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CUTOFF FOR THE SWENDSEN–WANG DYNAMICS ON THE
LATTICE

BY DANNY NAM1 AND ALLAN SLY2

Princeton University

We study the Swendsen–Wang dynamics for the q-state Potts model
on the lattice. Introduced as an alternative algorithm of the classical single-
site Glauber dynamics, the Swendsen–Wang dynamics is a nonlocal Markov
chain that recolors many vertices at once based on the random-cluster repre-
sentation of the Potts model. In this work, we establish cutoff phenomenon
for the Swendsen–Wang dynamics on the lattice at sufficiently high tem-
peratures, proving that it exhibits a sharp transition from “unmixed” to
“well mixed.” In particular, we show that at high enough temperatures
the Swendsen–Wang dynamics on the torus (Z/nZ)d has cutoff at time
d
2 (− log(1 − γ ))−1 logn, where γ (β) is the spectral gap of the infinite-
volume dynamics.
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1. Introduction. A finite ergodic Markov chain is said to exhibit cutoff phe-
nomenon if its total-variation distance from stationarity decreases sharply from
near its maximum to near 0 over a negligible period of time. In other words, the
cutoff phenomenon of a Markov chain describes the abrupt transition of the chain
from “unmixed” to “well mixed.” Here, by abrupt, we mean that this transition
takes place during a time period of a strictly smaller order than the mixing time.
Although the cutoff phenomenon is believed to be ubiquitous among a broad class
of Markov chains, verifying the existence of cutoff requires a much finer control of
the Markov chain than just establishing the order of the mixing time. Such an anal-
ysis proving cutoff typically yields more information as well as it must identify the
main obstruction or bottleneck to mixing.

Markov chains, such as the Glauber dynamics give a dynamical version of
spin systems that both models the evolution of a physical system and provides
an MCMC algorithm to sample from its stationary distribution. As such their rate
of convergence has always been studied in mathematics, physics and computer sci-
ence communities. While cutoff is expected for many such models and dynamics,
establishing it for such chains is challenging due to their complicated equilibrium
distributions. Only recently has cutoff been verified for a few such chains, partic-
ularly the single-site Glauber dynamics on the Ising model at high temperatures
([22] on the complete graph, and [25–28] on the lattice).

The Swendsen–Wang dynamics is a nonlocal Markov chain in which a constant
fraction of spins change in each step. For the ferromagnetic Ising model and its q-
state generalization, the Potts model, we show cutoff on the torus at high enough
temperatures, which is the first proof of cutoff for a nonlocal chain sampling spin-
systems.

THEOREM 1. Let d ≥ 1 and q ≥ 2 be fixed integers and consider the
Swendsen–Wang dynamics for the ferromagnetic q-state Potts model on the torus
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(Z/nZ)d at inverse temperature β . Then there exists β0 = β0(d, q) > 0 such that
for any 0 < β < β0, the dynamics exhibits cutoff at

tmix = d

2

(
log
(

1

1 − γ∞

))−1
logn

with a window of O(log logn), where γ∞ is the spectral gap of the infinite-volume
dynamics which lies in (0,1) thanks to Theorem 2.

Introduced by Swendsen and Wang [33] in the 1980s, the Swendsen–Wang
dynamics was proposed as an alternative of the classical single-site Glauber dy-
namics. In each step, it maps the current spin configuration to a bond percolation
configuration on the graph and then colors each component of the configuration
uniformly from the q colors (for the formal definitions of the Potts model and the
Swendsen–Wang dynamics, see Section 2). It has been the preferred algorithm to
simulate ferromagnetic spin systems in practice as it is highly efficient in most
regimes (see, e.g., [8, 31, 33]). In the classical case of the d-dimensional lattice
cube of side-length n, it is believed that the Swendsen–Wang dynamics mixes in
time of order logn for all temperatures except at criticality. However, in contrast to
the single-site Glauber dynamics, less progress has been made analysing the rate
of convergence of the Swendsen–Wang dynamics due to its nonlocal behavior.

1.1. Related works. There has been a huge effort from mathematics, physics,
and computer science communities to understand the rate of convergence of the
Swendsen–Wang dynamics. The work started from dealing with special kinds of
graphs, proving polynomial bounds on the mixing time at all temperatures. These
are on trees, cycles [6], narrow grids and complete graph [5], where the latter
studied the case of the Ising model (i.e., q = 2).

In particular, a substantial improvement has been made in the case of the com-
plete graph. Long, Nachmias and Peres [24] established the precise order of the
mixing time of the Swendsen–Wang dynamics for the Ising model: �(1) in high
temperature, �(logn) in low temperature, and �(n1/4) at criticality. The Potts case
(q ≥ 3) is known to present a different behavior compared to the case of the Ising
model. For q ≥ 3, Galanis, Štefankovič and Vigoda [14] verified that the mix-
ing time exhibits an �(n1/3)-power law at the threshold which is strictly below
the ordered/disordered transition point. They also showed the quasi-exponential
slowdown of the dynamics in the critical region, extending the result of Gore and
Jerrum [18]. Recently, Gheissari, Lubetzky and Peres [17] improved the quasi-
exponential lower bound into a pure exponential lower bound of exp(cn).

On the other hand, if our underlying graph is the lattice cube, less results are
known compared to the case of the complete graph. In [2, 3], Borgs et al. showed
the exponential lower bound on the mixing time when the dynamics is defined on
the d-dimensional torus at critical temperature with sufficiently large q . Later on,
Ullrich [34, 35] developed a nice comparison technique that enables to compare
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the spectral gaps of the Swendsen–Wang dynamics and the heat-bath Glauber dy-
namics. He proved that the mixing time of the Swendsen–Wang dynamics in Z2

with q = 2 is at most polynomial at all temperature, and that if q ≥ 3 then the
same estimate holds except at criticality. Guo and Jerrum [21] extended this result
to general dimensions d when q = 2. At critical temperature in two dimensions,
recent work of Gheissari and Lubetzky [15, 16] established a polynomial upper
bound for q = 3, a quasi-polynomial upper bound for q = 4, and an exponential
lower bound for q > 4, implementing the results of Duminil-Copin et al. [9, 10]
who settled the continuity of the phase transition of the two-dimensional Potts
model. We finally mention another recent work of Blanca et al. [1] where they
demonstrated that the spectral gap of the Swendsen–Wang dynamics on Z2 has a
�(1) lower bound in the high temperature regime.

The cutoff phenomenon for the spin systems has only been known for the single-
site Glauber dynamics. The first such result was [22], where they showed cutoff
for the mean-field Ising model at high temperatures. In [25], it was proven that the
Ising model on the lattice torus Zd

n (i.e., periodic boundary conditions) exhibits
cutoff, at all high temperatures for d = 2 and high enough temperatures for d ≥ 3.
This result was extended to the Glauber dynamics for other spin systems such
as the q-Potts model, the hard-core model and the proper coloring model, on d-
dimensional lattices with general boundary conditions.

Although cutoff for the Swendsen–Wang dynamics is established in this paper
for the first time, there are still a plenty of interesting problems left unanswered.
For instance, we conjecture that the dynamics defined on the lattice exhibits cutoff
at all temperature except at criticality, in contrast to the current work which only
deals with sufficiently high temperatures. In fact, demonstrating an O(logn) up-
per bound on the mixing time at general noncritical temperature remains to be an
unsolved problem.

1.2. Main techniques. In contrast to the monotonicity property present in the
Glauber dynamics for the Ising model, the Swendsen–Wang dynamics is non-
monotone. Two previous approaches have been developed for cutoff for single-site
Markov chains on spin systems, a spatial decomposition method [25] and informa-
tion percolation [27]. The former proof crucially relied on log-Sobolev estimates
to bound L2 distances which are not available for the Swendsen–Wang dynamics.
On the other hand, monotonicity is essential to prove cutoff using information per-
colation. To overcome this, our approach blends the two techniques, using a new
application of information percolation to control the L2 distance locally and com-
bines this with the coupling of the system to a product chain following the ideas
of [25]. The proof consists of the following major steps which we detail.

• Coupling the Swendsen–Wang dynamics. As in the Glauber dynamics for the
Ising model, we construct a grand coupling for the Swendsen–Wang dynamics
in terms of an “update sequence” which consists of random variables that de-
scribe the evolution of the dynamics. The Swendsen–Wang dynamics is then
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a deterministic function of its starting configuration and the (random) update
sequence.

• Information percolation and the L2 bound. To apply the information per-
colation framework, we construct the “history diagram” of the Swendsen–
Wang dynamics, by revealing the update sequence backwards in time in the
(d +1)-dimensional space-time slab, and by connecting each pair of the nearest-
neighboring vertices if there exists a possible dependency between the two. Thus
it describes the propagation of information backwards in time; formal defini-
tions of the framework will be given in Section 4. At high enough temperatures,
the process of the history diagram is stochastically dominated by a sub-critical
branching process. From this formulation, we derive a bound on the L2-distance
from stationarity of the chain which turns out to be a crucial quantity in proving
cutoff.

• Breaking the dependencies and the L1 to L2 reduction. To establish cutoff in
Theorem 1, we implement the technique of [25] to relate the L1-mixing time
of the dynamics on Zd

n in terms of the L2-mixing of the dynamics on a product
chain of smaller lattices Zd

r . Our starting point is observing that the subcriticality
of our coupling implies that although the chain is nonlocal, information does not
travel too fast, so that any two distant vertices do not affect each other unless
the time period is long enough. Therefore, one might hope to understand the
original dynamics on Zd

n approximately as a product chain on smaller blocks Zd
r

by breaking the dependencies between remote sites. Following the ideas of [25],
this is achieved by showing that for most realisations of the update sequence, one
only needs the configuration of Xt on a “sparse” set of vertices to determine the
configuration at time t + s if s � log logn. Projected onto this sparse set, called
the “update support,” the dynamics can be coupled to a product chain of much
smaller lattices, and the L1-mixing of the primary chain is controlled by the
L2-distance from stationarity of the dynamics defined on Zd

r with r � log5 n.
Finally, we utilize the estimate on the L2-distance derived using information
percolation to bound this distance and establish cutoff.

This approach establishes cutoff in terms of the spectral gap on the small
chain Zd

r . In [25], it was shown that for the Glauber dynamics the cutoff location
could in fact be given in terms of the spectral gap of the infinite volume dynam-
ics. This proof used monotonicity in a crucial way and a follow up work [26]
extending the techniques to Potts and other spin systems established the exis-
tence of cutoff but could not relate the location to the infinite volume dynamics.
The same issue arises for the Swendsen–Wang dynamics but we are able to re-
late the spectral gap of Zd

r with the infinite volume dynamics by controlling the
L2-distance and using the representation of the spectral gap as the exponential
rate of convergence to stationarity.

THEOREM 2. For d ≥ 1 and q ≥ 2, let γn (resp., γ∞) denote the spectral
gap of the Swendsen–Wang dynamics on (Z/nZ)d (resp., Zd ). Then there exists
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β0 = β0(d, q) > 0 such that for any 0 < β < β0, we have

lim
n→∞γn = γ∞ and 0 < γ∞ < 1.

To prove Theorem 2, we need to introduce the framework of infinite-volume
information percolation. This will be done in Theorem 6.7 and Section A.3 in the
Appendix.

Our approach works in great generality for dynamics at high temperature includ-
ing the Potts Glauber dynamics, allowing one to give the cutoff locations in [26]
in terms of the infinite volume spectral gap. We discuss this generalization in Re-
mark 6.8.

REMARK 1.1. It turns out that the methods described so far can be applied to
studying the Swendsen–Wang dynamics on the lattice cube with general boundary
conditions at high enough temperatures. Namely, the Swendsen–Wang analogues
of Corollary 2, Theorems 6 and 6.1 of [26] continue to hold. To be precise, at high
enough temperatures, the Swendsen–Wang dynamics on {0, . . . , n}d with arbitrary
boundary conditions exhibit cutoff with O(log logn)-window, and if we have free
or single-colored boundary conditions then the cutoff location can be written by
the same formula given in Theorem 6.1 of [26]. Their proofs can also be carried
out by a straightforward generalization of [26].

1.3. Organization. The rest of this article is organized as follows. Section 2
consists of an introduction on the background. In Section 3, we introduce a cou-
pling of the Swendsen–Wang dynamics and deduce estimates on the spectral gap
and the mixing time. The information percolation framework is explained in Sec-
tion 4, and the bound on the L2-distance from equilibrium is derived in this section.
In Section 5, we describe the reduction argument from L1-mixing on Zd

n to L2-
mixing on a smaller lattice Zd

r . The final section, Section 6, is devoted to proving
Theorems 1 and 2 by implementing the results from the previous sections.

2. Preliminaries.

2.1. The q-state Potts model and the random-cluster model. Let G = (V ,E)

be a finite graph. Let q ≥ 2 be an integer and β be a nonnegative number. Then the
q-state Potts model on G with inverse temperature β is the probability distribution
on the configuration space �V := {1,2, . . . , q}V , where its formula given by

π(σ) := 1

ZP (β, q)
exp

(
β
∣∣Em(σ)

∣∣),
where Em(σ) := {(uv) ∈ E : σ(u) = σ(v)} and ZP (β, q) is the normalizing con-
stant. Each configuration denotes an assignment of colors to the sites in V . For
β ≥ 0 we say that the model is ferromagnetic, otherwise it is anti-ferromagnetic.
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In particular, if q = 2, this is equivalent to the Ising model. Throughout this paper,
we will focus only on the ferromagnetic case.

Another model that shows a rich connection with the Potts model is the random-
cluster model. Also called as the FK–Ising model, this model is introduced by
Fortuin and Kasteleyn in [12, 13]. Here, the configuration space is �E := {0,1}E ,
and for each configuration ω ∈ �E , we say that an edge e is open in ω if ω(e) = 1
and is closed otherwise. The random-cluster model with parameters p ∈ [0,1] and
q > 0 is the probability distribution on �E defined by

φ(ω) := 1

ZRC(p, q)
p|E(ω)|(1 − p)|E\E(ω)|qk(ω),

where E(ω) is the set of the open edges of ω, k(ω) denotes the number of con-
nected components in the subgraph (V ,E(ω)) (note that we also count each iso-
lated vertex as a component) and ZRC(p, q) is the normalizing constant.

One can observe the relations between the q-state Potts model and the random-
cluster model by considering the Edwards–Sokal measure [11], which is the joint
distribution of the two defined as

ν(σ,ω) := p|E(ω)|(1 − p)|E\E(ω)|1{E(ω)⊂Em(σ)}.
Indeed, one can check that when p, β satisfies the relation p = 1 − e−β , the

marginal distribution of ν on �V (resp., �E) is equal to π (resp., φ). A detailed
illustration on this fact can be found in [20]. Throughout the rest of the paper, we
always assume that p and β satisfy

p = 1 − e−β.

2.2. The Swendsen–Wang dynamics. One interesting feature about the
Edwards–Sokal measure is that it provides an insight to sample a random clus-
ter configuration from a Potts configuration, and vice versa. This is closely related
with the formulation of the Swendsen–Wang dynamics which is first introduced in
[33]. Given a Potts configuration Xt ∈ �, a step of the Swendsen–Wang dynamics
results in a new configuration Xt+1 as follows:

1. Sample ωt ∈ �E by setting ωt(e) = 1 with probability p = 1 − e−β and
ωt(e) = 0 with probability 1 − p for each e ∈ Em(Xt), independently of e. For
e /∈ Em(Xt), set ωt(e) = 0. Hence, we obtain a joint configuration (Xt ,ωt );

2. Assign to each connected component of (V ,E(ωt)) independently a new
color from Q = {1,2, . . . , q} uniformly at random and obtain the new Potts con-
figuration Xt+1.

Not only is it well known, but also is a simple fact that the Markov chain defined
as above is reversible and stationary with respect to the Potts measure. Similarly,
if we run the dynamics by 2 → 1 starting from an edge configuration ωt , then it
defines a reversible Markov chain with respect to the random-cluster measure. We
call this chain the edge SW dynamics.
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2.3. Mixing time, cutoff and spectral gap. The total-variation (L1) distance
is arguably the most fundamental notion of convergence in the theory of Markov
chains. For two probability measures μ1, μ2 on a finite state space S the total-
variation distance is defined as

‖μ1 − μ2‖TV := max
A⊂S

∣∣μ1(A) − μ2(A)
∣∣= 1

2

∑
x∈S

∣∣μ1(x) − μ2(x)
∣∣.

Another notion of distance is the L2-distance, which we define as

(2.1) ‖μ1 − μ2‖L2(μ2)
:=
{∑

x∈S

∣∣∣∣μ1(x)

μ2(x)
− 1

∣∣∣∣2μ2(x)

}1/2
.

For an ergodic Markov chain (Yt ) with stationary distribution μ, we define the
worst case total-variation distance from equilibrium as

d(t) := max
y0∈S

∥∥Py0(Yt ∈ ·) − μ
∥∥

TV,

where Py0(Yt ∈ ·) denotes the probability distribution of Yt starting from y0. Then
the mixing time of the chain (Yt ) is defined as the minimal time when d(t) gets
below some given threshold, that is, for each ε ∈ (0,1),

tmix(ε) := min
{
t ≥ 0 : d(t) ≤ ε

}
.

