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1-STABLE FLUCTUATIONS IN BRANCHING BROWNIAN
MOTION AT CRITICAL TEMPERATURE I:

THE DERIVATIVE MARTINGALE

BY PASCAL MAILLARD1 AND MICHEL PAIN

Université Paris–Sud and École Normale Supérieure

Let (Zt )t≥0 denote the derivative martingale of branching Brownian mo-
tion, that is, the derivative with respect to the inverse temperature of the nor-
malized partition function at critical temperature. A well-known result by
Lalley and Sellke (Ann. Probab. 15 (1987) 1052–1061) says that this mar-
tingale converges almost surely to a limit Z∞, positive on the event of sur-
vival. In this paper our concern is the fluctuations of the derivative martingale
around its limit. A corollary of our results is the following convergence, con-
firming and strengthening a conjecture by Mueller and Munier (Phys. Rev. E
90 (2014) 042143):

√
t

(
Z∞ − Zt + log t√

2πt
Z∞

)
−−−→
t→∞ SZ∞ in law,

where S is a spectrally positive 1-stable Lévy process independent of Z∞.
In a first part of the paper, a relatively short proof of (a slightly stronger

form of) this convergence is given based on the functional equation satisfied
by the characteristic function of Z∞ together with tail asymptotics of this
random variable. We then set up more elaborate arguments which yield a
more thorough understanding of the trajectories of the particles contributing
to the fluctuations. In this way we can upgrade our convergence result to
functional convergence. This approach also sets the ground for a follow-up
paper, where we study the fluctuations of more general functionals including
the renormalized critical additive martingale.

All proofs in this paper are given under the moment assumption
E[L(logL)3] < ∞, where the random variable L follows the offspring dis-
tribution of the branching Brownian motion. We believe this hypothesis to be
optimal.
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1. Introduction. Branching Brownian motion (BBM) is a branching Markov
process defined as follows. Initially, there is a single particle at the origin. Each
particle moves according to a Brownian motion with variance σ 2 > 0 and drift
ρ ∈ R, during an exponentially distributed time of parameter λ > 0 and then splits
into a random number of new particles chosen according to a reproduction law μ.
These new particles start the same process from their place of birth behaving inde-
pendently of the others. The system goes on indefinitely, unless there is no particle
at some time. For a detailed and formal construction, see, for example, [31, 43].

The study of BBM dates back to [2, 68] and has been initially motivated by the
link with the F–KPP reaction-diffusion equation, established by McKean [66, 67].
BBM can also be seen as a Gaussian process with covariance associated to the un-
derlying Galton–Watson tree and, therefore, is related to the generalized random
energy model, introduced by Derrida and Gardner [35], and to the mean-field spin
glasses theory (see the recent book of Bovier [23]). A main focus on BBM in the
last decades has been the properties of extremal particles which are at a distance of
order 1 from the minimum of BBM; see Bramson [26, 27], Lalley and Sellke [58],
Aïdékon, Berestycki, Brunet and Shi [4], Arguin, Bovier and Kistler [7]. A key
object for understanding their behavior is the derivative martingale studied here.
Similar results have then been obtained for logarithmically correlated Gaussian
fields such as the two-dimensional Gaussian Free Field, construction of the deriva-
tive martingale [37, 38] and study of the extremes of these fields [19–21, 28, 36,
62].
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In this paper we address the fluctuations of the derivative martingale around
its limit. We establish a functional convergence in law with speed of convergence
1/

√
t toward a randomly time-changed spectrally positive 1-stable Lévy process.

Unlike the derivative martingale, whose law depends on the model, we believe
that these fluctuations are universal and, to our knowledge, are proven here for the
first time for such a model. In a follow-up paper [65] based on the results from
this article, we study the fluctuations of more general functionals including the
renormalized critical additive martingale.

1.1. Definitions and assumptions. Let L denote a random variable on N :=
{0,1, . . .} with law μ. Our assumptions in this paper concerning the reproduction
law are

(1.1) E[L] > 1 and E
[
L log3+ L

]
< ∞

(throughout the paper we write log+ x = (logx) ∨ 0 and logn+ x = (log+ x)n). The
first inequality implies that the underlying Galton–Watson tree is supercritical and
the event S of survival of the population has positive probability.

