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CUTOFF FOR THE MEAN-FIELD ZERO-RANGE PROCESS

BY MATHIEU MERLE AND JUSTIN SALEZ1

Université Paris Diderot

We study the mixing time of the unit-rate zero-range process on the com-
plete graph, in the regime where the number n of sites tends to infinity while
the density of particles per site stabilizes to some limit ρ > 0. We prove that
the worst-case total-variation distance to equilibrium drops abruptly from 1 to
0 at time n(ρ + 1

2ρ2). More generally, we determine the mixing time from an
arbitrary initial configuration. The answer turns out to depend on the largest
initial heights in a remarkably explicit way. The intuitive picture is that the
system separates into a slowly evolving solid phase and a quickly relaxing liq-
uid phase. As time passes, the solid phase dissolves into the liquid phase, and
the mixing time is essentially the time at which the system becomes com-
pletely liquid. Our proof combines metastability, separation of timescales,
fluid limits, propagation of chaos, entropy and a spectral estimate by Morris
(Ann. Probab. 34 (2006) 1645–1664).

1. Introduction.

1.1. Model and results. Introduced by Spitzer in 1970 [23], the zero-range
process has now become a classical model of interacting random walks. In its
most general form every site of a graph G is allowed to contain an arbitrary num-
ber of indistinguishable particles which randomly hop along the edges at a rate
that only depends on the number of particles occupying the site of departure. The
present paper is concerned with the mean-field setting where G is simply the com-
plete graph of order n and, at unit rate, each nonempty site expels a particle to a
uniformly chosen site. Formally, the state space is

� := {η ∈ Z
n+ : η1 + · · · + ηn = m

}
,

where m represents the total number of particles in the system, and ηi the number
of particles occupying site i. The Markov generator L acts on observables f : � →
R as follows:

(1) (Lf )(η) := 1

n

∑
1≤i,j≤n

1(ηi>0)

(
f
(
η + δj − δi)− f (η)

)
,
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where δi
k equals 1 if k = i and 0 else. This generator is irreducible and symmetric.

Consequently, the uniform law π on � is reversible, and the process mixes: the
transition kernel Pt = etL satisfies

Pt(η, ·) −−−→
t→∞ π,

regardless of the choice of the initial state η ∈ �. A standard way to quantify the
rate at which this convergence to equilibrium occurs consists in estimating the
so-called mixing time:

tMIX(η; ε) := min
{
t ≥ 0 : ∥∥Pt(η, ·) − π

∥∥
TV ≤ ε

}
.

In this formula ε ∈ (0,1) is a parameter controlling the desired precision, and
‖μ−ν‖TV := maxA⊆� |μ(A)−ν(A)| denotes the total-variation distance between
μ and ν. Of particular interest is the worst-case mixing time which is obtained by
maximizing over all possible initial states η ∈ �:

tMIX(ε) := max
{
tMIX(η; ε) : η ∈ �

}
.

Estimating this fundamental parameter—and in particular, its precise dependency
in ε—is in general a challenging task; see the books [18, 21]. The present paper is
concerned with the regime where n tends to infinity, while the density of particles
per site stabilizes to some value ρ ∈ (0,∞):

(2) n → ∞,
m

n
→ ρ.

All asymptotic statements will be understood in this sense, and we shall often keep
the dependency upon n implicit in order to lighten the notation. In the regime (2)
a spectral gap estimate due to Morris [22] implies that tMIX(η; ε) = O(n). Here,
we determine the precise prefactor and express it explicitly in terms of the largest
values of η. To describe our result, let us first note that, by symmetry, the initial
heights may always be assumed to be arranged in decreasing order:

(3) η1 ≥ η2 ≥ · · · ≥ ηn.

Passing to a subsequence, we may further assume without loss of generality that
for each k ≥ 1,

(4)
ηk

n
−−−→
n→∞ uk,

for some nonincreasing sequence (uk)k≥1 of nonnegative numbers. With this stan-
dardized setting in mind, our main result can be stated in the following simple
way.

THEOREM 1 (Mixing times). In the regime (2)–(3)–(4), we have for each fixed
ε ∈ (0,1),

(5)
tMIX(η; ε)

n
−−−→
n→∞ (1 + ρ)u1 − 1

2

∞∑
i=1

u2
i .
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Note, that by Fatou’s Lemma, the limiting heights (ui)i≥1 must necessarily sat-
isfy

(6)
∞∑
i=1

ui ≤ ρ.

Under this constraint the right-hand side of (5) is uniquely maximized by taking
u1 = ρ and u2 = u3 = · · · = 0. Thus, the worst-case mixing time is achieved (at
least to first order) by initially placing all particles on the same site, a fact which
seems rather intuitive but for which we were not able to find a direct argument. As
a consequence we obtain the following important corollary.

COROLLARY 1 (Worst-case mixing time and cutoff). For any fixed ε ∈ (0,1),
in the regime (2),

(7)
tMIX(ε)

n
−−−→
n→∞ ρ + 1

2
ρ2.

The remarkable fact that the precision parameter ε ∈ (0,1) is absent from the
limit adds the mean-field zero-range process to the growing list of chains exhibit-
ing what is known as a cutoff [6]. Instead of decaying gradually, the total-variation
distance to equilibrium stays close to 1 until the mixing time and then abruptly
drops to 0 over a much shorter timescale. We suspect the cutoff width to be here
	(

√
n), with a Gaussian profile in the limit. However, our estimates are not precise

enough to establish this second-order refinement, which we leave as a conjecture.

1.2. The solid-liquid heuristic. Condensation is one of the most remarkable
features of the zero-range process. In our setting the total rate at which particles are
expelled from a given site is 1, regardless of the number k of particles occupying
that site. Consequently, the effective rate at which each particle is expelled is 1/k

only; denser regions evolve more slowly. This simple observation naturally leads
to a formal decomposition of the system into two components, or phases, relaxing
on very different timescales:

• A (slow) solid phase, consisting of those few sites which are occupied by 	(n)

particles.
• A (quick) liquid phase, formed by those sites that are occupied by o(n) particles.

The presence of a solid phase is a clear indication that the system is out of equi-
librium since, under the uniform distribution, the maximum occupancy is only
logarithmic in n. The case u1 = 0 in Theorem 1 indicates that the converse is also
true: in the absence of a solid phase, the system reaches equilibrium in time o(n)

only. The proof of this fact occupies a substantial part of the paper. In light of it,
the picture becomes much clearer: as time passes, the solid phase described by
the profile (4) progressively dissolves into the liquid phase, and the mixing time
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is essentially the time at which the system becomes completely liquid. Note that
the dissolution occurs on a time-scale of order n, since the effective jump rate per
particle in the solid phase is 	( 1

n
).

To obtain the precise prefactor appearing in the right-hand side of (5), we need
to estimate the instantaneous melting rate of a solid site. In our mean-field set-
ting, this is precisely the proportion of empty sites in the system which in turn
depends on the density of the liquid phase. What makes the problem tractable, de-
spite this cyclic interaction between the two phases, is a separation of timescales
phenomenon: the liquid phase relaxes so quickly that, on the relevant timescale,
the solid phase may be considered as inert. Consequently, the liquid phase is per-
manently maintained in a metastable state, which resembles the true equilibrium,
except that its density is lower because a macroscopic number of particles are
“stuck” in the solid phase. This imposes a simple asymptotic relation between the
number of particles in the solid phase and the proportion of empty sites. As a con-
sequence, the evolution of the solid phase can be approximated by an autonomous
system of differential equations, whose explicit resolution yields the precise for-
mula appearing in Theorem 1.

1.3. Proof outline. To make the above picture rigorous, we proceed in three
steps, with each occupying a whole section. In Section 2 we get a rough idea of the
system by ignoring the precise geometry of the zero-range process (η(t) : t ≥ 0)

and focusing on the distribution of the number of particles on a typical site. This
data is encoded into the so-called empirical distribution of the system:

(8) Q(t) := 1

n

n∑
i=1

δηi(t).

For convergence purposes, we regard the set P(Z+) of probability measures on Z+
as a subset of 
1(Z+) with norm ‖q‖ :=∑∞

k=0 |qk|. At equilibrium the empirical
distribution is simple: if ξ is uniform on �, then in the regime (2),

(9)

∥∥∥∥∥1

n

n∑
i=1

δξi
− G(ρ)

∥∥∥∥∥ P−−−→
n→∞ 0,

where
P−→ denotes convergence in probability and G(ρ) the geometric distribution

with mean ρ, that is,

Gk(ρ) = 1

1 + ρ

(
ρ

1 + ρ

)k

.

