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We answer a question of Benjamini and Schramm by proving that un-
der reasonable conditions, quotienting a graph strictly increases the value
of its percolation critical parameter pc. More precisely, let G = (V,E) be
a quasi-transitive graph with pc(G) < 1, and let G be a nontrivial group that
acts freely on V by graph automorphisms. Assume that H := G/G is quasi-
transitive. Then one has pc(G) < pc(H).

We provide results beyond this setting: we treat the case of general cover-
ing maps and provide a similar result for the uniqueness parameter pu, under
an additional assumption of boundedness of the fibres. The proof makes use
of a coupling built by lifting the exploration of the cluster, and an exploratory
counterpart of Aizenman–Grimmett’s essential enhancements.

Bernoulli percolation is a simple model for problems of propagation in porous
media that was introduced in 1957 by Broadbent and Hammersely [4]: given a
graph G and a parameter p ∈ [0,1], erase each edge independently with probabil-
ity 1 −p. Studying the connected components of this random graph (which are re-
ferred to as clusters) has been since then an active field of research; see the books
[6, 13]. A prominent quantity in this theory is the so-called critical parameter
pc(G), which is characterised by the following dichotomy: for every p < pc(G),
there is almost surely no infinite cluster, while for every p > pc(G), there is almost
surely at least one infinite cluster.

Originally, the main focus was on the Euclidean lattice Z
d . In 1996, Benjamini

and Schramm initiated the systematic study of Bernoulli percolation on more gen-
eral graphs, namely quasi-transitive graphs [3]. A graph is quasi-transitive (resp.,
transitive) if the action of its automorphism group on its vertices yields finitely
many orbits (resp., a single orbit). Intuitively, a graph is quasi-transitive if it has
finitely many types of vertices, and transitive if all the vertices look the same.
The paper [3] contains, as its title suggests, many questions and a few answers:
in their Theorem 1 and Question 1, they investigate the monotonicity of pc under
quotients. Their Question 1 is precisely the topic of the present paper. It goes as
follows.
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Setting of [3]. Let G = (V ,E) be a locally finite connected graph. Let G be a
group acting on V by graph automorphisms. A vertex of the quotient graph G/G

is an orbit of G� V , and two distinct orbits are connected by an edge if and only
if there is an edge of G intersecting both orbits.

Theorem 1 of [3] asserts that pc(G) ≤ pc(G/G). It is proved by lifting the ex-
ploration of a spanning tree of the cluster of the origin from G/G to G. They then
ask the following natural question. Recall that a group action G � X is free if the
only element of G that has a fixed point is the identity element:

∀g ∈ G\{1},∀x ∈ X, gx �= x.

The main result of the present paper is the following theorem, which gives a posi-
tive answer to Question 1 from [3].

THEOREM 0.1. Let G be a nontrivial group acting on a graph G by graph
automorphisms. Assume that pc(G) < 1, that G acts freely on V (G), and that both
G and H := G/G are quasi-transitive. Then one has pc(G) < pc(H).

EXAMPLE. Let G be a group and S be a finite generating subset of G. The
Cayley graph G associated with (G,S) has vertex-set G, and two distinct elements
g and h of G are connected by an edge if and only if g−1h ∈ S±1. Let N be a
normal subgroup of G, and let it act on G by left multiplication: for every (n, g) ∈
N × G, one sets n · g := ng. Then N acts freely and by graph automorphisms on
G = V (G). Besides, G and G/N � Cayley(G/N,S) are transitive (the set S stands
for the reduction of S modulo N ).

REMARK. By using the techniques of [15], one can deduce from Theorem 0.1
and [10], exercise page 4, that when G ranges over Cayley graphs of 3-solvable
groups, pc(G) takes uncountably many values. Actually, the set of such values
contains a subset homeomorphic to {0,1}N. This is optimal in the following sense:
there are only countably many 2-solvable finitely generated groups (see Corol-
lary 3 in [9]), hence only countably many Cayley graphs of such groups. The
same result without the solvability condition has been obtained previous to [15]
by Kozma [12], by working with graphs of the form G � G.

We also address in Theorem 0.2 below a similar question for the uniqueness
parameter pu. Recall that given a quasi-transitive graph G, the number of infinite
connected components for Bernoulli percolation of parameter p takes an almost
sure value NG(p) ∈ {0,1,∞}, and that the following monotonicity property holds:
∀p < q , NG(p) = 1 =⇒ NG(q) = 1; see [17]. One thus defines pu(G) := inf{p ∈
[0,1] : NG(p) = 1}.

pc pu0 1
NG = 0 NG = ∞ NG = 1
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THEOREM 0.2. Let G be a nontrivial finite group acting on a graph G by
graph automorphisms. Assume that pu(G) < 1, that G acts freely on V (G) and
that both G and H := G/G are quasi-transitive. Then one has pu(G) < pu(H).

In addition to Theorems 0.1 and 0.2, we also provide similar results for the
case of general covering maps (see Section 1 for definition and statements). In
particular, one does not need quasi-transitivity in order to prove strict inequalities
for pc; see Theorem 1.1.

In our proofs, we use an exploratory version of Aizenman–Grimmett’s essential
enhancements [1], and build a coupling between p-percolation on G and enhanced
percolation on H by lifting the exploration of the cluster of the origin. The part of
our work devoted to essential enhancements (Section 2.2) follows the Aizenman–
Grimmett strategy, thus making crucial use of certain differential inequalities; see
also [16]. Our coupling (Section 2.1) improves on that used in [3].

Let us mention that a theorem quite similar to our Theorem 0.1 has already
been obtained for the connective constant for the self-avoiding walk instead of pc;
see Theorem 3.8 in [7]. However, we would like to stress that our techniques are
completely different from those of [7].

Structure of the paper. Section 1 provides the relevant definitions and the state-
ments of two general theorems, namely Theorems 1.1 and 1.4. Theorem 1.1 is
proved in Section 2 and Theorem 1.4 is established in Section 3. Section 4 ex-
plains why Theorems 1.1 and 1.4 imply Theorems 0.1 and 0.2 (as well as Corol-
laries 1.2 and 1.5). Finally, Section 5 discusses the hypotheses of our results and
raises several questions.

1. The case of general covering maps. To avoid any ambiguity, let us review
the relevant vocabulary.

Convention. Graphs are taken to be nonempty, locally finite (every vertex has
finitely many neighbours) and connected. Subgraphs (e.g., percolation configura-
tions) may not be connected. Unless otherwise stated, our graphs are taken to be
simple (no multiple edges, no self-loops, edges are unoriented). A graph G may
be written in the form (V ,E), where V = V (G) denotes its set of vertices and
E = E(G) its set of edges. An edge is a subset of V with precisely two elements.
The degree of a vertex is its number of neighbours. Graphs are endowed with
their respective graph distance, denoted by d . Finally, percolation is taken to mean
Bernoulli bond percolation, but our proofs can be adapted to Bernoulli site perco-
lation.