Formally, a particle is a word on the alphabet of natural numbers, that is, an
element of T = ⋃∞

n=0 N
n. Let N (t) be the set of particles alive at time t and Xu(t),

of the position of particle u at time t or of its ancestor alive at time t (if it exists).
As in the branching random walk literature [3, 5] and as in [4] for the BBM, we
choose our parameters λ, ρ and σ such that, for every t ≥ 0,

(1.2) E

[ ∑
u∈N (t)

e−Xu(t)

]
= 1 and E

[ ∑
u∈N (t)

Xu(t)e
−Xu(t)

]
= 0

which is equivalent to σ 2 = ρ = 2λE[L − 1] (see [4]). Moreover, we require that,
for any t ≥ 0,

(1.3) E

[ ∑
u∈N (t)

Xu(t)
2e−Xu(t)

]
= t

which is equivalent to σ 2 = ρ = 1 and λ = 1/(2E[L− 1]). One can always reduce
to these parameters by a combination of translation in space and scaling in space
and time. Under these assumptions it is well known (and an easy consequence of
the convergence of Wt defined below) that

(1.4) min
u∈N (t)

Xu(t) → +∞ almost surely as t → ∞.

One of the main objects of study for the BBM has been the additive martingales,
introduced by McKean [66] and defined in our setting by

Wt(θ) := ∑
u∈N (t)

e−θXu(t)− (θ−1)2
2 t , t ≥ 0, θ ≥ 0.
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For every θ the process (Wt(θ))t≥0 is a positive martingale and, therefore, con-
verges almost surely (a.s.) toward a limit W∞(θ). This limit is nonzero with posi-
tive probability if and only if θ < 1; see [70] for BBM or [18, 60] for the branching
random walk.2 In particular for the critical inverse temperature θc = 1, the additive
martingale

Wt := Wt(1) = ∑
u∈N (t)

e−Xu(t), t ≥ 0,

converges a.s. to zero and one is rather interested in the so-called derivative mar-
tingale

Zt := ∑
u∈N (t)

Xu(t)e
−Xu(t), t ≥ 0.

Indeed, it has been proved by Lalley and Sellke [58] for binary branching and then
by Yang and Ren [76] under the optimal assumption E[L log2+ L] < ∞ that

(1.5) Zt −−−→
t→∞ Z∞ a.s.,

and Z∞ > 0 a.s. on the event S of survival. The limit Z∞ appears in many limit
theorems on branching Brownian motion. For example, Lalley and Sellke [58],
relying on deep results by Bramson [26], proved that the distributional limit of the
minimum of the BBM at time t is a Gumbel law randomly shifted by logZ∞,

(1.6) P

(
min

u∈N (t)
Xu(t) ≥ 3

2
log t + x

)
−−−→
t→∞ E

[
e−c∗exZ∞]

for some positive constant c∗ (see also Aïdékon [3] for a proof under the optimal
assumption E[L log2+ L] < ∞, but for the branching random walk). The critical
additive martingale W = (Wt)t≥0 is also related to the derivative martingale by the
following convergence:

(1.7)
√

tWt −−−→
t→∞

√
2

π
Z∞ in probability,

proved for the branching random walk by Aïdékon and Shi [5]. Their result applies
to the BBM under the assumption E[L log2+ L] < ∞.

Some precise estimates have been proved recently for the tail of Z∞. Berestycki,
Berestycki and Schweinsberg [13] proved in the case of binary branching that

(1.8) P(Z∞ > x) ∼
x→∞

1

x

and also that, for some constant cZ ∈ R, depending on the offspring distribution μ,

(1.9) E[Z∞1Z∞≤x] − logx −−−→
x→∞ cZ.

2One can apply results on branching random walks to BBM because a discrete-time skeleton of
BBM is a branching random walk.
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Moreover, Maillard [64], Chapter 2, Proposition 4.1, proved that (1.8) holds as
soon as E[L log2+ L] < ∞ and (1.9) holds if E[L log3+ L] < ∞; see also Bu-
raczewski [30] and Madaule [63] for (1.8) in the case of the branching random
walk.