To discuss the n → ∞ limit of the process (Q(t) : t ≥ 0), it will be convenient to
assume that

(10) Q(0) −−−→
n→∞ q,
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for some q ∈ P(Z+). It turns out that this suffices to guarantee the convergence
of the whole process (Q(t) : t ≥ 0). Moreover, the limit (q(t) : t ≥ 0) is determin-
istic and characterized by the initial data q(0) = q through the following explicit
(nonlinear) dynamics:

(11)
dqk

dt
= qk+1 − qk1(k≥1) −

(∑

≥1

q


)
(qk − qk−11(k≥1)).

In the fluid limit literature, results of this type are referred to as propagation of
chaos [24].

PROPOSITION 1 (Propagation of chaos). Under assumptions (2) and (10) we
have

sup
t∈[0,T ]

∥∥Q(t) − q(t)
∥∥ P−−−→

n→∞ 0,

for any fixed horizon T ≥ 0, where (q(t) : t ≥ 0) is the unique solution to (11) with
q(0) = q .

Metastability will then consist in showing that the fluid limit q(t) relaxes as
t → ∞ towards a geometric profile as in (9), except that ρ is replaced by the tilted
density

(12) λ :=
∞∑

k=1

kqk.

PROPOSITION 2 (Relaxation for the fluid limit). We have q(t) −−−→
t→∞ G(λ).

Entropy will play a crucial role in the proof of this result. Note that by Fatou’s
Lemma, we always have λ ≤ ρ with strict inequality in the presence of a solid
phase. We emphasize that time has not been rescaled with n here: the empirical
distribution Q(t) approaches the metastable equilibrium G(λ) on a timescale 	(1)

only. In Section 3 we build upon the above results to establish the case u1 = 0 of
Theorem 1 which ensures fast mixing in the absence of a solid phase, that is, when

(13) max
1≤i≤n

ηi = o(n).

PROPOSITION 3 (Fast mixing). In the regime (2)–(13), we have tMIX(η; ε) =
o(n).

In a sense, Propositions 1 and 2 already indicate this: if Q(0) is uniformly inte-
grable, then λ = ρ and therefore, Q(t) can be made arbitrarily close to the equilib-
rium profile G(ρ) by choosing t large, independently of n. This is, however, much
weaker than Proposition 3 in three respects:
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(i) The assumption (13) is far from ensuring that λ = ρ: the choice η1 = · · · =
ηk = m

k
and ηk+1 = · · · = ηn = 0 with 1 
 k 
 n does satisfies maxη = o(n),

and yet λ = 0.
(ii) The empirical distribution Q says nothing about the positions of the particles:

if the system is exactly at equilibrium and we rearrange the particles so that
η1 ≥ · · · ≥ ηn, then Q is unchanged and yet the law of the system becomes
asymptotically singular to π .

(iii) The convergence ‖Q(t) − G(ρ)‖ → 0 is still far too weak to imply that the
law of Q(t) is close to equilibrium in total variation: moving o(n) particles in
an arbitrary way will not affect the convergence ‖Q(t) −G(ρ)‖ → 0 and yet,
changing the maximum occupancy from 	(logn) to anything larger already
suffices to make the law of Q(t) singular to equilibrium.

Finally, in Section 4 we provide the following description for the dissolution of the
solid phase.

PROPOSITION 4 (Dissolution of the solid phase). In the regime (2)–(3)–(4),
for fixed T ≥ 0, i ≥ 1,

sup
t∈[0,T ]

∣∣∣∣ηi(nt)

n
− vi(t)

∣∣∣∣ P−−−→
n→∞ 0,

where the functions v1(t),v2(t), . . . are deterministic and satisfy

(14) vi(t) =
(
ui −

∫ t

0

1

1 + ρ −∑∞
j=1 vj (s)

ds

)
+
.

Note that the Cauchy problem (14) is slightly degenerate, since the usual Lips-
chitz condition does not apply. We start by verifying that there is a unique solution
v to this problem and then show that the latter does indeed describe the evolution
of the solid phase. In addition we compute the time at which this solution van-
ishes, and find that it is precisely the right-hand side of (5). When combined with
Proposition 3, this observation easily leads to the proof of Theorem 1.

1.4. Related works. The zero-range process has a long history. In the classical
setting the particles evolve on an infinite transitive graph like the lattice Zd , and the
description of the set of stationary laws constitutes by itself an important question.
More recently, hydrodynamic limits and complex phenomena such as metastability
and condensation have received a considerable attention in both the mathematical
and physical communities. The works are too numerous to be all cited, and we
refer the interested reader to the comprehensive survey [10] and the references
therein.

Results addressing the rate of convergence to equilibrium of the zero-range pro-
cess on finite graphs are more limited. In [4] Caputo and Posta estimate the entropy
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dissipation constant on the complete graph in the condensation-free regime where
the jump rate grows roughly linearly with the number of particles on the site. More
directly related to our setting is an important work of Morris [22], in which the
spectral gap of the constant-rate zero-range process is estimated on the complete
graph and the d-dimensional torus. While the spectral gap provides general bounds
on the mixing times, these are usually too crude to get the precise prefactor and
establish cutoff. Nevertheless, the result of Morris plays an important role in our
proof of fast mixing in the absence of a solid phase; see Section 3. Another im-
portant inspiration for the present work is a paper of Graham [12] concerning the
asymptotic behavior of (Q(t) : t ≥ 0) in the special case where the initial config-
uration η is constant. Our propositions 1 and 2 extend these results to arbitrary
initial conditions. As explained above fluid limits only provide a very rough de-
scription of the system and much more work is required in order to control the
total variation distance to equilibrium.

The first occurrences of a cutoff phenomenon were discovered in the 1980s by
Aldous, Diaconis and Shahshahani [1, 2, 7] for card shuffling. Since then, other
instances have been found in a variety of contexts and, notably, interacting particle
systems. Three emblematic examples are the stochastic Ising model (on the com-
plete graph [17], the lattice [19] and other topologies [20]), the East process [11],
and the exclusion process (on the complete graph [16], the line [14] and the cycle
[13, 15]). Interestingly, the proof of cutoff for the exclusion process on the cycle
implies that of the zero-range process on the cycle via a well-known bijection [9].
To the best of our knowledge, the cycle is the only graph on which the zero-range
process has been shown to exhibit cutoff. Extending this to the d-dimensional
torus, for d ≥ 2 seems to constitute a natural and challenging problem. More gen-
erally, the question of characterizing the Markov chains that exhibit cutoff has
attracted much attention over the past three decades but remains unsolved.

2. Metastability of the liquid phase. Before we establish Propositions 1 and
2, let us briefly prove the statement (9) for completeness. Let N (n,m) denote the
number of ways to place m indistinguishable particles into n sites:

(15) N (n,m) :=
(
m + n − 1

n − 1

)
.

If ξ is uniformly distributed on �, we have for each k ∈ Z+,

P(ξ1 = k) = N (n − 1,m − k)

N (n,m)
and P(ξ1 = k, ξ2 = k) = N (n − 2,m − 2k)

N (n,m)
.

In the regime (2) these ratios tend to Gk(ρ) and (Gk(ρ))2 respectively. Thanks to
the exchangeability of (ξ1, . . . , ξn), this easily implies that

Qk
L2−−−→

n→∞ Gk(ρ).

Since k ∈ Z+ is arbitrary, the claim follows.
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2.1. Propagation of chaos. In this section we establish Proposition 1. The
route that we follow is standard, and we refer the interested reader to the com-
prehensive book [8] for more on the widely studied topic of hydrodynamic limits
for Markov processes. Define a map F : 
1(Z+) → 
1(Z+) by the formula

Fk(q) = qk+1 − qk1(k≥1) −
(∑


≥1

q


)
(qk − qk−11(k≥1)).

This map is locally Lipschitz continuous: for any q, q ′ ∈ 
1(Z+),

(16)
∥∥F(q) − F

(
q ′)∥∥≤ 2

(
1 + ‖q‖ + ∥∥q ′∥∥)∥∥q − q ′∥∥.

