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HEAVY BERNOULLI-PERCOLATION CLUSTERS ARE
INDISTINGUISHABLE

BY PENGFEI TANG

Indiana University

We prove that the heavy clusters are indistinguishable for Bernoulli per-
colation on quasi-transitive nonunimodular graphs. As an application, we
show that the uniqueness threshold of any quasi-transitive graph is also
the threshold for connectivity decay. This resolves a question of Lyons and
Schramm (Ann. Probab.27 (1999) 1809–1836) in the Bernoulli percolation
case and confirms a conjecture of Schonmann (Comm. Math. Phys. 219
(2001) 271–322). We also prove that every infinite cluster of Bernoulli per-
colation on a nonamenable quasi-transitive graph is transient almost surely.

1. Introduction. Let G = (V ,E) be a connected, locally finite, quasi-
transitive infinite graph and for simplicity we will just say “let G be a quasi-
transitive graph” hereafter. We allow multiple edges and loops in G but we will
always assume G is locally finite. Fix some parameter p ∈ [0,1], and consider
Bernoulli(p) percolation process on G. The critical probability is defined as

pc = pc(G) := inf
{
p ∈ [0,1] : a.s. there exists an infinite open cluster

}
.

Grimmett and Newman [13] gave an example showing that there are some p ∈
(0,1) such that for Bernoulli(p) percolation on T × Z, a.s. there exist infinite
many infinite clusters, where T is a regular tree with high degree. Later Benjamini
and Schramm [6] conjectured that if G is a quasi-transitive nonamenable graph,
then pc < pu, where the uniqueness threshold pu is defined as follows:

pu = pu(G) := inf
{
p ∈ [0,1] : a.s. there exists a unique infinite open cluster

}
.

If G is a quasi-transitive amenable graph, then there is at most one infinite clus-
ter for Bernoulli percolation on G; see [7] and [10] for more details.

Recently, for all quasi-transitive graphs whose automorphism group has a quasi-
transitive nonunimodular subgroup, the above conjecture has been proved by
Hutchcroft [17]. The conjecture has also been shown to hold for many nona-
menable unimodular graphs of special types. For details, see the discussion in [17]
and references therein.

Historically, many properties for percolation processes on transitive graphs are
first proved in the unimodular case [4, 14, 30] while the nonunimodular case are
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proved later [16, 26] or remain open. The reason is that the mass transport princi-
ple [3] is a very powerful technique in the unimodular case. One interesting fact
about Hutchcroft’s result in [17] is that he proved the above conjecture for nonuni-
modular case first while general unimodular case remains open. The present paper
also mainly focuses on nonunimodular quasi-transitive graphs.

If G is a quasi-transitive graph with pc < pu and p ∈ (pc,pu), then Bernoulli(p)

percolation has infinitely many infinite open clusters. Are these infinite open clus-
ters similar or different? Lyons and Schramm [21] showed for every graph G with a
transitive unimodular closed automorphism group � ⊂ Aut(G), every �-invariant,
insertion-tolerant percolation process on G has indistinguishable infinite clusters.

Suppose G is a quasi-transitive graph and suppose � ⊂ Aut(G) is closed,
nonunimodular and acts quasi-transitively on G. Let m denote the Haar measure on
� (m is unique up to a multiplicative constant). In particular, let m(x) := m(�x),
where �x := {γ ∈ � : γ x = x} denotes the stabilizer of x ∈ V . Then there are two
types of infinite clusters: for an infinite cluster C, if

∑
x∈C m(x) < ∞, it is called

a (�-)light cluster; otherwise it is called a (�-)heavy cluster. For the nonunimod-
ular case, Lyons and Schramm [21] also pointed out that light clusters can be dis-
tinguished by �-invariant properties and they asked whether heavy clusters are
indistinguishable (Question 3.17 there).

Here we give a positive answer and the exact definitions of indistinguishability
and �-invariant properties are given later in Definition 2.5 and Definition 2.4.

THEOREM 1.1. Suppose G is a locally finite, connected infinite graph, and
suppose that Aut(G) has a closed, quasi-transitive and nonunimodular sub-
group �. If there are infinite many �-heavy clusters a.s. for Bernoulli(p) per-
colation on G, then they are indistinguishable by �-invariant properties.

Question 3.17 in [21] was indeed asked for general insertion-tolerant percola-
tion processes. Here we only have a positive answer for the Bernoulli percolation
case. The general case is still open. For more discussion on the general case, see
the last section.

Let d be the graph distance on G and B(x,N) := {z ∈ V : d(z, x) ≤ N} be
the ball centered at x with radius N . Let B(x,N) ↔ B(y,N) denote the event
that there is an open path connecting some vertex u ∈ B(x,N) and some vertex
v ∈ B(y,N). In particular, we use x ↔ y to denote the event that there is an open
path connecting the two vertices x, y. Schonmann [26] also proved a criterion of
pu for all quasi-transitive graphs:

pu = inf
{
p ∈ [0,1] : lim

N→∞ inf
x,y∈V

Pp

(
B(x,N) ↔ B(y,N)

) = 1
}
.

For unimodular transitive graphs, Lyons and Schramm [21] gave another char-
acterization of pu: let G be a unimodular transitive graph and o ∈ V be a fixed
vertex. Then

pu = inf
{
p ∈ [0,1] : inf

x∈V
Pp(o ↔ x) > 0

}
.
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Schonmann then conjectured this is also true for nonunimodular case (Conjec-
ture 3.1 in [28]). Following Schonmann [28], we denote the right-hand side of the
above equality as follows.

DEFINITION 1.2.

pconn := inf
{
p ∈ [0,1] : inf

x∈V
Pp(o ↔ x) > 0

}
.

Note the right-hand side does not depend on the choice of o ∈ V by the Harris-
FKG inequality. Since Pp(o ↔ x) is a nondecreasing function of p, we also have

pconn = sup
{
p ∈ [0,1] : inf

x∈V
Pp(o ↔ x) = 0

}
.

An application of the above Theorem 1.1 is the following extension of Theorem
4.1 of [21] in the Bernoulli percolation setting for all quasi-transitive graphs (we
use Theorem 1.1 to deal with the nonunimodular case while the unimodular case
is already proved in Theorem 4.1 of [21]), and this also confirms Schonmann’s
Conjecture 3.1 in [28].

THEOREM 1.3. Suppose G = (V ,E) is a quasi-transitive graph and Pp is a
Bernoulli bond percolation on G. If Pp has more than one infinite cluster a.s., then
connectivity decays, that is,

inf
{
Pp(x ↔ y) : x, y ∈ V

} = 0.

In particular,

pu(G) = pconn.

REMARK 1.4. The above theorems also hold for Bernoulli site percolation by
similar arguments.

The proofs of the above two theorems follow similar strategies as the ones of
unimodular transitive case. The main new ingredient is that we introduce certain
“biased” random walks to replace the role of simple random walk in the study
of properties of Bernoulli percolation clusters on nonunimodular quasi-transitive
graphs. Mass transport principle in its general form also plays a key role in the
proof of the stationarity of the “biased” random walks.

Grimmett, Kesten and Zhang [12] first proved that the infinite cluster for super-
critical Bernoulli percolation on Z

d with d ≥ 3 is transient for simple random walk.
In [21], Lyons and Schramm showed that if G is a locally finite, connected infinite
graph with a transitive unimodular closed automorphism group � ⊂ Aut(G), and
(P,ω) is a �-invariant insertion-tolerant percolation process on G that has almost
surely infinitely many infinite clusters, then a.s. each infinite cluster is transient
(Proposition 3.11 of [21]). Benjamini, Lyons and Schramm conjectured that if G
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is a transient Cayley graph, then a.s. every infinite cluster of Bernoulli percolation
on G is transient (Conjecture 1.7 in [5]). One may even conjecture that the same
conclusion is true for all transient quasi-transitive graphs. Here we give a positive
answer for the nonamenable quasi-transitive case. The case for general amenable
quasi-transitive graphs remains open.

THEOREM 1.5. Suppose G is a quasi-transitive nonamenable graph. Then
a.s. every infinite cluster in Bernoulli percolation is transient for simple random
walk.

Benjamini, Lyons and Schramm proved a stronger result (Theorem 1.3 in [5])
for nonamenable Cayley graphs, namely for Bernoulli percolation on such graphs,
simple random walk on the infinite clusters has positive speed a.s. Their result can
be easily generalized to hold for every quasi-transitive unimodular nonamenable
graph. So to prove Theorem 1.5, it suffices to deal with the nonunimodular case;
see Proposition 5.12.

The paper is organized as follows: in Section 2, we introduce some preliminary
results and notation. In Section 3, we review the tilted mass transport principle
introduced in [17]. Some properties of heavy clusters are discussed in Section 4,
where their proofs also illustrate the applications of the tilted mass transport prin-
ciple. We introduce the “biased” random walks in Section 5 and the stationary
property for them. We also prove Theorem 1.5 in Section 5. We prove Theorem
1.1 and Theorem 1.3 in Section 6. Finally, in Section 7 we discuss some examples
of nonunimodular transitive graphs and also give some further questions.

2. Preliminary. Let G = (V ,E) be a locally finite, connected infinite unori-
ented graph with vertex set V and edge set E. If e = (u, v) ∈ E, we say u, v are ad-
jacent and denote by u ∼ v. An automorphism of G is a bijection from V = V (G)

to itself which preserves adjacency. Let Aut(G) denote the group of all automor-
phisms of G. With the topology of pointwise convergence, Aut(G) is a locally
compact Hausdorff topological group. Suppose � ⊂ Aut(G) is a closed subgroup
with the induced topology. For any v ∈ V , the orbit of v under � is denoted by
�v := {γ v : γ ∈ �}. We use G/� := {�v : v ∈ V } to denote the orbit sets and say
that � is quasi-transitive or � acts on G quasi-transitively if there are only finite
many orbits, namely G/� is a finite set. In particular, if G/� has a single ele-
ment, then we say � is transitive or � acts on G transitively. The graph G is called
quasi-transitive (transitive) if Aut(G) acts on G quasi-transitively (transitively).

An infinite set of vertices V0 ⊂ V is called end convergent if for any finite set
K ⊂ V , there is a connected component of G\K that contains all but finitely many
vertices of V0. And two end convergent sets V0, V1 are said to be equivalent if
V0 ∪ V1 is also end convergent. Now an end of G is defined to be an equivalence
class of end-convergent sets. For example, suppose G is an infinite tree. Fix some
ρ ∈ V and call it the root of G. Then each end corresponds bijectively to a ray
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starting from the root ρ. The number of ends of G is equal to the supremum of the
number of components of G\K over all finite sets K ⊂ V . For example, Z has two
ends and Z

d has one end for d ≥ 2.
Recall that on every locally compact Hausdorff topological group �, there is a

unique (up to a multiplicative constant) Borel measure | · | that is invariant under
left multiplication, namely |A| = |γA| for every Borel set A ⊂ � and all γ ∈ �.
This measure m is called the (left) Haar measure. If it is also invariant under right
multiplication, then � is called a unimodular group. A quasi-transitive graph G is
said to be unimodular if its automorphism group is unimodular.

For each x ∈ V , �x := {γ ∈ � : γ x = x} is called the stabilizer of x. Let m(x) =
|�x | denote the Haar measure of the stabilizer of x. And �xy := {γy : γ ∈ �x} is
the orbit of y under �x .

Examples of unimodular graphs include transitive amenable graphs [29] and
Cayley graphs. Grandparent graphs [33] and Diestel–Leader graphs [36] DL(k, n)

with k �= n are typical examples of nonunimodular transitive graphs. More exam-
ples of nonunimodular transitive graphs can be found in Timár’s paper [31].

Even if a quasi-transitive graph G itself is unimodular, there might exist a sub-
group � ⊂ Aut(G) that is nonunimodular and acts on G quasi-transitively. Based
on [29], such graphs must be nonamenable. A well-known example is the regular
tree T3 with degree 3. The regular tree T3 is a unimodular transitive graph. Fix
an end ξ of T3. Let � be the subgroup of all automorphisms that fix ξ . Then �

is nonunimodular and acts on T3 transitively. Other examples will be discussed in
more detail in the last section.

Suppose � ⊂ Aut(G) acts on G quasi-transitively. A simple criterion for uni-
modularity of � is provided by the following proposition.

PROPOSITION 2.1 (Trofimov [33]). � is unimodular if and only if for all x, y

in the same orbit under �,

|�xy| = |�yx|,
where |�xy| denotes the number of elements in the set �xy.

From this proposition, one can easily see that in the above example T3, the
subgroup � fixing a specific end ξ is nonunimodular.