In Theorem 0.1, the graphs G and H are related via the quotient map π : x 	→
Gx. This map is a weak covering map, meaning that it is 1-Lipschitz for the graph
distance and that it has the weak lifting property: for every x ∈ V (G) and every
neighbour u of π(x), there is a neighbour of x that is mapped to u. This fact does
not use the freeness of the action of G or quasi-transitivity.
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Weak covering maps are by definition able to lift edges, but it turns out they can
also lift trees, meaning that for every subtree of the target space and every vertex
in the preimage of the tree, there is a lift of the tree that contains this vertex. Recall
that given a subtree1 T of H, a lift of T is a subtree T ′ of G such that π induces
a graph isomorphism from T ′ to T , that is, it induces well-defined bijections from
V (T ′) to V (T ) and from E(T ′) to E(T ). Lifting trees enables us to lift paths: as
a consequence, if π : V (G) → V (H) is a weak covering map, then π maps the ball
Br(x) surjectively onto the ball Br(π(x)) for any x ∈ V (G) and r ≥ 0.

The map π : x 	→ Gx satisfies a second property, namely disjoint tree-lifting: if
T is a subtree of H and if x and y are distinct vertices of G such that π(x) = π(y)

belongs to V (T ), then one can find two vertex-disjoint lifts of T such that one of
them contains x and the other y. This fact uses the freeness of G, and is established
in Lemma 4.1.

Finally, the map π has uniformly nontrivial fibres: there is some R such that for
every x ∈ V (G), there is some y ∈ V (G) satisfying π(x) = π(y) and 0 < d(x, y) ≤
R; see Lemma 4.2.

It turns out that these three properties of π suffice to prove strict inequality, so
that there is actually no need for group actions and quasi-transitivity.

THEOREM 1.1. Let G and H be graphs of bounded degree. Assume that there
is a weak covering map π : V (G) → V (H) with uniformly nontrivial fibres and the
disjoint tree-lifting property. If pc(G) < 1, then one has pc(G) < pc(H).

Theorem 0.1 then follows from Theorem 1.1 and Lemmas 4.1 and 4.2. Theo-
rem 1.1 yields a second corollary. Say that a map π : V (G) → V (H) is a strong
covering map if it is 1-Lipschitz for the graph distance and has the strong lifting
property: for every x ∈ V (G), for every neighbour u of π(x), there is a unique
neighbour of x that maps to u. Recall that for many authors, the definition of a
“covering map” is taken to be even stricter: a classical covering map is a graph
homomorphism with the strong lifting property. By Theorem 1.1 and Lemma 4.3,
the following result holds.

COROLLARY 1.2. Let G and H be graphs of bounded degree. Assume that
there is a strong covering map π : V (G) → V (H) with uniformly nontrivial fibres.
If pc(G) < 1, then one has pc(G) < pc(H).

We also study the monotonicity question for pu. This question was already
investigated in the following setting: a particular kind of weak covering map
is given by taking two graphs G and H and considering the natural projection
π : V (G ×H) → V (G). Theorem 6.12 in [14] implies that if G and H are unimod-
ular transitive graphs, then pu(G ×H) ≤ pu(G). If H has at least two vertices and

1That is, a tree with V (T ) ⊂ V (H) and E(T ) ⊂ E(H).
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pu(G) < 1, one can deduce that pu(G × H) ≤ pu(G × {0,1}) < pu(G). The first
inequality follows from Theorem 6.12 of [14] while the second one can be proved
by hand or by using our Theorem 0.2.

In this paper, we work in a different setting, namely weak covering maps with
bounded fibres. Say that a weak covering map π : V (G) → V (H) has bounded
fibres if there is some K such that

∀x, y ∈ V (G), π(x) = π(y) =⇒ d(x, y) ≤ K.

The following two theorems are, respectively, the pu counterparts of Theorem 1
from [3] and Theorem 1.1 above.

THEOREM 1.3. Let G and H be quasi-transitive graphs. Assume that there is
a weak covering map π : V (G) → V (H) with bounded fibres.

Then one has pu(G) ≤ pu(H).

THEOREM 1.4. Let G and H be quasi-transitive graphs. Assume that there is
a noninjective weak covering map π : V (G) → V (H) with bounded fibres and the
disjoint tree-lifting property. If pu(G) < 1, then one has pu(G) < pu(H).

Theorem 0.2 follows directly from Theorem 1.4 and Lemmas 4.1, 4.2 and 4.4.
The next corollary follows from Theorem 1.4 and Lemma 4.3.

COROLLARY 1.5. Let G and H be quasi-transitive graphs. Assume that there
is a noninjective strong covering map π : V (G) → V (H) with bounded fibres. If
pu(G) < 1, then one has pu(G) < pu(H).

Let us mention that our proofs can be made explicit in that they actually
yield quantitative (but poor) lower bounds on the differences pc(H) − pc(G) and
pu(H) − pu(G).

2. Proof of Theorem 1.1. Let G, H and π be as in Theorem 1.1. Let r be a
positive integer. Pick a root o in H, and some o′ ∈ π−1({o}).

Notation. Given a graph (V ,E), the ball of centre x and radius r is Br(x) :=
{y ∈ V : d(x, y) ≤ r}. It is considered as a set of vertices, but it may also be con-
sidered as a graph—with the structure the ambient graph induces on it. For r ∈ N,
the sphere of centre x and radius r is Sr(x) := {y ∈ V : d(x, y) = r}. We also set
S

r+ 1
2
(x) := {e ∈ E : e ∩ Sr(x) �= ∅ and e ∩ Sr+1(x) �= ∅}.

We are going to construct a random subset C0 of V (H) which will be a “strict
enhancement” of the cluster of o in a p-percolation model on H. Given a configu-
ration (ω,α) ∈ {0,1}E(H) × {0,1}V (H), we define inductively a sequence (Cn)n≥0
of subsets of V (H) as follows. We sometimes identify ω with the subset of edges
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{e : ωe = 1} or the subgraph of H associated with it. Set C0 := {o}. For n ≥ 0, let
C2n+1 be the union of the ω-clusters of the vertices of C2n. Then let C2n+2 be the
union of C2n+1 and the vertices v such that there is some u ∈ C2n+1 satisfying the
following conditions:

1. d(u, v) = r + 1,
2. ωe = 1 for all edges e in Br(u),
3. αu = 1.

The sequence of sets (Cn) is nondecreasing, and we define Co = Co(ω,α) :=⋃
n Cn. Given p, s ∈ [0,1], the distribution of the random variable Co(ω,α) un-

der the probability measure Pp,s := Ber(p)⊗E(H) ⊗ Ber(s)⊗V (H) is denoted by
Cp,s
H (o). In a similar way, we can define CA = CA(ω,α)—and its distribution un-

der Pp,s , denoted by Cp,s
H (A)—by considering the same process but initialising it

with C0 = A. We also set Cp
G (A) to be the distribution of the cluster of A in bond

percolation of parameter p on G.

REMARK. Note that Co(ω,α) does not coincide with the cluster of o for the
following model: declare an edge e to be open if “e is ω-open or there is a vertex
u such that e ∈ S

r+ 1
2
(u), all the edges in Br(u) are ω-open and αu = 1.” This

would be an instance of the classical enhancement introduced by Aizenman and
Grimmett; see [1]. Indeed, the model we consider here is an exploratory version
of their model. For example, in our model the assertion v ∈ Cu(ω,α) does not
necessarily imply u ∈ Cv(ω,α). Also, our model is stochastically dominated by
the classical one.