As can be seen from (1.8), 1-stable laws will play an important role and we
recall now some definitions and facts. The totally asymmetric to the right 1-stable
distribution S1(σ,μ), with parameters σ > 0 and μ ∈ R, has characteristic func-
tion

�σ,μ(λ) = exp
(−ψσ,μ(λ)

)
,

where (see, e.g., Samorodnitsky and Taqqu [74])

(1.10) ψσ,μ(λ) = σ |λ|
[
1 + i

2

π
sign(λ) log |λ|

]
− iμλ, λ ∈ R.

Since it is an infinitely divisible distribution, there is an associated Lévy process
(Sr)r≥0 called spectrally positive 1-stable process with parameters (σ,μ) starting
at S0 = 0. The characteristic functions of its one-dimensional marginals are given
by

(1.11) �St (λ) = exp
(−tψσ,μ(λ)

) = �tσ,tμ(λ), t ≥ 0, λ ∈ R.

In other words St follows the distribution S1(tσ, tμ).
Denote by �Z∞ the characteristic function of Z∞, that is, �Z∞(λ) = E[eiλZ∞],

λ ∈ R. Equations (1.8) and (1.9) together with Lemma C.1 yield the following
asymptotic for �Z∞ . There exists a continuous function g : R→C, with g(0) = 0,
such that for every sufficiently small λ,

(1.12) �Z∞(λ) = �π/2,μZ
(λ)eλg(λ),

where μZ = cZ − γ with cZ the constant in (1.9) and γ the Euler–Mascheroni
constant. In particular the distribution of Z∞ belongs to the domain of attraction
of a totally asymmetric (to the right) 1-stable law.

1.2. Results. Recall that our assumptions are (1.1), (1.2) and (1.3). Our main
result is the functional convergence in law of the fluctuations of the derivative mar-
tingale conditionally on the past. The notion of weak convergence in probability is
recalled in Appendix A.

THEOREM 1.1. Let (St )t≥0 denote a spectrally positive 1-stable Lévy pro-
cess with parameters (

√
π/2,μZ

√
2/π) independent of Z∞. Then the conditional

law of (
√

t(Z∞ − Zat + log t√
2πat

Z∞))a≥1 given Ft converges weakly in proba-

bility (in the sense of finite-dimensional distributions) to the conditional law of
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(SZ∞/
√

a)a≥1 given Z∞. In other words for every n ≥ 1, a1, . . . , an ∈ [1,∞) and
f : Rn →R bounded and continuous, we have

E

[
f

(√
t

(
Z∞ − Zakt + log t√

2πakt
Z∞

)
,1 ≤ k ≤ n

)∣∣∣Ft

]
−−−→
t→∞ E

[
f (SZ∞/

√
ak

,1 ≤ k ≤ n)|Z∞
]

in probability.

In particular (take n = 1 and a1 = 1), the conditional law of
√

t(Z∞ − Zt +
log t√

2πt
Z∞) given Ft converges weakly in probability to the conditional law

S1(Z∞
√

π/2,Z∞μZ

√
2/π) given Z∞.

REMARK 1.2. One may wonder whether one actually has almost sure weak
convergence in Theorem 1.1 instead of mere weak convergence in probability. This
is not the case and due to the fact that the convergence in (1.7) does not hold almost
surely [5].

Removing the conditioning, we get the following corollary:

COROLLARY 1.3. Let (St )t≥0 denote a spectrally positive 1-stable Lévy pro-
cess with parameters (

√
π/2,μZ

√
2/π) independent of Z∞. Then we have the

following convergence in law with respect to finite-dimensional distributions:(√
t

(
Z∞ − Zat + log t√

2πat
Z∞

))
a≥1

(law)−−−→
t→∞ (SZ∞/

√
a)a≥1.

In particular we have the following convergence in law:
√

t

(
Z∞ − Zt + log t√

2πt
Z∞

)
(law)−−−→
t→∞ S1(Z∞

√
π/2,Z∞μZ

√
2/π).