A well-known result concerning the Haar measure is the following lemma (for
a proof see, e.g., formula (1.28) and Lemma 1.29 in [35]).

LEMMA 2.2. Suppose � ⊂ Aut(G) acts on G = (V ,E) quasi-transitively,
then for all x, y ∈ V ,

m(x)

m(y)
= |�xy|

|�yx| = m(γ x)

m(γy)
, ∀γ ∈ �.
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A well-known criterion for unimodularity is the following simple application of
Lemma 2.2.

LEMMA 2.3. Suppose � ⊂ Aut(G) acts on G = (V ,E) quasi-transitively and
m is an associated Haar measure, then � is unimodular if and only if {m(�x) : x ∈
V } is a finite set.

PROOF. If � is unimodular, then by Proposition 2.1 and Lemma 2.2 m(�x) is
a constant on each orbit. Since there are only finitely many orbits, {m(�x), x ∈ V }
is finite.

If � is nonunimodular, then by Proposition 2.1 and Lemma 2.2 there exist x ∈
V , γ ∈ � such that M := m(γ x)

m(x)
> 1. Since by Lemma 2.2, one has m(γ nx)

m(γ n−1x)
=

m(γ n−1x)

m(γ n−2x)
= · · · = m(γ x)

m(x)
= M > 1, m(γ nx)

m(x)
= Mn → ∞ as n → ∞, in particular

{m(�x), x ∈ V } is not a finite set. �

Now we recall some terminology from percolation theory. Suppose G = (V ,E)

is a locally finite, connected graph. Let 2E be the collection of all subsets η ⊂ E.
Let FE be the σ -field generated by sets of the form {η : e ∈ η} where e ∈ E. A
bond percolation on G is a pair (P,ω), where ω is a random element in 2E and P
is the law of ω. For simplicity, sometimes we will just say ω is a bond percolation.
One can also define site percolation and mixed percolation on G and the interested
reader can refer to [20] or [11] for more background on percolation. If ω is a bond
percolation, then ω̂ := V ∪ ω is a mixed percolation on 2V ∪E . We will think of ω

as a subgraph of G and not bother to distinguish ω and ω̂.
We will mainly focus on Bernoulli bond percolation on G, which we now define.

The Bernoulli(p) bond percolation on G is a pair (Pp,ω) that satisfies Pp is a
product measure on 2E and Pp[e ∈ ω] = p for all edge e ∈ E. Sometimes we also
write Bernoulli(p) percolation as Bernoulli p-percolation.

If v ∈ V and ω is a bond percolation on G, the cluster Cω(v) (or just C(v)) of
ω is defined as the connected component of v in ω. We sometimes also use C(v)

to denote the set of vertices (or edges) of the connected component of v in ω.
If (P,ω) is a bond percolation on G and � is a subgroup of Aut(G), we call

(P,ω) �-invariant if P is invariant under each γ ∈ �. Bernoulli percolation is ob-
viously Aut(G)-invariant, in particular Bernoulli percolation is �-invariant for any
subgroup � ⊂ Aut(G).

Next, we recall some definitions for indistinguishability of infinite clusters. The
following definition of invariant property is adapted from Definition 1.8 of [19].

DEFINITION 2.4. Suppose G = (V ,E) is locally finite, connected infinite
graph and � is a closed quasi-transitive subgroup of Aut(G). For a measurable
set A of V × {0,1}E , we say A is a �-invariant property, if γA = A for every
γ ∈ � and

(v,ω) ∈ A ⇒ ∀u ∈ Cω(v), (u,ω) ∈A.
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We say that a cluster C of ω has property A (and abuse notation by writing C ∈ A)
if (u,ω) ∈ A for some (and hence every) vertex u ∈ C.

For example, A might be the collection of all connected heavy subgraphs of G,
or the collection of all recurrent subgraphs of G. For other examples, see [19, 21].

DEFINITION 2.5 (Definition 3.1 of [21]). Suppose G = (V ,E) is locally
finite, connected infinite graph and � is a closed quasi-transitive subgroup of
Aut(G). Let (P,ω) be a �-invariant bond percolation process on G. We say that
P has (�-) indistinguishable infinite clusters if for every �-invariant property A,
almost surely, for all infinite clusters C of ω, the cluster C has property A, or none
of the infinite clusters has property A.

DEFINITION 2.6 (Definition 3.2 of [21]). Let G = (V ,E) be a graph. Given a
configuration ω ∈ 2E and an edge e ∈ E, denote 	eω := ω∪{e}. For a set A⊂ 2E ,
we write 	eA := {	eω : ω ∈ A}. A bond percolation process (P,ω) on G is said
to be insertion tolerant if P[	eA] > 0 for every e ∈ E and every measurable A ⊂
2E with P[A] > 0. A percolation ω is deletion tolerant if P[	¬eA] > 0 for every
e ∈ E and every measurable A ⊂ 2E with P[A] > 0, where 	¬eω := ω − {e}.

For example, Bernoulli(p) percolation is insertion and deletion tolerant when
p ∈ (0,1).

For unimodular transitive graphs, Lyons and Schramm showed the following.

THEOREM 2.7 (Theorem 3.3 of [21]). Let G be a graph with a transitive uni-
modular closed automorphism group � ⊂ Aut(G). Every �-invariant, insertion-
tolerant, bond percolation process on G has indistinguishable infinite clusters.

Martineau’s paper [23] explored the link between ergodicity and indistinguisha-
bility in percolation theory.

Example 3.15 of [21] showed that a deletion-tolerant bond percolation could
have distinguishable infinite clusters. For other examples of indistinguishability
for noninsertion tolerant percolation processes, see [19] and [32].

We also need a result from Häggström, Peres and Schonmann [15].

DEFINITION 2.8 (Robust invariant property). Let G = (V ,E) be a graph and
� be a closed quasi-transitive subgroup of Aut(G). Let (P,ω) be a �-invariant
bond percolation process on G. Suppose A is a �-invariant property. We say that
A is a robust invariant property if for every infinite connected subgraph C of G

and every edge e ∈ C we have the equivalence: C has property A iff there is an
infinite connected component of C\{e} that has property A.

Even without the unimodularity condition, the robust invariant properties do not
distinguish between the infinite clusters of Bernoulli(p) percolation [15].
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THEOREM 2.9 (Theorem 4.1.6 of [15]). Let G be a quasi-transitive graph and
p ∈ (pc,pu]. If Q is a robust invariant property such that Pp(A) > 0, where A is
the event that there exists an infinite cluster satisfying Q, then Pp-a.s., all infinite
clusters in G satisfy Q.

An immediate application of Theorem 2.9 is that almost surely light and heavy
infinite clusters cannot coexist for Bernoulli percolation.

3. The tilted mass transport principle. The mass transport principle turns
out to be a very useful technique especially on unimodular transitive graphs [3].
Hutchcroft [17] introduced a tilted version of mass transport principle and it turns
out be quite useful when applied to nonunimodular quasi-transitive graphs.

Following Hutchcroft’s notation [17], we define modular function as below.

DEFINITION 3.1. Let G = (V ,E) be a locally finite connected infinite graph
and � ⊂ Aut(G) acts on G quasi-transitively. Let O = {o1, . . . , oL} be a complete
set of representatives in V of the orbits of �. Let a = (a1, . . . , aL) be a sequence
of positive real numbers with

∑L
i=1 ai = 1. The modular function 
�,a : V 2 →

(0,∞) is defined as follows:


�,a(x, y) = aym(y)

axm(x)

Lemma 2.2= ay |�yx|
ax |�xy| ,

where ax := ai if x ∈ �oi .

Now we give the tilted mass transport principle (TMTP) (a slight generalization
of Proposition 2.2 in Hutchcroft [17]).

PROPOSITION 3.2 (TMTP). With the same notation as in the above definition
of modular function, suppose f : V 2 → [0,∞] is invariant under the diagonal
action of �. Let ρ be sampled from O with distribution a. Then

E

[∑
x∈V

f (ρ, x)

]
= E

[∑
x∈V

f (x,ρ)
�,a(ρ, x)

]
.

PROOF. This is easily seen from the Corollary 3.7 of [3]. �

Hutchcroft made a particular choice for a and proved for this particular choice
that 
�,a has certain nice properties (Lemma 2.3 in [17]). To be precise, write
[v] for the orbit of v under � and identify O with the space of orbits. Let
(Xn)n≥0 be a lazy simple random walk on G, namely P[Xn+1 = u|Xn = v] =
1
21{u=v} + 1

2 deg(v)
1{u∼v}. Let ([Xn])n≥0 be the corresponding Markov chain in-

duced on the finite state space O, which was called the lazy orbit chain. Note this
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chain is irreducible, and hence it has a unique stationary measure μ̃ on O. Let μ

be the probability measure gotten from μ̃ biased by deg([v])−1:

μ
([o]) = μ̃([o])deg([o])−1∑

x∈O μ̃([x])deg([x])−1 , ∀o ∈ O.

We also write μx := μ([x]), ∀x ∈ V . Then Lemma 2.3 in [17] can be slightly
strengthened to the following.

LEMMA 3.3. With the same notation as in the above definition of modular
function, let a = (a1, . . . , aL) be a sequence of positive numbers with

∑L
i ai = 1.

Then the modular function 
 = 
�,a satisfies the following properties:

1. 
 is � diagonally invariant.
2. 
 satisfies the cocycle identity, that is, for all x, y, z ∈ V ,


(x,y)
(y, z) = 
(x, z).

3. Furthermore, a = μ, that is, ai = μ([oi]), i = 1, . . . ,L if and only if for some
fixed x ∈ V (hence for every x ∈ V ), 
(x,y) is a harmonic function of y ∈ V ,
namely


(x,y) = 1

deg(y)

∑
z∼y


(x, z),

where the sum on the right-hand side is taken with multiplicity if there are multiple
edges between y and z.

PROOF. (1) For any x, y ∈ V , γ ∈ �, one has aγx = ax , aγy = ay . Hence


(γ x, γy) = aγym(γy)

aγ xm(γ x)
= aym(y)

axm(x)
= 
(x,y).

(2) For any x, y, z ∈ V , one has


(x,y)
(y, z) = aym(y)

axm(x)

azm(z)

aym(y)
= azm(z)

axm(x)
= 
(x, z).

(3) The direction that a = μ implies the harmonicity of 
(x, ·) was al-
ready shown in Lemma 2.3 in [17] and here we provide an alternative proof.
If one defines the transition matrix P̃ on the factor chain on O by p̃(oi, oj ) =

1
deg(oi )

∑
x∈[oj ] 1{oi∼x}, then μ̃ is also a stationary probability measure for the

Markov chain on O determined by p̃. By Lemma 3.25 of [35], one has that
ν(x) := μ̃([x])|�x | = μ̃([x])m(x) is a stationary measure for simple random walk
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on G. From this, it follows that for a = μ the function 
(x, ·) is harmonic for any
fixed x ∈ V .

On the other hand, if for some fixed x, the function y �→ 
(x,y) is harmonic,
then one has the following system of equations:

(3.1)

⎧⎪⎨⎪⎩
0 = ∑

z∼y

[
azm(z) − aym(y)

]
, y ∈ O,

1 = a1 + · · · + aL.

We already showed that when a = μ, the function y �→ 
(x,y) is harmonic,
whence a = μ satisfies the above equations (3.1) and then it suffices to show a = μ

is also the unique solution of (3.1).
Rewrite (3.1) as the following:

(3.2)

⎧⎪⎨⎪⎩
0 = ∑

z∼y

[
az

μz

μzm(z) − ay

μy

μym(y)

]
, y ∈ O,

1 = a1 + · · · + aL.

Since a = μ satisfies (3.1), one can define a transition matrix pμ on O by
pμ(y, z) = 1

deg(y)

∑
w∼y,w∈[z] μwm(w)

μym(y)
. Since G is connected, the Markov chain on

the finite space O determined by pμ is irreducible. Define f (x) := ax

μx
, x ∈ V .

Then equation (3.2) implies that f is a harmonic function for pμ. Since the
Markov chain determined by pμ is an irreducible Markov chain on a finite state
space, the harmonic function f must be constant. Together with a1 + · · · + aL =
μ([o1]) + · · · + μ([oL]) = 1, we have a = μ.