We will prove the following two propositions. The proof of Proposition 2.1 pro-
ceeds by lifting some exploration process from H to G: in that, it is similar to
the proof of Theorem 1 of [3]. The proof of Proposition 2.2 uses an exploratory
variation of the techniques of Aizenman and Grimmett [1]. Even though essential
enhancements are delicate in general [2], it turns out that our particular enhance-
ment can be handled for general graphs, even for site percolation.

PROPOSITION 2.1. Take G, H and π to satisfy the hypotheses of Theorem 1.1
(but not necessarily pc(G) < 1). Then there is a choice of r ≥ 1 such that the
following holds: for every ε > 0, there is some s ∈ (0,1) such that for every p ∈
[ε,1], Cp,s

H (o) is stochastically dominated2 by π(Cp
G (o′)).

PROPOSITION 2.2. Let H be a graph of bounded degree such that pc(H) < 1.
Then, for any choice of r ≥ 1, the following holds: for every s ∈ (0,1], there exists
ps < pc(H) such that for every p ∈ [ps,1], the cluster Cp,s

H (o) is infinite with
positive probability.

2There is a coupling such that the (H,p, s)-cluster is a subset of the π -image of the (G,p)-cluster.
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Assuming these propositions, let us establish Theorem 1.1.

PROOF OF THEOREM 1.1. First, notice that if pc(H) = 1, then the conclu-
sion holds trivially. We thus assume that pc(H) < 1. We pick r so that the con-
clusion of Proposition 2.1 holds. Since boundedness of the degree of H implies
that pc(H) > 0, we can pick some ε in (0,pc(H)). By Proposition 2.1, we can
pick s ∈ (0,1) such that for every p ∈ [ε,1], Cp,s

H (o) is stochastically dominated
by π(Cp

G (o′)). By Proposition 2.2, there is some ps < pc(H) such that for every
p ∈ [ps,1], the cluster Cp,s

H (o) is infinite with positive probability. Fix such a ps ,
and set p := max(ps, ε) < pc(H). By definition of ps , the cluster Cp,s

H (o) is infi-
nite with positive probability. As p ≥ ε, the definition of s implies that Cp,s

H (o) is
stochastically dominated by π(Cp

G (o′)). As a result, π(Cp
G (o′)) is infinite with pos-

itive probability. In particular, Cp
G (o′) is infinite with positive probability, so that

pc(G) ≤ p < pc(H). �

2.1. Proof of Proposition 2.1. The choice of a suitable value of r is given by
the following lemma.

LEMMA 2.3. There is a choice of r ≥ 1 such that for every x ∈ V (G), the
set Z = Z(x, r) defined as the connected component3 of x in π−1(Br(π(x))) ∩
B3r (x) satisfies that for any u ∈ Sr+1(π(x)), the fibre π−1({u}) contains at least
two vertices adjacent to Z.

PROOF. Let R be given by the fact that π has uniformly nontrivial fibres and
set r := �R

2 �. Let x be any vertex of G. Take some y ∈ V (G) such that π(x) = π(y)

and 0 < d(x, y) ≤ R. Let T be a spanning tree of Br+1(π(x)) obtained by adding
first the vertices at distance 1, then at distance 2, etc. As π has the disjoint tree-
lifting property, one can pick two vertex-disjoint lifts Tx and Ty of T such that
x ∈ V (Tx) and y ∈ V (Ty).

Let γ be a geodesic path from x to y, thus staying inside π−1(Br(π(x))) as
R ≤ 2r . The set Z′ consisting in the union of the span of γ and (V (Tx)∪V (Ty))∩
π−1(Br(π(x))) is a connected subset of Z(x, r): its connectedness results from the
choice of the spanning tree T . It thus suffices to prove that for any u ∈ Sr+1(π(x)),
the fibre π−1({u}) contains at least two vertices adjacent to Z′. But this is the case
as every such u admits a lift in Tx and another one in Ty . �

Take r to satisfy the conclusion of Lemma 2.3. Let ε > 0. Set M and s to be so
that the following two conditions hold:

∀e = {x, y} ∈ E(H), M ≥ ∣∣Br(x) ∪ Br(y)
∣∣,

∀x ∈ V (G), s ≤ (
1 − (1 − ε)1/M )|E(B3r+1(x))|

.

3Here, π−1(Br (π(x))) ∩ B3r (x) is seen as endowed with the graph structure induced by G.
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For instance, one may take M := Dr+2 and s := (1 − (1 − ε)1/M)D
3r+2

, where D

stands for the maximal degree of a vertex of G. Let p ∈ [ε,1].
We define the multigraph Ĝ as follows: the vertex-set is V (G), the edge-set is

E(G) × {1, . . . ,M} and ({x, y}, k) is interpreted as an edge connecting x and y.
The multigraph Ĥ is defined in the same way, with H instead of G. The purpose of
this multigraph is to allow multiple use of each edge for a bounded number of “s-
bonus.” They will play no role as far as p-exploration is concerned: concretely, for
“p-exploration,” each edge will be considered together with all its parallel copies.

Let ω be a Bernoulli percolation of parameter p̂ := 1 − (1 − p)1/M on Ĥ, so
that p̂-percolation on Ĥ corresponds to p-percolation on H. Let ω′ be a Bernoulli
percolation of parameter p̂ on Ĝ that is independent of ω. Choose an injection from
E(H) to N, so that E(H) is now endowed with a well-ordering; do the same with
E(G), V (G) and V (H).

We now define algorithmically an exploration process. This dynamical process
will construct edge after edge a Bernoulli percolation η of parameter p̂ on Ĝ and an
α with distribution Ber(s)⊗V (H). The random variables η, α and ω will be coupled
in a suitable way, and α will be independent of ω.

We are also going to build two random sets, namely C∞ ⊂ V (H) and C′∞ ⊂
V (G). The set C∞ will have the same distribution as Cp,s

H (o), while C′∞ will be
stochastically dominated by Cp

G (o′). The set C∞ (resp., C′∞) will be constructed
step by step, as a nondecreasing union

⋃
	 C	 (resp.,

⋃
	 C	). Likewise, C	 will be

built as
⋃

n C	,n and C′
	 as

⋃
n C′

	,n. The set C	,n (resp., C′
	,n) thus stands for the

“currently explored portion of C∞ (resp., C′∞).”

Structure of the process. In the exploration, edges in Ĝ may get explored in two
different ways, called p-explored and s-explored. Edges in H may get p-explored,
and vertices in H may get s-explored. No vertex or edge will get explored more
than once. In particular, no edge of Ĝ will get p- and s-explored.

For every 	 > 0, during Step 	, we will define inductively a sequence (C	,n)n
of subsets of V (H) and a sequence (C′

	,n)n of subsets of V (G). At the end of each
iteration of the process, it will be the case that the following conditions hold:

(A) If an edge e in H is p-explored, then there is a lift e′ of e in G such that
the set of the p-explored lifts of e is precisely {e′} × {1, . . . ,M}.