Consequently, for each q ∈ 
1(Z+), the Picard–Lindelöf theorem (see, e.g., [3])
ensures existence and uniqueness of a maximal 
1(Z+)-valued solution (q(t) : t ∈
[0, T∗)) to the Cauchy problem

(17) q(t) = q +
∫ t

0
F
(
q(s)
)
ds.

Note, however, that the horizon T needs not a priori be infinite, as we have not yet
ruled out the possibility that ‖q(t)‖ explodes in finite time. Let us now show that
the empirical distribution of the system satisfies an approximate version of (17).
Thanks to our mean-field setting, the projected process (Q(t) : t ≥ 0) is again a
Markov process on (a finite part of) P(Z+), with jumps

(18) q → q + 1

n

(
δ
+1 + δk−1 − δ
 − δk)

occurring at rate 1(k≥1)qk(nq
 − 1(
=k)), for each (k, 
) ∈ Z
2+. The infinitesimal

drift D : 
1(Z+) → 
1(Z+) can thus be decomposed as

(19) D = F + 1

n
R,

with Rk(q) = 2qk1(k≥1) −qk−11(k≥2) −qk+1. By Dynkin’s formula (see, e.g., [8]),
the compensated process

M(t) := Q(t) − Q(0) −
∫ t

0
D
(
Q(s)

)
ds

is a 
1(Z+)-valued martingale. Comparing with (17) and using (16)–(19), we eas-
ily obtain ∥∥Q(t) − q(t)

∥∥≤ ε(t) + 2
∫ t

0

(
2 + ∥∥q(s)∥∥)∥∥Q(s) − q(s)

∥∥ds,

for all t < T, where we have set

ε(t) := ∥∥Q(0) − q
∥∥+ 1

n

∥∥∥∥∫ t

0
R
(
Q(s)

)
ds

∥∥∥∥+ ∥∥M(t)
∥∥.
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We may now fix 0 ≤ T < T and apply Grönwall’s lemma to obtain

sup
t∈[0,T ]

∥∥Q(t) − q(t)
∥∥≤
(

sup
t∈[0,T ]

ε(t)
)

exp
{

2
∫ T

0

(
2 + ∥∥q(s)∥∥)ds

}
.

In order to establish the claim for T < T, it therefore suffices to show that

(20) sup
t∈[0,T ]

ε(t)
P−−−→

n→∞ 0.

This will also guarantee that q(t) ∈ P(Z+) for all t ∈ [0, T), thereby ruling out
the possibility that ‖q(t)‖ explodes in finite time. We will thus have T = ∞, and
the proof will be complete. To prove (20), we treat each term appearing in the
definition of ε(t) separately. The first one vanishes by (10). For the second we
observe that ‖R(q)‖ ≤ 4‖q‖ for all q ∈ 
1(Z+), so that

sup
t∈[0,T ]

1

n

∥∥∥∥∫ t

0
R
(
Q(s)

)
ds

∥∥∥∥≤ 4T

n
.

Finally, for the martingale term, we note that the kth coordinate Mk is a
continuous-time martingale with jumps of size at most 2

n
occurring at rate at most

n(2Qk(t) + Qk−1(t) + Qk+1(t)) dt . Thus,

E
[∣∣Mk(T )

∣∣]≤ 2
∫ T

0
E
[
2Qk(t) + 1(k≥1)Qk−1(t) + Qk+1(t)

]
dt,

E
[(

Mk(T )
)2]≤ 4

n

∫ T

0
E
[
2Qk(t) + 1(k≥1)Qk−1(t) + Qk+1(t)

]
dt.

Since
∑

k kQk(t) = m
n

, we deduce that in the regime (2),

∞∑
k=1

(k + 1)E
[∣∣Mk(T )

∣∣]= O(1) and
∞∑

k=1

(k + 1)E
[(

Mk(T )
)2]= O

(
1

n

)
.

This is more than enough to imply E[‖M(T )‖] → 0. The convergence

supt∈[0,T ] ‖M(t)‖ P−→ 0 then follows from Doob’s maximal inequality applied to
the sub-martingale (‖M(t)‖)t≥0.

2.2. Probabilistic representation of the fluid limit. We now turn to the analysis
of the fluid limit (q(t) : t ≥ 0). The latter trivializes in the degenerate case λ = 0,
and we will henceforth assume that λ > 0. Let �+, �− be two independent Poisson
point processes with unit intensity on R+, and define a process Z := (Z(t) : t ≥ 0)

by the formula

(21) Z(t) := �+
(∫ t

0

(
1 − q0(s)

)
ds

)
− �−(t).
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Now let X(0) be a q-distributed variable independent of �±, and consider the
reflected process

(22) X(t) := (X(0) + Z(t)
)∨ max

s∈[0,t]
(
Z(t) − Z(s)

)
.

In words X = (X(t) : t ≥ 0) is a time-inhomogeneous birth-and-death process with
initial law q , upward rate 1 − q0(t) and downward rate 1. Comparing the associ-
ated Kolmogorov equations with (17), we see that X “represents” our fluid limit
(q(t) : t ≥ 0) in the sense that

(23) qk(t) = P
(
X(t) = k

)
,

for all k ∈ Z+ and all t ∈R+. Note, in particular, that 1 − q0(t) = P(X(t) > 0), so
that X can be autonomously described as a time-inhomogeneous birth-and-death
process with downward rate 1 and upward rate P(X(t) > 0). We now enumerate a
few consequences of this representation.

LEMMA 1 (Mixing for the fluid). X(t) is asymptotically independent of X(0),
that is, for all k, 
 ≥ 0,

P
(
X(0) = k,X(t) = 


)− P
(
X(0) = k

)
P
(
X(t) = 


)−−−→
t→∞ 0.

PROOF. For each k ∈ Z+, define a process Xk by

Xk(t) := (k + Z(t)
)∨ max

s∈[0,t]
(
Z(t) − Z(s)

)
,

so that Xk coincide with X on the event {X(0) = k}. Since X(0) is independent of
Z, we have

P
(
X(0) = k,X(t) = 


)= P
(
X(0) = k

)
P
(
Xk(t) = 


)
.

By construction we have Xk(t) = X0(t) for all t ≥ Tk := inf{t ≥ 0 : Z(t) = −k}.
Consequently,

∣∣P(Xk(t) = 

)− P

(
X(t) = 


)∣∣≤ ∞∑
i=0

P
(
X(0) = i

)
P(Ti∨k ≥ t).

The conclusion follows by letting t → ∞ and observing that the Tk’s are almost
surely finite, since Z has upward rate at most 1 and downward rate 1. �

LEMMA 2 (Conservation of mass). E[X(t)] = λ for all t ≥ 0.

PROOF. For any bounded observable ψ : Z+ → R and any time t ≥ 0,
Dynkin’s formula ensures that

E
[
ψ(Xt)

]= E
[
ψ(X0)

]+ ∫ t

0

(
1 − q0(u)

)
E
[
�ψ(Xu) − �ψ(Xu − 1)

]
du,
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where �ψ(−1) = 0 and �ψ(x) = ψ(x + 1) − ψ(x) for x ∈ Z+. By monotone
convergence the formula extends to the case ψ(x) = x, but then �ψ(x) = 1(x≥0),
and the integral vanishes. �

LEMMA 3 (Lower-bound on void probability). For each s > 0, we have

inf
t≥0

P
(
X(t + s) = 0

)
> 0.

PROOF. Let Y = (Y (u) : u ≥ 0) take the value �2λ� over the time interval
[0, t] and then evolve as a simple random walk on Z+ from time t onward (i.e.,
it jumps up and down at unit rate, except that jumps from 0 to −1 are censored).
Since our original process X has the same downward rates and lower upward
rates, we may couple X and Y in such a way that:

(i) (X(u) : u ∈ [0, t]) is independent of Y ;
(ii) from time t onward, the attempts to jump downward occur at the same times

for X and Y ;
(iii) from time t onward, whenever X jumps upward, so does Y .

Properties (ii)–(iii) guarantee the inclusion{
X(t) ≤ �2λ�}⊆ {X(s + t) ≤ Y(s + t)

}
.

In particular, {
X(s + t) = 0

}⊇ {Y(s + t) = 0
}∩ {X(t) ≤ �2λ�}.

By (i) the two events on the right-hand side are independent. The first has prob-
ability κs(�2λ�,0) > 0, where κ denotes the transition kernel for simple random
walk on Z+. For the second we may invoke Markov’s inequality and Lemma 2 to
write

P
(
X(t) ≤ �2λ�)≥ 1 − λ

�2λ� + 1
.

The right-hand side exceeds 1
2 , and we conclude that

P
(
X(t + s) = 0

)≥ 1

2
κs

(�2λ�,0
)
. �

LEMMA 4 (Uniform integrability). The process X is uniformly integrable.

PROOF. On [0,1], the representation (21)–(22) immediately yields the domi-
nation

max
{
X(t) : t ∈ [0,1]}≤ X(0) + �+(1),

and the right-hand side has finite mean. On the other hand, on [1,∞), Lemma 3
guarantees that the upward jump rate 1 − q0 is less than 1 − ε for some ε > 0.
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Consequently, we can couple (X(t) : t ≥ 1) with an homogeneous birth-and-death
process Y = (Y (t) : t ≥ 1) starting at zero and jumping up at rate 1 − ε and down
at rate 1, in such a way that

∀t ∈ [1,∞), X(t) ≤ X(1) + Y(t).