REMARK 1.4. We believe the assumption E[L log3+ L] < ∞ to be optimal for
our result. It should be compared to the assumption E[L log2+ L] < ∞ in previ-
ous results concerning the derivative martingale and the extremal particles. Our
assumption is used to get the precise tail of Z∞ in (1.9) and also at three different
places in Section 4. It can apparently not be relaxed in any one of these places.

Finally, we state a second result, giving an explicit control on the rate of conver-
gence of Zt to Z∞. It will be proved with the same tools and can be of independent
interest.

PROPOSITION 1.5. There exists C > 0 such that, for any 0 < δ ≤ 1 and t ≥ 2,
we have

P
(|Z∞ − Zt | ≥ δ

) ≤ C
(log t)2

δ
√

t
.



1-STABLE FLUCTUATIONS IN BRANCHING BROWNIAN MOTION I 2959

1.3. Comments and heuristics. Our motivation for studying the fluctuations
of the derivative martingale Zt came from an article by Mueller and Munier [69]
in the physics literature. In this article the authors mainly work with the additive
martingale Wt . Their findings can be interpreted as the following conjecture:

(1.13)
√

t

(√
2

π
Z∞ − √

tWt

)
converges in law, as t → ∞.

In their appendix they note that, for the derivative martingale Zt , a corrective term
of order (log t)/

√
t has to be added to get the convergence, a conjecture which

they derived from numerical simulations.
Mueller and Munier give a phenomenological description of BBM in order to

support their conjectures concerning the fluctuations of the front of BBM.3 This
picture is as follows. At early times of order O(1), there are fluctuations due to
the small number of particles to whom the randomness of Z∞ is due. This ran-
dom variable Z∞ determines the position of the minimum of the BBM at later
times, as seen in (1.6). Then, after a large time of order O(1), Mueller and Munier
introduce the curved barrier s �→ 3

2 log s − logZ∞. Following previous works by
Ebert and van Saarloos [40] on the rate of convergence of the F–KPP equation to
a traveling wave, they go on to say that the density of the particles staying above
this barrier can be approximated to sufficient precision by a deterministic function
(with a random shift logZ∞), whose expression is fairly intricate, involving hyper-
geometric functions. Mueller and Munier then argue that this density is randomly
perturbed by the descendants of the particles that go below the barrier in the spirit
of previous works by Brunet, Derrida, Mueller and Munier [29]. Using the explicit
form of the particle density and the stipulated law of the perturbations, Mueller
and Munier are then able to derive (1.13). We stress that their approach, although
ingenious, relies on several unjustified assumptions and approximations and uses
quite intricate algebra.

Our approach is loosely inspired by Mueller and Munier [69] but has several
important differences. First, we found that instead of working with the martingale
Wt , it is easier to work with the derivative martingale Zt which is the object of this
article. Second, as in Mueller and Munier [69] we introduce a killing barrier but
which is very different from theirs. Our barrier, instead of ending at time t , starts
at time t and stays at a fixed position γt = 1

2 log t + βt for some slowly increasing
function βt (one might think of it as a large constant K and first let t , then K

go to infinity). The advantage of working with Zt is that the translated derivative
martingale ∑

u∈N (s)

(
Xu(s) − γt

)
e−Xu(t) = Zs − γtWs, s ≥ t,

3We call here the front of BBM the particles that mainly contribute to Zt (and to Wt ). These are
the particles at a position of order

√
t at time t . The extremal particles at time at for some a > 1

(those which are around 3
2 log(at) + O(1)) mostly descend from particles in the front at time t .
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is also a martingale when particles are killed when going below γt . With this killing
we show that the fluctuations of this martingale are of order o(1/

√
t) and therefore

negligible. Roughly speaking, this allows us to write Z∞ as the sum

Z∞ = Zt − γtWt + Ft + o(1/
√

t),

where Ft is the contribution to Z∞ from the particles going below the barrier.
Estimating the number of particles hitting the barrier and using the tail asymptotics
of Z∞ provided by (1.8) and (1.9) allows us to obtain precise asymptotics on
the characteristic function of Ft , from which one can derive the one-dimensional
(n = 1, a1 = 1) case of Theorem 1.1. The functional limit requires slightly more
work but follows along the same lines. More details of the proof are exposed in
Section 3.