(B) If an edge e in E(H) is p-unexplored, then all of its lifts are unexplored.
(C) Every element of C′

	,n is connected to o′ by an η-open path.
(D) For every edge e in H and each lift e′ of e in G, the number of s-explored

edges of the form (e′, k) is at most the number of s-explored vertices u in H at
distance at most r from some endpoint of e.

(E) The map π induces a well-defined surjection from C′
	,n to C	,n.

Step 0. Set C0 = {o} and C′
0 = {o′}. Initially, nothing is considered to be p- or

s-explored.
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Step 2K + 1. Set C2K+1,0 := C2K and C′
2K+1,0 := C′

2K .
While there is an unexplored edge that intersects C2K+1,n in H, do the following

(otherwise finish this step):

1. take e = {u, v} to be the smallest such edge, with u ∈ C2K+1,n say,
2. pick e′ = {x, y} some lift of e with x ∈ π−1({u}) ∩ C′

2K+1,n,
3. declare e and all (e′, k)’s to be p-explored (they were unexplored before

because of Conditions (A) and (B)),
4. for every k ≤ M , define η(e′,k) := ω(e,k),
5. set (C2K+1,n+1,C

′
2K+1,n+1) := (C2K+1,n,C

′
2K+1,n) if all the (e, k)’s are

ω-closed; else, set (C2K+1,n+1,C
′
2K+1,n+1) := (C2K+1,n ∪ {v},C′

2K+1,n ∪ {y}).
When this step is finished, which occurs after finitely or countably many itera-

tions, set C2K+1 := ⋃
n C2K+1,n and C′

2K+1 := ⋃
n C′

2K+1,n.

Step 2K + 2. Set C2K+2,0 := C2K+1 and C′
2K+2,0 := C′

2K+1.
Say that an r-ball is “fully open” if for each H-edge lying inside it, at least one

of its copies in Ĥ is open. While there is at least one s-unexplored vertex in C2K+1
whose r-ball is “fully open” in ω, do the following (otherwise finish this step):

1. Take u to be the smallest such vertex.
2. Pick some x ∈ C′

2K+1 ∩ π−1({u}) �= ∅.
3. This paragraph is not an algorithmic substep, but gathers a few relevant

observations. Call an edge in G p-explored if one (hence every by (A)) of its copies
in Ĝ is p-explored. Call a p-explored edge of G open if at least one of its copies is
η-open. Notice that by construction and as the r-ball of u is “fully open” in ω, all
the p-explored edges of G that lie inside π−1(Br(u)) are open. Also note that for
each edge lying in Z(x, r), Condition (D) and the value of M guarantee that at
least one of its copies in Ĝ has not been s-explored. As a result, for every edge in
Z(x, r), either all its copies have a well-defined η-status and one of them is open,
or at least one of these copies has a still undefined η-status. This is what makes
Substep 4 possible.

4. For each p-unexplored edge e′ in Z(x, r), take its s-unexplored copy
(e′, k) in Ĝ of smallest label k, set η(e′,k) := ω′

(e′,k), and switch its status to s-
explored.

5. If all these newly s-explored edges are open (so that Z is “fully η-open”),
then perform this substep. By (A) and the definition of r , for every H-edge
e ∈ S

r+ 1
2
(u), there is at least one lift e′ of e that is adjacent to Z(x, r) and p-

unexplored: pick the smallest one. By (D) and the value of M , one of its copies
(e′, k) is s-unexplored: pick that with minimal k =: ke. Declare all these edges to
be s-explored and set η(e′,ke) := ω′

(e′,ke)
. If all these (e′, ke)’s are ω′-open, then say

that this substep is successful.
6. Notice that conditionally on everything that happened strictly before the

current Substep 4, the event “Substep 5 is performed and successful” has some



PERCOLATION THRESHOLDS AND COVERING MAPS 4125

(random) probability q ≥ p̂|E(Z(x,r))| ≥ p̂|E(B3r (x))| ≥ s. If the corresponding event
does not occur, set αu := 0. If this event occurs, then independently on (ω,ω′) and
everything that happened so far, set αu := 1 with probability s/q ≤ 1 and αu := 0,
otherwise. Declare u to be s-explored.

7. If αu = 1, then set C2K+2,n+1 := C2K+2,n ∪ Sr+1(u) and C′
2K+2,n+1 to be

the union of C2K+2,n, Z(x, r), and the e′’s of Substep 5. Notice that Condition (C)
continues to hold as in this case Z is “fully η-open” and η-connected to C2K+2,n.
Otherwise, set C2K+2,n+1 := C2K+2,n and C′

2K+2,n+1 := C′
2K+2,n.

As before, when this step is finished set C2K+2 := ⋃
n C2K+2,n and C′

2K+2 :=⋃
n C′

2K+2,n.

Step ∞. Set C∞ := ⋃
K CK and C′∞ := ⋃

K C′
K . Take η′ independent of ev-

erything done so far, with distribution Ber(p̂)⊗E(Ĝ). Wherever η is undefined, de-
fine it to be equal to η′. In the same way, wherever α is undefined, toss independent
Bernoulli random variables of parameter s, independent of everything done so far.

By construction, C∞ has the distribution of the cluster of the origin for the
(p, s)-process on H: it is the cluster of the origin of ((

∨
k ωe,k)e, α) which has

distribution Ber(p)⊗E(H) ⊗ Ber(s)⊗V (H). Recall that ∨ stands for the maximum
operator. Besides, C′∞ is included in the cluster of o′ for (

∨
k ηe,k)e, which is a p-

bond-percolation on G. Finally, the coupling guarantees that π surjects C′∞ onto
C∞. Proposition 2.1 follows.

REMARK. This construction adapts to site percolation. The lift is the same as
in [3] while the “multiple edges” trick now consists in defining Ĝ as follows: each
vertex has M possible states, and it is p-open if one of its p̂-states say so.

2.2. Proof of Proposition 2.2. In this proof, we follow the strategy of Aizen-
man and Grimmett [1, 2].

By monotonicity, we can assume without loss of generality that s < 1. Let
θL(p, s) be the Pp,s -probability of the event EL := {Co(ω,α) ∩ SL(o) �= ∅}, and
θ(p, s) = limL→∞ θL(p, s) be the probability that Co(ω,α) = Cp,s

H (o) is infinite.
We claim that in order to prove Proposition 2.2, we only need to show that for any
ε > 0, there exist c = c(ε) > 0 and L0(ε) ≥ 1 such that for any p, s ∈ [ε,1 − ε]
and L ≥ L0, we have

(1)
∂

∂s
θL(p, s) ≥ c

∂

∂p
θL(p, s).

Indeed, assume that (1) is true. It is easy to see that, since pc(H) ∈ (0,1), for
any s ∈ (0,1), there is some ε > 0 such that we can find a curve—actually a
line segment—(p(t), s(t))t∈[0,s] inside [ε,1 − ε]2 satisfying p′(t)

s′(t) = −c for all
t ∈ [0, s] and p0 := p(0) > pc(H), ps := p(s) < pc(H), s(s) = s. But now
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note that (1) implies that t 	→ θL(p(t), s(t)) is a nondecreasing function for all
L ≥ L0. In particular, we have θ(ps, s) = θ(p(s), s(s)) = limL θL(p(s), s(s)) ≥
limL θL(p(0), s(0)) = θ(p(0), s(0)) ≥ θ(p0,0) > 0, where in the last inequality
we use p0 > pc(H). By monotonicity, we conclude that for every p ∈ [ps,1], we
have θ(p, s) > 0 as desired.