A family of chains {(Y (n)
t )}n is said to exhibit cutoff if for every fixed ε ∈ (0,1)

we have

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1 − ε)

= 1.

Here, we typically consider the family {(Y (n)
t )}n that consists of the same type of

Markov chains whose system size grows in n (e.g., the Swendsen–Wang dynamics
on Zd

n). A sequence (wn) is said to be a cutoff window if t
(n)
mix(ε) − t

(n)
mix(1 − ε) =

O(wn) for every ε ∈ (0,1). Then the existence of cutoff is equivalent to the exis-
tence of such sequence (wn) that satisfies wn = o(t

(n)
mix(ε)).

For a discrete-time reversible Markov chain (Yt ), the transition matrix P of the
chain has real eigenvalues which we denote by 1 = λ1 ≥ · · · ≥ λ|S| ≥ −1. Then the
spectral gap of the Markov chain (Yt ) is defined as

γ := 1 − max
{
λ2, |λ|S||}.

Spectral gap of a Markov chain provides some fundamental results on the mixing
time. We point out a well-known property of it as follows. For a proof, see, for
example, [23].
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PROPOSITION 2.1. Let (Yt ) be a discrete-time, ergodic and reversible
Markov chain with stationary distribution μ and spectral gap γ . Define d(t) =
maxy0∈S ‖Py0(Yt ∈ ·) − μ‖TV. Then the following holds true for all t > 0:

(1 − γ )t ≤ 2d(t) ≤ μ−1
min(1 − γ )t ,

where μmin = minx∈S μ(x).

Moreover, if P is nonnegative definite, then the spectral gap γ = 1 − λ2 can be
written by the following formula using variational approach:

(2.2) γ := inf
f ∈L2(π)

f 
=0

Eπ(f,f )

Varπ(f )
,

where Eπ : L2(π) × L2(π) →R denotes the Dirichlet form defined as

Eπ(f, g) := 1

2

∫
�×�

(
f (x) − f (y)

)2
P(x, dy)π(dx).

3. Global coupling of the Swendsen–Wang dynamics. Throughout this sec-
tion, d ≥ 2 will be any fixed integer, and G = (V ,E) will be a finite graph of
maximal degree d .

The purpose of the following subsection is to define a global coupling for the
Swendsen–Wang dynamics. This coupling method gives a simple proof of the con-
stant lower bound of the spectral gap in Section 3.2.

3.1. A global coupling for the Swendsen–Wang dynamics. We introduce the
update sequence of the Swendsen–Wang dynamics which consists of three types
of elements that determine the updates. For an edge configuration ω ∈ �E on G,
let (V ,ω) denote the subgraph of G induced by the edge set {e ∈ E : ω(e) = 1}.

DEFINITION 3.1 (Update sequence). Let (Xt)0≤t≤t� be the Swendsen–Wang
dynamics for the q-state Potts model on G = (V ,E). The update sequence of
(Xt)0≤t≤t� is defined by Ht� = {(ω̄t , (cv,t )v∈V ,Aω̄t )}t�−1

t=0 , where the elements of
Ht� are given as follows:

1. Let (ω̄t )t≥0 be the collection of i.i.d. Bernoulli (bond-)percolation configu-
rations on G = (V ,E) with probability p. In other words, for each edge e, ω̄t (e)

is set to 1 with probability p and to 0 with probability 1 − p independently of e,
and ω̄t ’s are independent.

2. Let (cv,t )v∈V,t≥0 be i.i.d. Unif{1, . . . , q} random variables which are inde-
pendent with (ω̄t )t≥0.

3. For each t ≥ 0, let k(ω̄t ) be the number of connected components in (V , ω̄t )

and let C
ω̄t

1 , . . . ,C
ω̄t

k(ω̄t )
denote its components. For each j ∈ {1, . . . , k(ω̄t )}, define
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αt(C
ω̄t

j ) to be any bijective function that maps C
ω̄t

j onto {1, . . . , |Cω̄t

j |}. Then we

combine all the information of αt(C
ω̄t

j )’s, by defining Aω̄t : V →N as

Aω̄t (v) = αt

(
C

ω̄t

j

)
(v) if v ∈ C

ω̄t

j for some j.

Note that in Step 3, the specific choice of the function αt(C
ω̄t

j ) is unimportant.

Any function that is bijective from C
ω̄t

j onto {1, . . . , |Cω̄t

j |} leads to the desired

coupling. However, the functions αt(C
ω̄t

j )’s should be deterministic.
It turns out that the combination of the three types of random variables con-

structed above can actually govern the evolution of the Swendsen–Wang dynam-
ics. We describe how it is done in the following definition.

DEFINITION 3.2 (Global coupling). Let Ht� = {(ω̄t , (cv,t )v∈V ,Aω̄t )}t�−1
t=0 . The

Swendsen–Wang dynamics (Xt)0≤t≤t� for the q-state Potts model on G is coupled
with Ht� as follows:

1. Given the Potts configuration Xt at time t , the corresponding edge configu-
ration ωt in the first step of the dynamics follows ω̄t on monochromatic edges, that
is, ωt(e) = ω̄t (e) if Xt(u) = Xt(v) with e = (uv), and ωt(e) = 0 otherwise.

2. Let C
ωt

1 , . . . ,C
ωt

k(ωt )
denote the connected components of (V ,ωt ). For each

C
ωt

j , pick a vertex vj ∈ C
ωt

j that satisfies Aω̄t (vj ) = min{Aω̄t (u) : u ∈ C
ωt

j }, that
is, for each connected component of ωt , we pick the vertex having the smallest
label with respect to Aω̄t .

3. Obtain Xt+1 by assigning to each component C
ωt

j a new color cvj ,t .

Let us briefly check how this procedure is actually identical with the law of
the Swendsen–Wang dynamics. First, since ω̄t ∼ i.i.d. Perc(G,p), generating the
edge configuration ωt in Step 1 is indeed the same in law as the first step of the
Swendsen–Wang dynamics. In the second and third steps, no matter how αt and
Aω̄t are defined, each connected component in (V ,ωt ) receives a color cvj ,t ∼
i.i.d. Unif{1, . . . , q}, matching the definition of the Swendsen–Wang dynamics.

REMARK 3.3. Unlike the monotone coupling of the heat-bath Glauber dy-
namics for the Ising model or for the random-cluster model, the coupling is not
monotone in the following sense: Consider the edge Swendsen–Wang dynamics
on �E by proceeding 2 → 3 → 1 instead of 1 → 2 → 3 in the Definition 3.2. If
we define the order between the edge configurations by ω,ω′ ∈ �E , ω ≤ ω′ if and
only if ω(e) ≤ ω′(e) for all e ∈ E, then one can observe that ω0 ≤ ω′

0 does not
imply ω1 ≤ ω′

1.
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3.2. Lower bound on the spectral gap. In this subsection, we implement the
global coupling given in the Definition 3.2 to prove a constant lower bound on the
spectral gap of the Swendsen–Wang dynamics. The proof will be an application of
the path coupling method which is first introduced by Bubley and Dyer [4]. In this
procedure, an upper bound on the mixing time will naturally be derived as well.

PROPOSITION 3.4. Let p = 1 − e−β and q ≥ 2. For any p such that edp ≤
1 − 1√

2
, the spectral gap γ of the Swendsen–Wang dynamics for the ferromagnetic

q-Potts model on G at inverse temperature β satisfies γ ≥ 1 − 2edp. Moreover,
the mixing time has an upper bound

tmix(1/2e) ≤ log(2en)

log(1/2edp)
.

PROOF. With Proposition 2.1 in mind, the following lemma directly implies
Proposition 3.4. �

LEMMA 3.5. Let (Xt) be the Swendsen–Wang dynamics on G = (V ,E) with
|V | = n and maximal degree bounded by d . Then for any p such that edp ≤ 1− 1√

2
and t > 0,

max
x0

∥∥Px0(Xt ∈ ·) − π
∥∥

TV ≤ n(2edp)t .

PROOF. Let (Xt) and (X′
t ) be two copies of the Swendsen–Wang dynamics

that are coupled according to the global coupling in Definition 3.2. Let ωt and ω′
t

be the edge configurations generated after the first step of the dynamics, corre-
sponding to Xt and X′

t , respectively. Also, let d(Xt ,X
′
t ) be the Hamming distance

between the two configurations, that is,

d
(
Xt,X

′
t

)= ∣∣{u ∈ V : Xt(u) 
= X′
t (u)

}∣∣.
Suppose that at time t , the two configurations satisfy d(Xt ,X

′
t ) = 1. Let v be

the vertex such that Xt(v) 
= X′
t (v). Let ω̄t be the percolation configuration at time

t included in the update sequence and let C̄ be the connected component of (V , ω̄t )

containing v.
At the second step of the coupling, every connected component of ωt that is

not contained in C̄ receives the same color as the corresponding component of ω′
t ,

since ωt and ω′
t are the same except at N(v) = {e ∈ E : ∃u, e = (uv)}. This implies

that Xt+1(V \ C̄) = X′
t+1(V \ C̄). Moreover, if we let u to be the vertex in C̄ such

that Aω̄t (u) = 1, then Xt+1(u) = X′
t+1(u) by the definition of the global coupling.

As a result, we deduce the following inequality:

(3.1) E
[
d
(
Xt+1,X

′
t+1
)|d(Xt,X

′
t

)= 1
]≤ E

[|C̄| − 1
]
.
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We bound the right-hand side of (3.1) by dominating our graph G by its cover
tree. Let (Td,•) be the infinite d-regular tree rooted at •. Consider a Bernoulli per-
colation with edge inclusion probability p on (Td,•), and let � be the connected
component of the percolation containing •. Since the maximal degree of our graph
G is d , we can consider a projection ϕ from (Td,•) onto (G,v), that is, ϕ(•) = v

and ϕ preserves the edge relations of Td and G. Then there is a natural coupling
between � and C̄ via this projection, and the size of � stochastically dominates
the size of C̄.

Hence, we have E[|C̄| − 1] ≤ E[|�| − 1] = E[|E(�)|], where E(�) is the set of
edges in �. For each k, we have P(|E(�)| = k) ≤ (edp)k , since we should select
k edges to be open (probability pk) and the number of choosing a k-subtree con-
taining • is at most

(dk
k

) ≤ (ed)k . Thus, our assumption edp ≤ 1 − 1/
√

2 implies
E[|E(�)|] ≤∑

k≥1 k(edp)k ≤ 2edp, and hence,

(3.2) E
[
d
(
Xt+1,X

′
t+1
)|d(Xt,X

′
t

)= 1
]≤ 2edp.

Then the path coupling argument (see, e.g., [23]) implies that (3.2) can be ex-
tended to the case when d(Xt ,X

′
t ) is arbitrary. Hence, we deduce that

E
[
d
(
Xt,X

′
t

)|d(X0,X
′
0
)]≤ d

(
X0,X

′
0
)
(2edp)t .

Finally, the basic coupling inequality and Markov’s inequality imply that

max
x0

∥∥Px0(Xt ∈ ·) − π
∥∥

TV ≤ E
[
d
(
Xt,X

′
t

)]≤ n(2edp)t ,

which concludes the proof. �

4. Information percolation and estimating the L2 distance. In this section,
we analyze the distance from stationarity measured by the L2-norm. Detailed un-
derstanding on the L2 distance will turn out to be crucial in establishing cutoff
for the Swendsen–Wang dynamics. Indeed in Section 5, we will see that the total-
variation (L1) distance from stationarity can essentially be controlled by the L2-
distance of the chain defined on a smaller lattice Zd

r from its stationarity.
In the previous work [25] on the Glauber dynamics for the Ising model, a similar

L1 to L2 reduction technique is used to prove cutoff, and estimating the aforemen-
tioned L2-distance is an important issue there as well. In [25], the condition of
strong spatial mixing is assumed, which provides a strong enough control on the
L2-distance based on the results from [7].

However in the case of the Swendsen–Wang dynamics, following the same pro-
gram seems to be difficult (see Remark 4.10), and hence, we need a different ap-
proach. We implement the concept of information percolation which is first in-
troduced in [27, 28]. To be specific, we reveal the update sequence backwards in
time to develop the history diagram, whose purpose is to describe the information
flow on the space-time slab. In this section, we explain how this framework is ap-
plied to the Swendsen–Wang dynamics and deduce an exponential decay of the
L2-distance.
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Throughout this section, the underlying graph G = (V ,E) will be a degree-d
transitive graph on n vertices. In other words, we will work with a d-regular graph
with a nice symmetry such that for any two vertices u and v of G, there exists a
graph isomorphism f : G → G that maps u to v and preserves the graph structure.

4.1. Information percolation for the Swendsen–Wang dynamics. Recall that
the update sequence for the Swendsen–Wang dynamcis from time 0 to t∗ is defined
by Ht� = {(ω̄t , (cv,t )v∈V ,Aω̄t )}t�−1

t=0 . According to Definition 3.2, Ht� and the initial
condition determines the dynamics at time t ≤ t�. We first introduce the notion of
oblivious vertex as follows.

DEFINITION 4.1 (Oblivious vertices). Given the update sequence Ht� of the
Swendsen–Wang dynamics from time 0 to time t�, we say that v is an oblivious
vertex at time t if v is an isolated vertex in (V , ω̄t ). Otherwise, v is said to be
nonoblivious at time t .

REMARK 4.2. We have two simple observations on (non)oblivious vertices as
follows.

1. The term oblivious comes from the following observation: If u is an isolated
vertex in V , ω̄t at time t , then Xt+1(u) becomes independent of the initial state
X0. Hence, at u, it forgets all the information from the past when it proceeds to
time t + 1 from t .

2. On the other hand, for a nonoblivious vertex u at time t , we should look at Xt

in order to determine Xt+1(u). To be precise, if C is the connected component of
(V ,ωt ) containing u, then Xt+1(u) is determined by C, (cv,t )v∈C and Aω̄t . If C̄ is
the connected component of (V , ω̄t ) containing u, then C ⊂ C̄ and C is determined
by ω̄t and Xt(C̄). Therefore, we see that Xt+1(u) is possibly dependent on the
colors of sites in C̄ at time t , but independent on the colors of the rest.

Based on the observation, we can develop the history diagram of the Swendsen–
Wang dynamics, which describes the information flow backwards in time. We
will consider a space-time diagram on the underlying domain V × { k

2 : k =
0,1, . . . ,2t�}. A layer at an integer time, say t , will describe the history at time
t , and a layer at a half-integer time, say t + 1

2 , will contain the information of the
edge configuration ω̄t . Figure 1 illustrates an example of a history diagram.

Let G = (V,E) denote the graph with the vertex set V = V × { k
2 : k =

0,1, . . . ,2t�} and the edge set which is defined as follows: (u, t), (v, s) ∈ V are
adjacent if and only if we either have (uv) ∈ E and s = t , or u = v and |t − s| = 1

2 .
In other words, the edges of G are the nearest neighbors of V .

DEFINITION 4.3 (The history diagram). Let (Xt)0≤t≤t� be the Swendsen–
Wang dynamics on G, and suppose that Ht� = {(ω̄t , (cv,t )v∈V ,Aω̄t )}t�−1

t=0 , the up-
date sequence for (Xt), is given. For each v ∈ V , the history diagram of v (in short,
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FIG. 1. An example of the history diagram of the Swendsen–Wang dynamics on {1,2, . . . ,12}
until time t� = 4. The figure illustrates the history diagrams of v1 = 1, v2 = 5 and v3 = 11. The
crossed-out points at a half-integer time t − 1

2 denote the oblivious vertices, and the dashed-lines de-
scribe the edges of ω̄t−1 which are not included in the history. History diagrams of different vertices
are distinguished by different colors.

the history of v) is the connected subgraph Hv of G defined by the following re-
cursive procedure that starts at the vertex (v, t�):

0. (v, t�) is the unique vertex of Hv at time t�.
1. At time t ∈ N, connect (u, t) with (u, t − 1

2) with an edge for all u such that
(u, t) ∈ Hv , and include (u, t − 1

2) as a vertex of Hv .
2. Let u be such that (u, t − 1

2) ∈ Hv , and let C̄ be the connected component
of (V , ω̄t−1) that contains u. If u is nonoblivious at time t − 1, then include every
vertex and edge of C̄ in Hv as a vertex and an edge at time t − 1

2 , respectively.
Note that edges of C̄ are given according to ω̄t−1.

2′. If u satisfies (u, t − 1
2) ∈ Hv but is oblivious at time t − 1, we do not take

any more action for this vertex, that is, we stop branching from (u, t − 1
2).

3. For each u such that (u, t − 1
2) ∈ Hv , connect (u, t − 1

2) and (u, t − 1) with
an edge if and only if u is nonoblivious at time t − 1.

4. Return to Step 1 with time set to be t − 1 and repeat the process until there
are no more vertices nor edges to be added to Hv .

We now introduce several notation on the history diagram as follows:

• For any subset A ⊂ V , the history of A is defined by HA =⋃
v∈A Hv .