This completes the proof. �

REMARK 3.4. If � is unimodular, then on each orbit m(·) is a constant and
then one obvious solution of (3.1) is ai = m(oi)

−1∑
x∈O m(x)−1 . By the uniqueness of

solution, one has μ([v]) = m(v)−1∑
x∈O m(x)−1 , ∀v ∈ V . Therefore, in the case a = μ,


�,μ(x, y) = μym(y)

μxm(x)
is a constant function of y for fixed x, whence 
�,μ(x, ·) is

not only harmonic for simple random walk but also for any random walk on G

associated with a �-invariant conductance.
Moreover, by Theorem 3.1 of [1], if one takes a random root ρ from O with

probability P(ρ = oi) = μ([oi]), then [G,ρ] is a unimodular random rooted graph.
And by Theorem 4.1 of [1] with p corresponding to simple random walk on G and
ν corresponding to degree, one has μ̂ is a stationary probability measure for the
trajectories on rooted graphs induced from simple random walk. In particular, the
marginal of μ̂ on the root of the initial rooted graph is a stationary measure for the
lazy orbit chain which coincides with previous choice of μ̃.

Another natural question to ask is whether for a given a = (a1, . . . , aL) with
ai > 0,

∑L
i=1 ai = 1, there is a deterministic �-invariant conductance function
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c : E → (0,∞) such that the function 
�,a(x, ·) is harmonic for the network
(G, c). Previous harmonic function (corresponding to simple random walk without
explicit mentioned conductance) is just the case c ≡ 1.

For unimodular �, we have a complete answer.

LEMMA 3.5. Suppose � is unimodular and a = (ai)
L
i=1 is a sequence of posi-

tive numbers with
∑L

i=1 ai = 1. Then a = μ if and only if there exists a �-invariant
conductance c : E → (0,∞) such that 
(x, ·) = 
�,a(x, ·) is harmonic for net-
work (G, c). Also in the case a = μ, c can be chosen to be any �-invariant con-
ductance.

PROOF. The if part is already given in the above Remark 3.4.
Now suppose a �-invariant function c : E → (0,∞) is such that 
(x, ·) =


�,a(x, ·) is harmonic for network (G, c). Hence a satisfies the following equa-
tions:

(3.3)

⎧⎪⎨⎪⎩
0 = ∑

z∼y

[
azm(z)c(z, y) − aym(y)c(z, y)

]
, y ∈ O,

1 = a1 + · · · + aL,

where c(z, y) = c(y, z) denote the conductance of the unoriented edge e = (y, z).
Consider the Markov chain on O with transition probability qc given by

qc(oi, oj ) =
∑

z∼oi ,z∈[oj ] c(oi, z)∑
x∼oi

c(oi, x)
, ∀oi, oj ∈O.

Since � is unimodular, m(·) is a constant function on each orbit, and then we can
define f : O → (0,∞) by f ([z]) := azm(z). Then by (3.3) f is a harmonic func-
tion for the Markov chain determined by qc. Since G is connected, this Markov
chain is irreducible. Moreover, this Markov chain has finite state space O, thus f

must be a constant function. Thus one has az ∝ m(z)−1. From Remark 3.4, one
has a = μ. �

For the case � is nonunimodular, we do not have a complete answer except the
transitive case.

For example, let T be the infinite regular tree with degree 3 and let G be the
graph obtained from T by adding a new vertex at the midpoint of each edge of
T . Fix an end ξ of T and let � be the subgroup fixing this end ξ . Then � is
nonunimodular and quasi-transitive on G. Fix x ∈ T and let x1 ∈ T denote the
neighbor of x such that x1 is closer to ξ . And let x2, x3 be the other two neighbors
of x in T . Suppose yi is the midpoint on edge (x, xi) for i = 1,2,3. Then O =
{x, y1} is a complete set of representatives. Write a1 = ax , a2 = ay1 and let λ := a1

a2
.
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Since a1 +a2 = 1, a1 = λ
1+λ

, a2 = 1
1+λ

. Solving (3.3) yields that for any λ ∈ (1
2 ,1),

there exists a unique (up to multiplicative constant) �-invariant conductance such
that 
�,a(x, ·) is harmonic w.r.t. this conductance. For other λ, the corresponding
function 
�,a(x, ·) is not harmonic w.r.t. any �-invariant conductance.

Note in the transitive case L = 1, a1 = 1 = μ, and thus the choice of a does not
matter. And the function 
�,a(x, ·) = m(·)

m(x)
in this case.

LEMMA 3.6. Suppose � is nonunimodular and transitive. Then 
(x, ·) =
m(·)
m(x)

is harmonic for any �-invariant conductance c : E → (0,∞).

PROOF. Let c : E → (0,∞) be a �-invariant conductance. It suffices to show
for some fixed y ∈ V , one has∑

z∼y

c(z, y)m(z) = ∑
z∼y

c(z, y)m(y).

Define f : V 2 → [0,∞] by f (u, v) = c(u, v)1{u∼v}. Then f is invariant under
�-diagonal action since c is �-invariant. Suppose O = {y} and then the random
vertex ρ with law μ is just y. By TMTP, one has∑

z∈V

f (ρ, z) = ∑
z∈V

f (z, ρ)
(ρ, z).

That is just
∑

z∼y c(y, z) = ∑
z∼y c(y, z) m(z)

m(y)
and we are done. �

4. Some properties of heavy percolation clusters. In this section, we review
some important properties for heavy percolation clusters. Some of their proofs are
also typical applications of TMTP. We begin with a definition of level set.

DEFINITION 4.1. Suppose G is a connected, locally finite graph and � ⊂
Aut(G) is closed and quasi-transitive. A level of (G,�) is a maximal set X of
vertices such that for any x, y ∈ X, |�xy| = |�yx|. Or equivalently, a level is a
maximal set X of vertices such that for any x, y ∈ X, m(x) = m(y).

Note the level set depends on the subgroup �. In the following, without explicit
mention, we will always fix some subgroup �.

The next proposition was implicitly used in the proof of Corollary 5.10 in [31]
and we provide its proof for completeness.

PROPOSITION 4.2. Suppose G is a connected, locally finite graph and � ⊂
Aut(G) is closed, quasi-transitive and nonunimodular, then every level is an infi-
nite set.
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PROOF. Let Lx := {y ∈ V : m(y) = m(x)} denote the level set containing x.
By Lemma 2.2, one has

(4.1) Lγx = γLx := {γy : y ∈ Lx}, ∀γ ∈ �.

Choose a complete set of representatives O = {o1, . . . , oL} for the orbit un-
der �. Denote Li := Loi

, let ni = |Li | denote the cardinality of Li and define
N = max{n1, . . . , nL}.

First we show if there exists one index i ∈ {1, . . . ,L} such that ni = ∞, then
nj = ∞ for every j ∈ {1, . . . ,L}. Without loss of generality, we assume n1 = ∞,
note L1 = ⋃L

j=1 L1 ∩ �oj , whence there exists at least one j ∈ {1, . . . ,L} such
that |L1 ∩ �oj | = ∞. Thus there exists an infinite set {γk : k ∈ N} ⊂ � such
that m(o1) = m(γkoj ), ∀k ∈ N and {γkoj : k ∈ N} is an infinite set. Then using
Lemma 2.2 again for every i ∈ {1, . . . ,L}, one has that m(γ0oi) = m(γ1oi) =
m(γ2oi) = · · · . Since γk preserves the graph distance, {γkoi : k ∈ N} is also an
infinite set. By the fact that Lγ0oi

⊃ {γkoi : k ∈ N}, one has that Lγoi
is also an

infinite set, whence by (4.1) ni = ∞ for every i ∈ {1, . . . ,L}.
Now by the above result and (4.1) it suffices to show N = ∞. For any M > 0,

since � is nonunimodular, from the proof of Lemma 2.3 one has that there exists
some x0, y0 ∈ V such that M0 := m(y0)

m(x0)
> LM . Define f : V 2 → [0,∞] as

f (x, y) = 1{d(x,y)=d(x0,y0),
m(y)
m(x)

=M0}.

Obviously, f is �-diagonally invariant. Take a = (a1, . . . , aL) such that ai = 1
L

,∑L
i=1 ai = 1, then 
�,a(x, y) = m(y)

m(x)
. Let ky denote the number of vertices x such

that d(x, y) = d(x0, y0) and m(y)
m(x)

= M0, and k := max{koi
: oi ∈ O}. Applying the

tilted mass transport principle, one has

1

L
≤

L∑
i=1

1

L

∑
x∈V

f (oi, x) =
L∑

i=1

1

L

∑
x∈V

f (x, oi)
1

M0
≤ k

M0
.

Thus k ≥ M0
L

> M . Suppose k = koi
, then this means there exists at least k > M

vertices x such that m(oi)
m(x)

= M0, in particular all these k vertices belong to the same
level set, whence N ≥ k > M . Since this is true for arbitrary M , one has N = ∞.

�

The following proposition was mentioned and used in [31] without a proof. We
provide its proof for the reader’s convenience and later use. For an automorphism
γ and a level A, if γA = A, then we say γ fixes the level A.

PROPOSITION 4.3. Suppose G is a connected, locally finite graph and � ⊂
Aut(G) is closed, quasi-transitive and nonunimodular, let �′ ⊂ � be the subgroup
that fixes a level (hence fixes every level). Suppose H is a connected component of
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some finite union of levels and �′
H is the subgroup of �′ that preserves H . Then

�′
H acts quasi-transitively on H , and it is closed and unimodular.

PROOF. Step 1: First we show that for any γ ∈ �, if there exists x ∈ V (G) such
that m(x) = m(γ x), then γA = A for every level A. Actually, this is immediate
from Lemma 2.2:

m(x) = m(γ x) and
m(x)

m(y)
= m(γ x)

m(γy)
⇒ m(y) = m(γy).

In particular, one has �x ⊂ �′, ∀x ∈ V .
Step 2: Suppose Lxi

, i = 1, . . . , n are n distinct levels and Gn := ⋃n
i=1 Lxi

be
the union of these n levels, viewed as the subgraph induced by the vertices in these
levels. Gn might be disconnected, however it has finitely many types of connected
components up to isomorphisms. Indeed, for any y1 �= y2 ∈ Lxi

∩�oj , there exists
some γ1, γ2 ∈ � such that y1 = γ1oj , y2 = γ2oj and m(x) = m(y1) = m(y2). Thus
γ2γ

−1
1 y1 = y2. Since m(y1) = m(y2), γ2γ

−1
1 ∈ �′ and is an isomorphism from

the connected component of y1 to the one of y2. In particular, there are at most
Ln types of connected components up to isomorphism, where L is the number of
orbits for the action of � on G.

Step 3: For any connected component H ⊂ Gn, let �′
H be the subgroup of �′

consisting of those maps which fix this component H . In particular, �′
x = �x ⊂

�′
H , ∀x ∈ H . We now show that �′

H acts on H quasi-transitively and it is closed
and unimodular. Notice m is also a nonzero Haar measure restricted on �′

H and
(�′

H)x = �x . Also m(�x) is bounded on H since Gn has only finitely many levels.
Therefore, �′

H is unimodular by Lemma 2.3.
It is easy to see that �′ is closed. Indeed for any γ /∈ �′, there exists x ∈ V such

that m(γ x) �= m(x). Therefore, as an open neighborhood of γ , the set {β : β(x) =
γ (x)} is in the complement of �′, whence �′ is closed. Similarly, one can show
that �′

H is also closed.
For any y1 �= y2 ∈ H ∩ Lxi

∩ �oj , as in step 2 there exists some γ ∈ �′ such
that γy1 = y2. Since γ preserves graph distance, it maps the connected component
of y1 to the connected component of y2, that is, γ maps H to H , whence γ ∈ �′

H .
Therefore, under �′

H there are at most Ln different orbits for H (here L denotes
the number of orbits for � acting on G), whence �′

H acts quasi-transitively on H .
�

The following proposition is well known ([17, 31]) and its proof will be omitted.
We stress that one needs only the assumption of �-invariance.

PROPOSITION 4.4. Suppose G is a connected, locally finite graph and � ⊂
Aut(G) is closed, quasi-transitive and nonunimodular, let (P,ω) be a �-invariant
percolation on G. If P-a.s. there is a unique infinite cluster, then the unique infinite
cluster must be heavy.
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DEFINITION 4.5. Häggström, Peres and Schonmann [15] introduced the
heaviness transition:

ph(G,�) := inf
{
p ∈ [0,1] : Pp-a.s. there exists a heavy cluster

}
.

In the case � = Aut(G), one denote ph = ph(G) = ph(G,Aut(G)).

Note that if � is closed, quasi-transitive and unimodular, ph(G,�) = pc. Using
the canonical coupling, one can see that for all p > ph, Pp-a.s. there exists a heavy
cluster. By Theorem 2.9 a.s., all infinite clusters are heavy for every p > ph(G,�).
An immediate consequence of Proposition 4.4 is that ph(G,�) ≤ pu. Hutchcroft
[17] proved that pc(G) < ph(G,�) if � ⊂ Aut(G) is closed, quasi-transitive and
nonunimodular.

