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FOUR-DIMENSIONAL LOOP-ERASED RANDOM WALK

BY GREGORY LAWLER1, XIN SUN2 AND WEI WU3

University of Chicago, Columbia University and University of Warwick

The loop-erased random walk (LERW) in Z
4 is the process obtained by

erasing loops chronologically for a simple random walk. We prove that the

escape probability of the LERW renormalized by (logn)
1
3 converges almost

surely and in Lp for all p > 0. Along the way, we extend previous results
by the first author building on slowly recurrent sets. We provide two applica-
tions for the escape probability. We construct the two-sided LERW, and we
construct a ±1 spin model coupled with the wired spanning forests on Z

4

with the bi-Laplacian Gaussian field on R
4 as its scaling limit.

1. Introduction. Loop-erased random walk (LERW) is a probability measure
on self-avoiding paths introduced by the first author of this paper in [4]. Since then,
LERW has become an important model in statistical physics and probability, with
close connections to other important subjects such as the uniform spanning tree
and the Schramm–Loewner evolution. A key quantity that governs the large scale
behavior of LERW is the so-called escape probability, namely, the nonintersection
probability of a LERW and an independent simple random walk (SRW) starting
at the same point. It is known that d = 4 is critical for LERW, in the sense that
a LERW and an SRW on Z

d intersect a.s. if and only if d ≤ 4. It was shown
in [7] that LERW on Z

4 has Brownian motion as its scaling limit after proper
normalization. The exact normalization was conjectured but not proved in that
paper; in [9], it was determined up to multiplicative constants. The argument uses
a weak version of a “mean-field” property for LERW in Z

4. In this paper, we
establish the sharp mean-field property for the escape probability of LERW on Z

4

that goes beyond the scaling limit result.
We state our main results for the renormalized escape probability of 4D LERW,

Theorems 1.1 and 1.2, in Section 1.1. An outline of the proofs is given in Sec-
tion 1.2. Then in Sections 1.3 and 1.4 we discuss two applications of the main
results, namely a construction of the two-sided LERW in d = 4, and a spin field
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coupled with the wired spanning forests on Z
4 with the bi-Laplacian Gaussian field

on R
4 as its scaling limit.

1.1. Escape probability of LERW. Given a positive integer d , a process S =
{Sn}n∈N on Z

d is called a simple random walk (SRW) on Z
d if {Sn+1 −Sn}n∈N are

i.i.d. random variables taking uniform distribution on {z ∈ Z
d : |z| = 1}. Here | · | is

the Euclidean norm on R
d . Unless otherwise stated, our SRW starts at the origin,

namely, S0 = 0. When S0 = x almost surely, we denote the probability measure of
S by P

x .
A path on Z

d is a sequence of vertices such that any two consecutive vertices
are neighbors in Z

d . Given a sample S of SRW and m < n ∈ N, let S[m,n] and
S[n,∞) be the paths [Sm,Sm+1 · · · , Sn] and [Sn,Sn+1, . . .], respectively. Given a
finite path P = [v0, v1, . . . , vn] on Z

d , the (forward) loop erasure of P (denoted
by LE(P)) is defined by erasing cycles in P chronologically. More precisely, we
define LE(P) inductively as follows. The first vertex u0 of LE(P) is the vertex
v0 of P . Supposing that uj has been set, let k be the last index such that vk = uj .
Set uj+1 = vk+1 if k < n; otherwise, let LE(P) := [u0, . . . , uj ]. Suppose S is
an SRW on Z

d (d ≥ 3). Since S is transient, there is no trouble defining LE(S) =
LE(S[0,∞)), which we call the loop-erased random walk (LERW) on Z

d . LERW
on Z

2 can be defined via a limiting procedure but we will not discuss it in this
paper.

Let W and S be two independent simple random walks on Z
4 starting at the

origin and η = LE(S). Let

Xn = (logn)
1
3P

{
W

[
1, n2] ∩ η =∅ | η}

.

In [9], building on the work on slowly recurrent sets [8], the first author of this
paper proved that E[Xp

n ] � 1 for all p > 0. In this paper, we show the following.

THEOREM 1.1. There exists a nontrivial random variable X∞ such that

lim
n→∞Xn = X∞ almost surely and in Lp for all p > 0.

We can view X∞ as the renormalized escape probability of 4D LERW at its
starting point. It is the key for our construction of the 4D two-sided LERW in
Section 1.3. Our next theorem is similar to Theorem 1.1 with the additional feature
of the evaluation of the limiting constant.

THEOREM 1.2. Let W , W ′, W ′′, S be four independent simple random walks
on Z

4 starting from the origin and η = LE(S). Then

lim
n→∞(logn)P

{(
W

[
1, n2] ∪ W ′[1, n2]) ∩ η =∅,W ′′[0, n2] ∩ η = {0}} = π2

24
.
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Write π2

24 in Theorem 1.2 as 1
3 · π2

8 . We will see that the constant 1
3 is uni-

versal and is the reciprocal of the number of SRWs other than S. The factor π2/8
comes from the bi-harmonic Green function of Z4 evaluated at (0,0) and is lattice-
dependent. The SRW analog of Theorem 1.2 is proved in [10], Corollary 4.2.5:

lim
n→∞(logn)P

{
W

[
1, n2] ∩ S

[
0, n2] = ∅,W ′[0, n2] ∩ S

[
1, n2] =∅

} = 1

2
· π2

8
.

Theorems 1.1 and 1.2 are a special case of our Theorem 1.5, whose proof is
outlined in Section 1.2. In particular, the asymptotic result is obtained from a re-
fined analysis of slowly recurrent set beyond [8, 9] as well as fine estimates on the
harmonic measure of 4D LERW. The explicit constant π2

24 is obtained from a “first
passage” path decomposition of the intersection of an SRW and a LERW. Here,
care is needed because there are several time scales involved. See Section 1.2 for
an outline. As a byproduct, at the end of Section 5.2 we obtain an asymptotic result
on the long range intersection between SRW and LERW which is of independent
interest.

To state the result, we recall the Green function on Z
4 defined by

G(x,y) =
∞∑

n=0

P
x[Sn = y].

Given a subset A ⊂ Z
4, the Green function on A is defined by

GA(x, y) =
∞∑

n=0

P
x[

Sn = y,S[0, n] ⊂ A
]
.

It will be technically easier to work on geometric scales. Let Cn = {z ∈ Z
4 : |z| <

en} be the discrete disk, Gn = GCn and

G2
n(w) = ∑

z∈Cn

Gn(0, z)Gn(z,w).

THEOREM 1.3. Let W , S be independent simple random walks on Z
4 with

W0 = 0 and S0 = w. Let σW
n = min{j : Wj /∈ Cn} and σn = min{j : Sj /∈ Cn}. If

qn(w) = P
{
W

[
0, σW

n

] ∩ LE
(
S[0, σn]) �=∅

}
,

then

lim
n→∞ max

n−1≤e−n|w|≤1−n−1

∣∣∣∣nqn(w) − π2

24
G2

n(w)

∣∣∣∣ = 0.

REMARK 1.4. Theorem 1.3 holds if W [0, σW
n ] ∩ LE(S[0, σn]) is replaced

by W [0, σW
n ] ∩ S[0, σn] and π2/24 is replaced by π2/16. This is the long range

estimate for two independent SRWs in [10], Section 4.3. The function G2
n(w) is
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the expected number of intersections of S[0, σn] and W [0, σW
n ]. This means that

the long-range nonintersection probability of an SRW and an independent LERW
is comparable with that of two independent SRWs. This is closely related to the
fact that the scaling limit of LERW on Z

4 is Brownian motion, that is, has Gaussian
limits.

1.2. Outline of the proof. In this subsection, we will first state Theorem 1.5,
from which Theorems 1.1 and 1.2 are immediate corollaries. Then we give an
outline of its proof, leaving the details to Sections 2–5.

We start by defining some notation. Let σn = min{j ≥ 0 : Sj /∈ Cn} and

(1.1) Fn be the σ -algebra generated by {Sj : j ≤ σn}.
We recall that there exist 0 < β,c < ∞ such that for all n, if z ∈ Cn−1 and a ≥ 1,

(1.2) P
z{a−1e2n ≤ σn ≤ ae2n} ≥ 1 − ce−βa.

For the lower inequality (see, e.g., [12], (12.12)) and the upper inequality follows
from the fact that Pz{σn ≤ (k + 1)e2n | σn ≥ ke2n} is uniformly bounded away
from 0.

If x ∈ Z
4, V ⊂ Z

4, we write

H(x,V ) = P
x{

S[0,∞) ∩ V �= ∅
}
,

H(V ) = H(0,V ), Es(V ) = 1 − H(V ),

H(x,V ) = P
x{

S[1,∞) ∩ V �= ∅
}
, Es(V ) = 1 − H(0,V ).

Note that Es(V ) = Es(V ), if 0 /∈ V . If 0 ∈ V , a standard last-exit decomposition
shows that

(1.3) Es
(
V 0) = GZ4\V 0(0,0)Es(V ),

where V 0 = V \ {0} and GZ4\V 0 is the Green’s function on Z
4 \ V 0. We also write

Es(V ;n) = P
{
S[1, σn] ∩ V =∅

}
,

which is clearly decreasing in n.
We have to be a little careful about the definition of the loop-erasures of the

random walk and loop-erasures of subpaths of the walk. We will use the following
notation:

• η denotes the (forward) loop-erasure of S[0,∞) and

� = η[1,∞) = η[0,∞) \ {0}.
• ωn denotes the finite random walk path S[σn−1, σn].
• ηn = LE(ωn) denotes the loop-erasure of S[σn−1, σn].
• �n = LE(S[0, σn]) \ {0}, that is, �n is the loop-erasure of S[0, σn] with the

origin removed.
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Note that S[1,∞) is the concatenation of the paths ω1,ω2, . . . . However, it is
not true that � is the concatenation of η1, η2, . . . , and that is one of the technical
issues that must be addressed in the proof.

Let Yn, Zn, Gn be the Fn-measurable random variables

(1.4) Yn = H
(
ηn)

, Zn = Es[�n], Gn = GZ4\�n
(0,0).

By (1.3), we have Es(�n ∪ {0}) = G−1
n Zn. It is easy to see that 1 ≤ Gn ≤ 8.

Furthermore, using the transience of S, we can see that with probability one
G∞ := limn→∞ Gn exists and equals GZ4\�(0,0).

THEOREM 1.5. For every 0 ≤ r, s < ∞, there exists 0 < cr,s < ∞, such that

lim
n→∞nr/3

E
[
Zr

nG
−s
n

] = cr,s .

Moreover, c3,2 = π2/24.

Our methods do not compute the constant cr,s except in the case r = 3, s = 2
(and the trivial case r = s = 0).

The proof of Theorem 1.5, which is the technical bulk of this paper, requires
several steps which we will outline now. For the remainder of this paper, we fix
r > 0 and allow constants to depend on r . If n ∈N, we let

pn = E
[
Zr

n

]
, p̂n = E

[
Z3

nG
−2
n

]
,(1.5)

hn = E[Yn] = E
[
H

(
ηn)]

, φn =
n∏

j=1

e−hj .(1.6)

In Section 2.2, we review and prove some basic estimates on simple random
walk that, in particular, give hn = O(n−1), and hence,

φn = φn−1e
−hn = φn−1

[
1 + O

(
n−1)]

.

In Section 3.1, we revisit the theory of slowly recurrent sets in [8, 9] and obtain
quantitative estimates on the escape probability of slowly recurrent sets under a
mild assumption (see Definition 3.1). Using these estimates, we prove two propo-
sitions in Section 3.2. The first one controls pn/pn+1.

PROPOSITION 1.6. pn+1 = pn[1 − O(log4 n/n)].
The second one gives a good estimate along the subsequence {n4}. Let η̃n denote

the (forward) loop-erasure of S[σ(n−1)4+(n−1), σn4−n]. For m < n, we let A(m,n)

be the discrete annuli defined by

A(m,n) = Cn \ Cm = {
z ∈ Cn : |z| ≥ em}

.

Let �̃n = η̃n ∩ A((n − 1)4 + 4(n − 1), n4 − 4n) and h̃n = E[H(�̃n)].
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PROPOSITION 1.7. There exists c0 < ∞ such that

pn4 = [
c0 + O

(
n−1)]

exp

{
−r

n∑
j=1

h̃j

}
.

In Section 4, in order to get rid of the subsequence {n4}, we prove the following.

PROPOSITION 1.8. There exists c < ∞, u > 0 such that∣∣∣∣h̃n − ∑
(n−1)4<j≤n4

hj

∣∣∣∣ ≤ c

n1+u
.

Proposition 1.8 intuitively says that if the random walk hits �̃n then it does so
by hitting exactly one of ηj ’s. This proposition, which is key for proving our main
result, does not follow from the work in [9]. Some of the earlier propositions have
been improved here in order to be able to establish this. To rigorously prove this,
we need a frequency estimate on cut points of SRW and a large deviation estimate
on the harmonic measure of the range of SRW obtained in Sections 2.3 and 4.1,
respectively. Propositions 1.6–1.8 readily yield the following.