Now note that since the event EL, which depends only on finitely many coordi-
nates, is increasing in both ω and α, the Margulis–Russo formula gives us

∂

∂p
θL(p, s) = ∑

e

Pp,s(e is p-pivotal for EL),

∂

∂s
θL(p, s) = ∑

x

Pp,s(x is s-pivotal for EL).

Recall that an edge e is said to be p-pivotal for an increasing event E in a configu-
ration (ω,α) if (ω ∪{e}, α) ∈ E but (ω \ {e}, α) /∈ E . Similarly, a vertex x is said to
be s-pivotal for an increasing event E in a configuration (ω,α) if (ω,α ∪ {x}) ∈ E
but (ω,α \ {x}) /∈ E .

It follows from the above formulas that in order to derive (1), it is enough to
prove that for some R,L0 > 0, for every ε > 0, there is some c′ > 0 such that for
any edge e, any p, s ∈ [ε,1 − ε], and any L ≥ L0, one has

(2)
∑

x∈BR(e)

Pp,s(x is s-pivotal for EL) ≥ c′
Pp,s(e is p-pivotal for EL),

where for e = {x, y}, we set BR(e) := BR(x) ∪ BR(y). Indeed, since each vertex
can be in BR(e) for at most C := maxx |E(BR+1(x))| different e’s, summing (2)
over e gives

∑

x

CPp,s(x is s-pivotal for EL) ≥ c′ ∑

e

Pp,s(e is p-pivotal for EL)

which implies (1) for c := c′/C.
The following deterministic lemma directly implies (2).

LEMMA 2.4. There are constants R and L0 such that the following holds. If
L ≥ L0 and an edge e is p-pivotal for EL in a configuration (ω,α), then there exist
a configuration (ω′, α′) differing from (ω,α) only inside BR(e) and a vertex z in
BR(e) such that z is s-pivotal for EL in (ω′, α′).

PROOF. Take R := 3r + 1 and L0 := 2r + 2. Let (ω,α) and e be as in
Lemma 2.4 and assume without loss of generality that (ω,α) ∈ EL. Now, remove
from α all the vertices in BR(e) one by one. If at some point, we get for the first
time a configuration (ω,α′) that is not in EL anymore, then it means that the last
vertex z that was removed is s-pivotal for that configuration (ω,α′), thus yielding
the conclusion of the lemma. Therefore, we can assume that (ω,α′) ∈ EL where
α′ := α \ BR(e). In particular, e is still p-pivotal in (ω,α′). We now have two
cases.
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FIG. 1. A picture of Case a in the proof of Lemma 2.4. The colour red represents open edges, either
in odd or even steps. The dashed lines in blue represent closed edges preventing certain connections.

Case a. The edge e = {x, y} is far from the origin o, namely d(o, e) > r .
See Figure 1 for a representation of this case. Since e is p-pivotal for EL, we

have e ⊂ BL(o) and e �⊂ SL(o). So we can assume without loss of generality that
x ∈ BL−1(o). Take z to be a vertex such that x ∈ Br(z) ⊂ BL−1(o) and o /∈ Br(z).4

Now, take some vertex u ∈ Sr+1(z) such that u ∈ Co(ω̃, α′), where ω̃ is given by
closing in ω all the edges inside Br+1(z), that is, ω̃ := ω \E(Br+1(z)). Such a ver-
tex can be obtained as follows. Let n be the first step of the exploration that con-
tains some vertex of Sr+1(z), that is, such that Cn(ω,α′) ∩ Sr+1(z) �= ∅. The pre-
vious step n−1 does not depend on the state of the edges inside Br+1(z). In partic-
ular, one has Cn−1 := Cn−1(ω,α′) = Cn−1(ω̃, α′). Notice that as α′ ∩ B2r+1(z) =
∅, the step n is actually an odd one (in which we only explore things in ω). There-
fore, Cn−1 is ω-connected to Sr+1(z). In particular, there is some u ∈ Sr+1(z) such
that Cn−1 is ω-connected to u outside Br+1(z), thus also ω̃-connected. All of this
implies that u ∈ Cn(ω̃,α′) ⊂ Co(ω̃, α′). Let v be any neighbour of u in Br(z). Fi-
nally, define ω′ by opening in ω̃ the edge {u, v} together with all the edges inside
Br(z). Formally, one has

ω′ := [
ω \ E

(
Br+1(z)

)] ∪ [
E

(
Br(z)

) ∪ {{u, v}}].

Case b. The edge e is close to the origin, namely d(o, e) ≤ r .
Without loss of generality, assume d(o, x) ≤ r . Then simply take z = x and ω′

given by closing in ω all the edges inside Br+1(x) and then opening all the edges
inside Br(x), that is, ω′ := [ω \ E(Br+1(x))] ∪ E(Br(x)).

4Just take a suitable vertex in some geodesic from x to o. In the case where d(x,SL−1(o)) ≥ r ,
one can simply take z = x. Here, we are using that L ≥ L0 = 2r + 2.
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We claim that, in both cases above, z is s-pivotal for the event EL in the config-
uration (ω′, α′). We are only going to treat Case (a). We leave the slightly simpler
Case (b) to the reader.

Remind that by definition of u, we have u ∈ Co(ω̃, α′). Since α′ ∩B2r+1(z) = ∅,
one can see that after opening at ω̃ all the edges inside Br(z) together with {u, v}
(thus yielding ω′), we do not add any extra vertex in even steps but we add Br(z)

at a certain odd step, so that Co(ω
′, α′) = Co(ω̃, α′) ∪ Br(z). In particular, one has

Co(ω
′, α′) ∩ SL(o) = ∅, so that (ω′, α′) /∈ EL.

Recall that z ∈ Co(ω
′, α′) ⊂ Co(ω

′, α′ ∪ {z}) and that Br(z) is p-open. This
implies that Br+1(z) is contained in Co(ω

′, α′ ∪ {z}). Together with ω ⊂ ω′ ∪
Br+1(z) and B2r+1(z)∩α′ =∅, this implies that Co(ω,α′) ⊂ CBr+1(z)∪{o}(ω,α′) ⊂
CBr+1(z)∪{o}(ω′, α′ ∪ {z}) = Co(ω

′, α′ ∪ {z}). As a result, Co(ω
′, α′ ∪ {z})∩SL(o) �=

∅, so that (ω′, α′ ∪ {z}) ∈ EL. �

REMARK. As in Section 2.1, the proof above can be adapted to site percola-
tion in a straightforward way.

3. Proof of Theorems 1.3 and 1.4. As a warm-up, let us first prove Theo-
rem 1.3.

3.1. Proof of Theorem 1.3. In what follows, we will denote by Pp the perco-
lation measure of parameter p on both graphs G and H, but this will not cause
any confusion. For A and B , two subsets of the vertices of a graph, we write
“A ↔ B” for the event that there is an open path intersecting both A and B . Simi-
larly, “A ↔ ∞” will denote the event that there is an infinite (self-avoiding) open
path intersecting A.