Surely, starting Y from its stationary law G(1
ε
) instead of 0 can only make it larger,

and hence Y(t) is stochastically dominated by G(1
ε
). In conclusion X(t) is stochas-

tically dominated by the sum of three integrable variables whose laws do not de-
pend on t , and the claim is proved. �

2.3. Entropic relaxation. Entropy will play a crucial role; see [5] for an ac-
count. Recall that the entropy of p ∈P(Z+) is

H(p) :=
∞∑

k=0

pk log
1

pk

∈ [0,∞],

with the convention 0 log 1
0 = 0, and where log denotes the natural logarithm. In

particular,

H
(
G(λ)

)= (1 + λ) log(1 + λ) − λ logλ.

In fact G(λ) achieves the maximum entropy over all laws p ∈ P(Z+) with mean λ.
Indeed, using the fact that log(Gk(λ)) is an affine function of k, it is straightforward
to check that

(24) H
(
G(λ)

)= H(p) + DKL

(
p‖G(λ)

)
,

where DKL(p‖q) is the Kullback–Leibler divergence of p w.r.t. a fully supported
law q ∈ P(Z+):

(25) DKL(p‖q) :=
∞∑

k=0

qkφ

(
pk

qk

)
, φ(u) = u logu − (u − 1) ≥ 0.

Note that by strict convexity of φ, we have DKL(p‖q) > 0 unless p = q . Now,
given a fully supported law p on Z+, we define a quantity V (p) ∈ [0,∞] by

V (p) := (1 − p0)
(
DKL(p‖p̂) + DKL(p̂‖p)

)
,

where the (fully supported) law p̂ ∈ P(Z+) is defined as follows; for all k ∈ Z+,

(26) p̂k := pk+1

1 − p0
.

Note that the geometric distributions are characterized by the memoryless property
p̂ = p. In particular, V (p) = 0, if and only if p is geometric, and this quantity may
thus be viewed as measuring how far p is from being geometric. The essence of
Proposition 2 lies in the following identity.
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LEMMA 5 (Entropy production). For all t ≥ 0, we have

H
(
q(t)
)= H(q) +

∫ t

0
V
(
q(u)

)
du.

PROOF. Note that q(t) has full support as soon as t > 0, by our probabilistic
representation (23) and the fact that the Poisson distribution has full support. Thus,
the above integral is well defined, albeit possibly infinite at this stage. Now the fluid
equation (17) may be rewritten as follows:

dqk

dt
= mk−1 −mk where mk := (1 − q0)(qk − q̂k)

with the convention m−1 = 0. In particular, for t ∈ R+ and k ∈ Z+, we have

qk(t) log
1

qk(t)
= qk log

1

qk

+
∫ t

0

(
mk(u) −mk−1(u)

)(
1 + logqk(u)

)
du.

Summing over k and rearranging, we see that for all K ≥ 1,

(27)
K∑

k=0

qk(t) log
1

qk(t)
=

K∑
k=0

qk log
1

qk

+
∫ t

0
vK(u)du +

∫ t

0
εK(u)du,

where we have set

vK :=
K−1∑
k=0

mk log
qk

q̂k

= (1 − q0)

K−1∑
k=0

(
q̂kφ

(
qk

q̂k

)
+ qkφ

(
q̂k

qk

))
,

εK := mK(1 + logqK) +
(

K−1∑
k=0

mk

)
log

1

1 − q0
.

Since vK ↑ V (q) as K → ∞, the claim will readily follow from (27), provided we
can show that

(28)
∫ t

0
εK(u)du −−−−→

K→∞ 0,

which we now do. First, Lemma 2 ensures that the series
∑

k qk converges uni-
formly on R+. Note also that |mk| ≤ qk + qk+1 and that

∑
k mk = 0. From this it

follows that

mK + (1 − q0)qK logqK +
(

K−1∑
k=0

mk

)
log

1

1 − q0
−−−−→
K→∞ 0,

uniformly on compact sets. Comparing with the definition of εK , we see that as
K → ∞,

(29)
∫ t

0
εK(u)du =

∫ t

0
qK+1(u) log

1

qK(u)
du + o(1).
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Note that qK+1 log 1
qK

≥ 0. We may therefore pass to the limit in (27) to obtain the
inequality

H
(
q(t)
)≥ H(q) +

∫ t

0
V
(
q(u)

)
du.

In particular, the integral on the right-hand side must be finite. By definition of V ,
this implies ∫ t

0
qK+1(u) log

q̂K(u)

qK(u)
du −−−−→

K→∞ 0.

In view of (29) and the uniform convergence qK+1 log q̂K → 0, we now readily
obtain (28). �

PROOF OF PROPOSITION 2. By Pinsker’s inequality, we have for all t ≥ 0

(30)
1

2

∥∥q(t) − G(λ)
∥∥2 ≤ DKL

(
q(t)‖G(λ)

)= H
(
G(λ)

)− H
(
q(t)
)
,

where the equality follows from Lemma 2 and observation (24). Now the limit

H∞ := lim
t→∞ ↑ H

(
q(t)
)

exists by Lemma 5, and so our proof boils down to showing that H∞ ≥ H(G(λ)).
By Fatou’s Lemma it suffices to exhibit a sequence (tn)n≥1 along which q(tn) →
G(λ). To do so, observe that Lemma 5 forces inft≥0 V (q(t)) = 0, as otherwise
H(q(t)) would diverge as t → ∞, violating (30). We can thus find a sequence of
times (tn)n≥1 along which

(31) V
(
q(tn)

)−−−→
n→∞ 0.

On the other hand, by Lemma 4, the collection (q(t) : t ≥ 0) is relatively compact
w.r.t. the 1-Wasserstein metric. We can thus assume (upon further extraction) that
q(tn) → p, with p ∈ P(Z+) having mean λ. It then follows from (31) that p = p̂,
and therefore p = G(λ), as desired. �

3. Fast mixing in the absence of a solid phase. In this section, we establish
the special case u1 = 0 of Theorem 1, as stated in Proposition 3. To do so, we deal
with each of the issues enumerated below Proposition 3 in order of appearance.

3.1. Uniform downward drift. To deal with issue (i), we show that, starting
from any state η, the uniform integrability of Q(t) is guaranteed after a time
t = 	(maxη) only. This is contained in the following proposition which asserts
that the number of particles on any nonempty site decreases at a linear rate. The
uniformity in n comes from the fact that, in the regime (2), the density of particles
per site is at most a constant ρ that does not depends on n:

(32)
m

n
≤ ρ.
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PROPOSITION 5 (Uniform downward drift). There are constants θ, δ > 0,
depending on ρ only, such that for any n ≥ 2, any initial state η ∈ �, any
i ∈ {1, . . . , n} and any time t ∈R+,

E
[
eθηi(t)

]≤ 2
(
1 + eθηi−δt ).

The reason behind this result is the existence of a uniform lower-bound on the
proportion of empty sites in the system after time t = 1 (1 can actually be replaced
by any positive constant).

LEMMA 6 (Many empty sites). There is a constant γ ∈ (0,1), depending on
ρ only, such that for any n ≥ 2, any initial state η ∈ � and any time t ∈ [1,∞),

P
(
Q0(t) ≤ γ

)≤ e−γ n.

PROOF. We can construct the zero-range process using an independent, rate
− 1

n
Poisson point process �i→j for each pair (i, j) ∈ [n] × [n]: the successive

points of �i→j indicate the times at which site i attempts to send a particle out to
site j , and the move is allowed, if and only if i is not empty. Because of (32), at
least half of the sites i ∈ [n] must satisfy ηi ≤ 2ρ, and we may thus select a subset
A of them with |A| = �n/2�. Note that n − |A| = �n/2� ≥ n/3, since n ≥ 2. For
each i ∈ A, consider the “good” event

Gi :=
{ ∑

j∈[n]\A
�i→j

([0,1])≥ 2ρ

}
∩
{∑

j∈[n]
�j→i

([0,1])= 0
}
.

Then, by construction, we have Gi ⊆ {ηi(1) = 0}, and hence

Q0(1) ≥ 1

n

∑
i∈A

1Gi
.

Since
∑

j∈[n] �j→i ([0,1]) and
∑

j∈[n]\A �i→j ([0,1]) are independent Poisson
random variables with mean 1 and at least 1/3 respectively, we have

P(Gi) ≥ e−4/3
∑

k≥2ρ

3−k

k! =: p.

Moreover, the events (Gi)i∈A are independent because Gi depends only on the
�k→
 for (k, 
) in

Bi := ({i} × [n] \ A
)∪ ([n] × {i}),

and the (Bi)i∈A are pairwise disjoint. Thus, 1
n

∑
i∈A 1Gi

stochastically dominates a
binomial random variable with parameters �n/2� and p. By Hoeffding’s inequality
we deduce that

P

(
1

n

∑
i∈A

1Gi
≤ p

4

)
≤ exp

(
−p2n

4

)
,
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and so we may take γ = p2/4 to obtain the claim for t = 1. Since the result is
uniform in the choice of the initial state η, the claim for t ≥ 1 follows automatically
by the Markov property. �

PROOF OF PROPOSITION 5. For θ > 0, Dynkin’s formula ensures that
φθ(t) := E[eθηi(t)] satisfies

(33)
dφθ (t)

dt
= (eθ − 1

)
E

[
eθηi(t)

(
1 − Q0(t) − 1 + e−θ (n − 1)

n
1(ηi(t)≥1)

)]
.