• For each t ∈ {0, 1
2 ,1, . . . , t� − 1

2 , t�}, we define Hv(t) = Hv ∩ (V × {t}). For
convenience, we will regard Hv(t) as a subset of V , since they all have the
same time element t .

• For a subset A ⊂ V and time t , we define HA(t) = HA ∩ (V × {t}). As above,
we will consider HA(t) as a subset of V .
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Now we are ready to derive a new graph structure on V , which will lead us to
the definition of the information percolation clusters.

DEFINITION 4.4. For any u, v ∈ V , we write u ∼i v if and only if Hu(s) ∩
Hv(s) 
= ∅ for some half-integer s ≤ t�.

Note that we only check the intersections at half-integer times, since Hu(t) ∩
Hv(t) 
= ∅ implies Hu(t + 1

2) ∩ Hv(t + 1
2) 
= ∅ for an integer t .

DEFINITION 4.5 (Information percolation clusters). Let (V ,∼i) be the graph
with edges induced by the relation ∼i . The connected components of this graph
are called the information percolation clusters. Moreover, information percolation
clusters are classified into three types. For each information percolation cluster
C ⊂ V :

1. C is marked RED if HC(0) 
=∅.
2. C is marked BLUE if HC(0) = ∅ and |C| = 1.
3. C is marked GREEN if otherwise, that is, HC(0) = ∅ and |C| ≥ 2.

Figure 2 describes an example of a history diagram and its information perco-
lation clusters.

Let us introduce some notation for the information percolation clusters. For a
given history diagram {Hv : v ∈ V }, let CR denote the collection of red clusters,
and let VR be the union of red clusters. We define CB, VB, CG and VG analogously
for blue and green clusters, respectively. We also write HR for HVR for conve-
nience (and similarly for blue and green).

FIG. 2. An example of the history diagram of the Swendsen–Wang dynamics on {1,2, . . . ,12} until
time t∗ = 4. The crossed-out points at half-integer times denote the oblivious vertices. The dashed
horizontal edges indicate the edges of ω̄t which are not included in the history. Colors are drawn
with respect to the colors of the information percolation clusters that contain the vertices at the top.
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REMARK 4.6. The only possible case of a vertex v ∈ V being {v} ∈ CB is
when it is an isolated vertex in the graph (V , ω̄t�−1). If there was another vertex
u that belongs to the same connected component as v in the graph (V , ω̄t�−1),
then one can observe that v ∼i u, hence, implying that the size of the information
percolation cluster containing v is at least 2.

Note that for a subset A ⊂ V , HA(0) = ∅ implies that the recursive procedure
described in the Definition 4.3 terminates before reaching time 0. Therefore, if an
information percolation cluster C satisfies C ∈ CB ∪ CG , then Xt�(C) is indepen-
dent of the starting configuration X0. In particular, if C ∈ CB , then the cluster itself
is equal to a single vertex v and Xt�(v) is distributed according to Unif{1, . . . , q}.

On the other hand, while Xt�(C) is independent of X0 when C is a green cluster,
configuration on C can have a highly nontrivial distribution due to the dependen-
cies between the intersecting update histories. It is these green clusters that contain
the complicated structure of the Potts measure. In order to avoid this complication,
we adopt the following strategy:

Strategy 1. Condition on the histories of the green clusters and study the remain-
ing red and blue clusters.

By conditioning on the histories of the green clusters, each remaining vertex
is either a blue singleton or a member of a red cluster. Since the law of the blue
singletons are i.i.d. uniform distributions on {1, . . . , q}, this approach turns our
focus solely to the red clusters.

Red clusters encode the information of possible dependency of Xt� on the start-
ing configuration. For instance, if CR = ∅, then Xt� ∼ π ; since Xt� is independent
of X0, we would have the same configuration at time t� even if we start with
X0 ∼ π .

Therefore, at the point when Px0(Xt� ∈ ·) is close to π , it is fair to expect the
size of VR to be small. In fact, it turns out that conditioned on HG , the L2-distance
from Xt� to stationarity can be controlled by the size of VR.

Strategy 2. Estimate the size of the red clusters.
The key step in the analysis of the red clusters is controlling a conditional prob-

ability that A ∈ CR, in which we condition not only on HG , but on the entire
histories outside of A, and that A itself is either a full red cluster or a union of
blue singletons. To write it formally, for any subset A ⊂ V let H −

A :=⋃{Hv : v ∈
V \ A} = HV \A, and define

(4.1) �A := sup
H −

A :H −
A ∈Hcom(A)

P
(
A ∈ CR|H −

A , {A ∈ CR} ∪ {A ⊂ VB}),
where H −

A ∈ Hcom(A) is the shorthand notation for H −
A ∩ (A × {t� − 1

2}) = ∅,
which imposes a compatibility condition on H −

A . This is introduced to prevent
{A ∈ CR} ∪ {A ⊂ VB} from being an empty event. Note that aiming to estimating
the probability of {A ∈ CR}, we may require that HA must not intersect H −

A , since
otherwise {A ∈ CR} is an empty event.
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REMARK 4.7. It is worth noting that when conditioning on the collective his-
tory of green clusters, HG should always satisfy the condition HG ∈ Hcom(V \
VG). Indeed, the green histories must be disjoint from the histories of blue and red
clusters. In what follows, therefore, we automatically impose HG ∈ Hcom(V \VG)

to hold whenever we condition on HG . However, we refuse to write this notation
explicitly for the sake of the simplicity of notation.

An important bound on �A is described by the following lemma which will be
proven in Section 4.3.

LEMMA 4.8. Let A 
= ∅ be an arbitrary subset of V . For any θ > 0, there
exist constants M = M(θ) and p0 = p0(θ, d) such that for any p < p0,

�A ≤ M(3edp)t�−
1
2 e−θM(A),

where M(A) is the size of the smallest connected subgraph containing A.

For intuition, recall that if A is a red cluster, then the histories {Hv : v ∈ A} are
all connected and at least one of them survives until time 0. It turns out that the term
(3edp)t�− 1

2 bounds the probability of Hv(0) 
= ∅. The last term e−θM(A) comes
from the observation that the histories {Hv : v ∈ A} must be spatially connected,
thus the projection of the history diagram on V is a connected subgraph containing
A (whose size is at least M(A)).

4.2. Estimating the L2 distance. The goal of this section is to prove the fol-
lowing theorem that estimates the L2 distance from stationarity (recall the defini-
tion given in (2.1)) of the Swendsen–Wang dynamics.

THEOREM 4.9. Let d ≥ 2 and q ≥ 2 be fixed integers, G = (V ,E) be a
degree-d transitive graph on n vertices, and let Xt be the Swendsen–Wang dy-
namics for the q-state Potts model on G. Then there exists a positive constant
p0 = p0(d) and C = C(d,p) such that for any p < p0 the following inequality
holds true for any large enough n and t ≥ C logn:

(4.2) max
x0

∥∥Px0(Xt ∈ ·) − π
∥∥
L2(π) ≤ 2 exp

(
− log

(
1

1 − γ

)
(t − C logn)

)
,

where γ = γG is the spectral gap of the chain (Xt).

REMARK 4.10. Diaconis and Saloff-Coste proves an inequality that is es-
sentially the same as (4.2) when a Markov chain has log-Sobolev constant that is
bounded uniformly in the size of the system ([7], Theorem 3.7). Therefore, in [25],
Theorem 4.9 for the single-site Glauber dynamics comes for free as the “strong
spatial mixing” implies the log-Sobolev constant being bounded uniformly. Al-
though we believe that the Swendsen–Wang dynamics also has uniformly bounded
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log-Sobolev constant at high temperatures, nothing is known in a rigorous sense.
Therefore, we prove Theorem 4.9 based on the information percolation framework
rather than bounding the log-Sobolev constant of the Swendsen–Wang dynamics.

REMARK 4.11. It turns out in Proposition 4.12 that the constant C = C(d,p)

given by C = 2(log( 1
3edp

))−1 satisfies (4.2). This fact will be used in Sections 5
and 6 when determining the cutoff window.

PROOF. Let Pt : L2(π) → L2(π) be the semigroup operator defined by
Ptf (x) = Ex[f (Xt)], and let pt,x(y) = Px(Xt=y)

π(y)
. Since the Swendsen–Wang dy-

namics is reversible, a simple calculation yields that

Pt(ps,x)(y) =∑
z

Py(Xt = z)
Px(Xs = z)

π(z)

=∑
z

Pz(Xt = y)

π(y)
Px(Xs = z) = pt+s,x(y).

Therefore, the L2 distance from stationarity at time t + s becomes∥∥Px0(Xt+s ∈ ·) − π
∥∥
L2(π) = ∥∥Pt(ps,x0) − π(ps,x0)

∥∥
L2(π)

≤ ‖Pt − π‖2→2‖ps,x0 − 1‖L2(π),
(4.3)

where π(f ) := Eπf and 1 denotes the identity map. Since the operator norm of
Pt − π satisfies ‖Pt − π‖2→2 ≤ (1 − γ )t (see, e.g., Chapter 2 of [32]), we readily
obtain the conclusion from the following proposition. �

PROPOSITION 4.12. Under the same assumption as Theorem 4.9, let t0 =
logn

log(1/3edp)
. Then there exists a positive constant p0 = p0(d) such that for any p <

p0 the following inequality holds true for any large enough n:

(4.4) max
x0

∥∥Px0(Xt0 ∈ ·) − π
∥∥
L2(π) ≤ 2.

In the remaining section, we discuss the proof of Proposition 4.12.
Let (Xt) and (Yt ) be two copies Swendsen–Wang dynamics started from the

initial configurations X0 = x0 and Y0 ∼ π , respectively. We couple their update
sequence via the coupling in Definition 3.2, and hence, they share the same history
diagram. The following lemma is a simple variant of Jensen’s inequality which
enables us to work with Xt and Yt conditioned on HG .

LEMMA 4.13. Let μ, ν be two probability measures on the same finite sample
space and H be a random variable. Then the following inequality holds true:

‖μ − ν‖2
L2(ν)

≤
∫ ∥∥μ(·|H) − ν(·|H)

∥∥2
L2(ν(·|H)) dP(H).
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PROOF. Proving this statement is a simple consequence of Jensen’s inequality.
Calculation yields that

‖μ − ν‖2
L2(ν)

+ 1 =∑
x

(
μ(x)

ν(x)

)2
ν(x)

=∑
x

[∫
μ(x|H)dP(H)∫
ν(x|H)dP(H)

]2 ∫
ν(x|H)dP(H)

=∑
x

[∫
μ(x|H)

ν(x|H)

ν(x|H)dP(H)∫
ν(x|H ′) dP(H ′)

]2 ∫
ν(x|H)dP(H)

≤∑
x

∫ (
μ(x|H)

ν(x|H)

)2
ν(x|H)dP(H)

=
∫ ∑

x

(
μ(x|H)

ν(x|H)

)2
ν(x|H)dP(H)

=
∫ ∥∥μ(·|H) − ν(·|H)

∥∥2
L2(ν(·|H)) dP(H) + 1.

The inequality in the third line follows from Jensen’s inequality, which is ap-
plied with respect to the probability measure ν(x|H)dH∫

ν(x|H ′)dH ′ . �

Applying Lemma 4.13 to our case, we get∥∥Px0(Xt ∈ ·) − Pπ(Yt ∈ ·)∥∥2
L2(π)

≤
∫ ∥∥Px0(Xt ∈ ·|HG) − Pπ(Yt ∈ ·|HG)

∥∥2
L2(π(·|HG)) dHG

≤ sup
HG

∥∥Px0(Xt ∈ ·|HG) − Pπ(Yt ∈ ·|HG)
∥∥2
L2(π(·|HG)),

where we take the supremum over all HG ∈ Hcom(V \ VG), as discussed in Re-
mark 4.7.

Since Xt(VG) is independent of X0, the coupling between Xt and Yt implies that
they are identical on VG . Moreover, conditioned on HG , Xt(V \ VG) and Xt(VG)

are independent from each other, since the two histories HVG and HV \VG are
disjoint and Xt(VG) is independent of X0. Therefore, the projection onto V \ VG
does not decrease the L2 distance, and hence,

max
x0

∥∥Px0(Xt ∈ ·) − π
∥∥
L2(π) = max

x0

∥∥Px0(Xt ∈ ·) − Pπ(Yt ∈ ·)∥∥L2(π)

≤ max
x0

sup
HG

‖μ̃t − π̃‖L2(π̃),
(4.5)
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where we define μ̃t and π̃ by

μ̃t := Px0

(
Xt(V \ VG) ∈ ·|HG

);
π̃ := Pπ

(
Yt (V \ VG) ∈ ·|HG

)
.

Assume that we have VR = ∅. Then V \ VG consists only of blue vertices, and
hence, the law of Xt(V \ VG) conditioned on HG is identical to νV \VG , where
νU denotes the uniform distribution on {1, . . . , q}U . Therefore, if the effect of the
red clusters is negligible, it is reasonable to predict that the law of Xt(V \ VG)

conditioned on HG is close to νV \VG . Based on this intuition, we will modify
(4.5) using the following lemma, switching our attention to the distance between
Xt(V \ VG) and νV \VG .

LEMMA 4.14. Consider the Swendsen–Wang dynamics Xt on G starting from
the initial configuration x0. Let Yt be the coupled chain with initial distribution
Y0 ∼ π . Then there exists p0 = p0(d) such that the following holds true: for all p ∈
(0,p0), there exists a constant C = C(d,p) such that conditioned on the history
of green clusters, we have

max
x0

sup
HG

‖μ̃t − π̃‖2
L2(π̃)

≤ 2 max
x0

sup
HG

‖μ̃t − νV \VG‖2
L2(νV \VG )

+ 1,(4.6)

for all t > C logn and any large enough n.

PROOF. By expanding the L2-distance, we have

(4.7) ‖μ̃ − π̃‖2
L2(π̃)

= ∑
x∈�V \VG

μ̃(x)2

π̃ (x)
− 1.

Observe that for any x ∈ �V \VG , π̃(x) can be sampled as follows: Sample VR ⊂
V \ VG via the law η that generates the red clusters, then sample the configuration
xVR on the red clusters. Finally, generate xVB according to νVB , where VB = V \
(VG ∪ VR). Therefore, π̃(x) can be written as

π̃(x) = ∑
R⊂V \VG

η(R)ϕR(xR)νB(xB),

where ϕR represents the law of xR given that R is the union of red clusters, and B

being the shorthand for V \ (VG ∪ R). Hence, π̃(x) satisfies the following trivial
inequality when we just take R = ∅:

(4.8) π̃(x) ≥ η(∅)νV \VG (x).

CLAIM 4.15. There exists a constant C = C(d,p) such that η(∅) ≥ 1
2 for all

t > C logn.
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Assume Claim 4.15 for the moment. Then (4.7) can be rewritten as

‖μ̃ − π̃‖2
L2(π̃)

≤ 2
∑

x∈�V \VG

μ̃(x)2

νV \VG (x)
− 1 = 2‖μ̃ − νV \VG‖2

L2(νV \VG )
+ 1,

when t > C logn. By taking supremum over HG and x0, we deduce (4.6). �

PROOF OF CLAIM 4.15. We start by observing that

(4.9) η
({∅}c)= P(VR 
= ∅|HG) ≤ ∑

A 
=∅

P(A ∈ CR|HG) ≤ ∑
A
=∅

�A,

by a union bound and the definition of η. The last inequality is clear by the defini-
tion of �A in (4.1). Using Lemma 4.8 with the choice of θ = log(4ed), we obtain
that ∑

A 
=∅

�A ≤ ∑
v∈V

∑
A�v

�A ≤ n
∑
k≥1

∑
A�v

M(A)=k

M(3edp)t−
1
2 e−θk

≤ nM(3edp)t−
1
2
∑
k≥1

(
2e−θ+1d

)k ≤ nM(3edp)t−
1
2 ,

(4.10)

where we used the fact that |{A : A � v,M(A) = k}| ≤ (2ed)k ; the number of
connected subsets of size k containing a given vertex v is at most

(dk
k

)≤ (ed)k and
each such subset includes at most 2k subsets satisfying M(A) = k.

Thus, we can choose a positive constant C = C(d,p) such that the r.h.s. of
(4.10) is smaller than 1

2 for all t > C logn. Together with (4.9), we readily deduce
the conclusion. �

There is a simple but beautiful lemma due to Miller and Peres [30] to bound the
L2-distance of a measure from the uniform measure. Here, we use the version in
[27, 28] of this lemma. Although they deal with the case of q = 2, generalizing it
to arbitrary q is straightforward, and hence, we omit its proof. We use this lemma
as a key ingredient in proving Proposition 4.12.