PROPOSITION 1.9. For every r , s, there exists constant c′
r,s, u > 0 such that

E
[
Zr

nG
−s
n

] = c′
r,sφ

r
n

[
1 + O

(
n−u)]

.

In particular, there exists a constant c′
3,2 > 0 such that

(1.7) p̂n = c′
3,2

[
1 + O

(
n−u)]

exp

{
−3

n∑
j=1

hj

}
.

In Section 5, we use a path decomposition to study the long-range intersection
of an SRW and a LERW and show in Proposition 5.2 that there exists u > 0 such
that

(1.8) hn = 8

π2 p̂n + O
(
n−1−u)

.

Combined with (1.7), this gives that the limit

(1.9) lim
n→∞

[
log p̂n + 24

π2

n∑
j=1

p̂j

]

exists and is finite. Note that limn→∞ p̂n+1/p̂n = 1 (see Proposition 1.9). In Sec-
tion 5.1, we prove an elementary lemma (see Lemma 5.1) on sequences asserting
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that this combined with (1.9) assures that limn→∞ np̂n = π2/24. Now (1.7) and
(1.8) imply that limn→∞ 3nhn = 1 and

(1.10) φ3
n = exp

{
−3

n∑
j=1

hj

}
∼ c

n
for some constant c > 0.

This combined with Proposition 1.9 concludes the proof of Theorem 1.5. This
already implies Theorem 1.2 by changing scales. The proof of Theorem 1.1 will
be explained in Section 6.

1.3. Two sided LERW. In [5], the first author author proved the existence of
two-sided loop-erased random walk in Z

d for d ≥ 5.

THEOREM 1.10 ([5]). Given d ≥ 5, consider the sample of LERW in Z
d , de-

noted by {ηi}i≥0. The n → ∞ limit of {ηn+i − ηn}−k≤i≤k exists for any k ∈ N,
which defines an ergodic random path {η̃i}i∈Z in Z

d called the two-sided LERW.

The proof of Theorem 1.10 crucially replies on the existence of global cut points
for SRW in Z

d for d ≥ 5, which is not true for d ≤ 4. As an application of results
in Section 1.1, we extend the existence of the two-sided LERW to d = 4 in Sec-
tion 6. Moreover, X∞ in Theorem 1.1 is the Radon–Nikodym derivative between
the two-sided LERW restricted to nonnegative times and the usual LERW. The
existence for d = 2,3 was recently established by the first author author in [11].
A big difference in d < 4 compared to d ≥ 4 case is that the marginal distribu-
tion of one side of the path is not absolutely continuous with respect to the usual
LERW.

Our results addresses the d = 4 case of Conjecture 15.12 in [2] by Benjamini–
Lyons–Peres–Schramm, which asserts the existence of the two-sided uniform
spanning tree in Z

d . This is immediate from Wilson’s algorithm [16] that connects
LERW and uniform spanning tree (see Section 7.1).

1.4. A spin field from USF. As an application of Theorem 1.3, we will con-
struct a sequence of random fields on the integer lattice Z

d (d ≥ 4) using uniform
spanning tree and show that they converge in distribution to the bi-Laplacian field
(Theorem 1.11).

For each positive integer n, let N = Nn = n(logn)1/4. Let AN = {x ∈ Z
d :

|x| < N}. We will construct a ±1 valued random field on AN as follows. Recall
that a wired spanning tree on AN is a tree on the graph AN ∪ {∂AN } where we
have viewed the boundary ∂AN as “wired” to a single point. Such a tree produces
a spanning forest on AN by removing the edges connected to ∂AN . We define the
uniform spanning forest (USF) on AN to be the forest obtained by choosing the
wired spanning tree of AN ∪ {∂AN } from the uniform distribution. (Note this is
not the same thing as choosing a spanning forest uniformly among all spanning
forests of AN .) We now define the random field on (a rescaling of) Zd . Let an be a
sequence of positive numbers (we will be more precise later).
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• Choose a USF on AN . This partitions AN into (connected) components.
• For each component of the forest, flip a fair coin and assign each vertex in the

component value 1 or −1 based on the outcome. This gives a field of spins
{Yx,n : x ∈ AN }. If we wish, we can extend this to a field on x ∈ Z

d by setting
Yx,n = 0 for x /∈ AN .

• Let φn(x) = anYnx,n which is a field defined on Ln := n−1
Z

d .

This random function is constructed in a manner similar to the Edward–Sokal
coupling of the FK-Ising model [3]. That coupling says that we can obtain the
Ising model on Z

d by first sample a random configuration ω ∈ {0,1}Zd
according

to the so-called random cluster measure, and then flip a fair coin and assign each
component of ω value 1 or −1 based on the outcome. The way we construct φn is
similar to the Ising model except that we replace the random cluster measure by
the USF measure on Z

d .
It is known that the Ising model has critical dimension d = 4, in the sense that

mean field critical behaviors are expected for d ≥ 4 but not for d ≤ 3. In particu-
lar, it is believed when d ≥ 4 the scaling limit of Ising model is a d-dimensional
Gaussian Free Field (GFF). For d ≥ 5, this GFF limit is proved by Aizenman
[1], while the critical case d = 4 is still open. Our theorem below asserts that
the random field φn we construct has critical dimension d = 4, and for d ≥ 4,
we can choose the scaling an such that φn converges to the bi-Laplacian Gaus-
sian field on R

d . Note that when d = 4, a bi-Laplacian Gaussian field is log-
correlated.

If h ∈ C∞
0 (Rd), we write

〈h,φn〉 = n−d/2
∑

x∈Ln

h(x)φn(x).

THEOREM 1.11.

• If d ≥ 5, there exists a > 0 such that if an = an(d−4)/2, then for every
h1, . . . , hm ∈ C∞

0 (Rd), the random variables 〈hj ,φn〉 converge in distribution
to a centered joint Gaussian random variable with covariance∫∫

hj (z)hk(w)|z − w|4−d dz dw.

• If d = 4, if an = √
3 logn, then for every h1, . . . , hm ∈ C∞

0 (Rd) with∫
hj (z) dz = 0, j = 1, . . . ,m,

the random variables 〈hj ,φn〉 converge in distribution to a centered Gaussian
random variable with variance

−
∫∫

hj (z)hk(w) log |z − w|dzdw.
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REMARK 1.12.

• Gaussian fields on R
d with correlations as in Theorem 1.11 is called d-

dimensional bi-Laplacian Gaussian field (see [13]).
• For d = 4, we could choose the cutoff N = n(logn)α for any α > 0. We choose

α = 1
4 for concreteness. For d > 4, we could do the same construction with no

cutoff (N = ∞) and get the same result.

By Wilson’s algorithm, the two-point correlation function of the field φn is pro-
portional to the intersection probability of an SRW and a LERW stopped upon
hitting ∂AN . Therefore, Theorem 1.11 essentially follows from Theorem 1.3. In
particular, G2

n(w) there is the discrete biharmonic function that gives the covari-
ance structure of the bi-Laplacian random field in the scaling limit. We will give
the full proof of Theorem 1.11 in Section 7, where we only deal with the case
d = 4. The d ≥ 5 case can be proved in the same way but is much easier (see [15]
for a detailed argument).

2. Preliminaries. In this section, we recall and prove necessary lemmas about
SRW and LERW which will be used frequently in the rest of the paper. Throughout
this section, we retain the notation in Section 1.2.

2.1. Basic notation. Given a vertex set V ⊂ Z
d , ∂V is the set of vertices on

Z
d \ V who have a neighbor in V , and V = V ∪ ∂V . A function φ on V is called

harmonic on V if for each v ∈ V ; we have E
v[φ(S1)] = φ(v). When we say “φ is

harmonic on V ,” then it is implicit that φ is defined on V .
We will use c and C to represent constants which may vary line by line. We

use the asymptotic notion that two nonnegative functions f (x), g(x) satisfy f � g

if there exists a constant C > 0 independent of x such that f (x) ≤ Cg(x). We
write f � g if g � f and write f � g if f � g and g � f . Given a sequence
{an} and a nonnegative sequence {bn}, we write an ∼ bn if limn→∞ an/bn = 1. We
write an = O(bn) if |an| � bn. We write an = o(bn) if limn→∞ |an|/bn = 0. When
{bn} = {1}, we may write o(1) as on(1) to indicate the dependence on n.

We say that a sequence {εn} of positive numbers is fast decaying if it decays
faster than every power of n, that is, nkεn = on(1) for every k > 0. We will write
{εn} for fast decaying sequences. As is the convention for constants, the exact value
of {εn} may change from line to line. We will use implicitly the fact that if {εn} is
fast decaying then so is {ε′

n} where ε′
n = ∑

m≥n εm.

2.2. Estimates for simple random walk on Z
4. In this subsection, we provide

facts about simple random walk in Z
4, which will be frequently used in the rest of

the paper. We first recall the following facts about intersections of random walks
in Z

4 (see [6, 8]).
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PROPOSITION 2.1. There exist 0 < c1 < c2 < ∞ such that the following is
true. Suppose S is a simple random walk on Z

4 starting at 0. Then
c1√
logn

≤ P
{
S[0, n] ∩ S[n + 1,∞] = ∅

}
≤ P

{
S[0, n] ∩ S[n + 1,2n] = ∅

} ≤ c2√
logn

,

and if 2 ≤ α ≤ n,

(2.1) c1
logα

logn
≤ P

{
S[0, n] ∩ S

[
n
(
1 + α−1)

,∞) �= ∅
} ≤ c2

logα

logn
.

Moreover, if S1 is an independent simple random walk starting at z ∈ Z
4,

(2.2) P
{
S[0, n] ∩ S1[0,∞) �= ∅

} ≤ c2
loga

logn
,

where a = max{2,
√

n/|z|}.
An important corollary of Proposition 2.1 is that

(2.3) sup
n

nE
[
H

(
ηn)] ≤ sup

n
nE

[
H(ωn)

]
< ∞,

and hence

exp
{−E

[
H

(
ηn)]} = 1 −E

[
H

(
ηn)] + O

(
n−2)

.

It follows that if φn is defined as in (1.6) and m < n, then

(2.4) φn = φm

[
1 + O

(
m−1)] n∏

j=m+1

[
1 −E

[
H

(
ηj )]]

.

COROLLARY 2.2. There exists c < ∞ such that if n ∈ N, α ≥ 2, 0 < u < 1,
m = mn,α = (1 + α−1)n and Yn,α = maxj≥m H(Sj , S[0, n]), then

P

{
Yn,α ≥ logα

(logn)u

}
≤ c

(logn)1−u
.

PROOF. We fix n, α, u and define the stopping time τ by

τ = min
{
j ≥ m : H (

Sj , S[0, n]) ≥ logα

(logn)u

}
.

The strong Markov property of S and the definition of τ imply that

P
{
S[0, n] ∩ S[m,∞) �=∅ | τ < ∞}
≥ P

{
S[0, n] ∩ S[τ,∞) �= ∅ | τ < ∞}

= E
[
P

{
S[0, n] ∩ S[τ,∞) �=∅ | S(τ), τ < ∞}]

= E
[
H

(
S(τ), S[0, n]) | S(τ), τ < ∞] ≥ logα

(logn)u
.
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Therefore, using (2.1),

P{τ < ∞} ≤ (logn)u

logα
P

{
S[0, n] ∩ S[m,∞) �= ∅

} ≤ c

(logn)1−u
. �

LEMMA 2.3. There exists c > 0 such that the following holds for all n ∈ N:

• If φ is a positive (discrete) harmonic function on Cn and x ∈ Cn−1,

(2.5)
∣∣log

[
φ(x)/φ(0)

]∣∣ ≤ c|x|e−n.

• If m < n, V ⊂ Cn−m, and Ṽ = V \ Cn−m−1,

c−1e−2m ≤ P
{
S[σn,∞) ∩ Cn−m �= ∅ | Fn

} ≤ ce−2m;(2.6)

c−1e−2mH(Ṽ ) ≤ P
{
S[σn,∞) ∩ V �= ∅ |Fn

} ≤ ce−2mH(V ).(2.7)

Es(V ) ≥ P
{
S[0, σn] ∩ V = ∅

}[
1 − ce−2mH(V )

]
.(2.8)

PROOF. The inequalities (2.5) and (2.6) are standard estimates; see, for ex-
ample, [12], Theorem 6.3.8, Proposition 6.4.2. The Harnack principle [12], Theo-
rem 6.3.9, shows that H(z,V ) � H(z′,V ) for z, z′ ∈ ∂Cn−m+1, and by stopping
at time σn−m+1 we see that

H(V ) ≥ min
z∈∂Cn−m+1

H(z, V̄ ).

This combined with (2.6) and the strong Markov property gives the upper bound
in (2.7). To get the lower bound, one uses the Harnack principle to see that for
z ∈ ∂Cn−m+1, H(z,V +) � H(V +) and H(z,V \ V +) � H(V \ V +), where

V + = Ṽ ∩ {
(z1, . . . , z4) ∈ Z

4 : z1 ≥ 0
}
.

Finally, (2.8) follows from the upper bound in (2.7) and the strong Markov prop-
erty. �

LEMMA 2.4. Let Un be the event that there exists k ≥ σn with

LE
(
S[0, k]) ∩ Cn−log2 n �= LE

(
S[0,∞)

) ∩ Cn−log2 n.