The trivial observation that the right-hand side is at most (eθ − 1)φθ (t) already
yields

(34) φθ(t) ≤ φθ(0) exp
{(

eθ − 1
)
t
}
.

We will use this crude bound only for t ∈ [0,1]. For t ≥ 1, we may instead invoke
Lemma 6 to get P(Q0(t) ≤ γ ) ≤ e−γ n, for some γ > 0 that depends only on ρ.
Going back to (33), we have

dφθ (t)

dt
≤ (eθ − 1

)
E
[
eθηi(t)

(
1 − Q0(t) − e−θ )+ e−θ ]

≤ (eθ − 1
){(

1 − γ − e−θ )φθ(t) + e−θ + (1 − e−θ )e(θρ−γ )n},
where we have split the expectation according to whether Q0(t) > γ or Q0(t) ≤ γ

and, in the latter case, used the crude bounds Q0(t) ≥ 0 and ηi(t) ≤ ρn. Let us
now choose θ := γ

1+ρ
, so that θρ − γ ≤ 0 and 1 − γ − e−θ ≤ −θρ. We are then

left with the differential inequality

dφθ (t)

dt
≤ (eθ − 1

)(
1 − ρθφθ (t)

)
,

which we may integrate to deduce that for all t ≥ 1,

φθ(t) ≤ 1

θρ

+
(
φθ(1) − 1

θρ

)
e−δ(t−1),

where δ := (eθ − 1)θρ > 0. Combining this with (34), we conclude that for all
t ≥ 0,

φθ(t) ≤ κ
(
1 + φθ(0)e−δt ),

where κ , δ, θ depend only on ρ. Finally, observe that these three constants may
respectively be replaced with κα , δα, θα for any α ∈ (0,1), since by Jensen’s
inequality,

φθα(t) ≤ (φθ(t)
)α ≤ κα(1 + φθα(0)e−δαt ).

Choosing α small enough will make κα ≤ 2, and the result is proved. �
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3.2. Partial exchangeability. To deal with issue (ii), we introduce an object
that refines the empirical distribution Q(t) studied in Section 2, the empirical tran-
sition matrix of the system,

(35) W(t) := 1

n

n∑
i=1

δ(ηi(0),ηi(t)).

In words, for each (k, 
) ∈ Z
2+, Wk,
(t) is a [0,1]-random variable indicating the

proportion of sites that start with k particles at time 0 and end up with 
 particles
at time t . Contrary to Q(t), the understanding of W(t) suffices to fully recover the
law of η(t).

LEMMA 7 (Partial exchangeability). Fix an initial configuration η and a time
t ≥ 0. Then the conditional law of η(t) given W(t) is uniform over all configura-
tions ξ ∈ � such that

(36)
1

n

n∑
i=1

δ(ηi,ξi ) = W(t).

PROOF. Since the rate at which a site attempts to send a particle to another
site is the same for all pairs of sites, the zero-range process enjoys the following
obvious symmetry: if (η(t) : t ≥ 0) is a zero-range process and if σ : [n] → [n] is
a permutation, then the process (η′(t) : t ≥ 0) defined by

η′
i (t) := ησ(i)(t)

is again a zero-range process. In particular, if σ preserves the initial state (η′(0) =
η(0)), then the two processes have the same law. Since W is invariant by such
permutations, the result follows. �

In light of this, our task boils down to understanding the behavior of the process
(W(t) : t ≥ 0). The following proposition lifts the results obtained for Q(t) to
W(t). For convergence purposes we regard arrays as elements of the Banach space

1(Z2+), with norm ‖w‖ =∑k,
 |wk,
|.

PROPOSITION 6 (Matrix refinement). For any fixed time horizon T , in the
regime (2)–(10), we have

sup
t∈[0,T ]

∥∥W(t) − w(t)
∥∥ P−−−→

n→∞ 0,

where wk,
(t) = P(X(0) = k,X(t) = 
), and (X(t) : t ≥ 0) is defined at (22).

PROOF. The proof mimics that of Proposition 1, except that the existence of
the fluid limit is here already granted. For a time-inhomogeneous birth-and-death
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chain X with downward rate 1 and upward rate r(t), the law w(t) of the pair
(X(0),X(t)) satisfies the differential equation

dwk,


dt
:= wk,
+1 − 1(
≥1)wk,
 − r(wk,
 − 1(
≥1)wk,
−1), (k, 
) ∈ Z

2+.

Here, we further have r(t) = P(X(t) ≥ 1) =∑k≥0
∑


≥1 wk,
(t). Consequently,
for all t ∈R+,

(37) w(t) = w(0) +
∫ t

0
F
(
w(s)

)
ds,

where the drift F : 
1(Z2+) → 
1(Z+) is defined by

Fk,
(w) = wk,
+1 − 1(
≥1)wk,
 −
(∑

k≥0

∑

≥1

wk,


)
(wk,
 − 1(
≥1)wk,
−1).

Observe that F is locally Lipschitz. For w,w′ ∈ 
1(Z2+),

(38)
∥∥F(w) − F

(
w′)∥∥≤ 2

(
1 + ‖w‖ + ∥∥w′∥∥)∥∥w − w′∥∥.

On the other hand, (W(t) : t ≥ 0) is a Markov process on a finite subset of
P(Z2+) with jumps w → w + 1

n
�i,j,k,
 occurring at rate ci,j,k,
(w), where for

each (i, j, k, 
) ∈ Z
4+,

�i,j,k,
 = δi,j−1 + δk,
+1 − δi,j − δk,
,

ci,j,k,
(w) = 1(j≥1)wi,j (nwk,
 − 1((i,j)=(k,
))).

Consequently, Dynkin’s formula asserts that the compensated process

(39) M(t) := W(t) − W(0) −
∫ t

0
D
(
W(s)

)
ds

is a 
1(Z2+)-valued martingale, where the infinitesimal drift w → D(w) is given
by

D(w) := 1

n

∑
(i,j,k,l)∈Z4+

ci,j,k,
(w)�i,j,k,
.

Comparing with the definition of F , we see that D = F + 1
n
R, where

Rk,
(w) := wk,
+1 + wk,
−11(
≥2) − 2wk,
1(
≥1).

Subtracting (37) from (39) and using (38), we obtain∥∥W(t) − w(t)
∥∥≤ ε(t) + 6

∫ t

0

∥∥W(s) − w(s)
∥∥ds,

where we have set

ε(t) := ∥∥W(0) − w(0)
∥∥+ 1

n

∥∥∥∥∫ t

0
R
(
W(s)

)
ds

∥∥∥∥+ ∥∥M(t)
∥∥.
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By Grönwall’s Lemma, we deduce that

sup
t∈[0,T ]

∥∥W(t) − w(t)
∥∥≤
(

sup
t∈[0,T ]

∥∥ε(t)∥∥)e6T ,

and it only remains to show that ε(t)
P−→ 0 as n → ∞. We treat each term appearing

in the definition of ε(t) separately. The first one vanishes by assumption (10). For
the second one it suffices to note that ‖R(w)‖ ≤ 4‖w‖, so that

sup
t∈[0,T ]

1

n

∥∥∥∥∫ t

0
R
(
W(s)

)
ds

∥∥∥∥≤ 4T

n
.

Finally, the convergence supt∈[0,T ] ‖M(t)‖ P−→ 0 will follow from Doob’s maximal
inequality if we can show that E[‖M(T )‖] → 0. For each fixed (k, 
) ∈ Z

2+, Mk,


is a real-valued martingale with jumps of size at most 2
n

and jump rate at most
n(2Wk,
 + Wk,
+1 + Wk,
−11(
≥1)), so

E
[∣∣Mk,
(T )

∣∣]≤ 2
∫ T

0
E
[
2Wk,
(t) + Wk,
+1(t) + Wk,
−1(t)1(
≥1)

]
dt,

E
[(

Mk,
(T )
)2]≤ 4

n

∫ T

0
E
[
2Wk,
(t) + Wk,
+1(t) + Wk,
−1(t)1(
≥1)

]
dt.

Since
∑

k,
(k + 
)Wi,j (T ) = 2m
n

, we deduce that in the regime (2),∑
k,


(k + 
 + 1)E
[∣∣Mk,
(T )

∣∣]= O(1),

∑
k,


(k + 
 + 1)E
[(

Mk,
(T )
)2]= O

(
1

n

)
.