The next proposition is important for later use. It is proved for the transitive case
and the proof can be easily adapted to quasi-transitive case.

PROPOSITION 4.6 (Corollary 5.6 of [31]). Suppose G is a connected, locally
finite graph, and � ⊂ Aut(G) is quasi-transitive and nonunimodular. Let (Pp,ω)

be a Bernoulli(p) percolation on G. If Pp-a.s. there are infinitely many heavy
clusters, then there exists some finite union of levels Lxi

, i = 1, . . . , n such that
there exists a connected component Hn of Gn := ⋃n

i=1 Lxi
on which Bernoulli(p)

percolation induces infinitely many infinite open components.

Suppose � ⊂ Aut(G) is quasi-transitive and nonunimodular. m is a Haar mea-
sure on �. Let N(p) denote the number of infinite clusters for Bernoulli (p)
percolation on G. It is well known that N(p) = 0,1 or ∞ a.s.; see, for ex-
ample, Theorem 7.5 of [20]. By Hutchcroft [17], one has pc < ph(G,�). Thus
N(ph(G,�)) = 1 or ∞. We now clarify whether these clusters are heavy or light.

PROPOSITION 4.7. Suppose � ⊂ Aut(G) is quasi-transitive and nonunimod-
ular. If N(ph(G,�)) = ∞ a.s., then all these infinite clusters are light a.s. If
N(ph(G,�)) = 1 a.s., then the unique infinite cluster is heavy a.s.

PROOF. If N(ph(G,�)) = 1, then the unique infinite cluster is heavy a.s. by
Proposition 4.4.

If N(ph(G,�)) = ∞, we proceed by contradiction. Suppose there is at least
one heavy infinite cluster, then by Theorem 2.9 one has that all these infinite
clusters are heavy a.s. Then by Proposition 4.6, there exist finitely many levels
Lxi

, i = 1, . . . , n such that Gn := ⋃n
i=1 Lxi

induces infinitely many infinite open
components for Bernoulli percolation at ph(G,�).

Define

pc(Gn) := min
{
pc(H) : H is a connented component of Gn

}
,
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where if H is a finite connected component we set pc(H) = 1. The minimum is
achieved because there are finitely many types of connected components up to
isomorphisms by Proposition 4.3.

Since there are infinitely many infinite open components for Bernoulli percola-
tion at ph(G,�) on Gn, by Proposition 4.6 there exists a connected component Hn

such that Bernoulli ph(G,�)-percolation on Hn has infinitely many infinite open
components. In particular, pc(Hn) ≤ ph(G,�).

First consider the case pc(Hn) = ph(G,�). By Proposition 4.3, the sub-
group �′

Hn
is quasi-transitive on Hn and unimodular. Since Bernoulli ph(G,�)-

percolation on Hn has infinitely many infinite open components, Hn must be non-
amenable. By [4] or [16], there are no infinite clusters at pc(Hn), which contra-
dicts pc(Hn) = ph(G,�) and Bernoulli ph(G,�)-percolation on Hn has infinitely
many infinite open components.

If pc(Hn) < ph(G,�), take some p ∈ (pc(Hn),ph(G,�)), then Bernoulli p-
percolation has at least one infinite cluster on Hn a.s. This infinite cluster must
be heavy since {m(x) : x ∈ Hn} is bounded. Hence Bernoulli p-percolation on G

would also have at least one heavy cluster a.s., which contradicts with the definition
of ph(G,�).

Therefore, if N(ph(G,�)) = ∞ a.s., then all these infinite clusters are light a.s.
�

COROLLARY 4.8. Suppose � ⊂ Aut(G) is quasi-transitive and nonunimodu-
lar. Suppose that (Gn)n∈N is an increasing exhausting sequence of finite union of
levels in the sense that for each level Lx there exists Nx > 0 such that Lx ⊂ Gn

whenever n ≥ Nx . Then limn→∞ pc(Gn) exists and

(4.2) lim
n→∞pc(Gn) ≥ ph(G,�).

Moreover, the following are equivalent:

(1) There exists some p ∈ (0,1) such that Bernoulli(p) percolation on G has
infinitely many heavy clusters;

(2) ph(G,�) < pu;
(3) limn→∞ pc(Gn) < pu.

If limn→∞ pc(Gn) ≤ pu (slightly weaker than the above three conditions), then

lim
n→∞pc(Gn) = ph(G,�).

PROOF. For any p > pc(Gn), Bernoulli(p) percolation has at least one infinite
cluster on Gn a.s., which must be heavy. Hence Bernoulli(p) percolation on G

would also have at least one heavy cluster a.s., whence p ≥ ph(G,�). Therefore,
pc(Gn) ≥ ph(G,�) for all n. Note pc(Gn) is decreasing, thus the limit exists and
satisfies (4.2).
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(1) ⇒ (2): Suppose (1) holds but (2) does not hold, then ph(G,�) = pu. For
any p < ph(G,�), there is no heavy cluster a.s. by the definition of ph(G,�). At
p = ph(G,�), if N(ph(G,�)) = ∞, then Proposition 4.7 yields all these infinite
clusters are light a.s. If N(ph(G,�)) = 1, then there exists only one heavy cluster
a.s. For p > ph(G,�) = pu, there is a unique infinite cluster a.s. [26]. Thus for all
p ∈ [0,1], there cannot exist infinitely many heavy clusters, contradicting (1).

(2) ⇒ (3): For any p ∈ (ph(G,�),pu), N(p) = ∞ since p < pu. Since
p > ph(G,�), almost surely all the infinite clusters are heavy by the definition
of ph(G,�) and Theorem 2.9. Then by Proposition 4.6, there exists a finite union
of levels Gn such that some connected component Hn of Gn has the property that
Bernoulli(p) percolation on Hn has infinitely many infinite clusters. In particular,
p ≥ pc(Hn) ≥ pc(Gn) ≥ limn→∞ pc(Gn). Let p ↓ ph(G,�) to obtain that

(4.3) ph(G,�) ≥ lim
n→∞pc(Gn).

Combining with ph(G,�) < pu, one has (3).
(3) ⇒ (1): By (4.2), one has ph(G,�) < pu, whence for p ∈ (ph(G,�),pu),

Bernoulli(p) percolation on G has infinitely many heavy clusters.
Now suppose limn→∞ pc(Gn) ≤ pu. If ph(G,�) < pu, that is, condition (2)

holds, then one has (4.3), this combining with (4.2) yields limn→∞ pc(Gn) =
ph(G,�). Ifph(G,�) = pu thenbyassumptionph(G,�) = pu ≥ limn→∞ pc(Gn),
this combining with (4.2) also yields limn→∞ pc(Gn) = ph(G,�). �

A necessary condition for ph(G,�) < pu is provided by Timár [31], Corollary
5.8, and Hutchcroft conjectured that it is also sufficient [17], Conjecture 8.5.

REMARK 4.9. The inequality in (4.2) can be strict. For example, consider the
regular tree Td with degree d ≥ 3 and fix an end ξ of Td . Let �ξ ⊂ Aut(Td) be the
subgroup consisting of automorphisms that fixes this end ξ . Let G = Td × Z and
� = �ξ × Aut(Z). Then � is transitive and nonunimodular. Notice ph(G,�) =
pu(G) < 1, where the first equality is due to Corollary 5.8 of [31]. However, any
union of finite consecutive levels consists of infinitely many copies of a cartesian
product of a finite tree and Z, whence limn→∞ pc(Gn) = 1 > ph(G,�) = pu in
this example.

5. The “biased” two-sided random walks. We start with some notation from
Lyons and Schramm [22]. Suppose V is a countable infinite set and � is a locally
compact group acting on V (on the left) and that all stabilizers of elements of V

have finite Haar measure. We also suppose that the quadruple (�,F,P,�) is a
measure-preserving dynamical system, namely � acts measurably on the measure
space (�,F,P) and preserves the measure P.

The space of trajectories of random walk is V N. Let (�,F) be a measurable
space. Define the shift operator S : V N → V N by

(Sw)(n) := w(n + 1),
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and let S act on � × V N as

S(ξ,w) := (ξ,Sw), ∀(ξ,w) ∈ � × V N.

For γ ∈ �, we define its action on � × V N by

γ (ξ,w) := (γ ξ, γw),

where (γw)(n) := γ (w(n)).
Let T : V Z → V Z be the natural extension of S , namely

T ŵ(n) = ŵ(n + 1), ∀n ∈ Z, ŵ ∈ V Z,

and as before let T act on {0,1}V × V Z as T (ξ, ŵ) = (ξ,T ŵ).
Define the projection maps π : V Z → V N as follows:

π(ŵ)(n) = ŵ(n), n ≥ 0,∀ŵ ∈ V Z,

and define π− : V Z → V N as follows:

π(ŵ)(n) = ŵ(−n), n ≥ 0,∀ŵ ∈ V Z.

We call a measurable function q : �×V ×V → [0,1], written as q : (ξ, x, y) �→
qξ (x, y), a random environment (from �) if for all ξ ∈ �, x ∈ V , we have∑

y∈V qξ (x, y) = 1. The natural action of � on q is given by (γ q)(ξ, x, y) :=
q(γ −1ξ, γ −1x, γ −1y). Given x ∈ V and a measurable map ξ �→ νξ (x) from � to
[0,∞), let P̂x denote the joint distribution on � × V N of ξ biased by νξ (x) and
the trajectory of the Markov chain determined by qξ starting at x. Let I denote the
σ -field of �-invariant events in �×V N. For examples, one can refer to [22] or see
our application of the following general theorem.

THEOREM 5.1 (Theorem 3 of [22]). Let V be a countable set with a quasi-
transitive action by a locally compact group �. Let {o1, . . . , oL} be a complete set
of representatives of �\V and write mi = m(oi). Let (�,F,P,�) be a measure-
preserving dynamical system and q be a �-invariant random environment from �.
Suppose that ν : (ξ, x) �→ νξ (x) is a �-invariant measurable mapping from � ×
V → [0,∞) such that for each ξ ∈ �, x �→ m(x)νξ (x) is a stationary distribution
for the Markov chain determined by qξ . Write

P̂ :=
L∑

i=1

P̂oi
.

Then the restriction of P̂ to the �-invariant σ -field I is an S-invariant measure. If

L∑
i=1

E
[
νξ (oi)

] = 1

then P̂ is a probability measure.
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Now we give a natural extension of Theorem 5.1 for a two-sided random walk.

THEOREM 5.2. With the same notation as in Theorem 5.1, let

q←
ξ (x1, x2) := νξ (x2)m(x2)

νξ (x1)m(x1)
qξ (x2, x1).

Since x �→ νξ (x)m(x) is a stationary measure for the Markov chain determined by
qξ , q←

ξ is a transition probability. Moreover, q←
ξ is also �-invariant.

For (ξ, x) ∈ � × V , let θx
ξ denote the law of a two-sided random walk ŵ ∈ V Z

starting from x, namely w = πŵ is a random walk starting from x determined by
qξ , and w− := π−(ŵ) is an independent random walk starting from x determined
by transition probability q←

ξ . Let �x denote the joint law of (ξ, ŵ) biased by νξ (x).
Write

� :=
L∑

i=1

�oi
.

Let IZ denote the �-invariant σ -field. Then the restriction of � to IZ is a T -
invariant measure. If

L∑
i=1

E
[
νξ (oi)

] = 1,

then � is a probability measure.

PROOF. This is just an adaptation of the proof of Theorem 3 of [22]. Let F be
a nonnegative �-invariant measurable function on � × V Z. It suffices to show∫

�×V Z

F ◦ T d� =
∫
�×V Z

F d�.

A key observation is that

dθx
ξ (ŵ) = ∑

y∈V

νξ (y)m(y)

νξ (x)m(x)
1{T ŵ(−1)=x} dθ

y
ξ (T ŵ).

Define

f (x, y; ξ) := νξ (y)
m(y)

m(x)

∫
V Z

1{ŵ(−1)=x}F(ξ, ŵ) dθ
y
ξ (ŵ).