Then P(Un) is fast decaying.

PROOF. By the loop-erasing process, we can see that the event Un is contained
in the event that either

S[σ
n− 1

2 log2 n
,∞) ∩ Cn−log2 n �= ∅ or S[σn,∞) ∩ C

n− 1
2 log2 n

�= ∅.

The probability that either of these happens is fast decaying by (2.6). �

The next proposition gives a quantitative estimate on the slowly recurrent nature
of a simple random path in Z

4.
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PROPOSITION 2.5. If 
(m,n) = S[0,∞) ∩ A(m,n), then the sequences

P

{
H

[

(n − 1, n)

] ≥ log2 n

n

}
and P

{
H(ωn) ≥ log4 n

n

}
are fast decaying.

PROOF. For any z ∈ Z
4, let Sz be a simple random walk starting from z inde-

pendent of S. Let 
z
j = 
z

j (n − 1, n) = Sz[0, j ] ∩ A(n − 1, n) for j ∈ N ∪ {∞}.
By the definition of H and Proposition 2.1, there exists a positive constant c such
that for each z with |z| ≥ en−1,

E
[
H

(

z∞

)] = P
{
S[0,∞) ∩ Sz[0,∞) ∩ A(n − 1, n) �= ∅

} ≤ c

4n
.

From now on, we assume |z| ≥ en−1. Then by the Markov inequality,

(2.9) P

{
H

(

z∞

) ≥ c

2n

}
≤ 1

2
.

For each k ∈ N, let τk = inf{j : H(
z
j ) ≥ ck/n}. On the event τk < ∞, we have

H(
z
τk−1) < ck/n and Sz

τk
∈ A(n − 1, n). Since

H(A ∪ B) ≤ H(A) + H(B) for any A,B ⊂ Z
4,

for n sufficiently large, we have

H(
τk
) ≤ H

(

z

τk−1

) + H
(
Sz

τk

) ≤ c

(
k + 1

2

)
/n.

Moreover, combined with (2.9) we see that for n sufficiently large,

P{τk+1 < ∞ | τk < ∞} ≤ ∑
w∈A(n−1,n)

P
[
Sz

τk
= w | τk < ∞]

P

[
H

(

w∞

) ≥ c

2n

]

≤ 1

2

∑
w∈A(n−1,n)

P
[
Sz

τk
= w | τk < ∞] = 1

2
.

Therefore, P{τk < ∞} ≤ 2−k . Setting k = �c−1 log2 n�, we see that the first se-
quence in Proposition 2.5 is fast decaying.

For the second sequence, note that on the event {H(ωn) ≥ log4 n/n}, either
ωn �⊂ A(n − log2 n,n) or there exists a j ∈ [n − log2 n,n] such that H [
(j −
1, j)] ≥ log2 n/n. We use (2.6) to see that P{ωn �⊂ A(n − log2 n,n)} is fast decay-
ing. �
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2.3. Loop-free times. One of the technical nuisances in the analysis of the
loop-erased walk is that if j < k, it is not necessarily the case that

LE
(
S[j, k]) = LE

(
S[0,∞)

) ∩ S[j, k].
However, this is the case for special times which we call loop-free times. We say
that j is a (global) loop-free time if

S[0, j ] ∩ S[j + 1,∞) =∅.

Proposition 2.1 shows that the probability that j is loop-free is comparable to
(log j)−1/2. From the definition of chronological loop erasing, we can see the fol-
lowing. If j < k and j , k are loop-free times, then for all m ≤ j < k ≤ n,

(2.10) LE
(
S[m,n]) ∩ S[j, k] = LE

(
S[0,∞)

) ∩ S[j, k] = LE
(
S[j, k]).

It will be important for us to give upper bounds on the probability that there is
no loop-free time in a certain interval of time. If m ≤ j < k ≤ n, let I (j, k;m,n)

denote the event that for all j ≤ i ≤ k − 1,

S[m, i] ∩ S[i + 1, n] �=∅.

Proposition 2.1 gives a lower bound on P[I (n,2n;0,3n)],

P
[
I (n,2n;0,3n)

] ≥ P
{
S[0, n] ∩ S[2n,3n] �= ∅

} � 1

logn
.

The next lemma shows that

(2.11) P
[
I (n,2n;0,3n)

] � 1/ logn

by giving the matching upper bound.

LEMMA 2.6. There exists c < ∞ such that P[I (n,2n;0,∞)] ≤ c/ logn.

PROOF. Let E = En denote the complement of I (n,2n;0,∞). We need to
show that P(E) ≥ 1 − O(1/ logn).

Let kn = �n/(logn)3/4� and let Ai = Ai,n be the event that

Ai = {
S
[
n + (2i − 1)kn, n + 2ikn

] ∩ S
[
n + 2ikn + 1, n + (2i + 1)kn

] = ∅
}

and consider the events A1,A2, . . . ,A� where � = �(logn)3/4/4�. These are �

independent events each with probability greater than c(logn)−1/2 by Proposi-
tion 2.1. Therefore,

1 − P(A1 ∪ · · · ∪ A�) =
�∏

i=1

[
1 − P(Ai)

] ≤ exp
{−O

(
(logn)1/4)} = o

(
1

log3 n

)
.
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Let Bi = Bi,n be the event {S[0, n + (2i − 1)kn] ∩ S[n + 2ikn,∞) = ∅}. By (2.1)
in Proposition 2.1, P(Bc

i ) ≤ c log logn/ logn. Therefore,

P(B1 ∩ · · · ∩ B�) ≥ 1 − c� log logn

logn
≥ 1 − O

(
log logn

(logn)1/4

)
.

For 1 ≤ i ≤ �, on the event Ai ∩ (B1 ∩ · · · ∩ B�) the time 2ikn is loop-free, hence
E occurs. Therefore,

(2.12) P(E) ≥ P
[
(A1 ∪ · · · ∪ A�) ∩ (B1 ∩ · · · ∩ B�)

] ≥ 1 − O

(
log logn

(logn)1/4

)
.

This is a good estimate, but we need to improve on it.
Let Cj , j = 1, . . . ,5, denote the independent events (depending on n)

I

(
n

[
1 + 3(j − 1) + 1

15

]
, n

[
1 + 3(j − 1) + 2

15

]
;n + (j − 1)n

5
, n + jn

5

)
.

By (2.12), we see that P[Cj ] ≤ o(1/(logn)1/5), and hence

P(C1 ∩ · · · ∩ C5) ≤ o

(
1

logn

)
.

Let D = Dn denote the event that at least one of the following ten things happens:

S

[
0, n

(
1 + j − 1

5

)]
∩ S

[
n

(
1 + 3(j − 1) + 1

15

)
,∞

)
�= ∅, j = 1, . . . ,5;

S

[
0, n

(
1 + 3(j − 1) + 2

15

)]
∩ S

[
n

(
1 + j

5

)
,∞

)
�= ∅, j = 1, . . . ,5.

Each of these events has probability comparable to 1/ logn, and hence P(D) �
1/ logn. Also,

I (n,2n;0,∞) ⊂ (C1 ∩ · · · ∩ Cn) ∪ D.

Therefore, P[I (n,2n;0,∞)] ≤ c/ logn. �

COROLLARY 2.7.

1. There exists c < ∞ such that if 0 ≤ j ≤ j + k ≤ n, then

(2.13) P
[
I (j, j + k;0, n)

] ≤ c log(n/k)

logn
.

2. Given 0 < δ < 1, let Iδ,n := ⋃n−1
j=0 I (j, j + δn;0, n). Then there exists a pos-

itive constant c such that for all n ∈ N and δ ∈ (0,1), we have

(2.14) P[Iδ,n] ≤ c log(1/δ)

δ logn
.
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3. There exist c < ∞ and a positive integer � such that the following holds for
all positive integers n. Let Ĩ (m, r) denote the event that there is no loop-free point
j with σm ≤ j ≤ σr , and let k = kn = �logn�. Then

(2.15) P
{
Ĩ (n − �k,n + �k) | Fn−3�k

} ≤ c/n.

PROOF.

1. It suffices to prove under the assumption that k ≥ n1/2. Note that I (j, j +
k;0, n) is contained in the union of the following two events:

I (j, j + k; j − k, j + 2k),{
S[0, j − k] ∩ S[j, n] �= ∅

}
, and

{
S[0, j ] ∩ S[j + k,n] �=∅

}
.

Since k ≥ n1/2, the probability of the first event is O(1/ logn) by Lemma 2.6. By
(2.1), the probabilities of the second two events are O(log(n/k)/ logn). This gives
(2.13).

2. By (2.13), P{I (iδn/3, (i +1)δn/3;0, n)} = O(log(δ−1)/ logn) for all 0 ≤
i ≤ �3/δ�. Now (2.14) follows from the fact that Iδ,n can be covered by these
I (iδn/3, (i + 1)δn/3;0, n)’s.

3. We will first consider walks starting at z ∈ ∂Cn−3�k (with constants inde-
pendent of z). Let En be the event

En = {
σn−�k ≤ e2n ≤ 2e2n ≤ σn+�k, S[σn−�k,∞) ∩ Cn−2�k = ∅

}
.

Using (1.2) and (2.6), we can choose � sufficiently large so that P(En) ≥ 1 −
1/n. On the event En, we have Ĩ (n − �k,n + �k) ⊂ I (e2n,2e2n;0,∞). Hence, by
Lemma 2.6, we have P[Ĩ (n − �k,n + �k)] ≤ O(n−1).

More generally, if we start the random walk at the origin, stop at time σn−3�k ,
and then start again, we can use the result in the previous paragraph. Since
S[σn−�k,∞) ∩ Cn−2�k = ∅ on the event En, attachment of the initial part of the
walk up to σn−3�k will not affect whether a time after σn−�k is loop-free. This
concludes the proof. �

2.4. Green function estimates. Recall the Green function G(·, ·) on Z
4 and

Gn(·, ·) defined in Section 1.1. We write G(x) = G(x,0) = G(0, x) and Gn(x) =
Gn(x,0) = G(0, x). As a standard estimate (see [12]), we have

(2.16) G(x) = 2

π2|x|2 + O
(|x|−4)

, |x| → ∞.

Here and throughout, we use the convention that if we say that a function on Z
d is

O(|x|−r ) with r > 0, we still imply that it is finite at every point. In other words,
for lattice functions, O(|x|−r ) really means O(1 ∧ |x|−r ). We do not make this
assumption for functions on R

d which could blow up at the origin.
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LEMMA 2.8. For w ∈ Cn, let

Ĝ2
n(w) = ∑

z∈Z4

G(0, z)Gn(w, z) = ∑
z∈Cn

G(0, z)Gn(w, z).

Then

Ĝ2
n(w) = 8

π2

[
n − log |w|] + O

(
e−n) + O

(|w|−2 log |w|).
In particular, if w ∈ ∂Cn−1,

(2.17) Ĝ2
n(w) = 8

π2 + O
(
e−n)

.

PROOF. Let f (x) = 8
π2 log |x| and note that

�f (x) = 2

π2|x|2 + O
(|x|−4) = G(x) + O

(|x|−4)
,

where � denotes the discrete Laplacian. Also, we know that

f (w) = E
w[

f (Sσn)
] − ∑

z∈Cn

Gn(w, z)�f (z)

(this holds for any function f ). Since en ≤ |Sσn | ≤ en + 1, we have E
w[f (Sσn)] =

8n
π2 + O(e−n). Therefore,∑

z∈Cn

Gn(w, z)G(z) = 8

π2

[
n − log |w|] + O

(
e−n) + ε,

where

|ε| ≤ ∑
z∈Cn

Gn(w, z)O
(|z|−4) ≤ ∑

z∈Cn

O
(|w − z|−2)

O
(|z|−4)

.

We split the sum on the right-hand side into three pieces:∑
|z|≤|w|/2

O
(|w − z|−2)

O
(|z|−4) ≤ c|w|−2

∑
|z|≤|w|/2

O
(|z|−4)

≤ c|w|−2log |w|,∑
|z−w|≤|w|/2

O
(|w − z|−2)

O
(|z|−4) ≤ c|w|−4

∑
|x|≤|w|/2

O
(|x|−2)

≤ c|w|−2.

If we let C′
n the the set of z ∈ Cn with |z| > |w|/2 and |z − w| > |w|/2, then∑
z∈C′

n

O
(|w − z|−2)

O
(|z|−4) ≤ ∑

|z|>|w|/2

O
(|z|−6) ≤ c|w|−2.

�
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LEMMA 2.9. If 1 ≤ m < n and x ∈ Cm,

Ĝ2
n(x) − G2

n(x) = π2

2
+ O

(
em−n)

.

PROOF. Set N = en. Using the martingale Mt = |St |2 − t , we see that

(2.18)
∑

w∈Cn

Gn(x,w) = N2 − |x|2 + O(N).

By the strong Markov property, for all w ∈ Cn,

min
N≤|z|≤N+1

G(z, x) ≤ G(w,x) − Gn(w,x) ≤ max
N≤|z|≤N+1

G(z, x).