We remark that our proof shows that the fluctuations of the derivative martingale
are due to the particles that come down exceptionally low, around 1

2 log t + O(1).
In fact, it is well known [48, 49] that, although the minimum of the BBM is most
of the time around 3

2 log t , one has

lim inf
t→∞

1

log t
min

u∈N (t)
Xu(t) = 1

2
, P-a.s. on S.

These rare particles are exactly the ones leading to the limit in Theorem 1.1, and the
contribution to Z∞ of the descendants of a particle coming down to 1

2 log t +O(1)

around time at correspond to a jump of the limiting 1-stable Lévy process S at
time Z∞/

√
a.

We also remark that the one-dimensional case of Theorem 1.1 can be obtained
by simpler means, namely by exploiting the decomposition

Z∞ = ∑
u∈N (t)

e−Xu(t)Zu∞,

where, given N (t), (Zu∞)u∈N (t) are independent copies of Z∞ independent of
(Xu(t))u∈N (t). This is done in Section 2. However, this method does not allow
us to obtain a functional convergence and also does not explain which particles
contribute to the fluctuations.

Further outlook. In an upcoming work [65], we consider random variables of
the form

Zt(f ) = ∑
u∈N (t)

Xu(t)e
−Xu(t)f

(
Xu(t)√

t

)
for a large class of functions f . Special cases are the derivative martingale Zt

and the renormalized additive martingale
√

tWt which correspond to f ≡ 1 and
f (x) = 1

x
respectively. We prove a limit theorem in law analogous to Theorem 1.1

for these random variables relying on the results of the present paper. The limiting
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random variables are again of the form SZ∞ for (St )t≥0 a 1-stable Lévy process,
but the asymmetry parameter of the process can be anything and depends on the
function f . For example, in the case of the renormalized additive martingale, the
process (St )t≥0 is a Cauchy process and the logarithmic correction term vanishes.
In other words we prove Mueller and Munier’s conjecture (1.13) and identify the
limit.

In future work we plan to study the fluctuations of the minimal position Mt =
minu∈N (t) Xu(t) in BBM. This should be related to the fluctuations of the martin-
gale Wt . Specifically, we conjecture the following:

CONJECTURE 1. As t → ∞, for some constant C > 0,

Mt
law= 3

2
log t − log(CZ∞) − G + 1√

t
SZ∞ + o

(
1√
t

)
,

where G is a standard Gumbel distributed random variable, (St )t≥0 is a Cauchy
process and Z∞, G, (St )t≥0 are independent.4

We note that a rich literature exists on 1/
√

t corrections for solutions to the
F–KPP equation and related equations; see, for example, [14, 16, 40, 41, 71] and
the references therein. Conjecture 1 can be seen as a probabilistic version of these
results. Analogous to the deterministic equation, we believe that the term 1√

t
SZ∞ ,

appearing in Conjecture 1, is universal in that it is (up to scaling, translation and
the term Z∞) the same for all models in the so-called F–KPP universality class
[29]. We also believe that there is a direct relation between the deterministic and
probabilistic versions and plan to make this relation explicit in future work.

Finally, the methods used in this article seem to be applicable to the case of
the branching random walk with probably a few additional technical difficulties
for the proof of the functional convergence. However, we emphasize that both the
main method as well as the one from Section 2 rely on the precise tail asymptotics
of Z∞ in (1.9) which so far has only been proved for BBM.

1.4. Related literature. Fluctuations of martingales have been studied for the
Galton–Watson process by Heyde [45, 46] when the reproduction law belongs to
the domain of attraction of a α-stable law with 1 < α ≤ 2. In that case one needs
an exponential scaling to get the convergence of the fluctuations toward a mixture
of α-stable laws; see also Heyde and Brown [47] for a functional convergence
and Kesten–Stigum [56], Athreya [9] and Asmussen and Keiding [8] for multitype
branching processes (but only in the case α = 2).