This is more than enough to ensure that E[‖M(T )‖] → 0, as desired. �

3.3. Spectral gap argument. To deal with issue (iii), we exploit a spectral gap
contraction argument. Consider an irreducible, continuous-time Markov process
on a finite state space �, with generator L and stationary law π . If π is reversible,
then −L is a nonnegative self-adjoint operator on the Hilbert space 
2(π), and the
spectral gap is defined as its smallest nonzero eigenvalue:

(40) gap := min
{
λ > 0 : ker(λ +L) �= {0}}.

This fundamental parameter can be used to bound the total-variation distance to
equilibrium via the following classical inequality (see, e.g., [21]): for any initial
law ν ∈ P(�) and any time t ∈R+,

(41) ‖νPt − π‖TV ≤ 1

2

(
max
x∈�

ν(x)

π(x)

)1/2
e−gapt .

In the case of the mean-field zero-range process, the spectral gap was estimated by
Morris [22].
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THEOREM 2. In the regime (2) the spectral gap is bounded away from 0.

Thus, the right-hand side of (41) decreases exponentially fast with t . Since the
size of the state space |�| grows exponentially in n, maximizing over ν in (41)
leaves us with the worst-case bound tMIX(ε) = O(n). This has the right order of
magnitude, but is rather remote from our current aim, namely to prove mixing in
time o(n) in the absence of a solid phase. We will instead use Proposition 6 to
show that the relative entropy DKL(νP t‖π) quickly becomes o(n), where

DKL(μ‖π) := ∑
x∈�

μ(x) log
μ(x)

π(x)
.

Once there, the following lemma will be invoked to conclude.

LEMMA 8 (Fast mixing once relative entropy is small). Consider a continuous-
time Markov chain with reversible law π on a finite space �. Fix an initial law
ν ∈ P(�) and ε ∈ (0,1), and set

(42) t := 1

gap

(
DKL(ν‖π)

ε
+ log

(
1

ε

)
+ 1
)
.

Then, ‖νPt − π‖TV ≤ ε, where Pt denotes the transition kernel of the process.

PROOF. Consider the subset S ⊆ � defined by

S :=
{
x ∈ � : log

ν(x)

π(x)
≤ 1 + 2DKL(ν‖π)

ε

}
.

Observe that by definition,(
1 + 2DKL(ν‖π)

ε

)
ν
(
Sc) ≤ ∑

x∈Sc

ν(x) log
ν(x)

π(x)

= DKL(ν‖π) +∑
x∈S

ν(x) log
π(x)

ν(x)

≤ DKL

(
ν‖π)+ π(S) − ν(S)

≤ DKL

(
ν‖π)+ ν

(
Sc),

where at the third line we have used logu ≤ u − 1. After simplification we are left
with

ν
(
Sc)≤ ε

2
.

Now let ν̂ := ν(·|S) be ν conditioned on S. Note that

max
x∈�

ν̂(x)

π(x)
= 1

ν(S)
max
x∈S

ν(x)

π(x)
≤ exp

{
2 + 2DKL(ν‖π)

ε

}
,
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because ν(S) ≥ 1/2 ≥ 1/e. Consequently, (41) shows that for all t ≥ 0,

‖ν̂Pt − π‖TV ≤ 1

2
exp
{

1 + DKL(ν‖π)

ε
− gapt

}
.

Choosing t as in (42) sets the right-hand side to ε/2. On the other hand, we trivially
have

‖ν̂Pt − νPt‖TV ≤ ‖ν̂ − ν‖TV = ν
(
Sc)≤ ε

2
.

By the triangle inequality we deduce that ‖νPt − π‖TV ≤ ε, as desired. �

3.4. Proof of fast mixing. We are now ready to establish Proposition 3. First,
by Proposition 5, there are constants δ, θ > 0 that do not depend on n, such that
for

(43) r = θ

δ
max

1≤i≤n
ηi,

we have maxi E[eθηi(r)] ≤ 4. By Markov’s inequality this implies that

P
(
η(r) /∈ Ka

)≤ 4

a
,

where Ka := {ξ ∈ � : 1
n

∑n
i=1 eθξi ≤ a}. On the other hand, by the Markov prop-

erty,

(44)
∥∥Pr+s(η, ·) − π

∥∥
TV ≤ P

(
η(r) /∈ Ka

)+ max
ξ∈Ka

∥∥Ps(ξ, ·) − π
∥∥

TV.

Thus, Proposition 3 will follow if we can show fast mixing from any configuration
in Ka , where a is allowed to be arbitrarily large but fixed independently of n. In
words, the uniform downward drift allows us to replace the assumption (13) by the
much stronger condition

(45)
1

n

n∑
i=1

eθηi = O(1).

In this regime the empirical distribution 1
n

∑n
i=1 δηi

is uniformly integrable: upon
passing to a subsequence, we may assume that (10) holds, with the limit q having
mean λ = ρ. Under this condition we will now show that for any s = s(n) that
diverges with n (say, s = logn),

(46) DKL

(
Ps(η, ·)‖π)= o(n).

The conclusion will then follow by applying Lemma 8 with ν = Ps(η, ·). Indeed,
the time t defined at (42) satisfies t = o(n), and we have ‖Pt+s(η, ·) − π‖TV =
‖νPt − π‖TV ≤ ε, showing that tMIX(η; ε) ≤ t + s = o(n), as desired. The remain-
der of the section is devoted to proving (46).
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Define the combinatorial entropy of the nonnegative integers a0, . . . , aK to be

h(a0, . . . , aK) := log

{(
a0 + a1 + · · · + aK

a0, a1, . . . , aK

)}
,

and extend this definition to finitely supported sequences a0, a1, . . . by simply ig-
noring the zeros. Now consider one sequence (an

0 , an
1 , . . .) for each value of n ≥ 1,

and assume that

(i) an
0 + an

1 + · · · −−−→
n→∞ +∞,

(ii) ∀k ∈ Z+,
an
k

an
0 + an

1 + · · · −−−→
n→∞ pk,

for some law p ∈ P(Z+). Then a classical application of Stirling’s approximation
yields

(47) lim inf
n→∞

h(an
0 , an

1 , . . .)

an
0 + an

1 + · · · ≥ H(p).

We will use this fact below. First, observe that the number of configurations ξ ∈ �

satisfying (36) is precisely

exp

( ∞∑
k=0

h
(
nWk,
(t) : 
 ∈ Z+

))
.

Therefore, Lemma 7 guarantees that the conditional law of η(t) given W(t) has
entropy

∑∞
k=0 h(nWk,
(t) : 
 ∈ Z+). Since conditioning reduces entropy (see [5]),

this implies that

H
(
Pt(η, ·))≥ ∞∑

k=0

E
[
h
(
nWk,
(t) : 
 ∈ Z+

)]
.

We may finally let n → ∞: Proposition 6 ensures that for fixed t ≥ 0 and (k, 
) ∈
Z

2+, we have

Wk,
(t)
P−−−→

n→∞ wk,
(t) = P
(
X(0) = k,X(t) = 


)
.

Applying (47) with an

 = nWk,
(t) and then Fatou’s lemma, we see that for any

fixed t ≥ 0.

lim inf
n→∞

H(Pt(η, ·))
n

≥H
(
X(t)|X(0)

)
,

where H(Y |X) denotes the conditional entropy of Y given X defined by

(48) H(Y |X) :=∑
k,


P(X = k,Y = 
) log
1

P(Y = 
|X = k)
.
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On the other hand, since |�| = N (n,m) with N (n,m) defined at (15), the uniform
law π satisfies

H(π)

n
−−−→
n→∞ (1 + ρ) log(1 + ρ) − ρ logρ.

The right-hand side is H(G(ρ)). Since DKL(μ‖π) = H(π)−H(μ) for π uniform,
we conclude that

lim sup
n→∞

DKL(Pt (η, ·)‖π)

n
≤ H

(
G(ρ)

)−H
(
X(t)|X(0)

)
for any fixed t ≥ 0. The conclusion (46) follows, since the left-hand side is a de-
creasing function of t (this is a general fact; see, e.g., [21]) and the right-hand side
can be made arbitrarily small by choosing t large enough, thanks to Lemma 1 and
Proposition 2 (recall that λ = ρ here).

4. Dissolution of the solid phase. In this final section we start by verifying
that there is a unique (explicit) solution to the Cauchy problem (14), and then show
that the latter describes the evolution of the solid phase in the sense of Proposition
4. We finally put things together to prove Theorem 1.