Set δ = (1 + |x|)/N . By (2.16), we have

Gn(x,w) = G(x,w) − 2

π2N2

[
1 + O

(
em−n)]

.

Using (2.18), we see that∑
w∈Cn

Gn(x,w)Gn(0,w)

= ∑
w∈Cn

[
G(x,w) − 2

π2N2 + O
(
em−nN−2)]

Gn(0,w)

= O(δ) − 2

π2 + ∑
w∈Cn

G(x,w)Gn(0,w).
�

3. Slowly recurrent set and the subsequential limit. Simple random walk
paths in Z

4 are “slowly recurrent” sets in the terminology of [8]. In Section 3.1,
we will consider a subcollections Xn of the collection of slowly recurrent sets and
give uniform bounds for escape probabilities for such sets. Then in Section 3.2 we
use these estimates to prove Propositions 1.6 and 1.7. This section does not rely on
notions and results in [8, 9] as we will give a new and self-contained treatment.

3.1. Sets in Xn. Given a subset V ⊂ Z
4 and m ∈N we write

Vm = V ∩ A(m − 1,m), and hm = hm,V = H(Vm).

Using (2.7), we can see that there exist 0 < c1 < c2 < ∞ such that

(3.1) c1hm ≤ H(z,Vm) ≤ c2hm ∀z ∈ Cm−2 ∪ A(m + 1,m + 2).

DEFINITION 3.1. Let Xn denote the collection of subsets V of Z4 such that
for all integers m ≥ √

n,

H(Vm) ≤ log2 m

m
.
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Note that X1 ⊂ X2 ⊂ · · · . Also if Ṽ ⊂ V and V ∈ Xn, then Ṽ ∈ Xn, The follow-
ing is an immediate corollary of Proposition 2.5.

PROPOSITION 3.2. P{S[0,∞) /∈ Xn} is a fast decaying sequence.

Let Em denote the event

Em = Em,V = {
S[1, σm] ∩ V = ∅

}
.

Note that P(Em) = Es(V ;m). We will interchangeably use the two notions P(Em)

and Es(V ;m) throughout this section. We write hmm(z) for the harmonic measure
of ∂Cm for random walk starting at the origin, that is,

hmm(z) = P{Sσm = z} ∀z ∈ ∂Cm.

If V ⊂ Z
4 and P(Em) > 0, we write

hmm(z;V ) = P{Sσm = z | Em}.
By the strong Markov property, we have

P
{
S[σm,σm+1] ∩ V �=∅

} = ∑
z∈∂Cm

hmm(z)Pz{S[0, σm+1] ∩ V �= ∅
}
,

and

P
(
Ec

m+1 | Em

) = P
{
S[σm,σm+1] ∩ V �= ∅ | Em

}
= ∑

z∈∂Cm

hmm(z;V )Pz{S[0, σm+1] ∩ V �=∅
}
.

(3.2)

PROPOSITION 3.3. There exists c < ∞ such that if V ∈ Xn, m ≥ n/10, and
P(Em+1 | Em) ≥ 1/2, then P(Ec

m+2 | Em+1) ≤ c log2 n/n.

PROOF. As in (3.2), we write

P
(
Ec

m+2 | Em+1
) = ∑

z∈∂Cm+1

hmm+1(z;V )Pz{S[0, σm+2] ∩ V �= ∅
}
.

Using P(Em+1 | Em) ≥ 1/2, we claim that there exists c < ∞ such that

(3.3) hmm+1(z;V ) ≤ c hmm+1(z) ∀z ∈ ∂Cm+1.

Indeed, we have

hmm+1(z;V ) = P{Sσm+1 = z,Em+1}
P(Em+1)

≤ 2
P{Sσm+1 = z,Em+1}

P(Em)
≤ 2P{Sσm+1 = z | Em},
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and the Harnack inequality shows that

P{Sσm+1 = z | Em} ≤ sup
w∈∂Cm

P
w{Sσm+1 = z} ≤ c hmm+1(z).

Therefore, letting rk = P{S[σm+1, σm+2] ∩ Vk �= ∅} for k ∈ N, we have

P
(
Ec

m+2 | Em+1
) ≤ c

∑
z∈∂Cm+1

hmm+1(z)P
z{S[0, σm+2] ∩ V �= ∅

}

= cP
{
S[σm+1, σm+2] ∩ V �= ∅

} ≤ c

m+2∑
k=1

rk.

By Definition 3.1, the terms rk for k = m,m + 1,m + 2 are bounded by

P
{
S[σm+1, σm+2] ∩ (Vm ∪ Vm+1 ∪ Vm+2) �= ∅

} ≤ H(Vm ∪ Vm+1 ∪ Vm+2)

≤ c log2 n

n
.

Since rk ≤ P{S[σm+1,∞) ∩ Ck �= ∅}, by (2.6), we have rk ≤ ce2(k−m) for k < m.
Therefore, for λ large enough,

∑m−λ logm
k=1 rk ≤ cn−2.

For m − λ logm ≤ k ≤ m − 1, (2.7) and the definition of Xn imply that

rk ≤ ce−2(m−k)H(Vk) ≤ ce−2(m−k) log2 k

k
.

Summing over k gives the result. �

DEFINITION 3.4. Let X̃n denote the set of V ⊂ Xn such that P(En) ≥ 2−n/4.

The particular choice of 2−n/4 in this Definition 3.4 is rather arbitrary but it
is convenient to choose a particular fast decaying sequence. For typical sets in
Xn, one expects that P(En) decays as a power in n, so “most” sets in Xn with
P(En) > 0 will also be in X̃n.

Recall Es(V ;n) = P{S[1, σn] ∩ V = ∅}, which is decreasing in n. We state the
next immediate fact as a proposition so that we can refer to it.

PROPOSITION 3.5. For any r > 0 and any random subset V ⊂ Z
4,

E
[
Es(V ;m)r;V /∈ X̃n

] ≤ P[V /∈ Xn] + 2−rn/4.

In particular, if P[V /∈ Xn] is fast decaying then so is the left-hand side.

PROPOSITION 3.6. There exists c < ∞ such that if V ∈ X̃n, then

P
(
Ec

j+1 | Ej

) ≤ c log2 n

n
,

3n

4
≤ j ≤ n.
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PROOF. If P(Em+1 | Em) < 1/2 for all n/4 ≤ m ≤ n/2, then P(En) < 2−n/4

and V /∈ X̃n. Therefore, we must have P(Em+1 | Em) ≥ 1/2 for some n/4 ≤ m ≤
n/2. Now (for n sufficiently large) we can use Proposition 3.3 and induction to
conclude that P(Ek+1 | Ek) ≥ 1/2 for m ≤ k ≤ n. The result then follows from
Proposition 3.3. �

If we choose n0 so large that c log2 n0
n0

≤ 1 − 2−1/4, where c is as in Proposi-

tion 3.6, then it follows from Proposition 3.6 that X̃n ⊂ X̃n+1 for n ≥ n0. We fix
the smallest such n0 and set

X̃ =
∞⋃

j=n0

X̃j .

Combining Propositions 3.3 and 3.6, and the union bound, we have

(3.4) P
(
Ec

n+k | En

) ≤ ck log2 n

n
, k ∈ N,V ∈ X̃n.

PROPOSITION 3.7. There exists c < ∞ such that if V ⊂ Cn and V ∈ X̃n, then

(3.5) Es[V ;n]
[
1 − c log2 n

n

]
≤ Es[V ] ≤ Es[V ;n].

PROOF. The upper bound is trivial. For the lower bound, we first use the pre-
vious proposition to see that

Es(V ;n + 1) ≥ Es(V ;n)
[
1 − O

(
log2 n/n

)]
.

Since Es(V ) ≥ Es(V ;n + 1)(1 − maxz∈∂Cn+1 H(z,V )), it suffices to show that
there exists c such that for all z ∈ ∂Cn+1,

H(z,V ) ≤ c log2 n/n.

This can be done by dividing V into Vj ’s similarly as in the proof of Proposi-
tion 3.3, (see the bound for

∑m+2
1 rj there). �

The next proposition is the key to the analysis of slowly recurrent sets. It says
that the distribution of the first visit to ∂Cn given that one has avoided the set V is
very close to the unconditioned distribution. We would not expect this to be true
for recurrent sets that are not slowly recurrent.

PROPOSITION 3.8. There exists c < ∞ such that if V ∈ X̃n we have

(3.6) hmn(z;V ) ≤ hmn(z)

[
1 + c log3 n

n

]
∀z ∈ ∂Cn.
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Moreover,

(3.7)
∑

z∈∂Cn

∣∣hmn(z) − hmn(z;V )
∣∣ ≤ c log3 n

n
.

PROOF. Let k = �logn�. By (3.4), we have

(3.8) P
(
Ec

n | En−k

) ≤ c log3 n

n
.

Consider a random walk starting on ∂Cn−k with the distribution hmn−k(·;V ) and
let ν denote the distribution of the first visit to ∂Cn. In other words, ν is the distri-
bution of the first visit to ∂Cn conditioned on the event En−k . Using (2.5), we see
that for z ∈ ∂Cn,

ν(z) = hmn(z)
[
1 + O

(
n−1)]

.

By (3.8), for each z ∈ ∂Cn, we have

hmn(z;V ) = P{Sσn = z | En} ≤ P(En−k)

P(En)
P{Sσn = z | En−k}

≤ ν(z)

1 − P(Ec
n | En−k)

≤ hmn(z)

[
1 + O

(
log3 n

n

)]
.

Since hmn(·) and hmn(·;V ) are probability measures on ∂Cn, we have∑
z∈∂Cn

∣∣hmn(z) − hmn(z;V )
∣∣ = 2

∑
z∈∂Cn

[
hmn(z;V ) − hmn(z)

]
+

≤ c log3 n

n

∑
z∈∂Cn

hmn(z) ≤ c log3 n

n
.

�

3.2. Along a subsequence. In this section, we prove Propositions 1.6 and 1.7
via the estimates proved for sets in X̃ . For V ∈ X̃n4 , let

V ∗
n := V ∩ {

e(n−1)4+4(n−1) ≤ |z| < en4−4n}
.

PROPOSITION 3.9. There exists c < ∞ such that if V ∈ X̃n4 ,

Es
(
V ; (n + 1)4) = Es

(
V ;n4)[

1 − H
(
V ∗

n+1
) + O

(
log2 n

n3

)]
.

PROOF. Let τn = inf{j : Sj /∈ Cn4} and recall En and hmn(z;V ). We observe
that (Es(V ;n) − Es(V ; (n + 1)4))/Es(V ;n4) is bounded by

P
{
S[τn, τn+1] ∩ V ∗

n+1 �= ∅ | En4
} + P

{
S[τn, τn+1] ∩ (

V \ V ∗
n+1

) �= ∅ | En4
}
.
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To bound the first term, we have∣∣P{
S[τn, τn+1] ∩ V ∗

n+1 �=∅ | En4
} − P

{
S[τn, τn+1] ∩ V ∗

n+1 �= ∅
}∣∣

≤ ∑
z∈∂C

n4

∣∣hmn4(z;V ) − hmn4(z)
∣∣Pz{S[0, τn+1] ∩ V ∗

n+1 �= ∅
}

≤ c log3 n

n4 sup
z∈∂C

n4

P
z{S[0, τn+1] ∩ V ∗

n+1 �=∅
}

≤ c log3 n

n4 P
{
S[τn, τn+1] ∩ V ∗

n+1 �=∅
}
,

where the three inequalities are due to the strong Markov property, (3.6) and Har-
nack inequality respectively.

Using (2.5), we have P{S[τn, τn+1] ∩ V ∗
n+1 �= ∅} = H(V ∗

n+1)[1 + O(e−4n)].
Hence, it suffices to prove that

P
{
S[τn, τn+1] ∩ (

V \ V ∗
n+1

) �= ∅ | En4
} = O

(
log2 n

n3

)
,

which by the strong Markov property and (3.6), can be further reduced to showing
that

P
{
S[τn, τn+1] ∩ (

V \ V ∗
n+1

) �= ∅
} = O

(
log2 n

n3

)
.

Note that V \ V ∗
n+1 is contained in the union of Cn4−4n and O(n) sets of the form

Vm with m ≥ n4 − 4n. By Definition 3.1 and the union bound,

H
((

V \ V ∗
n+1

) ∩ {
en4−4n ≤ |z| ≤ e(n+1)4}) = O

(
log2 n

n3

)
.

By Lemma 2.3, P{S[τn, τn+1] ∩ Cn4−4n �= ∅} = O(e−8n). This concludes the
proof. �

COROLLARY 3.10. If V ∈ X̃n4 , m ≥ n, and m4 ≤ k ≤ (m + 1)4, then

Es(V ;k) = Es
(
V ;n4)

exp

{
−

m∑
j=n+1

H
(
V ∗

j

)}[
1 + O

(
log4 n

n

)]
.

PROOF. By Proposition 3.9, if m > n we have

P(Em4)

P(En4)
=

m∏
j=n+1

[
1 − H

(
V ∗

j

) + O

(
log2 j

j3

)]
.
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By Definition 3.1 and the union bound, we have H(V ∗
j ) = O(log2 j/j). Hence,

P(Em4)

P(En4)
=

m∏
j=n+1

[
e
−H(V ∗

j ) + O

(
log4 j

j2

)]

=
[
1 + O

(
log4 n

n

)]
exp

{
−

m∑
j=n+1

H
(
V ∗

j

)}
.