LEMMA 4.16 ([27, 28, 30]). Let � = {1, . . . , q}V for a finite set V . For each
R ⊂ V , let ϕR be a measure on {1, . . . , q}R . Let ν be the uniform measure on �,
and let μ be the measure on � obtained by sampling a subset R ⊂ V via some
measure η, generating the colors on R via ϕR , and finally sampling the colors on
V \ R uniformly. Then

(4.11) ‖μ − ν‖2
L2(ν)

≤ E
[
q |R∩R′|]− 1,

where R and R′ are i.i.d. with law η.
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By applying Lemma 4.16 to (4.6) and combining with (4.5), we obtain

(4.12) max
x0

∥∥Px0(Xt ∈ ·) − π
∥∥2
L2(π) ≤ 2 sup

HG
E
[
q |VR∩VR′ ||HG

]− 1,

where VR , VR′ are i.i.d. copies of the variable
⋃

A∈CRED
A conditioned on HG .

We will reduce the quantity |VR ∩ VR′ | to one that involves the �A variables
defined in Definition 4.1. This is done by the following lemma and its corollary
due to Lemma 2.3 and Corollary 2.4 of [27]. Even though our definitions of up-
date histories, history diagram and information percolation clusters differ in details
from [27, 28], the two lemmas below can be proven exactly in the same way.

LEMMA 4.17 ([27], Lemma 2.3). Let {JA : A ⊂ V } be a family of independent
indicators satisfying P(JA = 1) = �A. The conditional distribution of red clusters
given HG can be coupled such that

{A : A ∈ CR} ⊂ {A : JA = 1}.

COROLLARY 4.18 ([27], Corollary 2.4). Let {JA,A′ : A,A′ ⊂ V } be a family
of independent indicators satisfying

(4.13) P(JA,A′ = 1) = �A�A′ for any A,A′ ⊂ V.

The conditional distribution of (VR,VR′) given HG can be coupled to JA,A′ ’s such
that

(4.14) |VR ∩ VR′ | � ∑
A∩A′ 
=∅

∣∣A ∪ A′∣∣JA,A′ .

We continue analyzing (4.12). Using |A ∪ A′| ≤ |A| + |A′|, we get

sup
HG

E
[
q |VR∩VR′ ||HG

]≤ E

[
exp

(
logq

∑
A∩A′ 
=∅

(|A| + ∣∣A′∣∣)JA,A′
)]

= ∏
A∩A′ 
=∅

E
[
exp

(
logq

(|A| + ∣∣A′∣∣)JA,A′
)]

,

(4.15)

with the equality due to the independence of JA,A′ ’s. Note that we have eliminated
the conditioning on HG . By the definition of JA,A′ ’s in (4.13),∏

A∩A′ 
=∅

E
[
exp

(
logq

(|A| + ∣∣A′∣∣)JA,A′
)]

≤∏
v

∏
A∩A′ 
=∅

[(
q |A|+|A′| − 1

)
�A�A′ + 1

]

≤ exp
(
n

(∑
A�v0

q |A|�A

)2)
,

(4.16)
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where the last inequality holds for any fixed vertex v0 due to the symmetry of G.
Thus, by referring to (4.12), we conclude that

(4.17) max
x0

∥∥Px0(Xt ∈ ·) − π
∥∥2
L2(π) ≤ 2 exp

(
n

(∑
A�v

q |A|�A

)2)
− 1.

Implementing Lemma 4.8 with θ = log(4qed) we obtain that∑
A�v

q |A|�A ≤ M(3edp)t−
1
2
∑
k≥1

∑
A�v

M(A)=k

qke−θk

≤ M(3edp)t−
1
2
∑
k≥1

(
2qde−θ+1)k ≤ M(3edp)t−

1
2 ,

where we bounded the number |{A : A � v,M(A) = k}| in the same way as (4.10).
Thus, plugging in t = t0 which is defined in the statement of Proposition 4.12 gives
us that

2 exp
(
n

(∑
A�v

q |A|�A

)2)
− 1 ≤ 2 exp

(
M2

n(3edp)

)
− 1 ≤ 2,

for all large enough n. Together with (4.17), we deduce (4.4). �

4.3. Proof of Lemma 4.8. Fix an arbitrary subset A of V and recall the defi-
nition of �A in (4.1). To estimate �A, we will first fix H −

A to be equal to some
history X and later take supremum over X . For the validity of the definition of
�A, pick any history diagram X that is disjoint with A × {t� − 1

2}.
For a given subset S ⊂ V , let C∗

R(S) denote the collection of red clusters that
arise when exposing the joint histories of S (for instance, CR = C∗

R(V )). Let V ∗
R(S)

be the union of the members of C∗
R(S) and define C∗

B(S), V
∗
B(S) analogously. Observe

the following two identities given that H −
A = X :

{A ∈ CR} = {
A ∈ C∗

R(A)

}∩ {HA ∩X = ∅};
{A ⊂ CB} = {

A ⊂ C∗
B(A)

}∩ {HA ∩X = ∅} = {
A ⊂ C∗

B(A)

}
.

Indeed, A ∈ CR clearly implies both A ∈ C∗
R(A) and HA ∩ X = ∅. On the other

hand, if A ∈ C∗
R(A), then A should be a subset of a red cluster in CR. Then HA ∩

X = ∅ imposes the history of A to be disjoint with that of V \ A, and hence,
A itself is a red cluster in CR. Thus, we find out that P(A ∈ CR|H −

A = X , {A ∈
CR} ∪ {A ⊂ VB}) is equal to

(4.18)
P(A ∈ C∗

R(A),HA ∩X = ∅|H −
A = X )

P({A ∈ C∗
R(A)} ∪ {A ⊂ V ∗

B(A)},HA ∩X =∅|H −
A = X )

.

We start by lower-bounding P(A ⊂ V ∗
B(A),HA ∩X = ∅|H −

A = X ), which is at
most the denominator of (4.18). As discussed in Remark 4.6, the only possible way
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for {A ⊂ V ∗
B(A)} to happen is when every v ∈ A is isolated in the graph (V , ω̄t�−1),

which is to close all the edges adjacent to v in ω̄t�−1. Moreover, notice that if
{A ⊂ V ∗

B(A)}, then automatically HA ∩ H −
A = ∅. Since the underlying graph is

transitive with degree d , we get

(4.19) P
(
A ⊂ VB|H −

A =X
)≥ (1 − p)d|A|,

and the bound is independent of X .
Let us turn our attention to bounding the numerator of (4.18) from above. We

start by obtaining

P
(
A ∈ C∗

R(A),HA ∩X = ∅|H −
A = X

)
= P

(
A ∈ C∗

R(A),HA ∩X =∅
)≤ P

(
A ∈ C∗

R(A)

)
,

(4.20)

where the first equation comes from the observation that {A ∈ C∗
R(A)}∩{HA ∩X =

∅} is independent of {H −
A =X }.

Now we estimate the quantity P(A ∈ C∗
R(A)). Set Wt = |HA(t� − t)| for each

integer t = 0,1, . . . , t� and Wt�+1 = 0. We also define

T := max
{
0 ≤ t ≤ t� : ∣∣HA(t)

∣∣= 2
}
,

and let T = −1 if |HA(t)| ≥ 3 for all 0 ≤ t ≤ t�. Note that on the event {A ∈
C∗
R(A)}, T is well defined. Also, Recall that there cannot be a case with Wt =

1, since it can either be zero or at least 2. Observe that if A ∈ C∗
R(A), then the

following two events should also occur:

1. The history starting from HA(T ) survives until t = 0.
2. The total number of spatial edges in {HA(s + 1

2) : s = T , . . . , t� − 1} is at
least M(A) − 1.

The first event comes from the definition of red clusters. For the second one,
note that if we project the histories {HA(s + 1

2) : s = T , . . . , t� − 1} on the spatial
space G = (V ,E), then we should have a connected subgraph of G that contains
A. Since the number of edges in such a graph is at least M(A)−1, the second event
should also take place. (Recall that M denotes the size of the minimal connected
subgraph containing A.)

CLAIM 4.19. For any p > 0 satisfying edp ≤ 1
2 , the probability of the first

event conditioned on T is at most 2(3edp)T ∧ 1.

PROOF. Suppose that the history Hv from time t to s has been revealed and
(u, s) ∈ Hv . Then for any k ≥ 1, the probability that (u, s) branches out to k + 1
children at time s − 1 is bounded by (edp)k , as in Lemma 3.5. Therefore, we can
stochastically dominate Wt by Galton–Watson branching process as follows.
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Let {ξ (i) : i ∈ N} be the collection of i.i.d. random variables on integers with the
distribution given by {r(k) : k ∈ N} such that r(k+1) = (edp)k for k ≥ 2, r(1) = 0
and r(0) = 1 −∑

k≥2 r(k). Then for each t , conditioned on Wt , we have

(4.21) Wt+1 � ξ (1) + · · · + ξ (Wt ).

Hence, by Markov’s inequality, the probability of the event 1 is bounded by
E[Wt� |T ]. Thus, we conclude the proof by noticing

(4.22) E[Wt� |T ] = 2E
[
ξ (1)]T ≤ 2(3edp)T ,

where the last inequality holds for any positive p with edp ≤ 1
2 . �

Note that the first event is independent of the histories from time T + 1
2 to

t� − 1
2 , whereas the second one is measurable with respect to these. Also, the event

2 clearly implies

(4.23)
t�−T∑
j=1

Wj ≥M(A) + t� − T − 1 ≥M(A),

since the graph HA(t� − t + 1
2) has at least Wt − 1 edges. Therefore, we obtain

P
(
A ∈ C∗

R(A)

)≤ E
[{

2(3edp)T ∧ 1
}
1{W1+···+Wt�−T ≥M(A)}

]
.(4.24)

As we proceed, we get

E
[{

2(3edp)T ∧ 1
}
1{W1+···+Wt�−T ≥M(A)}

]
≤

t�∑
k=0

E
[
2(3edp)k1{W1+···+Wt�−T ≥M(A)}1{T =k}

]
+E[1{W1+···+Wt�≥M(A)}1{T =−1}].

(4.25)

Note that the event {T = k} implies {Wt ≥ 3} for all 0 ≤ t ≤ t� − k − 1 and
{Wt�−k ≥ 2}. We also introduce a constant C satisfying pC < 1 whose precise
value will be specified later. Then the r.h.s. of (4.25) is at most

t�∑
k=0

E
[
2(3edp)k1{∑t�−k

j=1 Wj≥M(A)}1{W1,...,Wt�−k−1≥3}1{Wt�−k≥2}
]

+E[1{∑t�
j=1 Wj≥M(A)}1{W1,...,Wt�≥3}]

≤
t�∑

k=0

2(3edp)ke−λM(A)(pC)3t�−3k−1E

[(
eλ

pC

)∑t�−k
j=1 Wj

]

+ e−λM(A)(pC)3t�E

[(
eλ

pC

)∑t�
j=1 Wj

]
,

(4.26)
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where we used either 1{X ≥ x} ≤ eλ(X−x) or 1{X ≥ x} ≤ (pC)−(X−x). Now we
bound the terms Wt as follows, based on the domination by the Galton–Watson
process as in (4.21):

E
[(

e2λ(pC)−1)Wt+1 |Wt

]≤ [
1 +∑

k≥1

(
e2λ(pC)−1)k+1

(edp)k
]Wt

=
(

1 + e2λ

pC

∑
k≥1

(
de2λ+1

C

)k)Wt

≤ exp
(

2de4λ+1

pC2 Wt

)
≤ eλWt ,

(4.27)

where we picked C such that 2de4λ+1

pC2 = 1 ∧ λ. Using (4.27), we deduce that

E
[(

eλ(pC)−1)∑t�−k
j=1 Wj

]≤ E
[(

eλ(pC)−1)∑t�−k−1
j=1 Wj · eλWt�−k−1

]
= E

[(
eλ(pC)−1)∑t�−k−2

j=1 Wj · (e2λ(pC)−1)λWt�−k−1
]
,

and iterating this inequality gives

E
[(

eλ(pC)−1)∑t�−k
j=1 Wj

]≤ E
[(

e2λ(pC)−1)W1
]

≤
(

1 + 2de4λ+1

pC2

)W0 ≤ 2|A|.
(4.28)

Finally, (4.24)–(4.26) combined with (4.28) implies that

P
(
A ∈ C∗

R(A)

)
≤
{

t�∑
k=0

(pC)−3k−1(3edp)k2|A| + 2|A|
}
e−λM(A)(pC)3t�

=
{
(pC)−1

t�∑
k=0

(
3ed

p2C3

)k

+ 1

}
e−(λ−1)M(A)(pC)3t�

≤ 2(pC)−1(3edp)t�e−(λ−1)M(A) ≤ √
6e−2λ(3edp)t�−

1
2 e−(λ−1)M(A),

(4.29)

where we used 2|A| ≤ eM(A) and (ed/p2C3) > 1 by making p smaller if needed.
If we substitute λ by λ̃ + 1 in (4.29) and set

C(̃λ, d,p) = (
2de4̃λ+5/p

)1/2;
M(̃λ) = 3e−2̃λ−2;

p0(̃λ, d) = 1

8de12̃λ+13
,
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then we deduce that for any p < p0,

(4.30) P
(
A ∈ C∗

R(A)

)≤ M(3edp)t�−
1
2 eλ̃M(A).

By combining (4.30) and (4.19), we have that

�A ≤ M(3edp)t�−
1
2
(
e−λ̃(1 − p)−d)M(A)

.

Therefore, by choosing λ̃ that satisfies e−θ = e−λ̃(1 − p0)
−d , we obtain the

conclusion that there are M = M(θ) and p0 = p0(θ, d) such that

�A ≤ M(3edp)t�−
1
2 e−θM(A)

holds true for all p < p0. �

5. Reducing L1 mixing to L2-local mixing. We turn our attention to the case
when the underlying graph has the lattice structure: having the lattice points as ver-
tices and the nearest-neighbor connections as edges. In this section, we show that
the total-variation distance of the Swendsen–Wang dynamics on Zd

n from stationar-
ity is essentially controlled by the L2-distance of the dynamics on a smaller lattice
Zd

r from its stationarity. We rely on the approach from [25] after developing some
ingredients that are specific to the Swendsen–Wang dynamics.

More precisely, consider the Swendsen–Wang dynamics (Xt) for the q-Potts
model on Zd

n , the d-dimensional lattice of side-length n and with periodic bound-
ary conditions, and let π denote the Potts measure on Zd

n . Also, we assume that
the parameter p satisfies p < p0, where p0 is the constant given in Theorem 4.9.
Further, consider such a chain defined on a smaller lattice, namely (X†

t ) on Zd
r for

r = 3 log5 n, and let π† denote its stationary distribution (Zd
r is also endowed with

periodic boundary conditions). Inside Zd
r , let � ⊂ Zd

r be a subcube of side-length
2 log5 n, whose precise location is not of an interest due to the periodic boundary
conditions. Define

(5.1) mt := max
x0∈�

Z
d
r

∥∥Px0

(
X

†
t (�) ∈ ·)− π

†
�

∥∥
L2(π

†
�)

,

where X
†
t (�) and π

†
� denote the projection of X

†
t and π† onto the cube �, re-

spectively. Our goal is to prove Theorem 5.2 which explains how the quantity mt

governs the total-variation distance of Xt from stationarity. Its statement is a vari-
ant of Theorem 3.1 of [25].

REMARK 5.1. We actually have a lot of freedom in the choice of r . Indeed,
all the results in this section are identically applicable to any poly-logarithmic
quantity which is at least log4+δ n, for any positive constant δ. This fact turns out
to be useful later on in Section 6 when we specify the cutoff location as stated in
Theorem 1.
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THEOREM 5.2. Let Xt be the Swendsen–Wang dynamics for the q-Potts
model on Zd

n with p < p0, define mt as in (5.1), and set p� = 1
log(1/4edp)

. Then
the following holds true:

1. Let s = s(n) and t = t (n) satisfy (10dp�) log logn ≤ s ≤ log4/3 n and 0 <

t ≤ log4/3 n. For sufficiently large n,

max
x0

∥∥Px0(Xt+s ∈ ·) − π
∥∥

TV ≤ 1

2

[
exp

((
n/ log7 n

)dm2
t

)− 1
] 1

2 + n−9d .

In particular, if (n/ log7 n)dm2
t → 0 as n → ∞ for the above choice of s and t ,

then

lim sup
n→∞

max
x0

∥∥Px0(Xt ∈ ·) − π
∥∥

TV = 0.

2. If (n/3 log5 n)dm2
t → ∞ for some t ≥ (20dp�) log logn, then

lim inf
n→∞ max

x0

∥∥Px0(Xt ∈ ·) − π
∥∥

TV = 1.

REMARK 5.3. The first statement of the theorem can be generalized to the
case of X′

t defined on a smaller lattice. To be specific, let log5 n ≤ m ≤ n and let X′
t

denote the Swendsen–Wang dynamics on Zd
m. Then under the same assumptions

on s and t as in Theorem 5.2,

max
x0

∥∥Px0

(
X′

t+s ∈ ·)− π
∥∥

TV ≤ 1

2

[
exp

(
mdm2

t

)− 1
] 1

2 + n−9d .

This variant will be proven along with Theorem 5.2, and turn out to be useful when
establishing the explicit location of cutoff.

Theorem 5.2 is proven in Section 5.2 by following the methods in [25]. To this
end, we first need to derive some properties of Swendsen–Wang. This is done in
Section 5.1, with emphasis on explaining two major ingredients:

A. Eliminating the dependencies between distant sites;
B. Restricting our attention on the “update support” which typically exhibits a

nice “sparse” geometry as well as contains all the information of the dynamics.