4.1. Resolution of the main differential equation. With the setting of Theorem
1 in mind, we fix a sequence of numbers u1 ≥ u2 . . . ≥ 0 such that

(49)
∞∑
i=1

ui ≤ ρ,

and we consider the Cauchy problem (14), repeated here for convenience:

vi(t) =
(
ui −

∫ t

0

1

1 + ρ −∑∞
j=1 vj (s)

ds

)
+
.

By a solution to this problem, we will here mean a collection (vi)i≥1, where for
each i ≥ 1, vi : R+ → [0, ui] is a measurable function such that the equation (14)
holds for all t ∈ R+. We start by showing the existence and uniqueness of such a
solution. It will later be seen that vi (t) is the limit of Xi(nt)

n
as n → ∞.

LEMMA 9 (Uniqueness). There is at most one solution to (14).

PROOF. For t ≥ 0, we introduce the key quantity

r(t) :=
∞∑
i=1

1(ui>
t

1+ρ
).

Note that the nonincreasing function t → r(t) may diverge at zero but that by
condition (49), ∫ ∞

0
r(s)ds = (1 + ρ)

∞∑
i=1

ui ≤ ρ(1 + ρ).
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Now let (vi )i≥1 and (wi )i≥1 be two solutions to (14), and define for all t ≥ 0,

�(t) :=
∞∑
i=1

∣∣vi(t) −wi (t)
∣∣ ∈ [0, ρ].

From equation (14), it readily follows that∣∣vi (t) −wi (t)
∣∣≤ ∫ t

0
�(s)ds.

Moreover, the left-hand side is zero for t ≥ (1 + ρ)ui , because (14) implies

vi(t) ∨wi (t) ≤
(
ui − t

1 + ρ

)
+
.

Summing over all i ≥ 1, we deduce from these two observations that

�(t) ≤ r(t)

∫ t

0
�(s)ds ≤

∫ t

0
r(s)�(s)ds.

Grönwall’s Lemma now implies that �(t) = 0 for all t ∈ R+, thanks to the fact
that r ∈ L1(R+) and the uniform bound � ≤ ρ. �

Let us now construct an explicit solution to (14). We start by setting, for each
i ≥ 1,

(50) ti := ui

(
1 + ρ + (i − 1)ui

2
−

i−1∑
j=1

uj

)
− 1

2

∞∑
j=i

u2
j .

Our assumptions on (uj )j≥1 easily imply that ti → 0 as i → ∞. Note also that the
sequence (ti)i≥1 is nonincreasing, since for all i ≥ 1,

ti − ti+1 = (ui − ui+1)

(
1 + ρ −

i∑
j=1

uj

)
+ i

2

(
u2

i − u2
i+1
)≥ 0.

We now define a function f : R+ →R+ as follows:

f (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t = 0,√√√√2(t − ti+1)

i
+
(1 + ρ −∑i

j=1 uj

i
+ ui+1

)2
− 1 + ρ −∑i

j=1 uj

i

if t ∈ (ti+1, ti],
t − t1

1 + ρ
+ u1 if t ≥ t1.

Let us use the convenient convention t0 := +∞. Then for each i ≥ 0, f is increas-
ing and C∞ on (ti+1, ti). Moreover, for i ≥ 1 we have f (ti+) = ui = f (ti), so f

is in fact continuous and increasing on (0,∞). In particular, limf (0+) exists and
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must be equal to limi→∞ f (ti) which is 0 because ui → 0. Now, for each i ≥ 0
and each t ∈ (ti+1, ti), we easily compute

f ′(t) = 1

1 + ρ −∑i
j=1(uj − f (t))

= 1

1 + ρ −∑∞
j=1(uj − f (t))+

,

where the second equality follows from the fact that f (t) < ui , if and only if t < ti ,
by strict monotony. Consequently, we may safely write, for all t ≥ 0,

f (t) =
∫ t

0

1

1 + ρ −∑∞
i=1(ui − f (s))+

ds.

Setting vi(t) = (ui − f (t))+ yields a well-defined solution to (14)—the only one,
by Lemma 9.

4.2. Relating the dissolution rate to the density of the solid phase. In our
mean-field setting the dissolution rate of the solid phase is the proportion Q0(t)

of empty sites in the system. By metastability the latter should only depend on the
total density of particles in the solid phase. The purpose of this section is to make
this intuition rigorous. For simplicity we will here assume that the solid phase is
restricted to the region {1, . . . ,L} for some fixed L ≥ 0, that is,

(51) max
i≥L+1

ηi = o(n).

Note that this property is then preserved by the dynamics: by Chernov’s bound,
the uniform downward drift of Proposition 5 ensures that for any t, ε > 0,

(52) P
(∃i > L : ηi(t) ≥ εn

)≤ 2ne−nθε
(
1 + max

i≥L+1
eθηi−δt

)
,

where we recall that the constant θ > 0 does not depend on n. Since the right-hand
side is summable in n, we see that the solid phase remains restricted to the region
{1, . . . ,L}: for any time t = t (n),

(53) max
i≥L+1

ηi(t) = o(n),

almost surely. In particular, the proportion of particles in the solid phase at time t is∑L
i=1

ηi(t)
n

+ o(1). The main result of this section is the following relation between
this number and Q0(t).

PROPOSITION 7 (Dissolution rate). In the regime (2), (51), for any fixed s > 0,∣∣∣∣Q0(ns) − 1

1 + ρ −∑L
i=1

ηi(ns)
n

∣∣∣∣ P−−−→
n→∞ 0.

To prove this proposition, we will “erase” the solid phase so that the fast mixing
result of Section 3 becomes applicable, and then compare this truncated process to
the original one.
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LEMMA 10 (Truncation). Fix η ∈ �, and let η̂ be obtained by emptying the
first L sites, that is,

η̂i =
{
ηi if i > L,

0 if i ≤ L.

Then, the zero-range processes starting from η and η̂ can be coupled in such a way
that their respective empirical profiles (Q(t) : t ≥ 0) and (Q̂(t) : t ≥ 0) satisfy, for
any horizon T ≥ 0,

E

[
sup

t∈[0,T ]
∥∥Q̂(t) − Q(t)

∥∥]≤ 2L(1 + T )

n
.

PROOF. Recall the standard construction of the zero-range process using an
independent, rate − 1

n
Poisson point process �i→j for each source-destination pair

(i, j) ∈ [n] × [n]: the successive points indicate the times at which the source
attempts to send a particle out to the destination, and the jump is allowed if and
only if the source is not empty. We may couple the processes starting from η and
η̂ by simply using the same underlying Poisson clocks for both processes. We then
have

η̂(t) ≤ η(t),

for all t ≥ 0. Indeed, this inequality is true at time t = 0 by construction, and it is
preserved by the dynamics because any jump that is allowed for the left-hand side
must also be allowed for the right-hand side. In particular, this implies that

n∑
i=L+1

∣∣ηi(t) − η̂i(t)
∣∣= n∑

i=L+1

ηi(t) −
n∑

i=L+1

η̂i(t).

The right-hand side equals 0 at time t = 0, and then the only clock rings that may
increment it (by one unit each time) are those whose source i is in {1, . . . ,L}. Over
the time interval [0, T ] the total number of such rings is just a Poisson random
variable with mean LT , and hence

(54) E

[
sup

t∈[0,T ]

n∑
i=L+1

∣∣η̂i(t) − ηi(t)
∣∣]≤ LT .

Now observe that for each k ∈ Z+ we have∣∣Qk(t) − Q̂k(t)
∣∣= ∣∣∣∣∣1n

n∑
i=1

1(ηi(t)=k) − 1

n

n∑
i=1

1(η̂i (t)=k)

∣∣∣∣∣≤ 2

n

n∑
i=1

1(ηi(t) �=η̂i (t))1(ηi=k).

Summing over k, we deduce that∥∥Q(t) − Q̂(t)
∥∥≤ 2

n

n∑
i=1

1(ηi(t) �=η̂i (t)) ≤ 2

n

(
L +

n∑
i=L+1

∣∣ηi(t) − η̂i(t)
∣∣),

and the claim now readily follows from (54). �
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REMARK 1 (Stochastic regularity). The above construction of the zero-range
process enjoys another useful property: letting �i =∑j �j→i + �i→j denote the
clock process for arrivals and departures on site i, which is a Poisson point process
of intensity 2 –, we clearly have for all 0 ≤ s ≤ t ,∣∣ηi(t) − ηi(s)

∣∣≤ �i

([s, t]).
PROOF OF PROPOSITION 7. If η satisfies (51), then its truncation η̂ is com-

pletely liquid in the sense of (13). By Proposition 3, this ensures that the zero-range
process (η̂(t) : t ≥ 0) mixes in time o(n). In particular, for fixed ε > 0, the empir-
ical profile Q̂(nε) must satisfy (9) but with m − (η1 + · · · + ηL) particles instead
of m, that is,

E

[∥∥∥∥∥Q̂(nε) − G
(

m

n
−

L∑
i=1

ηi

n

)∥∥∥∥∥
]

−−−→
n→∞ 0.