On the other hand, (3.4) implies that P(Ek) = P(Em4)[1−O(log2 m/m)] for m4 ≤
k ≤ (m + 1)4. This concludes the proof. �

Now we apply our theory to LERW. Recall the setup in Section 1.2.

PROOF OF PROPOSITION 1.6. Let k = �log2 n�. We will show the stronger
result that

(3.9) pn = E
[
Es(�n)

r ] = pn−k

[
1 + O

(
log4 n/n

)]
,

ad similarly for pn+1.
By Proposition 2.1, E[Es(�n)] ≥ O(n−1/2). On the other hand, Es(�n) ≤ 1.

Therefore, pn decays polynomially. By Proposition 3.5,

(3.10) E
[
Es(�n)

r ] = E
[
Es(�n)

r1�n∈X̃n

]
(1 + εn),

where εn is fast decaying. By (3.5), we have

(3.11) E
[
Es(�n)

r ] = E
[
Es(�n;n)r

][
1 + O

(
log2 n/n

)]
.

By Lemma 2.4, except for an event of fast decaying probability,

(3.12) � ∩ Cn−k ⊂ �n ⊂ V,

where V := (� ∩ Cn−k) ∪ [S[0,∞) \ Cn−k]. If (3.12) occurs, then we have

Es[�;n − k] = Es[V ;n − k] ≥ Es[�n;n] ≥ Es[�n;n + k] ≥ Es[V ;n + k].
By (3.4), we have

E
[
Es[V ;n + k]r;V ∈ X̃n−k

]
= E

[
Es[V ;n − k]r;V ∈ X̃n−k

][
1 − O

(
log4 n/n

)]
.

Since E[Es[V ;n + k]r ] decays like a power of n, by Proposition 3.5,

E
[
Es[V ;n + k]r ] = E

[
Es[V ;n − k]r ][1 − O

(
log4 n/n

)]
.

Now (3.9) follows from (3.11) and

E
[
Es(�n;n)r

] ≥ E
[
Es[V ;n + k]r ] = pn−k

[
1 − O

(
log4 n/n

)]
.

A similar argument gives pn+1 = pn−k[1 − O(log4 n/n)]. �
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A useful corollary of the proof is

(3.13) E
[
Es(�;n)r

] = pn

[
1 + O

(
log4 n/n

)]
.

PROOF OF PROPOSITION 1.7. Let Qn = Es[�;n4] and

�∗
n = � ∩ A

(
(n − 1)4 + 4(n − 1), n4 − 4n

)
.

Then, by Proposition 3.9, if � ∈ X̃n4 , we have

Qn+1 = Qn

[
1 − H

(
�∗

n+1
) + O

(
log2 n

n3

)]
.

Applying Proposition 3.5 to V = �, we have

E
[
Qr

n+1
] = E

[
Qr

n

[
1 − rH

(
�∗

n+1
)]] +E

[
Qr

n

]
O

(
log2 n

n3

)
.

Recall Ĩ (·, ·) in (2.15). We see that P{�∗
n+1 �= �̃n+1 | Fn4} is bounded by

P
{
Ĩ
[
n4 + n,n4 + 4n

] |Fn4
}

+ P
{
Ĩ
[
(n + 1)4 − 4(n + 1), (n + 1)4 − (n + 1)

] | Fn4
}
,

which by (2.15) is further bounded by O(n−4). Therefore,

E
[
Qr

n

∣∣H (
�∗

n+1
) − H(�̃n+1)

∣∣] ≤ O
(
n−4)

E
[
Qr

n

]
.

Hence,

(3.14) E
[
Qr

n+1
] = E

[
Qr

n

[
1 − rH(�̃n+1)

]] +E
[
Qr

n

]
O

(
log2 n

n3

)
.

Using (2.5) in Lemma 2.3, we can see that

(3.15) E
[
H(�̃n+1) | Fn4

] = E
[
H(�̃n+1)

][
1 + o

(
e−4n)] = h̃n+1

[
1 + o

(
e−4n)]

.

Let qn := pn4 . Combining (3.13), (3.14) and (3.15), we get

qn+1 = qn

[
1 − rh̃n+1 + O

(
log2 n

n3

)]
= qn exp{−rh̃n+1}

[
1 + O

(
1

n2

)]
,

where the last inequality uses h̃n+1 = O(n−1). In particular, if m > n,

qm = qn

[
1 + O

(
1

n

)]
exp

{
−r

m∑
j=n+1

h̃j

}

from which Proposition 1.7 follows. �
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By Proposition 1.6, we see that

pm = pn4
[
1 + O

(
log4 n/n

)]
if n4 ≤ m ≤ (n + 1)4.

Combined with Proposition 1.7, we immediately get the following.

COROLLARY 3.11. There exists c0 < ∞ such that as m → ∞,

pm =
[
c0 + O

(
log4 m

m1/4

)]
exp

{
−r

�m1/4�∑
j=1

h̃j

}
.

4. From the subsequential limit to the full limit. In this section, we prove
Propositions 1.8 and 1.9. The proof of Proposition 1.8 is the technical bulk of
this section, which will be given in Section 4.2. Let us first conclude the proof of
Proposition 1.9 assuming Proposition 1.8.

PROOF OF PROPOSITION 1.9. Given Proposition 1.8, the s = 0 case follows
from Corollary 3.11. For the general case, recall that 1 ≤ Gn ≤ 8 and Gn con-
verge to G∞ almost surely. Moreover, Lemma 2.4 implies that there exists a fast
decaying sequence {εn} such that if m ≥ n, P{|Gn − Gm| ≥ εn} ≤ εn. Therefore,
E[φ−r

n Zr
nG

−s
n ] −E[φ−r

n Zr
nG

−s∞ ] is fast decaying and∣∣E(
φ−r

n Zr
nG

−s∞
) −E

(
φ−r

m Zr
mG−s∞

)∣∣ ≤ c
∣∣E(

φ−r
n Zr

n

) −E
(
φ−r

m Zr
m

)∣∣.
Take m → ∞, we see that the s �= 0 case follows from the s = 0 case. �

4.1. Harmonic measure of the range of SRW. We start by proving two esti-
mates for the harmonic measure of the range of random walk.

LEMMA 4.1. Let

σ−
n = σn − ⌊

n−1/4e2n⌋
, σ+

n = σn + ⌊
n−1/4e2n⌋

,

n′ = ⌈
n + n4/5⌉

, S−
n = S

[
0, σ−

n

]
, S+

n = S
[
σ+

n , σn′
]
,

Rn = max
x∈S−

n

H
(
x,S+

n

) + max
y∈S+

n

H
(
y,S−

n

)
.

Then, for all n sufficiently large,

(4.1) P
{
Rn ≥ n−1/6} ≤ n−1/3.

Our proof will actually give a stronger estimate, but (4.1) is all that we need and
makes for a somewhat cleaner statement.

PROOF OF LEMMA 4.1. Let m = n + �logn�. Recall from (1.2) that there
exists c0 < ∞ such that

P
{
σn ≥ c0e

2n logn
} ≤ n−1 and P

{
σm ≥ c0e

2nn2 logn
} ≤ n−1.
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Let V = Vn = S[σ+
n , σm],
R̃n = max

x∈S−
n

H(x,V ) + max
y∈V

H
(
y,S−

n

)
,

R∗
n = max

x∈S−
n

H
(
x,S+

n \ V
) + max

y∈S+
n \V

H
(
y,S−

n

)
,

and note that Rn ≤ R̃n + R∗
n . We claim that for n sufficiently large,

(4.2) P
{
R∗

n ≥ n−1/6/2
} ≤ O

(
n−1)

.

To see this, let � = �n + [(logn)/2]�, and let U denote the event U = {(S+
n \

V ) ∩ C� = ∅}. By (2.6), P(U) ≥ 1 − O(n−1), and on the event U we have S−
n ⊂

Cn ⊂ C� ⊂ (S+
n \ V )c. Therefore, on the event U ∩ {S[0,∞) ∈ Xn}, for y ∈ S−

n ,
x ∈ S+

n \ V , we have the following two bounds:

H
(
y,S+

n \ V
) ≤ cH

(
S[0,∞) ∩ A

(
n + 1, n + n4/5)) ≤ cn−1/5 log2 n;

H
(
x,S−

n

) ≤ H(x,Cn) ≤ c/n.

This gives (4.2).
Let N = Nn = �c0e

2n logn�, M = Mn = �c0e
2nn2 logn� and k = kn =

�n−1/4e2n/4�. For each integer 0 ≤ j ≤ N/(k + 1), let Ej = Ej,n be event that
at least one of the following holds:

max
0≤i≤jk

H
(
Si, S

[
(j + 1)k,M

]) ≥ logn

n1/4 ,(4.3)

max
(j+1)k≤i≤M

H
(
Si, S[0, jk]) ≥ logn

n1/4 .(4.4)

Then for large enough n, we have {R̃n ≥ n−1/3, jk ≤ σn ≤ (j + 1)k} ⊂ Ej .
Recall the notion Yn,α in Corollary 2.2. For fixed j , using the reversibility of

simple random walk, the probabilities of both the event in (4.3) and in (4.4) are
bounded by P[YM,N/k ≥ n−1/4 logn] = O(n−3/4). Therefore, P(Ej ) ≤ O(n−3/4),
and hence

P
{
R̃n ≥ n−1/3} ≤ O

(
n−1) + N

k
O

(
n−3/4) ≤ O

(
logn

n1/2

)
.

Combining this with (4.2) gives the proof. �

The next lemma will use the notion of capacity cap(V ) for a subset V ⊂ Z
4. We

will not review the definition but only recall three key facts:

cap
(
V ∪ V ′) ≤ cap(V ) + cap

(
V ′), V ,V ′ ⊂ Z

4;(4.5)

cap
({z + v : v ∈ V }) = cap(V ), V ⊂ Z

4, z ∈ Z
4;(4.6)

cap(V ) � |z|2H(z,V ), V ⊂ Cn, z /∈ Cn+1.(4.7)
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See [12], Section 6.5, in particular, Proposition 6.5.1, for definitions and properties.
Combining these with the estimates for hitting probabilities, we have

E
[
cap

(
S
[
0, n2])] � n2/ logn.

By Markov inequality, there exists δ > 0 such that

(4.8) P

{
cap

(
S
[
0, n2]) ≥ n2

δ logn

}
≤ δ.

By iterating (4.8) and using the strong Markov property and subadditivity as in the
proof of Proposition 2.5, we see that there exists c, β such that for all n and all
a > 0,

(4.9) P

{
cap

(
S
[
0, n2]) ≥ an2

logn

}
≤ ce−βa.

LEMMA 4.2. For all j,m ∈ N, let L[j,m] = cap(S[j, j + m]). For k,n ∈ N,
let L̄(n;k) = maxj≤n L[j, k]. Then for every u < ∞
(4.10) P

{
L̄

(
nue2n;n−1/4e2n) ≥ 2n−11/10e2n}

is fast decaying.

PROOF. Let k = �n−1/4e2n�. Let U denote the event in (4.10). By the subad-
ditivity of capacity (4.5) and the union bound, we have

U ⊂
nu+1⋃
i=1

{
L[ik, k] ≥ n−11/10e2n}

.

By (4.6), the events in the union are identically distributed. Therefore,

P(U) ≤ nu+1
P

{
L[0;k] ≥ n3/20 e2n

n1/4n

}
,

which is fast decaying by (4.9). �

4.2. Proof of Proposition 1.8. The strategy is to find a u > 0, and for each n a
random set U = U(n) ⊂ Z

4 that can be written as a disjoint union

(4.11) U =
n4⋃

j=(n−1)4+1

Uj

such that the following four conditions hold where:

U ⊂ �̃n;(4.12)

Uj ⊂ ηj , j = (n − 1)4 + 1, . . . , n4;(4.13)

E
[
H(�̃n \ U)

] + ∑
(n−1)4<j≤n4

E
[
H

(
ηj \ Uj

)] ≤ O
(
n−(1+u));(4.14)

max
(n−1)4<j≤n4

max
x∈Uj

H(x,U \ Uj) ≤ n−u.(4.15)
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We will first show that finding such a set gives the result. Taking expectations and
using (4.12)–(4.14), we get

E
[
H(�̃n)

] = O
(
n−(1+u)) +E

[
H(U)

];∑
(n−1)4<j≤n4

E
[
H(Uj )

] = O
(
n−(1+u)) + ∑

(n−1)4<j≤n4

E
[
H

(
ηj )]

.

Let S̃ be a simple random walk (independent of U ) starting at the origin and let
Jn be the number of integers j with (n − 1)4 < j ≤ n4 and such that S̃[0,∞) ∩
Uj �=∅. Let P̃ and Ẽ be the probability and expectation over S̃ with U fixed. Since
the Uj are disjoint, (4.15) and the strong Markov property imply for k ≥ 1,

P̃{Jn ≥ k + 1 | Jn ≥ k} ≤ n−u.