In [25], property A is shown by using locality of the Glauber dynamics, which
is not the case for the Swendsen–Wang dynamics. We instead use percolation es-
timates to deduce A. Property B is obtained by subcriticality of the information
percolation developed in Section 4.

5.1. L1 to L2 reduction: Ingredients. Throughout this section, we assume p <

p0, where p0 is the constant given in Theorem 4.9. We begin by observing two
important properties of the high temperature Swendsen–Wang dynamics. The first
fact we notice is that the information in the Swendsen–Wang dynamics cannot
travel too fast.
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LEMMA 5.4. Let B ⊂ Zd
n be a lattice cube with side-length log4 n. Let

B+ := {
v ∈ Zd

n : dist(v,B) ≤ log3 n
}
,

where dist(·, ·) denotes the l∞-distance in the lattice. Suppose that (Xt), (X′
t ) are

the two copies of the Swendsen–Wang dynamics coupled by the same update se-
quence with their initial configurations satisfying Xt(B

+) = X′
t (B

+). Then for
tmax := log4/3 n, Xt(B) = X′

t (B) holds for all t ≤ tmax except with an error prob-
ability n−11d for all sufficiently large n.

PROOF. Let {�j }tmax
j=0 be the collection of boxes constructed as follows:

�0 := B+, �k+1 := {
v ∈ �k : dist

(
v,�c

k

)≥ log3/2 n
}

for all 0 ≤ k ≤ tmax.

Note that we have �tmax ⊃ B by definition. Also let the update sequence of Xt and
X′

t be Htmax = {(ω̄t , (cv,t )v∈V ,Aω̄t )}tmax−1
t=0 (recall Definition 3.1).

Let us estimate the probability of the event {Xt+1(�t+1) 
= X′
t+1(�t+1)} con-

ditioned on being Xt(�t) = X′
t (�t ). Suppose that a connected component K of

(Zd
n, ω̄t ) satisfies that K ∩ �t+1 
= ∅ and K ⊂ �t . In that case, Xt(K) = X′

t (K)

implies that on K , they remain the same after an update, that is, Xt+1(�t+1) =
X′

t+1(�t+1).
Therefore, if the event {Xt+1(�t+1) 
= X′

t+1(�t+1)} occurs, we should have
a connected component K of ω̄t that satisfies K � �t as well as K ∩ �t+1 
=
∅, which means that there is a percolation path in ω̄t that crosses between �c

t

and �t+1. Implementing the well-known fact that the crossing probability in a
subcritical percolation decays exponentially with respect to the distance (see, e.g.,
Theorem 6.75 of [19]), we deduce that

P
(
Xt+1(�t+1) 
= X′

t+1(�t+1)|Xt(�t) = X′
t (�t )

)
)

≤ P
(
�c

t

ω̄t←→ �t+1|Xt(�t) = X′
t (�t )

)
≤ P

(
�c

t

ω̄t←→ �t+1
)≤ exp

(−cp log3/2 n
)
,

(5.2)

where cp > 0 is the constant depends on d and p.
Therefore, by summing up the left-hand side of (5.2) over t , we obtain

P
(
Xt(B) = X′

t (B) for all t ≤ tmax
)≥ P

(
Xt(�t) = X′

t (�t ) for all t ≤ tmax
)

≥ 1 − (
log4/3 n

)
exp

(−cp log3/2 n
)
,

which is less than n−11d for all sufficiently large n. �

This lemma tells us that until time log4/3 n, we can possibly ignore the de-
pendency between sites with distance at least log3 n. Next, we observe that the
dependency on the initial condition disappears quickly.



3734 D. NAM AND A. SLY

LEMMA 5.5. Let (Xt) be the Swendsen–Wang dynamics defined on Zd
l and

let HZd
l

denote its history diagram defined in Definition 4.3. Then

P
(
HZd

l
(0) = ∅

)≥ 1 − ld(3edp)t .

In particular, if l = O(log5 n) and t ≥ 11dp� log logn, then we have

(5.3) P
(
HZd

l
(0) =∅

)≥ 1 − (logn)−5d .

PROOF. By a union bound and the symmetry, we have

P
(
HZd

l
(0) =∅

)≥ 1 − ldP
(
Hv(0) 
= ∅

)
.(5.4)

We then bound P(Hv(0) 
= ∅) analogously as Claim 4.19, hence, obtaining the
estimate

P
(
Hv(0) 
= ∅

)≤ (3edp)t .

For the final inequality, just note that the average offspring number of ξ is smaller
than 4edp. Together with (5.4), we readily obtain our conclusion. �

Based on the two fundamental properties of Lemmas 5.4 and 5.5, we prove that
the L1-distance of the Swendsen–Wang dynamics from equilibrium at time t + s

can be bounded in terms of the L1-distance at time t projected onto subsets of
sparse geometry which is defined as follows.

DEFINITION 5.6 (Sparse set). Let log5 n ≤ m ≤ n. We say that the set � ⊂
Zd

m is sparse if for some L ≤ (n/ log7 n)d it can be partitioned into components
A1, . . . ,AL such that:

1. Each Ai has diameter at most log5 n in Zd
m.

2. The ‖ · ‖∞-distance in Zd
m between any distinct Ai and Aj is at least

2d log4 n.

We additionally define S(m) := {� ⊂ Zd
m : � is sparse}.

This is a slightly modified version of the sparsity defined in Definition 3.3 of
[25]. Our goal of this subsection is to prove the following theorem.

THEOREM 5.7. For log5 n ≤ m ≤ n, let (Xt) be the Swendsen–Wang dynam-
ics for the Potts model on Zd

m and π be its stationary measure. Let (11dp�) ×
log logn ≤ s ≤ log4/3 n and t > 0. Then there exists some distribution ρ on S(m)

such that ∥∥Px0(Xt+s ∈ ·) − π
∥∥

TV

≤
∫
S(m)

∥∥Px0

(
Xt(�) ∈ ·)− π�

∥∥
TV dρ(�) + 3n−10d

(5.5)

holds true for all possible starting state x0, where p� := 1
log(1/4edp)

.
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To prove this, we first introduce the notion of induced update sequence, which is
necessary when coupling the two copies of the chain defined on different graphs.
Using this, we define the barrier-dynamics, a variant of the chain that forcibly
blocks the information coming from remote sites. It turns out that the barrier-
dynamics resembles the original dynamics except for a negligible error, for which
our focus turns to the investigation of the barrier-dynamics. This argument will be
a variant of what is done in [25].

DEFINITION 5.8 (Induced update sequence). Let G = (V ,E) and G′ =
(V ′,E′) be two graphs which are subgraphs of a same larger graph. Let
Ht� = {(ω̄t , (cv,t )v∈V ,Aω̄t )}t�−1

t=0 denote the update sequence for the Swend-
sen dynamics on G until time t�. Then the induced update sequence H′

t�
=

{(ω̄′
t , (c

′
v,t )v∈V ,A′

ω̄′
t
)}t�−1

t=0 of Ht� on G′ is defined as follows:

1. The percolation configuration ω̄′
t is given by the following rule:

for each t, ω̄′
t (e) =

{
ω̄t (e) if e ∈ E;
i.i.d. Ber(p) if e ∈ E′ \ E.

2. Let K be an arbitrary connected component in (V ′, ω̄′
t ).

• If K is also a connected component in (V , ω̄t ), then

c′
v,t = cv,t and A′

ω̄′
t
(v) =Aω̄t (v), for all v ∈ K.

• If K is not a connected component in (V , ω̄t ), then

c′
v,t = i.i.d. Unif{1, . . . , q} for all v ∈ K,

which is independent from everything else, and A′
ω̄′

t
|K : K → {1, . . . , |K|} is

given by an arbitrary ordering.

DEFINITION 5.9 (Barrier-dynamics). Let (Xt)0≤t≤t� be the Swendsen–Wang
dynamics on Zd

m, for m that satisfies log5 n ≤ m ≤ n. Also, let the update sequence
for (Xt)0≤t≤t� be Ht� = {(ω̄t , (cv,t )v∈V ,Aω̄t )}t�−1

t=0 . Then we define the barrier-
dynamics as the following coupled Markov chain:

1. Partition the lattice into disjoint d-dimensional (rectangular) boxes, where
each of them has side-length either log4 n or log4 n − 1. We will call these boxes
as “blocks.”

2. For each block Bi , let B+
i be the d-dimensional box of side-lengths log4 n+

2 log3 n centered at Bi , for example, if Bi has side-lengths log4 n, then

B+
i = ⋃

u∈Bi

{
v : ‖u − v‖∞ ≤ log3 n

}
.

For each i, let �i be a graph isomorphism mapping B+
i onto some block C+

i and
Bi onto Ci ⊂ C+

i , where the C+
i blocks are pairwise disjoint.
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3. Impose periodic boundary conditions on each block C+
i and run the

Swendsen–Wang dynamics where the update sequence H′
t�
(C+

i ) is given by the

induced update sequence of Ht� ◦ �−1
i on C+

i .
4. The barrier-dynamics is the Swendsen–Wang dynamics on

⋃
i C

+
i with the

update sequence given by Hb
t�

:= {H′
t�
(C+

i )}i .

REMARK 5.10. Note that in the third step of the definition, the graph of C+
i

is not a subgraph of Zd
m. As we impose a periodic boundary condition on C+

i ,
there are newly added edges on the boundary of C+

i . Therefore, in the percolation
configuration of the induced update sequence, these new edges are endowed with
i.i.d. Bernoulli random variables.

Based on the barrier-dynamics defined as above, we can construct a randomized
operator Gt on Zd

m as follows. Starting from a given initial configuration x0 on Zd
m,

we transform x0 into a configuration on the block C+
i in the obvious manner:

x
(i)
0 = x0(B

+
i ) ◦ �−1

i . Then we run the barrier-dynamics until time t with initial

state x
(i)
0 for each block. The output of Gt is then obtained by projecting the result

of the barrier-dynamics onto Bi for each i, that is, we define the color at vertex
v to be the color at �i(v) of the barrier-dynamics, where Bi is the unique block
that contains v. In other words, we pull-back the configuration from Ci onto Bi for
each i. We denote this output as Gt (x0) and call Gt the barrier-dynamics operator.

If the time period is not too long, then the original dynamics Xt can be coupled
with Gt (X0) except for a tiny error. The basic reason for this is that each block Bi

is far enough from ∂B+
i .

LEMMA 5.11. Suppose that log5 n ≤ m ≤ n. Set tmax = log4/3 n. The barrier-
dynamics and the original dynamics on Zd

m are coupled up to time tmax except with
probability n−10d . That is, we have Xt = Gt (X0) for all t ≤ tmax with probability at
least 1 − n−10d , for any starting configuration X0 and for any sufficiently large n.

PROOF. Let (Xb
t ) be the barrier-dynamics on

⋃
i C

+
i as defined in Defini-

tion 5.9. Since both the update sequence and the starting configuration of (Xt)

and (Xb
t ) coincide on B+

i (where we identify B+
i and C+

i in the obvious way), we
can apply Lemma 5.4 to these two processes. Therefore, we obtain

P
(
Xt(Bi) = Xb

t (Bi) for all t ≤ tmax
)≥ 1 − n−11d,

which holds for all n sufficiently large. By a union bound over Bi , we get

P
(
Xt = Gt (X0) for all t ≤ tmax

)≥ 1 − n−10d . �

Thanks to Lemma 5.11, we may focus on the barrier-dynamics rather than the
original one when proving Theorem 5.7. To this end, we introduce the notion of
update support and study its geometry as it is done in [25, 26].
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As a first step toward the definition of update support, observe that the ran-
domized operator Gt (x) can be regarded as a deterministic function of the start-
ing configuration x and the random update sequence Hb

t . Let us rewrite this as
Gt (x) = g(x,Hb

t ). Note that g(·,Hb
t ) : �Zd

m
→ �Zd

m
is a deterministic function for

each update sequence Ht .

DEFINITION 5.12 (Update support). Let Hb
t be a realization of an update se-

quence for the barrier-dynamics between times [0, t]. The update support of Hb
t is

the smallest subset �
Hb

t
⊂ Zd

m such that Gt (x) is a function of x(�
Hb

t
) for any x,

that is, there exists a function f
Hb

t
: ��

Hb
t

→ ��
Hb

t

such that

g
(
x,Hb

t

)= f
Hb

t

(
x(�

Hb
t
)
)

for all x ∈ �Zd
m
.

In other words, v /∈ �
Hb

t
if and only if for every initial configuration x, any color

change at site v does not affect the configuration g(x,Hb
t ). This definition uniquely

defines the update support of Hb
t .

Keeping Lemma 5.5 in mind, we may predict that the update support shrinks
considerably in a relatively short period of time, hence, resulting in having sparse
geometry. We prove that this indeed happens typically for the barrier-dynamics,
following the approach of [25], Lemma 3.9.

LEMMA 5.13. Let Gs be the barrier-dynamics operator on Zd
m, let Hb

s denote
the update sequence of G up to time s for some s ≥ (11dp�) log logn, and S(m) be
the family of sparse sets of Zd

m. Then P(�Hb
s
∈ S(m)) ≤ n−10d for any sufficiently

large n.

PROOF. Let (Xb
t ) be the barrier dynamics on Zd

m and H b
Zd

m
. For a block B

which appears in the first step of Definition 5.9, define EB to be the event that
�Hb

s
∩ B 
= ∅ for a random update sequence Hb

s . By the definition of the barrier-

dynamics, Xb
s (B

+) is not affected by X0(u) if u /∈ ⋃B̄∈N(B) B̄
+, where N(B)

denotes the collection of the block B and its neighboring blocks. Therefore, �Hb
s
∩

B = ∅ if H b
B̄+(0) = ∅ for every B̄ ∈ N(B). Hence, we can apply Lemma 5.5 to

deduce that

P(EB) ≤ P

( ⋃
B̄∈N(B)

{
H b

B̄+(0) 
= ∅
})≤ 3d(logn)−5d ≤ (logn)−4d .(5.6)

In the following, we define two events E� and E� whose union dominates the
target event {�Hb

s
/∈ S(m)}:

• E�: there exists a collection B of (n/ log7 n)d blocks such that EB holds for
every B ∈ B, and the pairwise distances between any two distinct blocks in B
are at least 4 in blocks.
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• E�: there exists a sequence of blocks (Bi0,Bi1, . . . ,Bil ) with l ≥ l0 := 1
3d

logn

such that for all k ≤ l, Bik ∩ �Hb
s

=∅ and the distance between Bik and Bik−1 is

at most 3d in blocks.

We first show that {�Hb
s

/∈ S(m)} ⊂ E� ∪ E�. Suppose that we have �Hb
s

/∈ S(m)

but not E�. Then we partition �Hb
s

according to the following rule:

u ∈ B ∩ �Hb
s

and u′ ∈ B ′ ∩ �Hb
s

belong to the same component
if the distance between B and B ′ is at most 3d in blocks.

In other words, u ∈ B ∩ �Hb
s

and u′ ∈ B ′ ∩ �Hb
s

are in the same component if and
only if there exists a sequence of blocks (B = B0,B1, . . . ,Bk = B ′) such that for
each i the distance between Bi and Bi+1 is at most 3d in blocks.

Under this partitioning, the number of components is less than (n/ log7 n)d ,
since we are not in E�. Therefore, we can find a component of diameter greater
than log5 n because �Hb

s
is not sparse. Therefore, in that particular component, it

is possible to find a sequence of l0 blocks whose distance in blocks is at most 3d

between each step, and hence, �Hb
s
∈ E�.

Next, we verify that both P(E�) and P(E�) are small. Note that the events
EB and EB ′ are independent if the distance between B and B ′ is at least 4
in blocks. This is because EB and EB ′ are determined by the update sequence
on

⋃
B̄∈N(B) B̄

+ and
⋃

B̄ ′∈N(B ′) B̄
′+, respectively. Utilizing (5.6), we can bound

P(E�) by

P
(
E�)≤ ((

2n/ log4 n
)d(

n/ log7 n
)d
)
(logn)−4d(n/ log7 n)d < n−(n/ log8 n)d < n−11d .

We can bound P(E�) similarly, using the independence of EB among distant
boxes. Once it is done appropriately, we obtain P(E�) ≤ n−11d , where a complete
calculation can be found in Lemma 3.9 of [25]. Therefore, we conclude the proof
by summing up two estimates on P(E�) and P(E�). �

We conclude this subsection by proving Theorem 5.7. To this end, we first show
that the total-variation distance from stationarity at time t + s can be bounded by
its projection onto the update support at time t . The following lemma formalizes
this approach, while its proof is omitted due to similarity to Lemma 3.8 of [25]. In
what follows, we also use the abbreviated form P(Hb

t ) to denote the probability of
having the specific update sequence Hb

t between times [0, t].
LEMMA 5.14. Let log5 n ≤ m ≤ n, and let (Xt) be the Swendsen–Wang dy-

namics on Zd
m. Then for any x0, t > 0 and 0 ≤ s ≤ log4/3 n,∥∥Px0(Xt+s ∈ ·) − π

∥∥
TV

≤
∫ ∥∥Px0(Xt(�t,t+s ∈ ·) − π�t,t+s

∥∥
TV dP

(
Hb

t,t+s

)+ 2n−10d,
(5.7)
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where Hb
t,t+s denotes the update sequence of the barrier-dynamics over the time

period [t, t + s] and �t,t+s = �
Hb

t,t+s
is its update support.

