o(1),

as can be seen by looking at Figure 5.
Now we just work through the figure row by row (from the top left to the bottom right)

and in this order, we compute (using the first row)

κ1 = n3p3

6
,

κ2 = n4(p5 − p6)

4
,

κ3 = �3 + o(1) = n5p7

2
+ n5p7

12
+ n4p6

6
+ o(1),

and (using the other rows)

κ4 = �4 + o(1)

= n6p9

2
+ n6p9

2
+ n6p9

6
+ n6p9

2
+ n6p9

48
+ n4p6

24
+ O

(
n5p8) + o(1).

The term O(n5p8) represents the contribution of the four complexes in the bottom row of
Figure 5, which is o(1), as p = o(n−7/11). Finally, we have

�5 = O
(
p�4 + np2�4 + n5p8 + n5p9)

= O
(
n4p7 + n5p8 + n6p10 + n7p11) = o(1),

since the graph of an F -complex of size five must be obtained by adding either a new edge or
a new vertex and two new edges to one of the graphs in Figure 5, or else it must be isomorphic
to one of the first three graphs in the bottom row of Figure 5 (as the graphs of the remaining
complexes of size four contain only triangles that are already in the complex).

Finally, κ1 = n3p3/6 = (n3 −3n2)p3/6+o(1) and, since max{κ2, κ3, κ4} = o(n), we may
replace the falling factorials ni in the remaining expressions by ni . Adding up the terms in
−κ1 + κ2 − κ3 + κ4, we obtain that the probability that Gn,p with p = o(n−7/11) is triangle-
free is asymptotically

exp
(
−n3p3

6
+ n4p5

4
− 7n5p7

12
+ n2p3

2
− 3n4p6

8
+ 27n6p9

16

)
,

as claimed. �

4.2. Corollary 17. It only remains to prove Corollary 17.

PROOF OF COROLLARY 17. Let � be the hypergraph of r-APs in [n], as defined in
Section 1.6, and assume that p = o(n−4/7). Then by Corollary 16 with r = 3 and k = 2,

P[X = 0] = exp
(−κ1 + κ2 + O(�3) + o(1)

)
.

It remains to calculate κ1, κ2, and �3. For i ∈ [n], the number of 3-APs containing i is

f (i) = n

2
+ min {i, n − i} + O(1),
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where min {i, n − i} counts the 3-APs that have i as their midpoint, and n/2 counts the others.
Thus, the total number of 3-APs in [n] is

1

3

n∑
i=1

f (i) = n2

4
+ O(n),

and therefore (using np3 = o(1))

κ1 = n2p3

4
+ o(1).

If {i, j} is an edge in the dependency graph, then |γi ∩γj | is either 1 or 2. The number of pairs

γi , γj intersecting in two elements is at most
(n
2

)(3
2

)2
, so the contribution of these pairs to κ2

is O(n2p4), which is o(1) by our assumption on p. The number of pairs {γi, γj } with i �= j

and |γi ∩ γj | ≥ 1 is precisely
∑n

i=1
(f (i)

2

)
and hence the number M of pairs with |γi ∩ γj | = 1

satisfies

M =
n∑

i=1

(
f (i)

2

)
+ O

(
n2) = 1

2

n∑
i=1

f (i)2 + O
(
n2)

.

Since

n∑
i=1

f (i)2 =
n∑

i=1

(
n/2 + min {i, n − i})2 + O

(
n2) = 2

�n/2�∑
i=1

(n/2 + i)2 + O
(
n2)

= 2
(

n3

3
− (n/2)3

3

)
+ O

(
n2) = 7n3

12
+ O

(
n2)

and n2p4 = o(1), we have

κ2 = M
(
p5 − p6) + O

(
n2(

p4 − p6)) = 7n3p5

24
+ o(1).

Lastly, we claim that �3 = O(n4p7) = o(1). Since any two distinct numbers are contained in
at most three 3-APs, we have |C3| = O(n4). Moreover, let C∗

3 be the family of all {i, j, k} ∈ C3

such that |γi ∪ γj ∪ γk| < 7. A simple case analysis shows that

∑
V ∈C∗

3

�
({Xi : i ∈ V }) = O

(
n2p5 + n3p6) = o(1).

On the other hand, �({Xi : i ∈ V }) = p7 for every V ∈ C3 \ C∗
3 . Thus,

�3 ≤ |C3|p7 + ∑
V ∈C∗

3

�
({Xi : i ∈ V }) = O

(
n4p7 + n2p4 + n3p6) = o(1)

and we conclude that the probability that [n]p is 3-AP-free is asymptotically

exp
(
−n2p3

4
+ 7n3p5

24

)
,

as claimed. �
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[14] JANSON, S., ŁUCZAK, T. and RUCIŃSKI, A. (1990). An exponential bound for the probability of nonexis-
tence of a specified subgraph in a random graph. In Random Graphs ’87 (Poznań, 1987) 73–87. Wiley,
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