Therefore, Ẽ[Jn] ≤ P̃[Jn ≥ 1][1 + O(n−u)].
Since Ẽ[Jn] = ∑

(n−1)4<j≤n4 H(Uj ) and H(U) = P̃[Jn ≥ 1], we have

H(U) ≥ [
1 − O

(
n−u)] ∑

(n−1)4<j≤n4

H(Uj ).

Taking expectations over U and using E[�̃n] ≤ O(n−1), we get∣∣∣∣E[
H(U)

] − ∑
(n−1)4<j≤n4

E
[
H(Uj )

]∣∣∣∣ ≤ O
(
n−1−u)

.

Therefore, it remains to find the sets U and Uj ’s satisfying (4.12)–(4.15).
Let σ±

j = σj ± �j−1/4e2j� as in Lemma 4.1 and ω̃j = S[σ+
j−1, σ

−
j ]. We will

let U be defined as in (4.11), where Uj = ηj ∩ ω̃j unless one of the following six
events occurs in which case we set Uj =∅ (we assume (n − 1)4 < j ≤ n4):

1. If j ≤ (n − 1)4 + 8n or j ≥ n4 − 8n.
2. If H(ωj ) ≥ j−1 log2 j .
3. If ωj ∩ Cj−8 logn �= ∅.
4. If H(ωj \ ω̃j ) ≥ j−1−u.
5. If it is not true that there exist loop-free points in both [σj−1, σ

+
j−1] and

[σ−
j , σj ].
6. If supx∈ω̃j

H(x, S[0, σn4] \ ωj) ≥ j−1/6.

We need to show that (4.12)–(4.15) hold for some u > 0.
Throughout this proof, we assume n is large enough. The definition of Uj im-

mediately implies (4.13). Combining Conditions 1 and 3, we see that Uj ⊂ A((n−
1)4 + 6n,n4 − 6n). Moreover, if there exists loop-free points in [σj−1, σ

+
j−1] and

[σ−
j , σj ], then η̃n ∩ ω̃j = ηj ∩ ω̃j . Therefore, the Uj are disjoint and (4.12) holds.

Also, condition 6 immediately yields that (4.15) holds for u ≤ 1/6.
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In order to establish (4.14), we first note that(
�̃n ∪ η(n−1)4+1 ∪ · · · ∪ ηn4) \ U ⊂ ⋃

(n−1)4<j≤n4

Vj ,

where

Vj =
{
ωj if Uj = ∅,

ωj \ ω̃j if Uj = ηj ∩ ω̃j .

Hence, it suffices to find 0 < u ≤ 1/3 such that∑
(n−1)4<j≤n4

(
E

[
H(ωj );Uj =∅

] +E
[
H(ωj \ ω̃j )

]) ≤ cn−1−u.

To estimate E[H(ωj \ ω̃j )], we use (4.7), and Lemma 4.2 to see that except for an
event of fast decaying probability

(4.16) H(ωj \ ω̃j ) ≤ O
(
j−11/10)

,

and hence E[H(ωj \ ω̃j )] ≤ O(j−11/10) and∑
(n−1)4<j≤n4

E
[
H(ωj \ ω̃j )

] ≤ c
∑

(n−1)4<j≤n4

j−11/10 ≤ cn− 7
5 .

For i = 1,2,3,4,5,6, let Ei
j be the event that the ith condition in the definition

of Uj holds but none of the previous ones hold. Since {Uj = ∅} = E1
j ∪· · ·∪E6

j , to

estimate E[H(ωj );Uj = ∅], we just need to estimate
∑

(n−1)4<j≤n4 E[H(ωj );Ei
j ]

case by case:

1. Since E[H(ωj )] � j−1 for each j , we have∑
(n−1)4<j≤n4

E
[
H(ωj );E1

j

] = O
(
n−3)

.

2. By Proposition 2.5, P{H(ωj ) ≥ j−1 log2 j} is fast decaying in j . This takes
care of

∑
(n−1)4<j≤n4 E[H(ωj );E2

j ].
In the event E3

j ∪ · · · ∪ E6
j , we have H(ωj ) < j−1 log2 j . Hence,

E
[
H(ωj );E3

j ∪ · · · ∪ E6
j

] ≤ log2 j

j
P

(
E3

j ∪ · · · ∪ E6
j

)
.

In particular, it suffices to prove that there exists u > 0 such that

P
(
Ei

j

) ≤ j−u for i = 3,4,5,6 and (n − 1)4 + 8n < j < n4 − 8n.

3. (2.6) in Lemma 2.3 gives P(E3
j ) ≤ P{ωj ∩ Cj−log j �= ∅} ≤ O(j−2).

4. The bound on P(E4
j ) is already done in (4.16).
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5. Let I = Iδ,n be as in (2.14) substituting in n = e2j j1/16 and δ = j−7/16 so
that δn = e2j j−3/8. Using (2.14), we have P(I ) = o(j−1/4). Note that the event
that there is no loop-free time in either [σj−1, σ

+
j−1] or [σ−

j , σj ] is contained in the
union of I and the two events{

σj+1 ≥ e2j j1/16}
and

{
S[e2j j1/16,∞) ∩ S[0, σj+1] �= ∅

}
.

The probability of the first event is fast decaying by (1.2) and the probability of the
second is o(1/j) by (2.1). Hence P(E5

j ) = o(j−1/4).

6. By Lemma 4.1, for large enough n, we have P(E6
j ) ≤ j−1/3.

5. Exact relation. In this section, we first prove the elementary lemma
promised at the end of Section 1.2. Then we give the asymptotics of the long-range
intersection probability of SRW and LERW in terms of Ĝ2

n defined in Section 2.4,
which concludes our proof of Theorem 1.5.

5.1. A lemma about a sequence.

LEMMA 5.1. Suppose β > 0, p1,p2, . . . is a sequence of positive numbers
with pn+1/pn → 1, and

lim
n→∞

[
logpn + β

n∑
j=1

pj

]

exists and is finite. Then

lim
n→∞npn = 1/β.

PROOF. It suffices to prove the result for β = 1, for otherwise we can consider
p̃n = βpn. Let

an = logpn +
n∑

j=1

pj .

The hypothesis implies that {an} is a Cauchy sequence.
We first claim that for every δ > 0, there exists Nδ > 0 such that if n ≥ Nδ and

pn = (1 + 2ε)/n with ε ≥ δ, then there does not exist r > n with

pk ≥ 1

k
, k = n, . . . , r − 1,

pr ≥ 1 + 3ε

r
.
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Indeed, suppose these inequalities hold for some n, r . Then

log(pr/pn) ≥ log
1 + 3ε

1 + 2ε
− log(r/n),

r∑
j=n+1

pj ≥ log(r/n) − O
(
n−1)

,

and hence for n sufficiently large,

ar − an ≥ 1

2
log

1 + 3ε

1 + 2ε
≥ 1

2
log

1 + 3δ

1 + 2δ
.

Since an is a Cauchy sequence, this cannot be true for large n.
We next claim that for every δ > 0, there exists Nδ > 0 such that if n ≥ Nδ and

pn = (1 + 2ε)/n with ε ≥ δ, then there exists r such that

1 + ε

k
≤ pk <

1 + 3ε

k
, k = n, . . . , r − 1,

pr <
1 + ε

r
.

(5.1)

To see this, we consider the first r such that pr < 1+ε
r

. By the previous claim, if
such an r exists, then (5.1) holds for n large enough. If no such r exists, then by
the argument above for all r > n,

ar − an ≥ log
1 + ε

1 + 2ε
+ ε

2
log(r/n) − (1 + ε)O

(
n−1)

.

Since the right-hand side goes to infinity as r → ∞, this contradicts the fact that
an is a Cauchy sequence.

By iterating the last assertion, we can see that for every δ > 0, there exists
Nδ > 0 such that if n ≥ Nδ and pn = (1 + 2ε)/n with ε ≥ δ, then there exists
r > n such that

pr <
1 + 2δ

r
, and pk ≤ 1 + 3ε

k
, k = n, . . . , r − 1.

Let s be the first index greater than r (if it exists) such that either

pk ≤ 1

k
or pk ≥ 1 + 2δ

k
.

Using pn+1/pn → 1, we can see, perhaps by choosing a larger Nδ if necessary,
that

1 − δ

k
≤ ps ≤ 1 + 4δ

k
.

If ps ≥ (1 + 2δ)/k, then we can iterate this argument with ε ≤ 2δ to see that

lim sup
n→∞

npn ≤ 1 + 6δ.

The lim inf can be done similarly. �
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5.2. Long range intersection. Let S, W be simple random walks with cor-
responding stopping times σn. We will assume that S0 = w, W0 = 0. Let η =
LE(S[0, σn]). Note that we are stopping the random walk S at time σn but we are
allowing the random walk W to run for infinite time.

PROPOSITION 5.2. There exists α < ∞ such that if n−1 ≤ e−n|w| ≤ 1 − n−1,
then ∣∣logP

{
W [0,∞] ∩ η �= ∅

} − log
[
Ĝ2

n(w)p̂n

]∣∣ ≤ c
logα n

n
.

In particular,

E
[
H

(
ηn)] = 8p̂n

π2

[
1 + O

(
logα n

n

)]
.

Throughout this section, let θn denote an error term that decays at least as fast
as logα n/n for some α (with the implicit uniformity of the estimate over all
n−1 ≤ e−n|w| ≤ 1 − n−1). θn may vary line by line. Then the second assertion
in Proposition 5.2 follows immediately from the first and (2.17). We can write the
conclusion of the proposition as

P
{
W [0,∞] ∩ η �= ∅

} = Ĝ2
n(w)p̂n[1 + θn].

Note that Ĝ2
n(w) ≥ c/n if |w| ≤ en(1 − n−1), and hence Ĝ2

n(w)p̂n ≤ c/n2.
We start by giving the sketch of the proof which is fairly straightforward. In the

event {W [0,∞] ∩ η �= ∅}, there are typically many points in W [0,∞] ∩ η. We
focus on a particular one. This is analogous to the situation when one is studying
the probability that a random walk visits a set. In the latter case, one usually focuses
on the first or last visit. In our case with two paths, the notions of “first” and “last”
are a little ambiguous so we have to take some care. We will consider the first point
on η that is visited by W and then focus on the last visit by W to this first point
on η.

To be precise, we write

η = [η0, . . . , ηm],
i = min

{
t : ηt ∈ W [0,∞)

}
,

ρ = max{t ≥ 0 : St = ηi},
λ = max{t : Wt = ηi}.

Then the event {ρ = j ;λ = k;Sρ = Wλ = z} is the event that:

I: j < σn, Sj = z, Wk = z,
II: LE(S[0, j ]) ∩ (S[j + 1, σn] ∪ W [0, k] ∪ W [k + 1,∞)) = {z},

III: z /∈ S[j + 1, σn] ∪ W [k + 1,∞).
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Viewing the picture at z, we see that P{II and III} ∼ p̂n. Using the slowly recurrent
nature of the random walk paths, we expect that as long as z is not too close to 0,
w, or ∂Cn, then I is almost independent of (II and III). This then gives

P{ρ = j ;λ = k;Sρ = Wλ = z} ∼ P{Sj = Wk = z}p̂n,

and summing over j , k, z gives

P
{
W [0,∞] ∩ η �=∅

} ∼ p̂nĜ
2
n(w).

The following proof makes this reasoning precise.

PROOF OF PROPOSITION 5.2. Let V be the event

V = {
w /∈ S[1, σn],0 /∈ W [1,∞)

}
.

Using P[0 /∈ W [1,∞)] = P
w[w /∈ S[1,∞)] = G(0,0)−1, we can see that |P(V )−

G(0,0)−2| is fast decaying if n−1 ≤ e−n|w| ≤ 1 − n−1. Let τ = max{j : Wj = 0}.
Then P{τ > σlog2 n} and P{S[0,∞) ∩ Clog2 n �=∅} are fast decaying, and hence so
is ∣∣P{

W [0,∞] ∩ η �= ∅ | V } − P
{
W [0,∞] ∩ η �= ∅

}∣∣.
Therefore, it suffices to show that

(5.2) P
[
V ∩ {

W [0,∞] ∩ η �= ∅
}] = Ĝ2

n(w)

G(0,0)2 p̂n[1 + θn].

Let E(j, k, z), Ez be the events

E(j, k, z) = V ∩ {ρ = j ;λ = k;Sρ = Wλ = z}, Ez =
∞⋃

j,k=0

E(j, k, z).

Then P[V ∩ {W [0,∞] ∩ η �=∅}] = ∑
z∈Cn

P(Ez). Let

C′
n = C′

n,w = {
z ∈ Cn : |z| ≥ n−4en, |z − w| ≥ n−4en, |z| ≤ (

1 − n−4)
en}

.

We can use the easy estimate P(Ez) ≤ Gn(w, z)G(0, z) to see that∑
z∈Cn\C′

n

P(En) ≤ O
(
n−6)

,

so it suffices to estimate P(Ez) for z ∈ C′
n.