PROOF OF THEOREM 5.7. This is obtained as a direct consequence of Lem-
mas 5.13 and 5.14. Since we have s ≥ 10dp� log logn, �Hb

s
is a sparse set except

with an error at most n−10d . Keeping this in mind, let ρ be the probability measure
on S(m) defined as

ρ(S) := P
(
�Hb

s
∈ S|�Hb

s
∈ S(m)

)
.

By plugging ρ instead of dP(Hb
s ) into (5.7) along with compensating the error

n−10d , we deduce (5.5) as a conclusion. �

5.2. Proof of Theorem 5.2. Our approach is very similar to Theorem 3.1 of
[25]. In order to cover some necessary changes, we present a proof for part 1 of
the theorem. However, for the second part, we refer to the literature instead of
reproducing it due to its similarity.

To begin with, we introduce an elementary lemma on the L2-distance between
the product measures. This lemma will be useful when dealing with product chains
which will occasionally appear later on.

LEMMA 5.15. Let (μi)
k
i=1 and (νi)

k
i=1 be two collections of probability mea-

sures on a discrete state space, and let μ =⊗k
i=1 μi and ν =⊗k

i=1 νi . Then the
following inequality holds true:

‖μ − ν‖2
L2(ν)

≤ exp

(
k∑

i=1

‖μi − νi‖2
L2(νi )

)
− 1.

PROOF. Proof is done by elementary calculations on ‖μ − ν‖L2(ν).

‖μ − ν‖2
L2(ν)

=∑
x

μ(x)2

ν(x)
− 1 =

k∏
i=1

[∑
xi

μi(xi)
2

νi(xi)

]
− 1

=
k∏

i=1

{‖μi − νi‖2
L2(νi )

+ 1
}− 1

≤ exp

(
k∑

i=1

‖μi − νi‖2
L2(νi )

)
− 1.

�

PROOF OF THEOREM 5.2, PART 1. Let m be a fixed integer such that log5 n ≤
m ≤ n. Let � ⊂ Zd

m be a sparse set, and let
⋃L

i=1 Ai denote its partition according
to Definition 5.6, where we have L ≤ md ∧ (n/ log7 n)d by definition. For each
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component Ai , define

A+
i := {

v : dist(v,Ai) ≤ log3 n
}
.

Now we map each A+
i into smaller, separate tori Zd

r with r = 3 log5 n. To be pre-
cise, let ψi be the graph isomorphism mapping A+

i onto C+
i , where each C+

i is
contained in distinct tori Zd

r . Set Ci := ψi(Ai), let � =⋃L
i=1 Ci , and let ψ denote

the combined information of ψi’s, that is, ψ |A+
i

= ψi for each i.
Let us define (X∗

t ) to be the product chain of the Swendsen–Wang dynamics
on (Zd

r )L, and let π∗ denote its stationary distribution. We couple X∗
t and Xt in

a natural way as follows. For the initial configuration x0 of (Xt), define x∗
0 to be

x∗
0 (C+

i ) = x0(A
+
i ) ◦ ψ−1

i for each i, and endow arbitrary colors for the rest of the
sites. Also, the update sequence of (X∗

t ) is given by the induced update sequence
of (Xt) as defined in Definition 5.8. Then the triangle inequality implies that∥∥Px0

(
Xt(�) ∈ ·)− π�

∥∥
TV

≤ ∥∥Px0

(
Xt(�) ∈ ·)− Px∗

0

(
X∗

t (�) ∈ ·)∥∥TV

+ ∥∥Px∗
0

(
X∗

t (�) ∈ ·)− π∗
�

∥∥
TV + ∥∥π� − π∗

�

∥∥
TV,

(5.8)

where we omit the expression such as ψ−1 since the correspondence between �

and � is clear in the current context.
Note that the distance between Ai and ∂A+

i is at least log3 n. By identifying
Ai and Ci in an obvious way, Lemma 5.4 implies that X∗

t and Xt are coupled on⋃L
i=1 Ai until time tmax = log4/3 n, with an error probability at most n−10d (this

property can be proven analogously as in Lemma 5.11). This shows that

(5.9)
∥∥Px0

(
Xt(�) ∈ ·)− Px∗

0

(
X∗

t (�) ∈ ·)∥∥TV ≤ n−10d .

The third term in the r.h.s. of (5.8) is split into three parts as follows:∥∥π� − π∗
�

∥∥
TV ≤ ∥∥Px∗

0

(
X∗

tmax
(�) ∈ ·)− π∗

�

∥∥
TV

+ ∥∥Px∗
0

(
X∗

tmax
(�) ∈ ·)− Px0

(
Xtmax(�) ∈ ·)∥∥TV

+ ∥∥Px0

(
Xtmax(�) ∈ ·)− π�

∥∥
TV.

(5.10)

An analogous method as (5.9) can be used to bound the second term in the r.h.s. of
(5.10). For the third term, we apply Lemma 5.5 to obtain that∥∥Px0

(
Xtmax(�) ∈ ·)− π�

∥∥
TV

≤ ∥∥Px0(Xtmax ∈ ·) − Pπ(Xtmax ∈ ·)∥∥TV

≤ P(Xtmax is dependent on X0) ≤ n−10d,

(5.11)

where the last inequality is obtained by putting l = m and t = tmax = log4/3 n into
(5.3). For the first term of (5.10), we apply Lemma 5.15 to deal with the product
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chain: ∥∥Px∗
0

(
X∗

tmax
(�) ∈ ·)− π∗

�

∥∥
TV

≤ 1

2

∥∥Px∗
0

(
X∗

tmax
(�) ∈ ·)− π∗

�

∥∥
L2(π∗)

≤ 1

2

[
exp

{
L∑

i=1

∥∥Px∗
0

(
X∗

tmax
(Ci) ∈ ·)− π∗

i

∥∥2
L2(π∗

i )

}
− 1

]1/2

≤ 1

2

[
exp

{
L
∥∥Px∗

0

(
X∗

tmax

(
Zd

r

) ∈ ·)− π∗
r

∥∥2
L2(π∗

r )

}− 1
]1/2

,

(5.12)

where π∗
i and π∗

r are shorthand notation for π∗
Ci

and π∗
Zd

r
, respectively. In the last

inequality, we used the fact that projection can only decrease the L2-distance while
the first line is due to Cauchy–Schwarz. Now by plugging t = tmax = log4/3 n into
(4.2) of Theorem 4.9, we get

(5.13)
∥∥Px∗

0

(
X∗

tmax

(
Zd

r

) ∈ ·)− π∗
r

∥∥
L2(π∗

r ) ≤ n−11d .

Using this combined with (5.12) gives

(5.14)
∥∥Px∗

0

(
X∗

tmax
(�) ∈ ·)− π∗

�

∥∥
TV ≤ 1

2

[
exp

{
Ln−22d}− 1

]1/2 ≤ n−10d,

which holds for all sufficiently large n. Thus, we can rewrite (5.10) using (5.11),
(5.14) as

(5.15)
∥∥π� − π∗

�

∥∥
TV ≤ 3n−10d .

Hence, by combining (5.8), (5.9) and (5.14), we get

(5.16)
∥∥Px0

(
Xt(�) ∈ ·)− π�

∥∥
TV ≤ ∥∥Px∗

0

(
X∗

t (�) ∈ ·)− π∗
�

∥∥
TV + 4n−10d .

We derive an upper bound on the r.h.s. of (5.16) in terms of mt similarly as what
is done in (5.12). Note that the diameter of C+

i is smaller than 2
3r = 2 log5 n, and

hence, we have ∥∥Px∗
0

(
X∗

t (Ci) ∈ ·)− π∗
i

∥∥
L2(π∗

i ) ≤ mt .

Therefore, plugging this into (5.12) with replacing tmax by t gives that

(5.17)
∥∥Px∗

0

(
X∗

t (�) ∈ ·)− π∗
�

∥∥
TV ≤ 1

2

(
exp

(
Lm2

t

)− 1
)1/2

,

and this holds regardless of the initial configuration x∗
0 . Altogether, (5.16), (5.17)

and Theorem 5.7 imply that

(5.18) max
x0

∥∥Px0(Xt+s ∈ ·) − π
∥∥

TV ≤ 1

2

(
exp

(
Lm2

t

)− 1
)1/2 + 7n−10d .

Finally, recalling that L ≤ md ∧ (n/ log7 n)d and replacing 7n−10d by n−9d estab-
lishes the first part of Theorem 5.2. This verifies the variant version in Remark 5.3
as well. �
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PROOF OF THEOREM 5.2, PART 2. Since the proof is identical to that of The-
orem 3.1 in [25], we refer to the literature rather than rewriting it in the current
paper. However, we explain two minor changes that should be made for our case.

First, we divide the underlying lattice Zd
n into blocks of side-length 3 log5 n, in

contrast to the side-length 3 log3 n blocks in [25]. Also, whenever the log-Sobolev-
type inequality (Theorem 2.1 of [25]) is used in the reference, we implement The-
orem 4.9 or Lemma 5.5 as an alternative. It is applied when bounding the terms
such as ‖Px0(Xtmax ∈ ·) − π‖TV, which can be done as (5.11) and (5.13) in our
case. �

6. Cutoff for the Swendsen–Wang dynamics. In this section, we prove The-
orems 1 and 2. In Section 6.1, we establish the existence and the location of cutoff.
However, the cutoff location will be written in terms of a finite-volume spectral
gap. In Section 6.2, we prove that the spectral gap of the finite-volume dynam-
ics indeed converges to the infinite-volume gap, which verifies both Theorems 1
and 2.

REMARK 6.1. In Section 3, we showed that the spectral gap is bounded
strictly away from 0 uniformly in n when p < p0. On the other hand, one can also
verify that the spectral gap is strictly away from 1 if p is sufficiently small, whose
proof is deferred to Proposition A.2 in the Appendix. Thus, if we can demonstrate
that the spectral gap converges as the lattice size tends to infinity, we consequently
have that the limit is strictly between 0 and 1.

Throughout this section, let 0 < p0 < 1
4e2d

denote a small constant that not only
satisfies the condition given in Theorem 4.9, but also lies in the regime where
there exists a constant c > 0 such that γ (r), the spectral gap of the Swendsen–
Wang dynamics on Zd

r , lies in [c,1 − c] uniformly in r , as discussed in the above
remark. Moreover, for a given constant 0 < p < p0, the following notation are
introduced for convenience:

(6.1) γ�(r) := log
(

1

1 − γ (r)

)
, p� :=

[
log
(

1

4edp

)]−1
.

Note that p0 ≤ 1
4e2d

implies p� ≤ 1. Then Proposition 3.4 implies that γ�(r) ≥
p−1

� ≥ 1.

6.1. Existence of cutoff. Our starting point is to sum up the results in the pre-
vious sections and derive a sharp bound on mt defined in (5.1), which will then
naturally imply the existence of cutoff.

LEMMA 6.2. Set r = 3 log5 n. For every 0 < p < p0, 18d log logn ≤ t ≤
log4/3 n and n sufficiently large,

e−γ�(r)t−15dγ�(r) log logn − n−9d ≤ mt ≤ e−γ�(r)t+12dγ�(r) log logn.
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PROOF. Let X
†
t denote the Swendsen–Wang dynamics on Zd

r with periodic
boundary conditions, and let π† be its stationary distribution. Then the r.h.s. of the
desired inequality comes directly from Theorem 4.9 and Remark 4.11.

mt ≤ max
x0

∥∥Px0

(
X

†
t ∈ ·)− π†∥∥

L2(π†) ≤ 2e−γ�(r)(t−11p� log logn)

≤ e−γ�(r)t+12dγ�(r) log logn.

(6.2)

Further, note that rdmt = o(1) due to the condition t ≥ 18d log logn. Therefore,
combining Theorem 5.2 with m = r (see Remark 5.3) and Proposition 2.1 implies
that

e−γ�(r)(t+s) ≤ 2
∥∥P(X†

t+s ∈ ·)− π†∥∥
TV

≤ (
exp

(
rdm2

t

)− 1
)1/2 + n−9d ≤ 2rd/2mt + n−9d,

(6.3)

where s = 11dp� log logn, and the last inequality is achieved by the elementary
inequality ex − 1 ≤ 4x which holds for x ∈ [0,1]. Using the fact that γ�(r) ≥
p−1

� ≥ 1, we deduce that

(6.4) mt ≥ e−γ�(r)t−15dγ�(r) log logn − n−9d .

Combining the inequalities (6.2) and (6.4) concludes the proof. �

We can now prove the existence of cutoff in the following theorem, establishing
the cutoff location in terms of γ�(r) and the O(log logn)-window.

THEOREM 6.3. Let (Xt) be the Swendsen–Wang dynamics defined on Zd
n . Set

r = 3 log5 n, 0 < p < p0, and let t�, t−n and t+n be defined as follows:

t� = t�(n) := d

2γ�(r)
logn,

t−n := t� − 18d log logn,

t+n := t� + 20d log logn.

Then we have the following which establishes cutoff of (Xt):

lim
n→∞ max

x0

∥∥Px0(Xt−n ∈ ·) − π
∥∥

TV = 1;
lim

n→∞ max
x0

∥∥Px0(Xt+n ∈ ·) − π
∥∥

TV = 0.
(6.5)

PROOF. The proof is a straightforward application of Theorem 5.2 and
Lemma 6.2. The latter one combined with the fact γ�(r) ≥ 1 implies that(

n/3 log5 n
)dm2

t−n ≥ 1

3d
logd n −→ ∞;(

n/ log7 n
)dm2

t+n −s
≤ log−d n −→ 0,
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as n tends to infinity, where s := 11d log logn. Therefore, Theorem 5.2 shows that
the two equations in (6.5) are true. �

6.2. Limit of spectral gaps. In this final subsection, we verify Theorem 2 and
conclude the proof of Theorem 1. To this end, we apply Theorem 6.3 to varying
values of r to prove the convergence of {γ�(r)}.

Although all our argument has been formulated in terms of r = 3 log5 n, it can be
extended naturally to r = log4+δ n for any constant δ > 0, maintaining the window
of size O(log logn) (see Remark 5.1). We can state this as follows.

COROLLARY 6.4. Let (Xt) be the Swendsen–Wang dynamics on Zd
n and let

δ > 0 be any small constant. Set r1 := log4+δ n, 0 < p < p0 and let γ� be defined
as (6.1). Then there exists C = C(d, δ) > 0 such that the following holds for all
r1 ≤ r ≤ r2

1 : For the parameters t�, t−n and t+n given by

t� = t�(r) := d

2γ�(r)
logn,

t−n := t� − C log logn,

t+n := t� + C log logn,

we have

lim
n→∞ max

x0

∥∥Px0(Xt−n ∈ ·) − π
∥∥

TV = 1;
lim

n→∞ max
x0

∥∥Px0(Xt+n ∈ ·) − π
∥∥

TV = 0.
(6.6)

Implementing this generalization, we can now prove the following proposition
which is the first step toward establishing Theorem 2.

PROPOSITION 6.5. Let (Xt) be the Swendsen–Wang dynamics defined on Zd
r ,

set 0 < p < p0, and let γ�(r) be defined as (6.1). Then there exists a constant
γ̂� ∈ (0,1) such that ∣∣γ�(r) − γ̂�

∣∣≤ 2r−1/4+δ,

which holds for any constant δ > 0 and for any sufficiently large r .

PROOF. Our proof uses the approach of [25], Lemma 4.3. For any large
enough n, let r1 = 3 log4+δ n and pick r2 such that r1 ≤ r2 ≤ r2

1 . Then Corollary 6.4
implies that

d

2γ�(r1)
logn − C log logn ≤ d

2γ�(r2)
logn + C log logn.
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By rearranging the terms, the uniform boundedness of γ�(r) (Proposition A.2)
gives that

γ�(r2) − γ�(r1) ≤ 4γ�(r1)γ�(r2)

d

C log logn

logn
≤ r

−1/4+δ
1 ,

where the last inequality holds for all sufficiently large n. Since the role of r1 and
r2 can clearly be reversed, we deduce that for any large n,

max
r1≤r≤r2

1

∣∣γ�(r1) − γ�(r)
∣∣≤ r

−1/4+δ
1 .

Therefore, by iterating this inequality, we obtain∑
i≥0

∣∣γ�

(
r2i

1
)− γ�

(
r2i+1

1
)∣∣≤∑

i≥0

r
−2i−2(1−4δ)
1 ≤ 2r

−1/4+δ
1 < ∞,

which implies the existence of the limit γ̂� := limr→∞ γ�(r) as well as∣∣γ�(r) − γ̂�

∣∣≤ 2r−1/4+δ.