Let G, H and π be as in Theorem 1.3. The coupling used in [3] to prove the
monotonicity of pc under covering maps yields straightforwardly the following
fact: for any two finite subsets A,B ⊂ V (H) one has

(3) Pp

[
π−1(A) ↔ π−1(B)

] ≥ Pp[A ↔ B].
Assume that p > pu(H). By uniqueness of the infinite cluster at p and the

Harris-FKG inequality, one has

Pp

[
B	(u) ↔ B	(v)

] ≥ Pp

[
B	(u) ↔ ∞,B	(v) ↔ ∞]

≥ Pp

[
B	(u) ↔ ∞]

Pp

[
B	(v) ↔ ∞]

for any two vertices u, v ∈ V (H). This implies, by quasi-transitivity, that

lim
	→∞ inf

u,v∈V (H)
Pp

[
B	(u) ↔ B	(v)

] = 1.

Let K be given by the boundedness of the fibres. As for any vertex x ∈ V (G), one
has π−1(B	(π(x))) ⊂ B	+K(x), inequality (3) and the previous equation imply
that

lim
	→∞ inf

x,y∈V (G)
Pp

[
B	(x) ↔ B	(y)

] = 1.
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Now simply remind that the above equation guarantees that p ≥ pu(G); see [17].

3.2. Proof of Theorem 1.4. The proof of Theorem 1.4 follows quite closely
that of Theorem 1.1.

Let G, H and π be as in Theorem 1.4. Let r be a positive integer. We use
the (p, s)-model of Section 2, except that we now initialise it at any finite set A,
instead of just at a single point o. When using the (p, s)-model initialised at some
finite set A ⊂ V (H), if B is a subset of V (H), we write “A � B” for the event
“CA ∩ B �= ∅.”

Here are two propositions, which are reminiscent of Propositions 2.1 and 2.2.

PROPOSITION 3.1. Take G, H and π to satisfy the hypotheses of Theorem 1.1
(but not necessarily pc(G) < 1). Then there is some choice of r ≥ 1 such that
the following holds: for every ε > 0, there is some s ∈ (0,1) such that for every
p ∈ [ε,1], for every nonempty finite subset A′ of V (G), the random set Cp,s

H (π(A′))
is stochastically dominated by π(Cp

G (A′)). In particular, for any two finite subsets
A,B ⊂ V (H), one has

Pp

[
π−1(A) ↔ π−1(B)

] ≥ Pp,s[A� B].

Given a positive integer r , we say that a finite, nonempty subset B of V (H) is
r-nice if its complement can be written as a union of balls of radius r .

PROPOSITION 3.2. Let H be a graph of bounded degree. For every r ≥ 1 and
s, ε > 0, there exists δ > 0 such that the following holds: for every p ∈ [ε,1 − ε]
and any two nonempty finite subsets A,B ⊂ V (H) such that B is r-nice and
d(A,B) > 3r ,5 one has

Pp,s[A� B] ≥ Pp+δ[A ↔ B].

Proposition 3.1 is proved exactly as Proposition 2.1, except that the process
is initialised at (A′, π(A′)) instead of ({o′}, {o}). Recall that the assumptions of
Theorem 1.4 imply that π has uniformly nontrivial fibres.

In Section 3.3, we explain how to adjust the proof of Proposition 2.1 in order to
get Proposition 3.2.

PROOF OF THEOREM 1.4. If pu(H) = 1, then the conclusion holds trivially,
so we can assume that pu(H) < 1. Since in addition pu(H) ≥ pc(H) > 0, we can
find some ε > 0 such that pu(H) ∈ (ε,1 − ε). Notice that boundedness of fibres
together with the disjoint tree-lifting property and the non-injectivity of π easily
implies that the fibres are uniformly nontrivial, so that we can apply Proposition 3.1

5Recall that d(A,B) := min{d(u, v) : u ∈ A,v ∈ B}.
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above. We can thus pick r ∈N and s ∈ (0,1) such that for every p ∈ [ε,1], for any
two nonempty finite subsets A, B of V (H), one has

Pp

[
π−1(A) ↔ π−1(B)

] ≥ Pp,s[A� B].
By applying Proposition 3.2 to some parameter p ∈ (ε,1 − ε) that satisfies p <

pu(H) < p+δ =: q , we get that for any two nonempty finite subsets A,B ⊂ V (H)

such that B is r-nice and d(A,B) > 3r , one has

Pp,s[A� B] ≥ Pq[A ↔ B].
Let K be given by the fact that π has bounded fibres. Notice that for every

x, y ∈ V (G), one has d(x, y) − K ≤ d(π(x),π(y)) ≤ d(x, y). Let 	 be a positive
integer and x, y be vertices of G such that d(x, y) > L(	) := 2	 + 4r + K . Define
u := π(x), v := π(y), A := B	(u) and B := V (H)\⋃

w:d(w,v)>r+	 Br(w). Since
B is r-nice and d(A,B) > 3r , we have

Pp

[
π−1(A) ↔ π−1(B)

] ≥ Pp,s[A� B] ≥ Pq[A ↔ B].
Also notice that B	(v) ⊂ B ⊂ B	+r (v), π−1(A) ⊂ B	+K(x) ⊂ BL(x) and
π−1(B) ⊂ B	+r+K(y) ⊂ BL(y). These inclusions combined with the previous
inequality give

Pp

[
BL(	)(x) ↔ BL(	)(y)

] ≥ Pq

[
B	

(
π(x)

) ↔ B	

(
π(y)

)]

for any two vertices x, y ∈ V (G) such that d(x, y) > L(	). Notice that this in-
equality is still true when d(x, y) ≤ L(	), as the left-hand side is then equal to 1.
Taking the infimum over x, y ∈ V (G) and then sending 	 to infinity gives

lim
L→∞ inf

x,y∈V (G)
Pp

[
BL(x) ↔ BL(y)

] ≥ lim
	→∞ inf

u,v∈V (H)
Pq

[
B	(u) ↔ B	(v)

] = 1

where the last equality follows, as in Section 3.1, from the fact that q > pu(H). It
follows from the above equation (see [17]) that pu(G) ≤ p < pu(H). �

REMARK. A recent paper of Tang [18] proves that on any quasi-transitive
graph, uniqueness of infinite cluster at p is equivalent to infu,v∈V Pp[u ↔ v] > 0.
By using this theorem instead of [17], one can simplify the above proof: one does
not need to connect large balls anymore, but only vertices.

3.3. Proof of Proposition 3.2. The proof follows the same lines as that of
Proposition 2.2, so we will only highlight the necessary adaptations here.

For any two finite subsets A,B ⊂ V (H), we consider the following finite di-
mensional approximation of the event A� B: for each L, define EA,B

L := {(ω,α) :
CA(ωL,αL) ∩ B �= ∅}, where ωL (resp., αL) is the configuration equal to ω (resp.,
α) in BL(o) and equal to 0 elsewhere. By the argument presented at the begin-
ning of Section 2.2, one can easily reduce the proof to the following deterministic
lemma.
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LEMMA 3.3. There is a constant R such that the following holds. For any two
nonempty finite subsets A,B ⊂ V (H) such that B is r-nice and d(A,B) > 3r ,
there is some L0 = L0(A,B) such that for all L ≥ L0, if an edge e is p-pivotal for
EA,B

L in a configuration (ω,α), then there exist a configuration (ω′, α′) differing
from (ω,α) only inside BR(e) and a vertex z in BR(e) such that z is s-pivotal for
EA,B

L in (ω′, α′).