On the other hand, under the coupling of Lemma 10, we have

E
[∥∥Q(nε) − Q̂(nε)

∥∥]≤ 2Lε + 2L

n
.

Finally, Remark 1 implies that

E

[∣∣∣∣∣
L∑

i=1

ηi

n
−

L∑
i=1

ηi(nε)

n

∣∣∣∣∣
]

≤ 2Lε.

Combining these three estimates, we easily deduce that

lim sup
n→∞

E

[∣∣∣∣Q0(nε) − 1

1 + ρ −∑L
i=1

ηi(nε)
n

∣∣∣∣]≤ 4Lε.

This seems rather weak compared to what we want to establish. However, by the
Markov property and (53), the result also applies to the shifted time nε + t (n), for
any choice of t (n) ≥ 0. Choosing t (n) = (s − ε)n for fixed s > 0 yields

lim sup
n→∞

E

[∣∣∣∣Q0(ns) − 1

1 + ρ −∑L
i=1

ηi(ns)
n

∣∣∣∣]≤ 4Lε.

Since this is valid for any choice 0 < ε ≤ s, the result follows. �

4.3. Tightness and convergence. We are now in position to prove Proposi-
tion 4. We first establish a weak form of it, namely, that in the finitely supported
case where

(55) L := sup{i ≥ 1 : ui > 0}
is finite, we have Un

i (t) → vi(t) in probability for fixed i, t ≥ 0, with the conve-
nient short-hand

(56) Un
i (t) := ηi(nt)

n
.
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PROOF OF THE WEAK FORM. We proceed by induction over L. The base case
L = 0 is trivial by (53). To move from L − 1 to L, we only need to establish the
convergence ∣∣Un

i (t) − vi(t)
∣∣ P−−−→

n→∞ 0

for i ≤ L and t ∈ [0, T ], where T = tL is the time at which the nonincreasing
function vL reaches 0, as defined in (50). In this range we have

(57) vi(t) = ui −
∫ t

0

1

1 + ρ −∑L
j=1 vi(s)

ds.

On the other hand, by Dynkin’s formula, we have the decomposition

(58) Un
i (t) = Un

i (0) −
∫ t

0
Q0(ns) ds +

∫ t

0
1(Un

i (s)=0) ds + Mn
i (t),

where Mn
i is a martingale. We will show that the right-hand sides of these two

equations are close to each other as n → ∞, by a term-by-term comparison. First,
we have

(59) Un
i (0) −−−→

n→∞ ui,

by assumption (4). Second, Proposition 7 readily implies that

sup
t∈[0,T ]

∣∣∣∣∫ t

0
Q0(ns)ds −

∫ t

0

1

1 + ρ −∑L
i=1 Un

i (s)
ds

∣∣∣∣ P−−−→
n→∞ 0.

Third, setting �n(t) := maxi≤L |Un
i (t) − ui(t)|, we have

sup
t∈[0,T ]

∣∣∣∣∫ t

0

1

1 + ρ −∑L
i=1 ui(s)

−
∫ t

0

1

1 + ρ −∑L
i=1 Un

i (s)
ds

∣∣∣∣≤ L

∫ T

0
�n(t)dt.

Fourth, observe that if Un
i (s) = 0 for some s ≤ t then �n(s) ≥ ui(s) ≥ uL(t), so

that

(60)
∫ t

0
1(Un

i (s)=0) ds ≤ 1

uL(t)

∫ t

0
�n(s) ds.

Finally, since Un
i (t) makes jumps of size 1

n
at rate at most 2n, we have

E[(Mn
i (T ))2] ≤ 2T

n
, which by Doob’s maximal inequality, implies that

sup
t∈[0,T ]

∣∣Mn
i (t)
∣∣ P−−−→

n→∞ 0.

By Grönwall’s Lemma we conclude that

(61) �n(t) ≤ oP(1) exp
{
Lt + t

uL(t)

}
,
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where the term oP(1) does not depend on t and tends to 0 in probability as
n → ∞. For fixed t < T , this already implies that �n(t) → 0 in probability, be-
cause uL(t) > 0. In particular, we may now go back to (60) and improve it to∫ T

0
1(Un

i (s)=0) ds
L1−−−→

n→∞ 0.

This improvement suppresses the term t
uL(t)

in (61), and the conclusion follows.
�

PROOF OF PROPOSITION 4. Remark 1 is more than enough to ensure, for
each i ≥ 1, the tightness (as n varies) of (Un

i (t) : t ≥ 0) in the Skorokhod space
D(R+,R), and the almost-sure continuity of any subsequential limit. By diagonal
extraction we may find a subsequence along which(

Un
1 ,Un

2 , . . .
) d−→ (

U
1 ,U

2 , . . .
)
,

weakly with respect to the product topology, with each coordinate being equipped
with the topology of uniform convergence on compact sets. We already know that
each limiting coordinate U

i belongs to C(R+, R+) with probability 1, and our task
boils down to proving that necessarily,

U
i (t) = vi(t)

almost surely, for each i ≥ 1 and each t ∈ R+. Note that this is true at time t = 0,
by our assumption. Now let s > 0. Since ui ≤ ρ

i
, it follows from Proposition 5

that U
i (s) = 0 for all i > L := ρθ

δs
. We may thus apply the weak form at time s to

deduce that necessarily,

U
i (t) =

(
U

i (s) −
∫ t

s

1

1 + ρ −∑∞
k=1 U

k (u)
du

)
+
,

for all t ≥ s and all i ≥ 1. Letting s → 0, we see that (U
i )i≥1 satisfies (14) with

probability 1, and the uniqueness in Lemma 9 concludes the proof. �

4.4. Putting things together: Proof of the main result. As a corollary of the
above analysis, we obtain the following explicit value for the dissolution time.

COROLLARY 2 (Maximum occupancy). In the regime (2)–(3)–(4), we have
for any fixed t ≥ 0

(62) max
1≤i≤n

ηi(nt)

n

P−−−→
n→∞ v1(t).

Moreover, the function v1 satisfies

(63) v1(t) > 0 ⇐⇒ t < t1 := (1 + ρ)u1 − 1

2

∞∑
i=1

u2
i .
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PROOF. If the maximum were taken over 1 ≤ i ≤ L for some fixed L, then
the result would be a direct consequence of Proposition 4. The only point that
needs to be justified is the fact that max1≤i≤n

ηi(nt)
n

= max1≤i≤L
ηi(nt)

n
provided L

is chosen large enough. This fact is a clear consequence of (52), together with the
observation that ηL+1 ≤ ρ

L+1 . �

This is all we need to complete the proof of Theorem 1. We split the argument
into two parts.

PROOF OF THE UPPER-BOUND. If t > t1 then v1(t) = 0, so Proposition 3
ensures fast mixing from the random configuration ξ := η(nt), that is,

tMIX(ξ ; ε)
n

P−−−→
n→∞ 0.

Explicitating the definitions, this means that for any fixed s > 0,

sup
A⊆�

∣∣Pns(ξ,A) − π(A)
∣∣ P−−−→

n→∞ 0.

Taking expectations and noting that E[Pns(ξ,A)] = Pn(t+s)(η,A) by the Markov
property, we obtain

sup
A⊆�

∣∣Pn(t+s)(η,A) − π(A)
∣∣−−−→

n→∞ 0.

In other words for any fixed ε ∈ (0,1),

lim sup
n→∞

{
tMIX(η; ε)

n

}
≤ t + s.

Since s and t can be chosen arbitrarily close to 0 and t1 respectively, the upper-
bound is proved. �

PROOF OF THE LOWER-BOUND. Our distinguishing event will be

(64) A :=
{
η ∈ � : max

1≤i≤n
ηi ≥ √

n
}
.

We note for clarity that the choice
√

n is irrelevant here: any k = k(n) satisfying
logn 
 k(n) 
 n will work. If t < t1, then v1(t) > 0, and so the above corollary
shows that

Pnt (η,A) −−−→
n→∞ 1.

On the other hand, we have seen in Section 2 that if ξ has the uniform law π ,

(65) P(ξi = k) = N (n − 1,m − 1)

N (n,m)
.
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The right-hand side is at most ( m
m+n−1)k = (

ρ
ρ+1 + o(1))k , which is o(n−2), when

k ≥ α logn with α large enough. Summing over all possible choices for i and k,
we deduce that

π(A) −−−→
n→∞ 0.

These two estimates prove that ‖Pnt (η, ·) − π‖TV → 0, or equivalently, that for all
ε ∈ (0,1),

lim inf
n→∞

{
tMIX(η; ε)

n

}
≥ t.

Since t can be chosen arbitrarily close to t1, the lower-bound follows. �
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