Then we have∫
�×V Z

F ◦ T d� =
∫
�×V Z

F d� ◦ T −1 =
L∑

j=1

∑
y∈V

∫
�

dP(ξ)f (oj , y; ξ).
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It is easy to verify that f is �-invariant, and hence so is E[f (x, y; ·)]. Then
mass transport principle (e.g., Lemma 1 of [22]) yields that∫

�×V Z

F ◦ T d� =
L∑

j=1

∑
y∈V

∫
�

dP(ξ)
m(y)

m(oj )
f (y, oj ; ξ)

=
L∑

j=1

∫
�

dP(ξ)

∫
V Z

∑
y∈V

νξ (oj )1{y=ŵ(−1)}F(ξ, ŵ) dθ
oj

ξ (ŵ)

=
L∑

j=1

∫
�

dP(ξ)

∫
V Z

νξ (oj )F (ξ, ŵ) dθ
oj

ξ (ŵ)

=
∫
�×V Z

F d�,

which completes the proof. �

Now we summarize some properties of the backward random walk determined
by q←

ξ . The proof is standard for reversed Markov chains and we omit it.

PROPOSITION 5.3. With the same notation as in Theorem 5.2, one has the
following properties:

(1) x �→ νξ (x)m(x) is also a stationary distribution for the Markov chain de-
termined by q←

ξ , and (q←
ξ )← = qξ .

(2) qξ , q←
ξ induces same communicating classes. In particular, qξ is irre-

ducible iff q←
ξ is irreducible. Moreover, on each communicating class qξ is tran-

sient if and only if q←
ξ is transient.

Next, we return to the Bernoulli percolation setting. First we consider simple
random walk on a quasi-transitive graph G = (V ,E).

COROLLARY 5.4. Let G = (V ,E) be a quasi-transitive graph with automor-
phism group � = Aut(G). Let {o1, . . . , oL} be a complete set of representatives of
�\V . Suppose that (Pp, ξ) is Bernoulli(p) bond percolation process on G, and let
P̃o := Pp × Po, where Po is the law of simple random walk on G starting at the
point o. Then there exist positive constants ci, i = 1, . . . ,L, summing to 1 such that
P̂ := ∑L

i=1 ciP̃oi
is a probability measure and the restriction of P̂ to the �-invariant

σ -field I is an S-invariant measure.

PROOF. In Theorem 5.1, we take (�,F,P,�) = ({0,1}E,FE,Pp,Aut(G)).
E will be the corresponding expectation operator with respect to this measure
P = Pp .
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Take q(ξ, x, y) = qξ (x, y) = 1{x∼y}
deg(x)

, then the Markov chain associated with
transition probability qξ is just simple random walk on G and obviously q is �-
invariant.

Fix some u ∈ V . We take ν : {0,1}V × V → [0,∞) to be

νξ (x) = c

(u, x)deg(x)

m(x)
,

where c > 0 is a constant to be determined later and a = μ as in Lemma 3.3 such
that 
 is harmonic for simple random walk. By Lemma 2.2,

νξ (x) = c
μ̃([x])deg(u)|�xu|
μ̃([u])deg(x)|�ux|

deg(x)

m(x)

= c
deg(u)

μ̃([u])m(u)
μ̃

([x]).
From this, we see that ν is also �-invariant and is constant on each orbit.

From the harmonicity of modular function (Lemma 3.3), we know that x �→
m(x)νξ (x) is a stationary distribution for the Markov chain (simple random walk
now) determined by qξ . We choose the normalizing constant c > 0 to be deter-
mined by

L∑
i=1

E
[
νξ (oi)

] = 1.

Now take ci = νξ (oi) (this does not depend on ξ ) for i = 1, . . . ,L. Then ci P̃oi
=

P̂oi
, where P̂x is defined earlier as the joint distribution on � × V N of ξ biased

by νξ (x) and the trajectory of the Markov chain determined by qξ starting at x.
Therefore, Theorem 5.1 yields the desired result. �

Next, we consider the corresponding two-sided random walk as in Theorem 5.2.
Since qξ (x, y) = 1{x∼y}

deg(x)
, one has

q←
ξ (x, y) = νξ (y)m(y)

νξ (x)m(x)
qξ (y, x) = μ([y])m(y)

μ([x])m(x)

1{x∼y}
deg(x)

.

Note by Remark 3.4 in the unimodular case q←
ξ = qξ is just the transition proba-

bilities for simple random walk. As in Theorem 5.2 fix some x ∈ V and let w be
a simple random walk on G started from x, and w− be an independent random
walk determined by q←

ξ also started from x. Set θx to be the law of the two-sided
random walk ŵ started from x determined by w = πŵ and w− = π−ŵ.

Let PZ
ρ := ∑L

i=1 ciθ
oi denote the law of a two-sided random walk defined above

starting from the independently random chosen vertex ρ, where ci is from Corol-
lary 5.4.

With this notation and P̂ as in Corollary 5.4, we have the following extension.
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COROLLARY 5.5. Let IZ denote the �-invariant σ field of {0,1}E ×V Z, then
({0,1}E × V Z,IZ,Pp × PZ

ρ ,T ) is an invertible measure preserving dynamical

system. Moreover, P̂ = Pp × PZ
ρ ◦ π−1.

PROOF. This is just an application of Theorem 5.2 in this particular setting.
It is straightforward to verify that P̂ = Pp × PZ

ρ ◦ π−1 and we omit the details.
�

Notice that in the above “simple random walk on G” setting, qξ actually is
independent of the percolation configuration ξ . In the following, we shall consider
random walk on the percolation clusters of ξ .

We first recall the delayed two-sided simple random walk on percolation clus-
ters from [22]: let (P, ξ) be a bond percolation process on G and ξ ∈ 2E be a
percolation configuration. Let x ∈ V be some fixed vertex, called base point. Let
w(0) = x. For n ≥ 0, conditioned on 〈w(0), . . . ,w(n)〉 and ξ , let w′(n + 1) be
chosen uniformly from the neighbors of w(n) in G with equal probability. If the
edge (w(n),w′(n+ 1)) belongs to ξ , then we set w(n+ 1) = w′(n+ 1), otherwise
we set w(n + 1) = w(n). This w is a delayed simple random walk on percolation
cluster Cξ(x). Given ξ , let w, w− be a two independent delayed simple random
walk. Set ŵ such that w = π(ŵ), w− = π−(ŵ). Then ŵ is called a two-sided
delayed simple random walk. If G is transitive and unimodular, the two-sided de-
layed simple random walk ŵ is shift invariant on the �-invariant σ -field, which is
a key ingredient in the proof of Theorem 2.7.

Now for general quasi-transitive graphs, we introduce the following “biased”
two-sided random walk inspired by Example 6 in [22]. Suppose � ⊂ Aut(G)

is quasi-transitive and m is an associated Haar measure on �. Let (P, ξ) be a
bond percolation process on G. For each edge e = (x, y) ∈ E, set conductance
c(e) = √

m(x)m(y). Now given a percolation configuration ξ , for each edge e ∈ E,
if e /∈ ξ , delete the edge e from G and add a loop at x with conductance c(e) and
a loop at y also with conductance c(e). In the resulting network, one has a corre-
sponding random walk according the conductance, which is our desired “biased”
random walk. To be specific, we define qξ (x, y) as follows:

(5.1) q(ξ, x, y) = qξ (x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
m(x)m(y)∑

z∼x

√
m(z)m(x)

if (x, y) ∈ ξ, y �= x,

0 if y �= x and (x, y) /∈ ξ,

1 − ∑
z∼x,z �=x

qξ (x, z) if y = x.

Obviously, q and νξ (x) := c
∑

z∼x

√
m(z)/m(x) are both �-invariant by

Lemma 2.2, where c > 0 is a constant. Moreover, it is obvious that x �→
νξ (x)m(x) = c

∑
z∼x

√
m(z)m(x) is a stationary measure for qξ . Let q←

ξ be given
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as in Theorem 5.2, then

q←
ξ (x, y) = νξ (y)m(y)

νξ (x)m(x)
qξ (y, x) = qξ (x, y).

DEFINITION 5.6. Fix x ∈ V . Let w be a “square-root biased” random walk
determined by qξ in formula (5.1) started from x. Let w− be an independent
“square-root biased” random walk determined by q←

ξ = qξ started from x. Let

ŵ ∈ V Z be such that w = πŵ, w− = π−ŵ. Then ŵ is called a two-sided “square-
root biased” random walk started from x.

Notice in the case � is transitive and unimodular, ŵ is just the two-sided delayed
simple random walk we recalled earlier.

COROLLARY 5.7. Suppose G = (V ,E) is a connected, locally finite graph
and � ⊂ Aut(G) is closed and quasi-transitive. Let m be a Haar measure on �.
Let {o1, . . . , oL} be a complete set of representatives of �\V . Suppose that (P, ξ) is
a �-invariant bond percolation process on G, and let qξ be given by formula (5.1),
c > 0 be a constant, and νξ (x) = c

∑
z∼x

√
m(z)/m(x). For ξ ∈ 2E , x ∈ V , let ŵ

be a “square-root biased” two-sided random walk started from x as in Definition
5.6. Let �x denote the joint law of (ξ, ŵ) biased by νξ (x). Write

� :=
L∑

i=1

�oi
.

Let IZ denote the �-invariant σ -field. Then the restriction of � to IZ is an
T -invariant measure, where T is the natural extension on � × V Z of S . If the
constant c > 0 satisfies

∑L
i=1 E[νξ (oi)] = 1, then � is a probability measure.

PROOF. This is immediate from Theorem 5.2. �

PROPOSITION 5.8. With the same notation as in Corollary 5.7, if C is a light
cluster of ξ , then the “square-root biased” random walk determined by qξ on C is
positive recurrent.

PROOF. Since � is quasi-transitive, there exists a constant M > 0 such that for
any x ∼ y, 1

M
≤ m(y)

m(x)
≤ M . Let D be the maximal degree of G. Then consider the

induced network on C (described just before formula (5.1)), the total conductance
is finite: ∑

e∈C

c(e) ≤ ∑
x∈C

D
√

Mm(x) < ∞,

where in the last inequality we use the fact C is light. Therefore, C is positive
recurrent w.r.t. qξ . �
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PROPOSITION 5.9. Suppose � ⊂ Aut(G) is quasi-transitive and nonunimod-
ular, if Bernoulli(p) percolation on G has infinitely many heavy clusters a.s., then
these heavy clusters are transient for both simple random walk and the “square-
root biased” random walk determined by qξ in the formula (5.1).

PROOF. By Proposition 4.6, there exists some finite union of levels Lxi
, i =

1, . . . , n such that there exists a connected component Hn of Gn := ⋃n
i=1 Lxi

with
the property that Bernoulli(p) percolation on Hn has infinitely many infinite clus-
ters. Since �′

Hn
is quasi-transitive and unimodular, simple random walk is transient

on infinite clusters of Bernoulli(p) percolation on Hn; see, for example, Proposi-
tion 3.11 of [21] (its proof can be easily adapted to quasi-transitive case). Since
conductance c(e) = √

m(e−)m(e+) is bounded on Hn, the random walk deter-
mined by qξ is also transient on infinite clusters of Bernoulli p-percolation on Hn.
Therefore, by Rayleigh’s monotonicity principle, there exists some infinite cluster
of Bernoulli(p) percolation on G such that simple random walk and the “square-
root biased” random walk determined by qξ are both transient. Since transience
for simple random walk and the “square-root biased” random walk are both �-
invariant robust properties, Theorem 2.9 yields the desired conclusion. �

REMARK 5.10. For general insertion-and-deletion tolerant percolation pro-
cesses, by Corollary 5.6 and Remark 5.11 of [31] we can show that with positive
probability there is at least one heavy cluster that is transient for both simple ran-
dom walk and the “square-root biased” random walk.

If ph(G,�) = pu, then there is no p ∈ [0,1] such that there are infinitely many
heavy clusters for Bernoulli(p) percolation. We conjecture that in this case if there
is a unique infinite cluster for Bernoulli(p) percolation a.s., then the unique infinite
cluster is also transient for the “square-root biased” random walk determined by
qξ . Moreover, the unique infinite cluster is transient for simple random walk; see
Proposition 5.12.

In Remark 3.12 of [21], it was conjectured that if there are almost surely in-
finitely many infinite clusters for Bernoulli percolation, then almost surely every
infinite cluster is transient (for simple random walk). Moreover, there were exam-
ples of �-invariant insertion-tolerant percolation processes showing that infinite
clusters can be recurrent for simple random walk in the case � is nonunimodular.
An explicit example by Russell Lyons is as follows.

EXAMPLE 5.11. Let T be a regular tree with degree 3 and ξ be a distinguished
end of T . Let � be the group of automorphisms that fixes the end ξ . Let every
vertex of T be connected to precisely one of its offspring (as measured from ξ ),
each with probability 1/2. Let ω1 denote the configuration. Then every cluster of
ω1 is a ray. Now for each edge e = (x, y) ∈ E(T )\ω1 where y is an offspring of
x, let n be the graph distance from x to the highest vertex of its ray in ω1. Next,
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we insert the edge e with probability 1
2n+1 . Let ω2 be the configuration gotten from

ω1 by applying the above procedure independently for each edge e = (x, y) ∈
E(T )\ω1. Then ω2 is a �-invariant insertion-tolerant percolation process. It is
easy to see that every cluster of ω2 is infinite and recurrent for simple random
walk.