PROOF. As in Lemma 2.4, it is enough to take R = 3r + 1. Given A and B as
above, take L0 such that A∪B ⊂ BL(o) and d(A∪B,SL(o)) > 3r for all L ≥ L0.
Let (ω,α) and e be as in Lemma 3.3. As before, we can assume that e is p-pivotal
for EA,B

L in (ω,α′), where α′ := α \ BR(e). Again, we have two cases.

Case a. The edge e = {x, y} is far from A, namely d(e,A) > r .
Notice that, since e is p-pivotal, we can assume without loss of generality that

x /∈ B . In this case, one can always find a vertex z such that Br(z) ⊂ BL \ (A ∪ B)

and x ∈ Br(z). Indeed, if d(x,B) > r and d(x,SL(o)) ≥ r , it suffices to take
z = x; if d(x,B) ≤ r , we use the fact that B is r-nice to find z such that
Br(z) ∩ B = ∅ and x ∈ Br(z), which directly implies Br(z) ⊂ BL(o) \ A since
d(B,SL(o)) > 3r and d(A,B) > 3r ; and if d(x,SL(o)) < r , we can take an ap-
propriate z in the geodesic path from o to x in such a way that x ∈ Br(z) ⊂ BL,
which directly implies Br(z) ∩ (A ∪ B) = ∅ since d(A ∪ B,SL(o)) > 3r . As
in the proof of Lemma 2.4, we can find u ∈ Sr+1(z) such that u ∈ Co(ω̃, α′),
where ω̃ := ω \ E(Br+1(z)). Pick v ∈ Br(z) some neighbour of u and define
ω′ := [ω \ E(Br+1(z))] ∪ [E(Br(z)) ∪ {{u, v}}].

Case b. The edge e = {x, y} is close to A, namely d(e,A) ≤ r .
Without loss of generality, assume d(x,A) ≤ r . Then simply take z = x and ω′

given by closing in ω all the edges inside Br+1(x) and then opening all the edges
inside Br(x), that is, ω′ := [ω \ E(Br+1(x))] ∪ E(Br(x)).

One can check in the same way as in the proof of Lemma 2.4 that in both cases
above, z is s-pivotal for the event EA,B

L in the configuration (ω′, α′). �

4. Deriving Theorems 0.1 and 0.2 and Corollaries 1.2 and 1.5. Theo-
rem 0.1 results from Theorem 1.1 and Lemmas 4.1 and 4.2, while Theorem 0.2
results from Theorem 1.4 and Lemmas 4.1, 4.2 and 4.4. Likewise, Corollaries 1.2
and 1.5 follow by combining Lemma 4.3 with Theorems 1.1 and 1.4, respectively.

LEMMA 4.1. Let G be a graph, and let G be a group acting on V (G) by graph
automorphisms. Let H be the quotient graph G/G and π : V (G) → V (H) denote
the quotient map x 	→ Gx.

If G� V (G) is free, then π has the disjoint tree-lifting property.
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PROOF. With the notation of Lemma 4.1, let x and y be two distinct vertices
of G such that π(x) = π(y). Let T be a subtree of H, and let Tx be a lift of T that
contains x: recall that such a lift exists, as π is a weak covering map. As Gx = Gy,
let us take some g ∈ G such that gx = y. Since x and y are distinct, g is not the
identity element. Therefore, by freeness of the action, g has no fixed point.

We claim that Ty := gTx is a lift of T that is vertex-disjoint from Tx . It is
indeed a lift, as ∀z ∈ V (G), π(z) = π(gz). To prove vertex-disjunction, let z ∈
V (Tx) ∩ gV (Tx). Thus, one can pick z� in V (Tx) such that z = gz�. As π(z) =
π(gz�) = π(z�), by bijectivity of π : V (Tx) → V (T ), one has z = z�. Therefore,
z = gz, which contradicts the fact that g has no fixed point. �

LEMMA 4.2. Let G and H be quasi-transitive graphs. Let π : V (G) → V (H)

be a noninjective weak covering map with the disjoint tree-lifting property.
Then π has uniformly nontrivial fibres.

PROOF. Let (G,H, π) satisfy the assumptions of Lemma 4.2. First, assume
additionally that there is some r such that for every x ∈ V (G), one has |Br(x)| >

|Br(π(x))|. Fix such an r . Let x be any vertex of G. As π(Br(x)) = Br(π(x)),
by the pigeonhole principle, one can pick two vertices y and z in Br(x) such that
π(y) = π(z). Pick a self-avoiding path of length at most r from π(y) to π(x) in
Br(π(x)). As π has the disjoint tree-lifting property, one can obtain two vertex-
disjoint lifts of this path with one starting at y and the other at z. Each of these
paths ends inside π−1({π(x)}) ∩ B2r (x): therefore, this set contains at least one
vertex distinct from x, thus establishing that the fibres are uniformly nontrivial
with R := 2r .

Let us now prove that the assumptions of the lemma imply the existence
of such an r . Pick one vertex in each Aut(G)-orbit, thus yielding a finite set
{x1, . . . , xm} ⊂ V (G). Define {u1, . . . , un} ⊂ V (H) by doing the same in H. Pro-
ceeding by contradiction and as π is a weak covering map, we may assume that for
every r , there is some x ∈ V (G) such that Br(x) and Br(π(x)) are isomorphic as
rooted graphs. As a result, for every r , there are some i and j such that Br(xi) and
Br(uj ) are isomorphic as rooted graphs. As i and j can take only finitely many
values, there is some (i0, j0) such that for infinitely many values of r—hence all
values of r—the rooted graphs Br(xi0) and Br(uj0) are isomorphic. It results from
local finiteness and diagonal extraction (or equivalently from the fact that the local
topology on locally finite connected rooted graphs is Hausdorff) that G and H are
isomorphic.

This is a contradiction for the following reason. There are two vertices x and
y in G such that π(x) = π(y): fix such a pair (x, y). For r0 large enough, for
all i ≤ m, the r0-ball centred at xi contains x and y. Pick such an r0 and pick i

such that the cardinality of Br0(xi) is minimal: as π(x) = π(y), the cardinality of
Br0(π(xi)) is strictly less than that of Br0(xi). Therefore, the minimal cardinality
of a r0-ball is not the same for H and G. �
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REMARK. Notice that in the above proof we only needed to use that we can
lift paths disjointly.

LEMMA 4.3. Any strong covering map has the disjoint tree-lifting property.

PROOF. Let π : G → H denote a strong covering map. Let x and y be two
vertices of G such that π(x) = π(y). Let T be a subtree of H, and let Tx and Ty

be lifts of T such that x belongs to V (Tx) and y to V (Ty). Assume that V (Tx) ∩
V (Ty) �= ∅. Let us prove that x = y.