We will translate so that z is the origin and will reverse the paths S[0, ρ] and
W [0, λ]. Let ω1, . . . ,ω4 be four independent simple random walks starting at the
origin and let x = w − z, y = −z. Let li denote the smallest index l such that
|ωi

l − y| ≥ en. Using the fact that reverse loop-erasing has the same distribution as
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forward loop-erasing, we see that P[E(j, k, z)] can be given as the probability of
the following event:(

ω3[
1, l3] ∪ ω4[1,∞)

) ∩ LE
(
ω1[0, j ]) =∅,

ω2[0, k] ∩ LE
(
ω1[0, j ]) = {0},

j < l1, ω1(j) = x, x /∈ ω1[0, j − 1],
ω2(k) = y, y /∈ ω2[0, k − 1],

where we translate the time reversal of S[0, j ], the time reversal of W [0, k], the
path W [k,∞) and S[j,∞) into ω1, ω2, ω3, ω4, respectively. Note that z ∈ C′

n

implies

n−1en ≤ |y|, |x − y|, |x| ≤ en[
1 − n−1]

.

We now rewrite this. We fix x, y and let C
y
n = y + Cn. Let W 1, W 2, W 3, W 4

be independent random walks starting at the origin and let

T 3 = ∞, and T i = T i
n = min

{
j : Wi

j /∈ Cy
n

}
for i = 1 and 4;

τ 1 = min
{
m : W 1

m = x
}
, and τ 2 = min

{
m : W 2

m = y
};

�̂ = �̂n = LE
(
W 1[

0, τ 1])
.

We also override the notation S to denote an simple random walk on Z
4 starting

from 0. Let E be the event

�̂ ∩ (
W 2[

1, τ 2] ∩ W 3[
1, T 3]) =∅ and �̂ ∩ W 4[

0, T 4] = {0}.
Then P{E,τ 1 < T 1, τ 2 < ∞} equals P{V ∩ W [0,∞) ∩ η} in (5.2). Note that

P
{
τ 1 < T 1} = Gn(w, z)

Gn(w,w)
= Gn(w, z)

G(0,0)
+ o

(
e−n)

,

P
{
τ 2 < ∞} = G(0, y)

G(y, y)
= G(0, z)

G(0,0)
.

Therefore, in order to prove (5.2), it suffices to prove that

(5.3) p′
n(x, y) := P

{
E | τ 1 < T 1, τ 2 < ∞} = p̂n[1 + θn].

We write Q for the distribution of W1, W2, W3, W4 under the conditioning
{τ 1 < T 1, τ 2 < ∞} in (5.3). Then consider two events E1, E2 as follows. Let
Ŵ = W 2[1, τ 2] ∪ W 3[1, T 3] ∪ W 4[0, T 4] and let E0, E1, E2 be the events

E0 = {
0 /∈ W 2[

1, τ 2] ∪ W 3[
1, T 3]}

,

E1 = E0 ∩ {
Ŵ ∩ �̂ ∩ Cn−log3 n = {0}},

E2 = E1 ∩ {Ŵ ∩ �n = ∅},
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where �n = W 1[0, τ 1] ∩ A(n − log3 n,2n). Since Q-almost surely

�̂ ∩ Cn−log3 n ⊂ �̂ ⊂ �n ∪ (�̂ ∩ Cn−log3 n).

We have

Q(E2) ≤ p′
n(x, y) ≤ Q(E1).

Now to prove (5.3). it suffices to show

Q(E1) = p̂n[1 + θn],(5.4)

Q(E1 \ E2) ≤ n−1θn.(5.5)

For each z ∈ Z
4 let

φx(z) = φx,n(z) = P
z{τ 1 < T 1

n

}
and φy(z) = P

z{τ 2 < ∞}
.

Therefore, for any path ω = [0,ω1, . . . ,ωm] with 0,ω1, . . . ,ωm−1 ∈ C
y
n \ {x},

(5.6) Q
{[

W 1
0 , . . . ,W 1

m

] = ω
} = P

{[S0, . . . , Sm] = ω
}φx(ω

m)

φx(0)
.

Similarly, if ω = [0,ω1, . . . ,ωm] is a path with y /∈ {0,ω1, . . . ,ωm−1}, then

Q
{[

W 2
0 , . . . ,W 2

m

] = ω
} = P

{[S0, . . . , Sm] = ω
}φy(ω

m)

φy(0)
.

Let ζ ∈ {x, y}. By (2.5), there exists a fast decaying sequence εn such that

(5.7) φζ (z) = φζ (0)
[
1 + O(εn)

]
if |z| ≤ ene− log2 n.

This implies that Wi , S (i = 1,2) can be coupled on the same probability space
such that, except on an event of probability O(εn),

�̂ ∩ Cn−log3 n = LE
(
S[0,∞)

) ∩ Cn−log3 n.

Therefore, Q(E1) − pn−logn3n is fast decaying and hence (5.4) follows from
Proposition 1.6.

To prove (5.5), consider the following events whose union covers E1 \ E2:

F 2 = E1 ∩ {
W 2[

1, τ 2] ∩ �n �= ∅
}
, F 3 = E1 ∩ {

W 3[
1, T 3] ∩ �n �= ∅

}
,

F 4 = E1 ∩ {
W 4[

1, T 4] ∩ �n �=∅
}
.

We are now going to prove Q(F i) ≤ n−1θn for i = 2,3,4, thus proving (5.5).
By Proposition 2.5, we can find a fast decaying sequence δn such that

P

{
H

(
S[0,∞) ∩ A(n − 1, n)

) ≥ log2 n

n

}
≤ δ100

n .
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Let ρ = ρn = min{j : |W 1
j − x| ≤ enδn}. Using the strong Markov property of W 1

under Q, we can find a constant α > 0 such that

Q
{
W 1[

ρ, τ 1]
/∈ {|z − x| ≤ en

√
δn

}} = O
(
δα
n

)
.

Since |x| ≥ e−nn−1, we know that

H
({|z − x| ≤ en

√
δn

}) ≤ n2δn.

By the strong Markov property, for all w ∈ C
y
n with |w − x| ≥ en

√
δn,

φ(0)/φ(w) � P
[
ρn < T 1] ≥ δ50

n .

Using (5.6), we have

(5.8) Q

{
H

(
W 1[

0, τ 1] ∩ A(n − 1, n)
) ≥ log2 n

n

}
≤ O(δ100

n )

P[ρn < T 1] + O
(
δα
n

)
,

which is fast decaying. Therefore, Q[W 1[0, τ 1] /∈ Xn] is fast decaying. Let

(5.9) Rn = H
(
W 1[

0, τ 1] ∩ A
(
n − 2 log3 n,n + 1

))
.

Let σ = inf{m : W 3
m /∈ Cn−log3 n} and E = {W 3[1, σ ]∩ �̂ =∅}. Let Q̄ be the prob-

ability measure conditioning on W 1, W 2, W 4. Then

Q̄
[
F 3] ≤ Q̄(E)

∑
z∈∂C

n−log3 n

Q̄[Sσ = z | E]Q[
W 3[

σ,T 3] ∩ �̂ =∅ | W 3
σ = z

]
.

On the event �̂ ∈ X̃n−log3 n, by Proposition 3.8, there exists c < ∞ such that∑
z∈∂C

n−log3 n

Q̄
[
W 3

σ = z | E]
Q̄

[
W 3[

σ,T 3] ∩ �̂ �=∅ | W 3
σ = z

]
≤ cQ̄

[
W 3[

σ,T 3] ∩ �̂ �= ∅
]

≤ c
(
H

(
�̂ ∩ A

(
n − 2 log3 n,n + 1

)) + Q[W 3[σ,∞) ∩ Cn−2 log3 n �=∅])
≤ c

(
Rn + Q[W 3[σ,∞) ∩ Cn−2 log3 n �= ∅]) ≤ cRn + O

(
e− log3 n)

.

Note that Es(�̂) ≤ 2−(n−log3 n)/4 when �̂ ∈ X̃n. Moreover, Q[�̂n /∈ Xn] is fast de-
caying. Applying the union bound to (5.8), we have Q[Rn ≥ log7 n/n] is fast de-
caying. Averaging over W 1, W 2, W 4, we have

Q
(
F 3) ≤ O

(
log7 n/n

)
Q(E1) + εn,

where εn is fast decaying. This gives Q(F 3) ≤ n−1θn for some θn. The same ar-
gument shows Q(F 4) ≤ n−1θn

We still need a similar result to conclude Q(F 2) ≤ n−1θn. By (5.7), we can
couple an usual simple random walk S with W 2 (under the Q-probability) such
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that S and W 2 agree until inf{m : Sm /∈ Cn−log3 n} except for an event of fast de-

caying probability. The same argument as above reduces proving Q(F 2) ≤ n−1θn

to showing that there exists θn such that except for an event of fast decaying Q-
probability,

Q
{
W 2[

0, τ 2] ∩ (
�̂ ∩ A

(
n − 2 log3 n,n + 1

)) �= ∅ | �̂} ≤ θn

which follows from a similar argument for the bound for Q[Rn ≥ log7 n/n] above.
�

As explained in Section 1.2, combined with Lemma 5.1, we conclude the proof
of Theorem 1.5. Inserting p̂n ∼ π2/24 back to Proposition 5.2, we get the follow-
ing.

COROLLARY 5.3. If n−1 ≤ e−n|w| ≤ 1 − n−1, then

P
{
W [0,∞) ∩ η �= ∅

} ∼ π2Ĝ2
n(w)

24n
.

More precisely,

lim
n→∞ max

n−1≤e−n|w|≤1−n−1

∣∣24nP
{
W [0,∞) ∩ η �=∅

} − π2Ĝ2
n(w)

∣∣ = 0.

By a very similar proof, one can show the following variant of Proposition 5.2
that implies Theorem 1.3.

PROPOSITION 5.4. In the setting of Theorem 1.3, there exists α < ∞ such
that if n−1 ≤ e−n|w| ≤ 1 − n−1, then∣∣logP

{
W

[
0, σW

n

] ∩ LE
(
S[0, σn]) �= ∅

} − log
[
G2

n(w)p̂n

]∣∣ ≤ c
logα n

n
.

6. Two-sided loop-erased random walk. We start by completing the proof of
Theorem 1.1. Let Z̃n = Es(�;n). We first note that the limit limn→∞ n1/3Z̃n exists
almost surely. We only need consider � ∈ X̃ since otherwise the limit is 0 almost
surely. In this case, existence is established by Corollary 3.10, Proposition 1.8 and
the fact that 3nhn ∼ 1. Recall (3.13). We have

E
[
Z̃r

n

] = E
[
Zr

n

][
1 + O

(
log4 n/n

)]
.

Since for each r , E[nr/3Z̃r
n] is uniformly bounded, we also get the limit in Lp for

each p > 0. We then get Theorem 1.1 using (1.2).
If η is an infinite (one-sided) path starting at the origin, and W is a simple

random walk with stopping times σW
n = inf{Wj /∈ Cn}, we define

φη(x) = lim
n→∞n1/3

P
x{

W
[
0, σW

n

] ∩ η = ∅
}
,

∇φη = 1

8

∑
|y|=1

φη(y).
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We let K denote the set of infinite self-avoiding paths starting at the origin such
that the limit above exists and is finite for all x ∈ Z

4 and let K+ be the set of such
η with ∇φη > 0. We can restate Theorem 1.1 as follows: if η = LE(S[0,∞)), then
with probability one, η ∈ K and with positive probability η ∈ K+. Moreover, ∇φη

is in Lp for all p.
We can now construct the two-sided loop-erased random walk in Z

4. This is a
measure on doubly-infinite self-avoiding paths

ω = [· · ·ω−2,ω−1,ω0,ω1,ω2 · · · ]
with ω0 = 0. Each ω can be described in terms of the sequence of one-sided paths

ηj = [ωj ,ωj−1,ωj−2, . . .] − ωj , j ∈ N,

where ηj+1 is obtained from ηj by choosing |x| = 1, attaching x to the beginning
of ηj , and translating by −x. The transition probabilities for the chain are specified
by saying that if ηj = η, then x is chosen with probability φη(x)/∇φη. We choose
η0 = η = LE(S[0,∞)) tilting by ∇φη/E[∇φη].

We give another definition. Suppose

η = [η−k, η−k−1, . . . , ηj−1, ηj ]
is a (finite) self-avoiding walk in Z

4. Let S, W be independent random walk start-
ing at z = η−k , w = ηj , respectively, with corresponding stopping times σS

n , σW
n ,

respectively, and let En be the event

S
[
1, σ S

n

] ∩ η = ∅, W
[
1, σW

n

] ∩ η = ∅,

LE
(
S
[
1, σ S

n

]) ∩ W
[
1, σW

n

] = ∅.
(6.1)

We define

(6.2) Es(η) = lim
n→∞n1/3

P
z,w[En].

It follows from our theorems that the limit exists. Moreover (see [12], Chapter 9),
the limit would be the same if condition (6.1) in the event En is replaced by

S
[
1, σ S

n

] ∩ LE
(
W

[
1, σW

n

]) = ∅.

From this, we see that Es(η) is translation invariant and also invariant under path
reversal. The probability that the two-sided loop-erased walk produces η is

8−(j+k)Fη

Es(η)

Es(0)
.