We now show that the conjecture in Remark 3.12 of [21] holds. Unlike the
short proof of Proposition 5.9, the proof of transience for all infinite Bernoulli
percolation clusters is much longer. Moreover, this transience result is not needed
for the proof of the main theorems.

First, we briefly review existing results. Suppose G is a nonamenable transitive
graph. For p close to 1, the anchored expansion constants of the infinite clusters of
Bernoulli(p) percolation are positive a.s. [8], whence the liminf speeds of simple
random walk on the infinite clusters are positive a.s. [34]. If moreover G is uni-
modular, then the speed of simple random walk on an infinite cluster exists and is
positive ([5], Theorem 4.4) for every Bernoulli(p) percolation on G with p > pc.
In particular, this implies that the infinite clusters of Bernoulli(p) percolation on
G with p > pc are transient. Proposition 3.11 of [21] shows that the same is true
for any Aut(G)-invariant insertion-tolerant percolation process that has infinitely
many infinite clusters a.s.

Now we consider the case G is nonunimodular and quasi-transitive. For p > pc

and a delayed simple random walk on the infinite clusters of every Bernoulli(p)

percolation on G, we do not know whether the speed of the delayed simple random
walk exists since it is not shift invariant as in the unimodular case. However, the
infinite clusters of Bernoulli(p) percolation on G with p > pc are still transient.

PROPOSITION 5.12. Suppose G is nonunimodular and quasi-transitive and
p > pc. Then the infinite clusters of Bernoulli(p) percolation on G are transient.

The proof of Proposition 5.12 is a simple modification of the proof of Theorem
4.3 of [31].

First we point out that Lemma 4.1 of [31] can be slightly strengthened to (the
conditions are the same while the conclusion is slightly stronger).

LEMMA 5.13. Consider a random rooted tree with the following properties.
Fix some p > 0 and define O0 := {o}, where o is the root. If a generation Om is al-
ready given, then the number of children that the vertices in Om will have depends
only on Om (and not on the past). Each vertex of Om has at least k children with
probability ≥ p and 0 children otherwise. Furthermore, there is a positive integer
α such that given any generation Om = {v1, . . . , vn}, if we let Xi be the number of
children of vi , then for each i ∈ {1, . . . , n}, Xi is independent of Xj for all but at
most α of them. Denote by Om+1 the set of children of the vertices in Om.

Then the tree is transient with positive probability whenever kp > 1.
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PROOF. We may assume that every vertex has exactly k children with prob-
ability p and 0 children otherwise. Pick some q ∈ (0,1) sufficiently close to 1
such that kpqk > 1. Let T be a random tree as stated in the lemma. Consider a
Bernoulli(q) percolation on T and construct a new random rooted tree T ′ as fol-
lows: Let V ′ be the set of vertices x with the property that it has exactly k children
x1, . . . , xk and every edge (x, xi) is open in the Bernoulli(q) percolation on T .
T ′ is the subtree of T induced by V ′ ∪ {o}. Notice T ′ is also a random rooted
tree satisfies the property of Lemma 4.1 of [31], whence T ′ is infinite with pos-
itive probability. This implies that pc(T ) < 1 with positive probability, whence
br(T ) > 1 with positive probability ([20], Theorem 5.15) and in particular T is
transient with positive probability ([20], Theorem 3.5). �

We now adopt some notation from [17, 31]. Suppose G = (V ,E) is a lo-
cally finite, connected graph and � ⊂ Aut(G) is nonunimodular and acts quasi-
transitively on G. Let O = {o1, . . . , oL} be a complete set of representatives of
G/�. Let a = μ be as in Lemma 3.3 and then the modular function 
(x,y) :=

�,a(x, y) is harmonic for simple random walk. Let ρ be a random vertex picked
from O with distribution a.

For each s ≤ t and v ∈ V , we define the slab

Ss,t (v) := {
x ∈ V : s ≤ log
(v, x) ≤ t

}
.

We also define

t0 := sup
{
log
(v,u) : u, v ∈ V,u ∼ v

}
.

We define the separating layers

Ln(v) := {
x ∈ V : (n − 1)t0 ≤ log
(v, x) ≤ nt0

}
and half-spaces H+

n (v) := ⋃
m≥n Lm(v) and H−

n (v) := ⋃
m≤n Lm(v). We also de-

fine Lm,n(v) := ⋃n
k=m Lk(v).

For each v ∈ V , −∞ ≤ m ≤ k ≤ n ≤ ∞, we define

X
m,n
k (v) := ∣∣{x ∈ Lk(v) : v Lm,n(v)←→ x

}∣∣
and

X̃
m,n
k (v) := ∣∣{x ∈ Lk(v) : v Lm,n(v)←→ x by an open path with only x ∈ Lk(v)

}∣∣,
where {v Lm,n(v)←→ x} denotes the event that v is connected to x by an open path in
the subgraph Lm,n(v).

We also need a modification of Lemma 4.2 from [31] as follows.

LEMMA 5.14. Let G be a nonunimodular quasi-transitive graph and v be a
vertex of G. Consider Bernoulli(p) percolation on G that has light infinite clusters
a.s. Then given the event that C(v) is an infinite light cluster, X̃

−n,∞
−n (v) → ∞ as

n → ∞.
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PROOF. The proof is almost the same as the one of Lemma 4.2 in [31]. Just
replace the event E = E(k) there by the event that C(v) is infinite and light and
there are infinitely many n such that X̃

−n,∞
−n (v) ≤ k. �

PROOF OF PROPOSITION 5.12. Denote by � the group Aut(G) in this proof.
Since � is nonunimodular and acts quasi-transitively on G, one has pc < ph

by [17]. Moreover, there is no infinite cluster at pc; see [16]. For p ∈ (pc,ph)

Bernoulli(p) percolation has infinitely many infinite light clusters. Since for all
pc < p1 < p2 ≤ 1, every infinite p2-cluster contains an infinite p1-cluster [15],
Theorem 4.1.3, by Rayleigh’s monotonicity principle it suffices to show for any
fixed p ∈ (pc,ph) the light infinite clusters of Bernoulli(p) percolation are tran-
sient for simple random walk. In the following, we fix some p ∈ (pc,ph) and some
o ∈ V such that there exists a neighbor o′ of o such that log
(o,o′) = −t0. Recall
[o] := �o denotes the orbit of o.

First, by quasi-transitivity and maximum principle for the harmonic function

(v, ·), there exists n0 > 0 such that for each v ∈ V . there exists a path Pv =
(v0 = v, v1, . . . , vn) such that n ≤ n0, log
(v, vn) ≤ −t0, vn ∈ [o] and 
(v, vi)

is decreasing. In particular, in the transitive case for v = o, we can choose n0 = 1
and Pv = (o, o′). Indeed, we just need to choose one such path for each x ∈ O. For
every vertex y /∈ O, suppose y is in the same orbit as x under �, namely for some
(arbitrarily fixed) γ = γx,y ∈ �, y = γ x. Then we let Py = γPx (the choice of γ

does not matter although it may change the choice of Py). Denote the end point vn

of Pv by v′.
For x ∈ O, define the graph G′(x) to be the union of the path Px and the sub-

graph induced by the vertices in half-space H−
0 (x′). For x ∈ O and y ∈ [x]\{x}, let

G′(y) := γG′(x), where γ = γx,y is the one fixed as in the above definition of Py .
We call the cluster C(x) nice if C(x) = C(x) ∩ G′(x) and C(x′) ∩ H−

0 (x′) =
C(x′)∩G′(x′). Let F(x) be the event that C(x) is infinite, light and nice. By inser-
tion and deletion tolerance and p ∈ (pc,ph), we have qx := Pp(F (x)) > 0. More-
over, qx depends only on the orbit of x, whence q := inf{qx : x ∈ V } = min{qx :
x ∈ O} > 0.

Given a vertex x ∈ L−j (o) (if there are two such j ’s, we take the larger one),
the vertex x′ and r, i ≥ 1, define Bx(i; r) := B(x, r) ∩ G′(x) ∩ L−j−i,−j (o).
One can see Figure 1 on page 2354 of [31] for an illustration of Bx(i; r)
in the transitive case. We say a vertex v ∈ Bx(i; r)\Px belongs to the side
boundary of Bx(i; r) if there is some edge (v,w) such that w ∈ H+

−j−i(o) and
w /∈ Bx(i; r). Let C(x)|Bx(i;r) denote the open cluster of x for percolation re-

stricted to the finite graph Bx(i; r). Let Y−i (o, x) := {v ∈ L−j−i(o) : v
L−i,0(x)←→

x by an open path with only v ∈ L−j−i(o)} and X̃−i(o, x) := |Y−i (o, x)|. Given
k ≥ 1, we say that Bx(i; r) is k-good if X̃−i (o, x) ≥ k and the side boundary of
Bx(i; r) is disjoint from C(x)|Bx(i;r).
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CLAIM. For any given k there is a uniform choice of i, r such that Bx(i; r) is
k-good with probability at least q/2 for every x ∈ H−

0 (o).

Suppose x ∈ L−j (o). From Lemma 5.14 for any given λ > 1, there exists a
positive integer ix = ix(λ) such that given the event F(x) occurs, with probabil-
ity at least 3

4 , X̃
−i+1,∞
−i+1 (x) ≥ λk if i = ix . Let Zi(x) denote the set of vertices

that contribute to X̃
−i+1,∞
−i+1 (x). Now condition on X̃

−i+1,∞
−i+1 (x) ≥ λk, we have

X̃−i(o, x) ≥ k with probability at least 3
4 . Indeed, if |Zi(x) ∩ L−j−i(o)| ≥ k,

then X̃−i (o, x) ≥ k. Otherwise, |Zi(x) ∩ L−j−i+1(o)| ≥ (λ − 1)k. For each v ∈
Zi(x) ∩ L−j−i+1(o), consider the part of the path Pv stopped at its first hitting
time of L−j−i(o) and call it Pv(o, x). If Pv(o, x) is also open, then the endpoint
(other than v) belongs to Y−i (o, x). Notice the event X̃

−i+1,∞
−i+1 (x) ≥ λk is inde-

pendent of Pv(o, x) is open for every v ∈ Zi(x) ∩ L−j−i+1(o) and two such paths
are disjoint if d(v, v′) ≥ 2n0. Therefore, if λ is sufficiently large, with probability
at least 3

4 there are at least k such paths are open. Thus X̃−i (o, x) ≥ k with proba-

bility at least 3
4 conditioned on X̃

−i+1,∞
−i+1 (x) ≥ λk. Combining the above, we have

X̃−i(o, x) ≥ k has probability at least (3
4)2qx ≥ 9q

16 . Now since C(x) is light a.s.,
C(x) intersect each slab L−i (x) with at most finitely many vertices a.s. Thus there
exists a large integer r = rx such that probability of the event that C(x) intersect
the boundary of B(x, r) at some vertex v ∈ H+

−i (x) is at most q
16 .

Notice if F(x) occurs, X̃−i (o, x) ≥ k and C(x) does not intersect the boundary
of B(x, r) at some vertex v ∈ H+

−i (x), then Bx(i; r) is k-good. Hence Bx(i; r) is
k-good with probability at least q

2 . Notice i, r depend only on the orbit of x and
this proves the Claim above.

Now we can proceed to construct a random tree as in the proof of Theorem
4.3 of [31]. We fix k such that kq

2Dn0 > 1 and then some i, r such that Bx(i; r) is
k-good with probability at least q/2 for every x ∈ H−

0 (o). The vertex o ∈ V (G)

corresponds to the root ô of T , the 0 generation O0 of T . If Bo(i; r) is k-good,
then it contains at least k vertices in L−i (o) that can be connected to o by an open
path with only one endpoint lying in Li(o). For each of these vertices x, add a
child x̂ to ô in T and let these vertices x̂ constitute the first generation O1 of T . If
Bo(i; r) is not k-good, let ô have 0 children and T = {ô}.

Suppose we have defined the gth generation Og of T such that each vertex
x̂ ∈ Og corresponds to a vertex x ∈ L−gi(o). We can partition Og such that x̂,
ŷ are in the same class of the partition iff for the corresponding x, y ∈ L−gi(o),
we have x′ = y′. Each set of the partition has at most Dn0 elements, where D

the maximum degree of a vertex in G. Now choose one vertex in each class of
the partition uniformly and independently; call the set of chosen vertices parental
vertices. If x̂ is not parental, then let it have 0 children.