As Tx is connected, it suffices to prove that if z0 belongs to V (Tx)∩V (Ty), then
all its Tx-neighbours belong to V (Tx) ∩ V (Ty). But this is the case: indeed, any
Tx-neighbour z1 of z0 is, by the strong lifting property, the unique neighbour z� of
z0 such that π({z0, z�}) = π({z0, z1}), so that π−1({π(z1)}) ∩ V (Ty) = {z1}. �

In the following lemma, we show that the assumption of bounded fibres in The-
orems 1.4 and Corollary 1.5 can actually be relaxed to that of fibres of bounded
cardinality, that is, the condition that supu∈V (H) |π−1({u})| < ∞.

LEMMA 4.4. Let G and H be quasi-transitive graphs. Assume that there is a
noninjective weak covering map π : V (G) → V (H) with the disjoint tree-lifting
property and fibres of bounded cardinality.

Then there is a map π� : V (G) → V (H) satisfying all these conditions and that
furthermore has bounded and uniformly nontrivial fibres.

REMARK. Concerning Corollary 1.5, the boundedness assumption can be re-
laxed further to the condition that π−1({o}) is finite. Indeed, for a strong covering
map, the cardinality of π−1({u}) does not depend on u.

PROOF. First, let us prove that there is a weak covering map π� : V (G) →
V (H) with the disjoint tree-lifting property and bounded fibres. If π has bounded
fibres, then we are done. Thus, assume that this is not the case. Let K denote the
maximal cardinality of a fibre, that is, K = maxu∈V (H) |π−1({u})|. Since π does
not have bounded fibres and since u 	→ diam(π−1({u}) is 2-Lipschitz, for every n,
there is some xn ∈ V (G) such that

∀u ∈ V (H),
∣∣π−1({u}) ∩ Bn(xn)

∣∣ ≤ K − 1.

As G is quasi-transitive, one can pick F some finite set of vertices of G that in-
tersects every Aut(G)-orbit. For every n, pick some graph automorphism ϕn of G
such that ϕ−1(xn) ∈ F , and define the equivalence relation Rn on V (G) by

xRny ⇐⇒ π
(
ϕn(x)

) = π
(
ϕn(y)

)
.

By taking a pointwise limit of these relations along a converging subsequence, one
can endow V (G) with an equivalence relation R such that:
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• G/R is isomorphic to H,
• the projection π1 : V (G) → V (G)/R is a weak covering map with the disjoint

tree-lifting property,
• every R-class has cardinality at most K − 1.

If π1 has bounded fibres, then we are done. Otherwise, iterate the process, applying
the same construction to π1 instead of π . Since the maximal cardinality of a fibre
cannot decrease forever, this process stops at some suitable π�.

Now, we need to show that π� has uniformly nontrivial fibres. Notice that the
weak covering map π� cannot be injective, as G and H are not isomorphic: see
the last paragraph of the proof of Lemma 4.2. As π� has the disjoint tree-lifting
property, every π�-fibre π−1

� ({u}) has cardinality at least 2. As π� has bounded
fibres, this implies that π� has uniformly nontrivial fibres. �

5. On the hypotheses of our results. None of the assumptions of Theo-
rem 0.1 can be removed. This is obvious for the hypothesis that pc(G) < 1. As
for freeness, take G to be Z

2 with two extra pendant edges attached to each vertex.
The group Z/2Z acts on G by swapping the two pendant edges at each vertex.
Since Z

2 is amenable, one has pu(G) = pc(G) and pu(H) = pc(H), so that free-
ness is also necessary in Theorem 0.2; see [5].

For the hypothesis that G is quasi-transitive, let G be defined by taking two
disjoint copies of Z2 and putting an additional edge between the two copies of the
origin. The group G := Z/2Z acts by swapping copies. As for quasi-transitivity of
H, take G to be the square lattice Z

2 and G to be Z/2Z acting via the reflection
(x, y) 	→ (x,1 − y). See [6] for the classical fact that pc(N×Z) = pc(Z

2).
Still, we do not know what happens if freeness is relaxed to the absence of trivial

G-orbit.

QUESTION 5.1. Let G be a group acting on a graph G by graph automor-
phisms. Assume that both G and H := G/G are quasi-transitive, and that for every
vertex x ∈ V (G) there exists g ∈ G such that gx �= x. Is it necessarily the case
that pc(G) < 1 implies pc(G) < pc(H)? If we assume further that G is finite, is it
necessarily the case that pu(G) < 1 implies pu(G) < pu(H)?

REMARK. An interesting particular case (which we also do not know how to
solve) is when G is normal in a quasi-transitive subgroup of Aut(G). In that setting,
H is automatically quasi-transitive, and the map π always has uniformly nontrivial
fibres.

As for Theorem 1.1 and Corollary 1.2, notice that the assumption that fibres
are uniformly nontrivial cannot be simply replaced by nontriviality of the fibres
(namely ∀u ∈ V (H), |π−1({u})| �= 1), even if π is taken to be a classical covering
map. Indeed, take H to be a graph with bounded degree and pc < 1, and pick
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some edge e in H. To define G, start with two copies of H, and denote by {x, y}
and {x′, y′} the two copies of e. Then replace these two edges by {x′, y} and {x, y′},
thus yielding a connected graph. Take π to be the natural projection from G to H.

We do not know how to answer the following question, which investigates a
generalisation of Theorem 1.1/Corollary 1.2.

QUESTION 5.2. Let G and H be graphs of bounded degree. Assume that there
is a weak covering map π : V (G) → V (H) with uniformly nontrivial fibres.

Is it necessarily the case that pc(G) < 1 implies pc(G) < pc(H)? If we assume
further that π has bounded fibres and that both G and H are quasi-transitive, is it
necessarily the case that pu(G) < 1 implies pu(G) < pu(H)?

Notice that one cannot remove the assumption of boundedness of the fibres
(or finiteness of G, in the case of Theorem 0.2) from Theorems 1.3 and 1.4 or
Corollary 1.5. Indeed, without this assumption, it is even possible to have the strict
inequality in the reverse direction. The following example shows that this is easy
to obtain if one further relaxes the assumption that pu(G) < 1: take G to be the 2d-
regular tree and H to be the d-dimensional hypercubic lattice, for some d ≥ 2, then
we have pu(H) = pc(H) < 1 = pu(G) = 1. Notice that H indeed is a quotient of
G: as H is 2d-regular, one can realise G as the set of finite nonbactracking paths of
H launched at 0, and mapping such a path to its final position yields a strong cover-
ing map from G to H. If one does not want to relax the assumption that pu(G) < 1,
one can take d to be large enough, Gd to be the product of the 2d-regular tree
and the biinfinite line Z, and Hd to be the (d + 1)-dimensional hypercubic lattice.
Indeed, pu(Gd) ∼ 1√

d
but pu(Hd) = pc(Hd) ∼ 1

2d
; see respectively [8] and [11].

Finally, it is natural to look for a milder condition than the finiteness of G in
Theorem 0.2. A natural condition to consider is that of amenability. Recall that a
group G is said to be amenable if there is a sequence (Fn)n of nonempty finite
subsets of G such that for every g ∈ G, one has |Fn�gFn| = o(|Fn|).

QUESTION 5.3. Does Theorem 0.2 still hold if G is only assumed to be
amenable instead of finite?
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