The property 0 < γ̂� < 1 follows by Propositions 3.4 and A.2, whose statements
combined tell us that there are two constants c1, c2 > 0 depending on d , p, q such
that

0 < c1 < γ�(r) < c2 < ∞,

uniformly in r . �

Our next goal is showing that γ̂ := 1 − e−γ̂� is equal to the infinite-volume
spectral gap γ∞, which leads us to concluding the proof of Theorem 2.

PROOF OF THEOREM 2. Thanks to Proposition 6.5, it suffices to verify that
γ∞ = γ̂ .

Step 1. γ∞ ≤ γ̂ .
In order to prove γ∞ ≤ γ̂ , we need a good control on the following quantity

which is just the L1-variant of mt defined in (5.1):

(6.7) m∗
t := max

x0∈�
Z

d
r

∥∥Px0

(
X

†
t (�) ∈ ·)− π

†
�

∥∥
TV,

where r := 3 log5 n, � ⊂ Zd
r is a sub-cube of side-length 2 log5 n, and X

†
t is the

Swendsen–Wang dynamics on Zd
r with the stationary distribution π†, as defined

in Lemma 6.2. It turns out that m∗
t has a lower bound which resembles that of mt

in Lemma 6.2. This is shown by the following lemma whose proof is presented in
Appendix A.2.

LEMMA 6.6. For every t > 0, m∗
t satisfies the following inequality:

(6.8) m∗
t ≥ e−γ�(r)t−15dγ�(r) log logn − n−9d .
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Let us pick x
†
0 ∈ �� and A ⊂ �� which achieve the maximum m∗

t , that is,

P
x

†
0

(
X

†
t (�) ∈ A

)− π
†
�(A) = m∗

t .

Let Zt be the Swendsen–Wang dynamics on the infinite-volume lattice Zd , and let
π∞ denote its stationary distribution. Define �+ := {v : dist(v,�) ≤ 1

3 log5 n} ⊂
Zd

r , and let ψ : �+ → Zd be a graph homomorphism that maps �+ onto its iso-
morphic copy in Zd whose center is located at the origin.

Let Z′
0 ∼ π∞ denote a random configuration on Zd distributed according to

π∞, and let Z0 ∈ �Zd be defined as follows:

(6.9) Z0(v) =
{
x

†
0

(
ψ−1(v)

)
, if v ∈ ψ

(
�+);

Z′
0(v), otherwise.

Set s0 = 7d log logn. In order to deduce the desired conclusion γ∞ ≤ γ̂ , we control
the L2-distance between π∞ and the law of Zt with starting configuration Z0. We
begin with the following inequality (cf. (4.3)):

(6.10) e−γ ∞
� t
∥∥PZ0(Zs0 ∈ ·) − π∞∥∥

L2(π∞) ≥ ∥∥PZ0(Zt+s0 ∈ ·) − π∞∥∥
L2(π∞),

where γ ∞
� satisfies 1 − γ∞ = e−γ ∞

� . By Cauchy–Schwarz, we have∥∥PZ0(Zt+s0 ∈ ·) − π∞∥∥
L2(π∞) ≥ ∥∥PZ0(Zt+s0 ∈ ·) − π∞∥∥

TV

≥ PZ0

(
Zt+s0(�) ∈ A

)− π∞
� (A),

(6.11)

where we wrote � (resp., A) instead of ψ(�) (resp., A ◦ ψ−1) for convenience.
Consider the coupling between Zt and X

†
t such that the update sequence of

Zt is given by the induced update sequence of X
†
t on �+ translated by ψ . In

particular, the update sequences of Zt and X+
t coincide on �+ modulo ψ . Under

such coupling, an analogous argument as Lemma 5.4 implies that

(6.12) P
(
Zt+s0(�) 
= X

†
t+s0

(�)
)≤ n−9d for all t < log3 n,

since the two chains starts with the same initial configuration on �+. Moreover,
the weak spatial mixing property of the Potts measure at high enough temperature
(see, e.g., [29]) gives that

(6.13)
∥∥π∞|� − π†|�

∥∥
TV ≤ e−c log3 n ≤ n−9d,

where c is a positive constant depending on d , p. By combining the four inequali-
ties (6.10)–(6.13), we deduce that

e−γ ∞
� t
∥∥PZ0(Zs0 ∈ ·) − π∞∥∥

L2(π∞)

≥ P
x

†
0

(
X

†
t+s0

(�) ∈ A
)− π

†
�(A) − 2n−9d

= m∗
t+s0

− 2n−9d

≥ e−γ�(r)(t+s0)−15dγ�(r) log logn − 3n−9d,

(6.14)
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where the last inequality is due to Lemma 6.6. We now upper bound the l.h.s. of
(6.14) by the following theorem which can be understood as an infinite-volume
analogue of Theorem 4.9.

THEOREM 6.7. Let Z′
0 ∼ π∞, let Z0 be defined as (6.9), and let (Zt ) be the

Swendsen–Wang dyamics on Zd with initial configuration Z0. Then there exists
p′

0 = p′
0(d) > 0 such that for any 0 < p < p′

0 and s0 := 7d log logn, we have∥∥PZ0(Zs0 ∈ ·) − π∞∥∥
L2(π∞) ≤ 2,

where π∞ denotes the infinite-volume Potts measure, that is, the stationary distri-
bution for (Zt ).

One can prove Theorem 6.7 by implementing the information percolation
framework in the infinite-volume domain Zd . This is done similarly as in The-
orem 4.9, while some difficulties arise due to the infinite nature of the domain Zd .
We discuss the details in Appendix A.3.

Implementing Theorem 6.7, equation (6.14) implies that

(6.15) 31/t e−γ ∞
� ≥ [

e−γ�(r)(t+s0)−15dγ�(r) log logn − 3n−9d]1/t
,

which holds for all t < log3 n. Then, substituting t = log1/2 n and letting n → ∞
gives that

e−γ ∞
� ≥ e−γ̂� ,

since e−γ�(r)(log1/2 n+12d log logn) � 3n−9d . Thus we deduce the desired conclusion
γ∞ ≤ γ̂ .

Step 2. γ∞ ≥ γ̂ .
The second part is shown by utilizing the variational characterization (2.2) of

the spectral gap. To this end, we first note the fact that the transition matrix of
the Swendsen–Wang dynamics on any finite graph is nonnegative definite (e.g.,
Remark 4.4 of [35]). This naturally extends to the infinite-volume dynamics, im-
plying that the transition kernel is nonnegative definite.

Using the variational characterization, write γ∞ as

γ∞ = inf
f ∈L2(π∞)

f 
=0

E∞(f, f )

Var∞(f )
,

where E∞ and Var∞ denote the Dirichlet form and the variance in terms of π∞,
respectively. For any f ∈ L2(π∞), we can pick a sequence {fn} of finitely sup-
ported (i.e., the value of fn depends only on spins at finitely many sites) L2(π∞)-
functions such that fn → f in L2(π∞). In this case, we also have that

E∞(fn, fn) → E∞(f, f ) and Var∞(fn) → Var∞(f ),
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as n → ∞. Therefore, for any ε > 0, we can pick a finitely supported g ∈ L2(π∞)

such that

γ∞ + ε

2
≥ E∞(g, g)

Var∞(g)
.

Then, due to the convergence of Gibbs measures as the underlying volume tends
to infinity, there exists M > 0 such that for all m ≥ M ,

(6.16) γ∞ + ε ≥ Em(g, g)

Varm(g)
,

where Em and Varm denote the Dirichlet form and the variance in terms of the
stationary distribution on Zd

m, respectively. Since the r.h.s. of (6.16) is greater than
or equal to γ (m), we obtain that

γ∞ + ε ≥ γ̂ ,

as m tends to infinity. This holds for all ε > 0, so we deduce that γ∞ ≥ γ̂ . �

REMARK 6.8. In the proof of Theorem 2, we did not use any property specific
to the Swendsen–Wang dynamics, and hence, the theorem can be generalized to
other types of Markov chains on spin systems. For instance, our method yields the
same result for the Potts Glauber dynamics, implying that the cutoff location of
the Potts Glauber dynamics in Theorem 3 of [26] can be written in terms of the
infinite-volume spectral gap.

In general, one can show that by following the proof of Theorem 2, the finite-
volume spectral gap converges to the infinite-volume gap if the Markov chain has
the following properties:

A. Information does not spread too fast. (Analogue of Lemma 5.4).
B. Dependence on the initial condition wears off quickly enough to deduce an

exponential decay of the L2-distance from stationarity. (Analogue of Theorems 4.9
and 6.7).

For instance, for the Potts Glauber dynamics, A comes from locality of the chain
and B can be obtained by a log-Sobolev type inequality [7] (see Remark 4.10).
Then we can use the methods in Theorem 2 and deduce that the spectral gaps
converge to the infinite-volume gap.

We finally conclude the proof of Theorem 1, which comes as a direct conse-
quence of Theorem 6.3 and Proposition 6.5.

PROOF OF THEOREM 1. By Theorem 6.3, the Swendsen–Wang dynamics on
Zd

n has cutoff at

t� = d

2γ�(r)
logn,
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where r = 3 log5 n and with O(log logn)-window. Note that by Proposition 6.5,
we have ∣∣∣∣ d

2γ�(r)
logn − d

2γ ∞
�

logn

∣∣∣∣≤ d

2γ�(r)γ ∞
�

∣∣γ�(r) − γ ∞
�

∣∣ logn

≤ 2d

γ�(r)γ ∞
�

log−1/4+δ n = o(1),

as one sets δ to satisfy δ < 1/4, where γ ∞
� is given by 1 − γ∞ = e−γ ∞

� . Thus, the
cutoff locations stated in Theorems 1 and 6.3 coincide with the same O(log logn)-
window, and this concludes the proof of Theorem 1. �

APPENDIX

A.1. Upper bound on the spectral gap. We establish an upper bound on the
spectral gap of the Swendsen–Wang dynamics, which has been assumed in proving
the main theorems. Our approach is to investigate the edge SW dynamics (see
Section 2.2) instead of the original one. As mentioned at the end of Section 2.1,
we impose that the parameters p and β to satisfy the equation p = 1 − e−β .

We begin with a lemma that sheds light on the relationship between the edge
Swendsen–Wang dynamics and the original chain.

LEMMA A.1. Let G = (V ,E) be a graph. Let γ (resp., γ̃ ) be the spectral gap
the Swendsen–Wang dynamics (resp., edge SW dynamics) defined on G. Then we
have

γ = γ̃ .

The main idea behind this lemma is the similarity between the transition matri-
ces of the two Markov chains. For a proof, see e.g., Lemma 2.6 of [35].

Let (ω1
t ) and (ω0

t ) be the two copies of the edge Swendsen–Wang dynamics
on (Z/nZ)d with initial configurations ω1

0 ≡ 1 and ω0
0 ≡ 0, respectively. It is well

known that there exists a coupling between the two that satisfies

(A.1)
∥∥P(ω1

t ∈ ·)− P
(
ω0

t ∈ ·)∥∥TV = P
(
ω1

t 
= ω0
t

)
.

We take such an optimal coupling (ω1
t , ω

0
t ). (For more explanation on coupling

inequality and optimal coupling; see, e.g., [23].) Investigating this pair, we show
that the spectral gap of the dynamics lies strictly away from 1 uniformly in n.

PROPOSITION A.2. Consider the Swendsen–Wang dynamics on the d-
dimensional torus (Z/nZ)d . Then for every 0 < p < (2d)−5/2, the spectral gap
γ (n) of the process satisfies

γ (n) ≤ 1 − p

(
1 − 1

q
− 2dp2

q

)
< 1 for all n.
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PROOF. Consider an optimal coupling (ω1
t , ω

0
t ) of the edge Swendsen–Wang

dynamics on Zd
n that satisfies (A.1), each starting from the all-open and all-closed

configuration, respectively. Pick any vertex u ∈ Zd
n and one of its neighbor v, and

let {u ω0
t←→ v} denote the event that there exists an open path in ω0

t that connects
u and v. Then for each t , our goal is to derive a lower bound of the following
probability:

(A.2) P
(
ω1

t+1(e) = 1, u
ω0

t+1
←→ v|ω1
t (e) = 1, u

ω0
t
←→ v

)
,

where e denotes the edge (uv).
We start with an observation which is clear by the definition of our chain:

(A.3) P
(
ω1

t+1(e) = 1|ω1
t (e) = 1

)= p.

On the other hand, conditioned on u
ω0

t
←→ v, we have u
ω0

t+1←→ v if and only if the
open clusters of u and v are assigned with the same color and the percolation
configuration at time t + 1 connects the pair of vertices. The probability of the
latter event can be bounded by a rough estimate as follows: for ω ∼ Perc(Zd

n,p),

P(u
ω←→ v) ≤ p + (2d − 2)p3 +∑

l≥5

(2dp)l ≤ p + 2dp3.

For the first inequality, we used the fact that the number of length-one and length-
three paths between u and v are 1 and 2d − 2, respectively, and the number of
length-l paths is bounded by (2d)l . The second inequality holds for all p such that
p < (2d)−5/2. Since ω ∼ Perc(Zd

n,p) stochastically dominates ω0
t+1 in a natural

way, we have

(A.4) P
(
u

ω0
t+1←→ v|u

ω0
t
←→ v

)≤ 1

q

(
p + 2dp3).

Now we derive a lower bound on (A.2) using (A.3) and (A.4):

P
(
ω1

t+1(e) = 1, u
ω0

t+1
←→ v|ω1
t (e) = 1, u

ω0
t
←→ v

)
≥ P

(
ω1

t+1(e) = 1|ω1
t (e) = 1

)− P
(
u

ω0
t+1←→ v|u

ω0
t
←→ v

)
≥ p − 1

q

(
p + 2dp3)= p

(
1 − 1

q
− 2dp2

q

)
.

Then, since the starting configurations satisfy ω1
0(e) = 1 and u

ω0
0
←→ v,

P
(
ω1

t 
= ω0
t

)≥ P
(
ω1

t (e) = 1, u
ω0

t
←→ v
)≥ {

p

(
1 − 1

q
− 2dp2

q

)}t

,



CUTOFF FOR THE SWENDSEN–WANG DYNAMICS 3751

and this also gives the bound on the total-variation distance between the law of the
two copies as the pair is an optimal coupling. Therefore, by utilizing the second
inequality of Proposition 2.1 and by Lemma A.1, we obtain that

γ (n) ≤ 1 − p

(
1 − 1

q
− 2dp2

q

)
,

as one tends t to infinity. Moreover, it is an estimate that holds uniformly in n,
hence, concluding the proof. �

Although not used in this paper, we can derive an upper bound of the spectral
gap for low temperature Swendsen–Wang dynamics using an analogous method as
in Proposition A.2. The following corollary illustrates how it is generalized.

COROLLARY A.3. Consider the Swendsen–Wang dynamics on the d-dimen-
sional torus (Z/nZ)d . If p > 0 satisfies p > 1

q
, the spectral gap γ (n) of the given

process satisfies

γ (n) ≤ 1 − p + 1

q
.

In particular, γ (n) is strictly smaller than 1, uniformly in n.

PROOF. The proof is identical as it is done in Proposition A.2, except for the
estimate in (A.4). In the current case, we use a more obvious estimate:

P
(
u

ω0
t+1←→ v|u

ω0
t
←→ v

)≤ 1

q
. �

A.2. Proof of Lemma 6.6. We first introduce the following simple property
of product measures.

LEMMA A.4. Let {μi}ki=1, {νi}ki=1 be collections of probability measures on a
state space, let μ =⊗k

i=1 μi and ν =⊗k
i=1 νi . Then the following inequality holds

true:

‖μ − ν‖TV ≤
k∑

i=1

‖μi − νi‖TV.

PROOF. We can prove this lemma by the following simple observation:

∑
x1,...,xk

∣∣∣∣∣
k∏

i=1

μi(xi) −
k∏

i=1

νi(xi)

∣∣∣∣∣
≤ ∑

x1,...,xk

∣∣μ1(x1) − ν1(x1)
∣∣ k∏
i=2

μi(xi)
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+ ∑
x1,...,xk

∣∣∣∣∣ν1(x1)

k∏
i=2

μi(xi) −
k∏

i=1

νi(xi)

∣∣∣∣∣
=∑

x1

∣∣μ1(x1) − ν1(x1)
∣∣+ ∑

x2,...,xk

∣∣∣∣∣
k∏

i=2

μi(xi) −
k∏

i=2

νi(xi)

∣∣∣∣∣
Iterating this for k times draws the conclusion. �

Therefore, by following the proof of Theorem 5.2 along with the application of
the previous lemma to (5.17), we obtain that

max
x0

∥∥Px0(Xt+s ∈ ·) − π
∥∥

TV ≤ (
md ∧ (n/ log7 n

)d)m∗
t + n−9d,

where Xt is the Swendsen–Wang dynamics on Zd
m with log5 n ≤ m ≤ n and s =

11dp� log logn. Then, as what we did in (6.3), pick m = r := 3 log5 n and deduce
that

(A.5) e−γ�(r)(t+s) ≤ 2
∥∥P(X†

t+s ∈ ·)− π†∥∥
TV ≤ 2rdm∗

t + 2n−9d,

and hence,

m∗
t ≥ e−γ�(r)t−15dγ�(r) log logn − n−9d .