If x̂ is parental, assign f children to it iff Bx(i; r) is k-good and f :=
X̃−i(o, x) ≥ k; assign 0 children to x̂ otherwise. Assigning children in this way



INDISTINGUISHABILITY OF HEAVY CLUSTERS 4105

for each x̂ ∈ Og and these children constitute Og+1. Note that a vertex has at least
k children with probability at least q

2Dn0 . Notice different vertices in Og+1 will
also correspond to different vertices in L−(g+1)i(o).

It is straightforward to verify that the tree T constructed above satisfies the con-
dition of Lemma 5.13 and the interested reader can refer to the proof of Theorem
4.3 in [31] for a similar verification. Hence T is transient with positive probabil-
ity. Notice the open cluster restricted in the subgraph induced by the correspond-
ing vertices x and Bx(i, r) is roughly isometric to T , whence it is also transient.
By Rayleigh’s monotonicity principle, C(o) is transient with positive probability.
Since transience is a robust invariant property, Theorem 2.9 yields the desired con-
clusion. �

6. Proofs of the main theorems. The proof of Theorem 1.1 follows a similar
strategy as the proof of Theorem 2.7 in [21], and the “square-root biased” two-
sided random walk in Definition 5.6 will play the role of two-sided delayed simple
random walk in the proof of Theorem 2.7.

DEFINITION 6.1. Suppose � ⊂ Aut(G) is quasi-transitive and (P, ξ) is a �-
invariant bond percolation process on G. Suppose A is a �-invariant property. An
infinite cluster C of ξ is called of type A if C ∈ A; otherwise, C is called of type
¬A.

Suppose that there is an infinite cluster C of ξ and e ∈ E\C such that the con-
nected component C ′ of ξ ∪ {e} that contains C has a type different from the one
of C. Then e is called a pivotal edge for (C, ξ).

The following lemma is proved for transitive graphs in [21] and the proof can
be easily adapted to quasi-transitive ones.

LEMMA 6.2 (Lemma 3.5 of [21]). Suppose � ⊂ Aut(G) is quasi-transitive.
(P, ξ) is an insertion-tolerant �-invariant bond percolation process on G. Suppose
A ∈ FE is a �-invariant property. Assume that there is positive probability for
coexistence of infinite clusters of type A and ¬A. Then with positive probability,
there is an infinite cluster C of ξ that has a pivotal edge.

PROOF OF THEOREM 1.1. We proceed by contradiction. Suppose there exists
some �-invariant property A such that there is positive probability for coexistence
of heavy clusters in A and ¬A. Let O = {o1, . . . , oL} be a complete set of repre-
sentatives of G/�. Fix a Haar measure m on �. By Lemma 6.2, we may assume
with positive probability there are pivotal edges of heavy clusters of type A since
otherwise one can replace A by ¬A. For every x ∈ V , fix some rx > 0 such that
with positive probability, the cluster C(x) is heavy, of type A and there is an edge
e at graph distance at most rx from x that is pivotal for C(x). Notice we can choose
rx only depending on the orbit of x. Let r := max{rx : x ∈ O}.
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Fix ε > 0. Define Ax to be the event that the cluster of x in ξ is heavy and of
type A. Let A′

x be an event that depends on only finitely many edges such that
Pp[Ax
A′

x] < ε. Let Rx be large enough such that A′
x only depends on edges in

the ball B(x,Rx). Let R := max{Rx : x ∈ O}.
Take a random root ρ ∈ O independent of the Bernoulli percolation (Pp, ξ) with

distribution P(ρ = oi) = νξ (oi), where νξ (x) = c
∑

z∼x

√
m(z)
m(x)

and c is such that∑L
i=1 E[νξ (oi)] = 1.
Let W be a “square-root biased” two-sided random walk given by Definition 5.6

started from the random root ρ. For n ∈ Z, let en ∈ E be an edge chosen uniformly
among the edges within distance at most r from W(n). Recall in Corollary 5.7 �

is the joint law of (ξ,W). Write P̂ for the joint law of ρ, ξ , W and 〈en : n ∈ Z〉.
Given e ∈ E, let Pe be the event that ξ ∈ Aρ and e is pivotal for C(ρ). Let E n

e

be the event that en = e and W(j) is not an endpoint of e whenever −∞ < j < n.
Recall the insertion operation 	e in Definition 2.6. For any measurable event B,
e ∈ E and n ≥ 1, one has that

P̂
[
E n

e ∩ (B\	eB)
] = 1 − p

p
P̂

[
E n

e ∩ 	e(B\	eB)
] ≤ 1 − p

p
P̂

[
E n

e ∩ 	eB
]
,

where the first equality uses the definition of E n
e and the fact that n ≥ 1.

Then for all measurable event B one has

P̂
[
E n

e ∩ B
] = P̂

[
E n

e ∩ (B\	eB)
] + P̂

[
E n

e ∩ (B ∩ 	eB)
]

≤ 1 − p

p
P̂

[
E n

e ∩ 	eB
] + P̂

[
E n

e ∩ 	eB
]

= 1

p
P̂

[
E n

e ∩ 	eB
]
.

Applying the above inequality with B = A′
ρ ∩ Pe, one has

(6.1)
P̂

[
E n

e ∩ 	eA
′
ρ ∩ 	ePe

] ≥ pP̂
[
E n

e ∩ A′
ρ ∩ Pe

]
= pP̂

[
E n

e ∩ A′
ρ ∩ Pen

]
.

Define E n := ⋃
e∈E E n

e , and E n
R := ⋃

e∈E\B(ρ,R) E
n
e and note that these are disjoint

unions.
By definition of Pe, 	ePe ⊂ ¬Aρ since the insertion of pivotal edge e would

change the type of C(ρ). Also 	eA
′
ρ ⊂ A′

ρ for any edge e ∈ E\B(ρ,R) since A′
ρ

only depends edges within graph distance R from ρ. Thus

P̂
[
A′

ρ ∩ ¬Aρ

] ≥ P̂
[
E n

R ∩ A′
ρ ∩ ¬Aρ

]
= ∑

e∈E\B(ρ,R)

P̂
[
E n

e ∩ A′
ρ ∩ ¬Aρ

]
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≥ ∑
e∈E\B(ρ,R)

P̂
[
E n

e ∩ 	eA
′
ρ ∩ 	ePe

]
(6.2)

(6.1)≥ p
∑

e∈E\B(ρ,R)

P̂
[
E n

e ∩ A′
ρ ∩ Pen

]
= pP̂

[
E n

R ∩ A′
ρ ∩ Pen

]
≥ pP̂

[
E n

R ∩ Aρ ∩ Pen

] − pε.

Since there are infinitely many heavy clusters a.s., Proposition 5.9 yields that W

is transient on the event that C(ρ) is heavy, whence one can fix n sufficiently large
such that the probability that C(ρ) is heavy and en ∈ B(ρ,R) is smaller than ε,
whence P̂[Aρ ∩ (E n − E n

R)] ≤ ε. Then by (6.2), one has for n large

(6.3) ε ≥ P̂
[
A′

ρ
Aρ

] ≥ P̂
[
A′

ρ ∩ ¬Aρ

] ≥ pP̂
[
E n ∩ Aρ ∩ Pen

] − 2pε.

Note by our choice of r , en, P̂[Aρ ∩ Pe0] > 0. Conditioned on Aρ ∩ Pe0 ,
transience of W implies that there exists m ≤ 0 such that W(m) is at graph distance
r to e0 and W(j) is at graph distance more than r to e0 for all j < m, in particular
W(j) is not incident to e0, whence by choice of r , we have P̂[E m ∩Aρ ∩Pem] > 0.

Define Bm := ⋃
x∈V E m ∩ Aρ ∩ Pem ∩ {ρ = x}. Although event {ρ = x} has

zero probability under P̂ for x ∈ V \O, the event E m ∩Aρ ∩Pem ∩{ρ = x} is well
defined just as the case x ∈ O.

Notice Bm is �-invariant and P̂[Bm] = P̂[E m ∩ Aρ ∩ Pem] for any m ∈ Z.
Let βξ,W denote the law of (en)n∈Z given ξ , W , then one has

P̂[Bm] =
∫

2E×V Z×EZ

1[(ξ,W,(en)n∈Z)∈Bm] dP̂

=
∫

2E×V Z

∫
EZ

1[(ξ,W,(en)n∈Z)∈Bm] dβξ,W

(
(en)n∈Z

)
d�(ξ,W).(6.4)

Define F(ξ,W) := ∫
EZ 1[(ξ,W,(en)n∈Z)∈Bm] dβξ,W ((en)n∈Z). It is straightforward

to check that F is a �-invariant measurable function, whence Corollary 5.7 yields
that P̂[Bm] does not depend on m. Thus P̂[E n ∩ Aρ ∩ Pen] = P̂[Bn] does not
depend on n. Hence when ε > 0 is sufficiently small, (6.3) gives a contradiction.
This completes the proof. �

Given a trajectory w ∈ V Z, for a set C ⊂ V and m,n ∈ Z, m < n, write

αn
m(C)(w) := 1

n − m

n−1∑
k=m

1{w(k)∈C}

and

α(C)(w) := lim
n→∞

1

n

n∑
k=1

1{w(k)∈C}
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when the limit exists, for the frequency of visits to C by the trajectory w on G.
We do not need to define α(C) when the limit does not exist due to the following
generalization of Lemma 4.2 of [21] in the quasi-transitive setting.

LEMMA 6.3. Suppose � ⊂ Aut(G) is quasi-transitive. Let P̂ be the probabil-
ity measure given in Corollary 5.4. Then there is a �-invariant measurable func-
tion f : 2V → [0,1] with the following property: P̂-a.s. α(C) exists and is equal to
f (C) for every cluster C. The function f is called the frequency function.

PROOF. The proof follows a similar strategy as the one of Lemma 4.2 of [21].
Let λ be a probability measure on {o1, . . . , oL} with λ({oi}) = ci , where these ci ’s
come from Corollary 5.4. Let ρ be sampled from λ. Let Pρ = ∑L

i=1 ciPoi
denote

the law of simple random walk starting from random vertex ρ. Then we have
P̂ = Pp × Pρ .

For every α ∈ [0,1], let

Zα :=
{
C ⊂ V : lim

n→∞αn
0 (C) = α,Pρ-a.s.

}
.

Note this definition does not depend on the choice of basepoint ρ.
Define f (C) := α when C ∈ Zα for some α ∈ [0,1]. If C /∈ Z := ⋃

α∈[0,1]Zα ,
put f (C) := 0. As shown in the proof of Lemma 4.2 of [21], f is measurable and
�-invariant and for P̂-a.e. (ξ,w) ∈ {0,1}V × V N,

(6.5) lim
n→∞ max

{∣∣αm
0 (C)(w) − αk

0(C)(w)
∣∣ : k,m ≥ n,C is a cluster of ξ

} = 0.

It remains to show that for Pp-a.s. ξ , every cluster of ξ is in Z . Actually, let
A := {ξ : C ∈ Z,∀ cluster C of ξ}, it’s easy to see A ∈ FV .

Corollary 5.5 and (6.5) then yield that for Pp × PZ
ρ -a.s. (ξ, ŵ),

(6.6) lim
n→∞ max

{∣∣αm
0 (C)(ŵ) − αk

0(C)(ŵ)
∣∣ : k,m ≥ n,C is a cluster of ξ

} = 0.

By the shift invariance of T ,

2 max
{∣∣α2n

0 (C) − αn
0 (C)

∣∣ : C is a cluster
}

= max
{∣∣α2n

n (C) − αn
0 (C)

∣∣ : C is a cluster
}

has the same law as max{|αn
0 (C) − α0−n(C)| : C is a cluster}.

Therefore by (6.6), we have

(6.7) max
{∣∣αn

0 (C) − α0−n(C)
∣∣ : C is a cluster

} → 0 in probability.

By (6.6), we also have limn→∞ αn
0 (C) exists. Similar argument shows that

limn→∞ α0−n(C) also exists. Combining with the above equation (6.7) one has
that a.s. limn→∞ αn

0 (C) = α(C) = limn→∞ α0−n(C) for every cluster C.
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However, given ξ and a cluster C of ξ , αn
0 (C) is independent of α0−n(C) con-

ditioned on w(0), but both converge to α(C). Therefore, α(C) is a Pp × PZ
ρ -a.s.

constant. This completes the proof. �

PROOF OF THEOREM 1.3. Write P = Pp and � = Aut(G). If � is unimodular,
this is just Theorem 4.1 of [21]. In the following, we assume that � is nonunimod-
ular.