Here Es(0) is the quantity where η is the trivial walk [0] and Fη is a loop term that
can be given in several ways, for example,

Fη =
j∏

i=−k

GAi
(ηi, ηi),

where Ai = Z
4 \{η−k, . . . , ηi−1}. Although not immediately obvious, this quantity

depends only on the set {η−k, . . . , ηj } and not on the ordering of the points.
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• For d ≥ 5, it was constructed in [5], where one can define φη by

P
{
W [0,∞) ∩ η = ∅

}
.

In this case, the marginal distribution on the past or future of the path is abso-
lutely continuous with respect to the one-sided measure with a bounded Radon–
Nikodym derivative.

• For d = 4, it is absolutely continuous with an Lp , but not a uniformly bounded,
derivative.

• In [11], the two-sided walk is constructed for d = 2,3 using (6.2) replacing n1/3

with a sequence an. (The proof there also works for d > 3 but does not give as
strong a result as above.) If d = 2, it is known that an = e3n/4 works; for d = 3,
it is expected that we can choose an = eβn for an appropriate β but this has not
been proven.

7. Gaussian limits for the spin field. In this section, we start by reviewing
some known facts of UST and random walk Green’s function, then proving Theo-
rem 1.11 by applying main estimates of LERW.

7.1. Uniform spanning trees. Here we review some facts about the uniform
spanning forest (i.e., wired spanning trees) on finite subsets of Zd on Z

d . Most of
the facts extend to general graphs as well. For more details, see [12], Chapter 9.

Given a finite subset A ⊂ Z
d , the uniform wired spanning tree in A is a subgraph

of the graph A ∪ {∂A}, choosing uniformly random among all spanning trees of
A ∪ {∂A}. (A spanning tree T is a subgraph such that any two vertices in T are
connected by a unique simple path in T .) We define the uniform spanning forest
(USF) on A to be the uniform wired spanning tree restricted to the edges in A. One
can also consider the uniform spanning forest on all of Zd [2, 14], but we will not
need this construction.

The uniform wired spanning tree, and hence the USF, on A can be generated by
Wilson’s algorithm [16] which we recall here:

• Order the elements of A = {x1, . . . , xk}.
• Start an SRW at x1 and stop it when in reaches ∂A giving a nearest neighbor

path ω. Erase the loops chronologically to produce η = LE(ω). Add all the
edges of η to the tree which now gives a tree T1 on a subset of A ∪ {∂A} that
includes ∂A.

• Choose the vertex of smallest index that has not been included and run a simple
random walk until it reaches a vertex in T1. Erase the loops and add the new
edges to T1 in order to produce a tree T2.

• Continue until all vertices are included in the tree.

Wilson’s theorem states that the distribution of the tree is independent of the
order in which the vertices were chosen and is uniform among all spanning trees.
In particular, we get the following:
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• If x, y ∈ A, let Sx , Sy be two independent SRWs starting from x, y, respectively.
Then the probability that x, y are in the same component of the USF equals to
P{LE(ωx) ∩ ωy = ∅}.
Using this characterization, we can see the three regimes for the dimension d .

Let us first consider the probabilities that neighboring points are in the same com-
ponent. Let qN be the probability that a nearest neighbor of the origin is in a
different component as the origin when A = AN . Then

q∞ := lim
N→∞qN > 0, d ≥ 5,

qN � (logN)−1/3, d = 4.

For d < 4, qN decays like a power of N . For far away points, we have:

• If d > 4, and |x| = n, the probability that 0 and x are in the same component is
comparable to |x|4−d . This is true even if N = ∞.

• If d = 4 and |x| = n, the probability that that 0 and x are in the same component
is comparable to 1/ logn. However, if we chose N = ∞, the probability would
equal to one.

The last fact can be used to show that the USF in all of Z4 is, in fact, a tree. For
d < 4, the probability that 0 and x are in the same component is asymptotic to 1
and our construction is not interesting. This is why we restrict to d ≥ 4.

7.2. Proof of Theorem 1.11. Here we give the proof of the theorem by apply-
ing Theorem 1.5 and Proposition 5.4. We will only consider the d = 4 case here.
It suffices to prove the result for m = 1, h1 = h, as the general result follows by
applying the k = 1 result to any linear combination of h1, . . . , hm.

We fix h ∈ C∞
0 with

∫
h = 0 and allow implicit constants to depend on h. We

will write just Yx for Yx,n. Let K be such that h(x) = 0 for |x| > K .
Let us write Ln = n−1

Z
4 ∩ {|x| ≤ K} and an = √

3 logn. Let

〈h,φn〉 = n−2an

∑
x∈Ln

h(x)Ynx = n−2an

∑
nx∈AnK

h(x)Ynx.

Let qN(x, y) be the probability that x, y are in the same component of the USF on
AN . Note that

E[Yx,nYy,n] = qN(x, y),

E
[〈h,φn〉2] = n−4

∑
x∈Ln

h(x)h(y)a2
nqN(nx,ny).

To estimate E[〈h,φn〉2], we need the follow two lemmas.
Let GN(x, y) denote the usual random walk Green’s function on AN , and

G2
N(x, y) = ∑

z∈AN

GN(x, z)GN(z, y).
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Note that here the meaning of GN is not the same as Gn in Section 2.4 with n = N

as AN �= CN .

LEMMA 7.1. There exists c0 ∈ R such that if |x|, |y|, |x − y| ≤ N/2, then

G2
N(x, y) = 8

π2 log
[

N

|x − y|
]

+ c0 + O

( |x| + |y| + 1

N
+ 1

|x − y|
)
.

PROOF. Let δ = N−1[1 + |x| + |y|] and note that |x − y| ≤ δN . Since∑
|w|<N(1−δ)

GN(x − y,w)GN(0,w) ≤ ∑
w∈AN

GN(x,w)GN(y,w)

≤ ∑
|w|≤N(1+δ)

GN(x − y,w)GN(0,w),

Lemma 7.1 is reduced to the case y = 0, which then follows from Lemmas 2.8
and 2.9. �

LEMMA 7.2. There exists a sequence rn with rn ≤ O(log logn), a sequence
εn ↓ 0, such that if x, y ∈ Ln with |x − y| ≥ 1/

√
n,∣∣a2

nqN(nx,ny) − rn + log |x − y|∣∣ ≤ εn.

PROOF. In light of Wilson’s algorithm, Lemma 2.9 and Proposition 5.4 yield
Lemma 7.2 in the y = 0 case. The general case can be reduced to the y = 0 case
as in Lemma 7.1 by recentering. �

An upper bound for qN(x, y) can be given in terms of the probability that the
paths of two independent random walks starting at x, y, stopped when they leave
AN , intersect. This gives

qN(x, y) ≤ c log[N/|x − y|]
logN

.

Let δn = exp{−(log logn)2}, which is a function that decays faster than any power
of logn. Then

(7.1) qN(x, y) ≤ c
(log logn)2

logn
, |x − y| ≥ nδn.

It follows from Lemma 7.2, (7.1) and the trivial inequality qN ≤ 1, that

E
[〈h,φn〉2] = o(1) + n−4

∑
x,y∈Ln

[
rn − log |x − y|]h(x)h(y)

= o(1) − n−4
∑

x,y∈Ln

log |x − y|h(x)h(y)

= o(1) −
∫

h(x)h(y) log |x − y|dx dy,
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which shows that the second moment has the correct limit. The second equality
uses

∫
h = 0 to conclude that

rn

n4

∑
x,y∈Ln

h(x)h(y) = o(1).

We now consider the higher moments. It is immediate from the construction that
the odd moments of 〈h,φn〉 are identically zero, so it suffices to consider the even
moments E[〈h,φn〉2k]. We fix k ≥ 1 and allow implicit constants to depend on k

as well. Let L∗ = L2k
n,∗ be the set of x̄ = (x1, . . . , x2k) ∈ L2k

n such that |xj | ≤ K for
all j and |xi − xj | ≥ δn for each i �= j . We write h(x̄) = h(x1) . . . h(x2k).

Note that #L∗ � n8k and #(L2k
n \ L∗) � k2n8kδn. In particular,

n−8ka2k
n

∑
x̄∈L2k

n,∗

h(x1)h(x2) · · ·h(x2k) = o2k(
√

δn).

Then we see that

E
[〈h,φn〉2k] = n−8ka2k

n

∑
x̄∈L2k

n

h(x̄)E[Ynx1 · · ·Ynx2k
]

= O(
√

δn) + n−8ka2k
n

∑
x̄∈L∗

h(x̄)E[Ynx1 · · ·Ynx2k
].

LEMMA 7.3. For each k, there exists c < ∞ such that the following holds.
Suppose x̄ ∈ L2k

n,∗ and let ω1, . . . ,ω2k be independent simple random walks started
at nx1, . . . , nx2k stopped when they reach ∂AN . Let N denote the number of inte-
gers j ∈ {2,3, . . . ,2k} such that

ωj ∩ (
ω1 ∪ · · · ∪ ωj−1) �= ∅.

Then

P{N ≥ k + 1} ≤ c

[
(log logn)3

logn

]k+1
.

Conditioned on Lemma 7.3, we now prove Theorem 1.11 by verifying Wick’s
formula. We write yj = nxj and write Yj for Yyj

. To calculate E[Y1 · · ·Y2k], we
first sample our USF which gives a random partition P of {y1, . . . , y2k}. Note that
E[Y1 · · ·Y2k | P] equals 1 if it is an “even” partition in the sense that each set has
an even number of elements. Otherwise, E[Y1 · · ·Y2k | P] = 0. Any even partition,
other than a partition into k sets of cardinality 2, will have N ≥ k + 1. Hence

E[Y1 · · ·Y2k] = O

([
(log logn)3

logn

]k+1)
+ ∑

P(Pȳ ),

where the sum is over the (2k − 1)!! perfect matchings of {1,2, . . . ,2k} and
P(Pȳ ) denotes the probability of getting this matching for the USF for the ver-
tices y1, . . . , y2k .
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Let us consider one of these perfect matchings that for convenience we will
assume is y1 ↔ y2, y3 ↔ y4, . . . , y2k−1 ↔ y2k . We claim that

P(y1 ↔ y2, y3 ↔ y4, . . . , y2k−1 ↔ y2k)

= O([(log logn)3

logn
]k+1) + P(y1 ↔ y2)P(y3 ↔ y4) · · ·P(y2k−1 ↔ y2k).

Indeed, this is just inclusion–exclusion using our estimate on P{N ≥ k + 1}.
If we write εn = εn,k = (log logn)3(k+1)/ logn, we now see from symmetry that

E[〈h,φn〉2k〉]
= O(εn) + n−8kan(2k − 1)!! ∑

x̄∈L∗
P{nx1 ↔ nx2, . . . , nx2k−1 ↔ nx2k}

= O(εn) + (2k − 1)!![E(〈h,φn〉2)]k
.

7.3. Proof of Lemma 7.3. Here we fix k and let y1, . . . , y2k be points with
|yj | ≤ Kn and |yi − yj | ≥ nδn where we recall log δn = −(log logn)2. Let
ω1, . . . ,ω2k be independent simple random walks starting at yj stopped when they
get to ∂AN . We let Ei,j denote the event that ωi ∩ ωj �= ∅ and let Ri,j = P(Ei,j |
ωj).

LEMMA 7.4. There exists c < ∞ such that for all i, j and all n sufficiently
large,

P

{
Ri,j ≥ c

(log logn)3

logn

}
≤ 1

(logn)4k
.

PROOF. We know that there exists c < ∞ such that if |y − z| ≥ nδ2
n, then the

probability that simple random walks starting at y, z stopped when they reach ∂AN

intersect is at most c(log logn)2/ logn. Hence there exists c1 such that

(7.2) P

{
Ri,j ≤ c1(log logn)2

logn

}
≥ 1

2
.

Start a random walk at z and run it until one of three things happens:

• It reaches ∂AN

• It gets within distance nδ2
n of y

• The path is such that the probability that a simple random walk starting at y

intersects the path before reaching ∂AN is greater than c1(log logn)2/ logn.

If the third option occurs, then we restart the walk at the current site and do this
operation again. Eventually, one of the first two options will occur. Suppose it takes
r trials of this process until one of the first two events occur. Then either Ri,j ≤
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rc1(log logn)2/ logn or the original path starting at z gets within distance δ2
n of y.

The latter event occurs with probability O(δn) = o((logn)−4k). Also, using (7.2),
we can see the probability that it took at least r steps is bounded by (1/2)r . By
choosing r = c2 log logn, we can make this probability less than 1/(logn)4k . �

PROOF OF LEMMA 7.3. Let R be the maximum of Ri,j over all i �= j in
{1, . . . ,2k}. Then, at least for n sufficiently large,

P

{
R ≥ c

(log logn)3

logn

}
≤ 1

(logn)3k
.

Let

E·,j =
j−1⋃
i=1

Ei,j .

On the event R < c(log logn)3/ logn, we have

P
{
E·,j | ω1, . . . ,ωj−1} ≤ c(j − 1)(log logn)3

logn
.

If N denotes the number of j for which E·,j occurs, we see that

P{N ≥ k + 1} ≤ c

[
(log logn)3

logn

]k+1
. �
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