A.3. Proof of Theorem 6.7.

A.3.1. Information percolation on Zd . Let (Zt )
t�
t=0 denote the Swendsen–

Wang dynamics on Zd with initial configuration Z0 defined in (6.9), and let π∞
denote its stationary distribution. Also, let �, �+ and ψ be defined as in (6.7),
(6.9). Note that the boxes �, �+ are centered at the origin. Throughout this sec-
tion, we write � (resp., �+) instead of ψ(�) (resp., ψ(�+)) if there is no ambi-
guity.

We choose an analogous approach as in Theorem 4.9, while adjusting the argu-
ment to the infinite-volume setting. We draw the history diagram on the space-time
slab Zd × [0, t�], but use a modified definition of classifying the information per-
colation clusters.

Let H̃t� denote the update sequence of (Zt )
t�
t=0 and let H̃v be the update history

of v ∈ Zd defined as in Definition 4.3. We adopt the same graph structure u ∼i v

on Zd as in Definition 4.4: u ∼i v if and only if H̃u(t + 1
2) ∩ H̃v(t + 1

2) 
= ∅ for
some integer t .

DEFINITION A.5 (Information percolation clusters for Zt ). Let C ⊂ Zd be a
connected component in the graph (Zd,∼i). Then:

1. C is marked RED if H̃C(0) ∩ �+ 
= ∅;
2. C is marked BLUE if H̃C(0) ∩ �+ =∅ and |C| = 1;
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3. C is marked GREEN if otherwise, that is, if H̃C(0) ∩ �+ = ∅ and |C| ≥ 2.

Intuition for this modified definition is straightforward: if we consider the sta-
tionary chain Z′

t with the initial configuration Z′
0, then Zt(C) = Z′

t (C) as long as
H̃C(0) ∩ �+ = ∅, since the starting configurations Z0 and Z′

0 can possibly differ
only on �+. Therefore, even if the history survives until t = 0, the two chains are
still coupled if it does not intersect with �+ at t = 0.

Set Ṽ := Zd , and let C̃R denote the collection of red clusters. Let ṼR :=⋃
C∈C̃R C be the union of red clusters, and define C̃B , ṼB , C̃G and ṼG analogously.

Moreover, let H̃R := H̃ṼR , and define H̃G , H̃B similarly. To introduce the analog

of �A in (4.1), let H̃ −
A :=⋃{H̃v : v ∈ Ṽ \ A} = H̃Ṽ \A, and set

(A.6) �̃A := sup
H̃ −

A :H̃ −
A ∈H̃com(A)

P
(
A ∈ C̃R|H̃ −

A , {A ∈ C̃R} ∪ {A ⊂ ṼB}),
where H̃ −

A ∈ H̃com(A) is the shorthand notation meaning H̃ −
A ∩A×{t�− 1

2} =∅,
which imposes a compatibility condition on H̃ −

A . Then we have the following
infinite-volume analog of Lemma 4.8, whose proof is presented in the final sub-
section.

LEMMA A.6. Set r0 := 5
2 log5 n and let A 
= ∅ be an arbitrary subset of Ṽ .

For any θ > 0, there exist constants M = M(θ) and p0 = p0(θ, d) such that for
any p < p0,

�̃A ≤ Me−θM(A)[(3edp)t�−
1
2 ∧ e−θ(‖A‖−r0)

]
,

where M(A) is the size of the smallest connected subgraph containing A, and ‖A‖
is defined by ‖A‖ := maxx∈A ‖x‖∞.

We introduce one more lemma that restricts our attention to a finite domain. Let
r := 3 log5 n and define R to be the following random variable:

(A.7) R := max
{‖v‖∞ : v ∈ ṼR

}∨ r.

The following lemma indicates that it is unlikely to have R > r at time s �
log logn. Its proof is postponed to Section A.3.3.

LEMMA A.7. Let (Zt )
s
t=0 be the Swendsen–Wang dynamics on Ṽ defined as

above, where s = �(log logn). Then at time s, the random variable R defined in
(A.7) satisfies

(A.8) P(R > r) ≤ n−10d .
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Keeping Lemmas A.6 and A.7 in mind, we continue by comparing the L2

distance of the dynamics at time s � log logn from its stationarity. Due to
Lemma 4.13, we get∥∥PZ0(Zs ∈ ·) − PZ′

0

(
Z′

s ∈ ·)∥∥2
L2(π∞)

≤ E
[∥∥PZ0(Zs ∈ ·|H̃G) − PZ′

0
(Zs ∈ ·|H̃G)

∥∥2
L2(π̂∞)

]
= lim

R0→∞E
[∥∥PZ0(Zs ∈ ·|H̃G) − PZ′

0
(Zs ∈ ·|H̃G)

∥∥2
L2(π̂∞)1{R≤R0}

]
≤ lim sup

R0→∞
ER

[
sup
H̃G

∥∥μ̂ − π̂∞
0
∥∥2
L2(π̂∞

0 )

]
,

(A.9)

where π̂∞ is the shorthand notation for π∞(·|H̃G), and the measures μ̂ and π̂∞
0

are defined by

μ̂(·) := PZ0(Zs ∈ ·|H̃G,R ≤ R0);
π̂∞

0 (·) := PZ′
0
(Zs ∈ ·|H̃G,R ≤ R0).

Also, ER denotes the expectation over the randomness of R. The equation in the
third line is due to monotone convergence theorem.

Let R0 ≥ r be a fixed number. Conditioned on both H̃G and the event {R ≤ R0},
Zs and Z′

s are coupled on Bc
R0

∪ ṼG , where Bl := {v : ‖v‖∞ ≤ l}. Therefore, the
integrand inside the r.h.s. of (A.9) can be written as

sup
H̃G

∥∥μ̂ − π̂∞
0
∥∥2
L2(π̂∞) = sup

H̃G

‖μ̃ − π̃‖2
L2(π̃)

,(A.10)

where μ̃ and π̃ are defined as

μ̃(·) := PZ0

(
Zs(BR0 \ ṼG) ∈ ·|H̃G,R ≤ R0

);
π̃(·) := PZ′

0

(
Zs(BR0 \ ṼG) ∈ ·|H̃G,R ≤ R0

)
.

(A.11)

We now state an analog of Lemma 4.14 that enables us to work with the uniform
distribution instead of the complicated measure π̃ . Its proof turns out to be similar
to that of Lemma 4.14, which is postponed to Section A.3.2.

LEMMA A.8. Let R0 ≥ r . For every subset S ⊂ BR0 , define νS to be the uni-
form distribution on {1, . . . , q}S . Then there exists p′

0 = p′
0(d) such that for any

0 < p < p′
0 and s ≥ (6d) log logn, we have the following inequality: conditioned

on H̃G and {R ≤ R0},
‖μ̃ − π̃‖2

L2(π̃)
≤ 2‖μ̃ − ν‖2

L2(ν)
+ 1,

where ν is the shorthand notation for νBR0\ṼG .
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Applying this lemma to (A.9), (A.10), we focus on bounding the following:

ER

[
sup
H̃G

‖μ̃ − ν‖2
L2(ν)

]
.

Similar to Section 4.2, we proceed by implementing Lemmas 4.16, 4.17 and
Corollary 4.18. Therefore, we obtain first by Lemma 4.16 that

ER

[
sup
H̃G

‖μ̃ − ν‖2
L2(ν)

]
≤ ER

[
sup
H̃G

E
[
q |ṼR∩ṼR′ ||H̃G, {R ≤ R0}]]− 1

≤ (
1 + n−9) sup

H̃G

E
[
q |ṼR∩ṼR′ ||H̃G

]− 1,

(A.12)

where the expectation E is taken over the randomness of ṼR and ṼR′ , the i.i.d.
copies of red vertices. The second inequality comes from Lemma A.7. Then Corol-
lary 4.18 implies that, under the same conditioning,

|ṼR ∩ ṼR′ | � ∑
A∩A′ 
=∅

A,A′⊂BR0\ṼG

∣∣A ∪ A′∣∣J̃A,A′,

where {J̃A,A′ } are the independent indicators such that P(J̃A,A′ = 1) = �̃A�̃A′ .
Thus, the same series of calculations as (4.15), (4.16) give that

sup
H̃G

E
[
q |ṼR∩ṼR′ ||H̃G

]≤ exp
{ ∑

v∈BR0

( ∑
v∈A⊂BR0

q |A|�̃A

)2}

≤ exp
{∑

v∈Ṽ

(∑
A�v

q |A|�̃A

)2}
.

(A.13)

We split the summation over v ∈ Ṽ in the exponent to two parts, v ∈ Br and v ∈
Ṽ \ Br (Recall that r = 3 log5 n). For the first part, we implement Lemma A.6 to
deduce that∑

v∈Br

(∑
A�v

q |A|�̃A

)2
≤ M2(2r + 1)d

(∑
k≥1

∑
A�v

M(A)=k

qke−θk(4edp)s−2
)2

≤ M2(2r + 1)d
(∑

k≥1

(4ed)kqke−θk(4edp)s−2
)2

≤ M2(logn)11d(4edp)2s−4 <
1

6
,

(A.14)
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where we choose large enough θ that makes the summation over k smaller than 1,
and p is accordingly small in order to satisfy the conditions of Lemma A.6. Note
that in the second inequality, we use the same bound as (4.10) on the number of
A � v such that M(A) = k. The last inequality is obtained if we set s ≥ 6d log logn

with n being large enough.
The second part is derived similarly but utilizing the alternative bound on �̃A.

Let ∂Bl denote the boundary points of Bl , that is, the points having l∞-distance
exactly l from the origin. Then we obtain that∑

v∈Bc
r

(∑
A�v

q |A|�̃A

)2

≤ M2
∑
l≥r

∑
v∈∂Bl

(∑
k≥1

∑
A�v

M(A)=k

qke−θk

)2
e−2θ(l−r0)

≤ M2
∑
l≥r

2d(2l + 1)d−1e−θl/3
(∑

k≥1

(
4e−θ+1dq

)k)2

≤∑
l≥r

e−θl/6 <
1

6
,

(A.15)

where θ , p are chosen to be large and small respectively as in (A.14), and the
inequalities in the last line holds true for all n sufficiently large.

Thus, combining equations (A.12)–(A.15) give us that

ER

[
sup
H̃G

‖μ̃ − ν‖2
L2(ν)

]
≤ (

1 + n−9) sup
H̃G

E
[
q |ṼR∩ṼR′ ||H̃G

]− 1 ≤ e1/3 − 1.

Therefore, equation (A.9) and Lemma A.8 imply that∥∥PZ0(Zs ∈ ·) − PZ′
0

(
Z′

s ∈ ·)∥∥2
L2(π∞)

≤ lim
R0→∞ER

[
sup
H̃G

‖μ̃ − π̃‖2
L2(π̃)

1{R≤R0}
]
≤ 2,

concluding the proof of Theorem 6.7. �

A.3.2. Proof of Lemma A.8. Recall the definitions of the measures μ̃, π̃ in
(A.11). Note that the L2-distance between μ̃ and ν̃ can be written as

‖μ̃ − π̃‖2
L2(π̃)

=∑
x

μ̃(x)2

π̃(x)
− 1 =∑

x

μ̃(x)2

ν(x)

ν(x)

π̃(x)
− 1,

where the sum is taken over x ∈ �BR0\ṼG . Thus, it suffices to show that

ν(x) ≤ 2π̃ (x)
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for all x. Analogously as in the proof of Lemma 4.14, we can interpret π̃ as fol-
lows: we first sample a subset S ⊂ BR0 \ ṼG of red vertices (we denote this prob-
ability as η̃(S)), generate the configuration on S via some law ϕ̃S , and sample the
configuration on BR0 \ (ṼG ∪ S) according to the uniform distribution. In other
words, we have

π̃(x) = ∑
S⊂BR0\ṼG

η̃(S)ϕ̃S(xS)q−|S−|,

where S− := BR0 \ (ṼG ∪ S). In particular, we get

π̃(x) ≥ η̃(∅)ν(x),

and hence, it suffices to verify that η̃(∅) ≥ 1/2.
Note that we can obtain the following similarly as Claim 4.15:

η̃
({∅}c)= P(ṼR 
= ∅|H̃G,R ≤ R0)

≤ (
1 + n−9d) ∑

A 
=∅

P(A ∈ C̃R|H̃G)

≤ (
1 + n−9d) ∑

v∈BR0

∑
A�v

�̃A,

(A.16)

where the second inequality is due to Lemma A.7. We split the above sum into
v ∈ Br and v ∈ Ṽ \Br . Following the same series of calculations as (A.14), (A.15),
we deduce that ∑

v∈BR0

∑
A�v

�̃A ≤ M2(logn)11d(4edp)2s−4 + 1

6
.(A.17)

Thus, (A.16), (A.17) with s ≥ (6d) log logn imply that η̃({∅|}c) ≤ 1/2. �

A.3.3. Proof of Lemma A.7. Our proof goes similar to Lemma 5.4, using the
subcriticality of percolation. Recall that r := 3 log5 n, ‖�+‖ ≤ r0 =: 5

2 log5 n and
s = �(log logn).

If R > r , then we have a vertex v such that ‖v‖ = l > r , and that H̃v(0)∩�+ 
=
∅, implying that there exist percolation paths over the time period from 0 to s� that
connect v to �+. Thus, there exists integers s′ ∈ [0, s) and r ′ ∈ (r0, l] such that
there is an open path in ω̄s′ that connects Br ′ to (Br ′′)c, where r ′′ := r ′ + (l − r0)/s.
This implies that

P
(
H̃v(0) ∩ �+ 
= ∅

)≤ sl exp
(
−c

l − r0

s

)
,
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where c > 0 is a positive constant depending on p, d . Thus, we obtain that

P(R > r) ≤ ∑
v∈Ṽ \Br

P
(
H̃v(0) ∩ �+ 
= ∅

)≤∑
l>r

∑
v∈∂Bl

sle− c(l−r0)

s

≤∑
l>r

e− cl
8s ≤ e− cr

8s

1 − e−c/8s
≤ 16s

c
e− cr

8s ≤ n−10d,

where the inequalities in the last line hold for all sufficiently large n, and for the
second one from the end we used the fact that 1 − e−x ≥ x/2 for x ∈ [0,1]. �

A.3.4. Proof of Lemma A.6. Due to Lemma 4.8, it suffices to show that there
exist M , p0 such that for all 0 < p < p0, we have

(A.18) �̃A ≤ Me−θ(M(A)+‖A‖−r0).

Proceeding analogously as in the proof of Lemma 4.8, we focus on bounding

P
(
A ∈ C̃∗

R(A)

)
,

where C̃∗
R(S) denotes the collection of red clusters that arise when exposing the

joint histories of S. Set Wt = |H̃A(t� − t)| for each integer t ≥ 0. By the same
argument from the proof of Lemma 4.8, the number of spatial edges in H̃A(t + 1

2)

is at least Wt�−t . If A ∈ C̃∗
R(A), we have

W1 + W2 + · · · + Wt� ≥M(A) + t� − 1 ≥M(A),

since the history of A should spatially connect until t = 0. Moreover, there should
be a space-time path in H̃A that connect each point of A at time t� to a point in
�+ at time zero. This implies that

W1 + W2 + · · · + Wt� ≥ ‖A‖ − ∥∥�+∥∥≥ ‖A‖ − r0,

where r0 := 5
2 log5 n. Therefore, we obtain that

P
(
A ∈ C̃∗

R(A)

)≤ E[1{W1+···+Wt�≥ 1
2 (M(A)+‖A‖−r0)}]

≤ e−λ(M(A)+‖A‖−r0)E
[
exp

(
2λ(W1 + · · · + Wt�)

)]
,

(A.19)

which holds for all λ > 0, where we used 1{X ≥ x} ≤ e2λ(X−x) to deduce the last
line. Proceeding similarly as (4.27) using the Galton–Watson branching process
representation (4.21) for Wt , we get

E
[
e3λWt+1 |Wt

]≤ [
1 +∑

k≥1

e3(k+1)λ(edp)k
]Wt ≤ e2dpe6λ+1Wt ≤ eλWt ,
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where we picked small enough p such that 2dp ≤ λe−6λ−1. Implementing the
same argument as (4.27), we deduce that

E
[
e2λ(W1+···+Wt�)]≤ E

[
e2λ(W1+···+Wt�−1)eλWt�−1

]
≤ E

[
e2λ(W1+···+Wt�−2)e3λWt�−1

]
,

and iterating this inequality gives

(A.20) E
[
e2λ(W1+···+Wt�)]≤ E

[
e3λW1

]≤ (
1 + 4dpe3λ+1)W0 ≤ 2|A|.

By combining (A.19) and (A.20), we get

P
(
A ∈ C̃∗

R(A)

)≤ e−λ(‖A‖−r0)e−(λ−1)M(A).

Therefore, equations (4.18)–(4.20) from Lemma 4.8 followed by some adjustment
of constants imply (A.18), and hence, the desired conclusion.
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