Since there is a.s. more than one infinite cluster, N(p) = ∞ a.s. Since light
and heavy infinite clusters cannot coexist a.s., we consider two cases separately.
If these infinitely many infinite clusters are light a.s., then inf{P(x ↔ y) : x, y ∈
V } = 0. Indeed, if inf{P(x ↔ y) : x, y ∈ V } = c1 > 0, fix some o ∈ V and let
Ln := Ln(o). Then P[o ↔ Ln] ≥ inf{P(x ↔ y) : x, y ∈ V } = c1 > 0. Notice {o ↔
Ln} is decreasing. Thus

P
[
C(o) is heavy

] ≥ P

[ ∞⋂
n=1

{o ↔ Ln}
]

≥ lim inf
n→∞ P[o ↔ Ln] ≥ c1 > 0.

This contradicts the assumption that these infinite clusters are light.
Now in the following we assume that there are infinitely many heavy clusters

a.s. Let f be the frequency function given in Lemma 6.3. Since f is �-invariant,
for each α ∈ [0,1], Qα := {C ⊂ 2V : f (C) ≤ α} is a �-invariant property, where
for a cluster C we also use C to denote its vertex set.

Let Aα be the event that there exists an infinite cluster that satisfies the property
Qα . If P(Aα) > 0, then P(Aα) = 1 by ergodicity of P.

Let c := inf{α ∈ [0,1] : P(Aα) > 0}. By definition of Aα and c, we have f (C) ≥
c for all infinite clusters C P-a.s. On the other hand, for each t > c, P(At ) > 0 and
then P(At ) = 1 by ergodicity. Thus P-a.s. there exists an infinite cluster C such that
f (C) ≤ t , that is, C satisfies Qt . Since there are infinitely many heavy clusters a.s.,
Theorem 1.1 then implies that all these infinite clusters satisfy property Qt . Since
this is true for arbitrary t > c, it follows that P-a.s.

f (C) = c, for every infinite cluster C.

The rest proof of the first conclusion is almost the same as the one of Theorem
4.1 of [21] except we use Lemma 6.3 to get the a.s. equality f (C) = α(C) in this
quasi-transitive nonunimodular setting.

And deriving pu = pconn from the first conclusion is easy so we leave it to the
reader. �

REMARK 6.4. At p = pu, infx∈V Ppu(o ↔ x) can be equal to zero or be pos-
itive. For example, let G be a nonamenable planar quasi-transitive graph with
one end. Then 0 < pc < pu < 1 (see Theorem 8.24 of [20]) and there is a
unique infinite cluster Ppu -a.s. In this case by Harris-FKG inequality, we know
infx∈V Ppu(o ↔ x) > 0. Other examples include Tb with b ≥ 3 or Z2 ∗ Z2, where
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∗ means the free product. They are transitive graphs with infinitely many ends, and
hence pu = 1.

In the following, we will use X × Y to denote the Cartesian product of graphs
X and Y . Consider Tb × Z where Tb is a regular tree with degree b ≥ 3. We
know 0 < pc < pu < 1 from [2, 17]. Schonmann [27] and Peres [24] showed that
at p = pu there are infinitely many infinite clusters a.s. Now from Theorem 1.3
we know infx∈V Ppu(o ↔ x) = 0 in this case. For the case G = T1 × · · · × Tn,
n ≥ 2, where Ti are regular trees with degree at least 3, Theorem 1.3 implies that
infx∈V Ppu(o ↔ x) = 0. In this case, Hutchcroft [18], Question 1.9, conjectured
that Ppu(o ↔ x) even decays exponentially in the graph distance d(o, x).

7. Examples and questions.

7.1. Examples 1. Consider the regular tree Tb with degree b ≥ 3. Let ξ be
a fixed end of Tb and �ξ ⊂ Aut(Tb) be the subgroup that fixes the end ξ . Then
�ξ is transitive and nonunimodular. And ph(G,�ξ ) = 1. This can be seen by di-
rect calculation (comparing to a branching process) or by Corollary 4.8. Indeed
since pu = 1, limn→∞ pc(Gn) ≤ pu holds and then ph(G,�ξ ) = limn→∞ pc(Gn).
Since Gn are finite unions of levels, all its connected components are finite, whence
pc(Gn) = 1 and then ph(G,�ξ ) = limn→∞ pc(Gn) = 1. More information about
this example can be found in Section 8.1 of [17]. This gives an example with
pc < ph(G,�) = pu = 1.

Now consider the Cartesian product G := Tb × Z
d with b ≥ 3, d ≥ 1. Let

� = �ξ × Aut(Zd). Corollary 5.8 of [31] implies that ph(G,�) = pu since the
subgraph induced by any finite unions of levels is amenable. Peres [24] showed
that N(ph(G,�)) = ∞ a.s. Proposition 4.7 yields all these infinite clusters are
light. This gives an example that pc < ph(G,�) = pu < 1 and N(ph(G,�)) = ∞.
Here, pc < ph(G,�) is due to [17].

QUESTION 7.1. Is there a graph G and � ⊂ Aut(G) such that � is quasi-
transitive and nonunimodular, pc < ph(G,�) = pu < 1 and N(ph(G,�)) = 1
a.s.?

It was asked in [15] whether there is any explicit example of transitive graph
satisfying pc < ph < pu < 1. The first such examples are provided in [17]; see
Section 8.2 there. The following examples are also devoted to this question. Ex-
amples 2 are slightly simpler in the sense that one does not need to consider
anisotropic percolation. However, Examples 2 exhibit ph(G,�) < pu(G) with
proper subgroup �. One might modify them to obtain examples with � = Aut(G).
We will not do that and instead we point out Examples 3 satisfying the restriction
� = Aut(G).
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7.2. Examples 2. To be consistent with the notation in [20], we consider reg-
ular trees Tb+1 with b ≥ 3. Suppose n1, n2 are two positive integers such that
n1 + n2 = b. We define a (1, n1, n2)-orientation of Tb+1 like the n1 = 1, n2 = 2,
b = 3 case in [17]. To be precise, give a partial orientation of the edge set of Tb+1
such that every vertex is incident to exactly one unoriented edge, has n1 oriented
edges emanating from it, and has n2 oriented edges pointing into it. From now on,
we fix such an orientation.

Denote by �(1,n1,n2) ⊂ Aut(Tb+1) the subgroup of automorphisms that preserve
this orientation. It is easy to see that this subgroup �(1,n1,n2) acts transitively on
Tb+1. Moreover, if q := n2

n1
�= 1, then �(1,n1,n2) is nonunimodular. Indeed, define

h(u, v) to be the height difference as in [17]: for u, v ∈ Tb+1 there is a unique
simple path r connecting them, suppose there are m1 edges on r that are crossed
in the forward direction when moving from u to v along r and m2 edges that are
crossed in the opposite direction, then h(u, v) := m1 −m2. Using Lemma 2.2, it is
easy to see 
�(u, v) = |�vu|

|�uv| = qh(u,v) for u ∼ v, where � := �(1,n1,n2). Then by

cocycle identity, 
�(u, v) = qh(u,v) holds for all pairs u, v ∈ Tb+1.

One has ph(T4,�(1,1,2)) = 2
√

2+1−
√

4
√

2−3
6 by Proposition 8.1 of [17] and for-

mula (8.1) there. The following proposition is a slight generalization of this result.

PROPOSITION 7.2. Suppose positive integers n1, n2 satisfy n1 + n2 = b, then

(7.1) ph(Tb+1,�(1,n1,n2)) = 1 + 2
√

n1n2 −
√

(2
√

n1n2 + 1)2 − 4(n1 + n2)

2(n1 + n2)
.

We will not provide its proof but point out two ways to do it in the following
two remarks.

REMARK 7.3. If one defines the tiltability threshold pt as in [17], using the
same method of obtaining formula (8.1) in [17], one can calculate the exact value
of pt and it is just the right-hand side of (7.1). Then one can use similar argu-
ment as in the proof of Proposition 8.1 of [17] to obtain ph(Tb+1,�(1,n1,n2)) =
pt(Tb+1,�(1,n1,n2)).

REMARK 7.4. Another way to prove Proposition 7.2 is using Corollary
4.8. Notice that the finite union of consecutive levels Gn are infinitely many
copies of periodic trees Hn. These periodic trees are directed covers ([20], Sec-
tion 3.3) of certain finite oriented graphs Dn. Notice pc(Hn)

−1 = br(Hn) = gr(Hn)

for periodic trees. Moreover, let An denote the adjacency matrix of Dn, then
gr(Hn) = λ∗(An) (see the discussion on pages 83–84 of [20]), where λ∗(An)

denotes the largest positive eigenvalue of the matrix An. Then the reciprocal of
ph(Tb+1,�(1,n1,n2)) equals the limit of λ∗(An). Calculating the limit of λ∗(An)

then gives Proposition 7.2. The calculation is a little bit long and we omit it here.
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Russell Lyons pointed out to me that the adjacency matrices An are parts of a
block Toeplitz matrix A and that [9] may be relevant. Indeed the formula from
[9] does give exactly the reciprocal of (7.1). However, the theorem in [9] does not
include our matrix A. One might expect to extend the theorem in [9] in order to
have a simple way to find the limit of λ∗(An).

Now we consider Tb+1 ×Z and �b := �(1,n1,n2) ×Aut(Z). From Theorem 6.10,
Proposition 7.35 and Theorem 7.37 of [20], one has the following lower bound for
pu:

(7.2) pu(Tb+1 ×Z) ≥ 1

cogr(Tb+1 ×Z)
= 1

√
b + 1 +

√
2
√

b − 1
.

Note ph(Tb+1 × Z,�b) ≤ ph(Tb+1,�(1,n1,n2)). Simple calculation shows that
when n1 ≥ 2, n2 ≥ 2 and b large enough, the value of ph(Tb+1,�(1,n1,n2)) (Propo-
sition 7.2) is strictly less than the above lower bound of pu, whence such graphs
are explicit examples exhibiting pc(Tb+1 ×Z) < ph(Tb+1 ×Z,�b) < pu(Tb+1 ×
Z) < 1. However, here �b is not the whole automorphism group of Tb+1 ×Z.

7.3. Examples 3. The following family of examples are motivated by [15].
Recall for a quasi-transitive graph G, ph := ph(G,Aut(G)).

DEFINITION 7.5 (Definition 1.3 in [25]). A graph G is called prime w.r.t.
Cartesian product if G is nontrivial (not the graph U with a single vertex and no
edge) and if G ∼= Y × Z then either Y ∼= U or Z ∼= U , where A ∼= B means that
graph A is isomorphic to B . Two distinct graphs G, G′ are called relatively prime
if G ∼= X × Z and G′ ∼= Y × Z implies that Z ∼= U .

Now fix G0 to be a nonunimodular transitive graph and that is relatively prime
to regular trees (e.g., G0 can be the grand-parent graph). Then for any regular tree
Tk by Corollary 3.2 of [25] Aut(G0 × Tk) = Aut(G0) × Aut(Tk), whence it is
nonunimodular.

For k large enough, one has ph(G0 × Tk) < pu(G0 × Tk) (see the inequality
(4.9.2) on page 87 of [15]). By Hutchcroft [17] and the fact that Aut(G0 × Tk) is
nonunimodular and transitive, one has pc(G0 × Tk) < ph(G0 × Tk), whence we
get another family of graphs exhibiting pc < ph < pu < 1.

Last but not least, Theorem 1.1 and Theorem 1.3 are only proved for Bernoulli
percolation. However, corresponding theorems in [21] are proved to hold for gen-
eral insertion tolerant percolation process.

Remark 5.10 implies for insertion-and-deletion tolerant percolation process the
following weaker conclusion hold: there exists some heavy cluster that is transient
for the “square-root biased” random walk. Notice in the proof of Theorem 1.1
we need that with positive probability the cluster C(ρ) is heavy, transient for the
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“square-root biased” random walk and has some pivotal edges. However, the weak
conclusion and Lemma 6.2 do not guarantee the existence of a pivotal edge for
C(ρ).

In Timár’s proof of Proposition 4.6, deletion-tolerance was used in the proof
of Lemma 5.2 and Lemma 5.3 in [31]. Lemma 5.2 can be extended to percola-
tion processes with just insertion-tolerance property but we do not know whether
Lemma 5.3 can be extended to such percolation processes.

QUESTION 7.6. Does Theorem 1.1 hold if one just assumes �-invariance
and insertion-and-deletion tolerance? What if just �-invariance and insertion-
tolerance?
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