More recently, similar results have been proved for the additive martingale
Wt(θ) of a branching random walk in the subcritical regime θ < 1. Rösler, Topchii

4The way to make this statement formal is in the language of mod-φ-convergence from [34].
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and Vatutin [73] show, in the more general setting of stable weighted branching
processes, the convergence of the fluctuations of Wt(θ) when W1(θ) belongs to
the domain of attraction of a α-stable law with 1 < α ≤ 2, with also an exponen-
tial scaling and a mixture of α-stable laws as limit. More related to our results
is yet unpublished work by Iksanov, Kolesko and Meiners [52] where W1(θ) is
light-tailed (and θ may be complex). In particular, if θ ∈ (1/2,1), they show that
the fluctuations of Wt(θ) are exponentially small in t and converge in law after
rescaling to SZ∞ where (St )t≥0 is a 1/θ -stable Lévy process independent of Z∞.

Note that the appearance of stable processes subordinated by Z∞ in branching
random walks has been observed previously in the study of the martingales Wt(θ)

in the supercritical regime θ > 1; see, for example, [12, 39, 42].
Functional convergence results have been obtained in the branching random

walk setting by Iksanov and Kabluchko [50], when Var(W1(θ)) < ∞ and θ <

1/2 (in our setting), and by Iksanov, Kolesko and Meiners [51], when P(W1(θ) ≥
x) ∼ cx−α and (θα − 1)2 < α(θ − 1)2 for some θ < 1 < α < 2; see also Hartung
and Klimovsky [44] for the case of complex BBM. To our knowledge, 1-stable
fluctuations have not been studied yet. Note also that all aforementioned results
exhibit an exponential scaling, while it is polynomial here.

Fluctuations of the partition function have also been studied for other models re-
lated to BBM. For directed polymers in random environment in the L2-phase, there
is also a Gaussian limit but with a polynomial scaling [33]. Other results have been
obtained for many different spin glasses models, for example, the Sherrington–
Kirkpatrick model [6], the REM and the p-spin model [25], the GREM [24], the
complex REM [54] and the spherical Sherrington–Kirkpatrick model [10, 11]. In
comparing to our setting, one might argue that the situation is a bit different in
these models in that the fluctuation is the first random term appearing in the large-
N expansion of the partition function whereas in our setting it is the second or
even third random term (the first ones being Z∞ and log t√

2πt
Z∞). However, the con-

ditioning in Theorem 1.1 effectively shows that one can consider Z∞ as a constant,
making the term SZ∞ the first “truly” random term in the large-t expansion of Zt .
Another argument is that the term SZ∞ is (as we believe) the first universal term
in the expansion, the term Z∞ depending on the offspring distribution and, in gen-
eral, on the model. It is thus fair to say that the results from this article are of the
same nature as the results for the statistical mechanics models cited above.

1.5. Organization of the paper. In Section 3 we state another Theorem 3.1
which is easier to prove than Theorem 1.1. The fact that one can get Theorem 1.1
from Theorem 3.1 (in the case n = 1 or in the multidimensional case) follows from
Proposition 2.2 which is stated in Section 2 and proved in Section 7. In Section 2
we give a short proof of the case n = 1 of Theorem 3.1 which corresponds to
Proposition 2.1.

The rest of the paper is dedicated to the proof of Theorem 3.1 in the multi-
dimensional case. In Section 3 its proof is divided into three propositions, which
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are proved in Sections 5 and 6, using preliminary results stated and proved in
Section 4.

In Appendix A some theoretical definitions and results concerning weak con-
vergence in probability for random measures are given. Appendix B contains some
calculations concerning Brownian motion and the 3-dimensional Bessel process
used in the paper. The lemma in Appendix C provides an asymptotic for the char-
acteristic function of a random variable satisfying (1.8) and (1.9). Appendix D
contains the proof of Proposition 1.5.

Throughout the paper, C denotes a positive constant that does not depend on the
parameters and can change from line to line. For f : R+ → R and g : R+ → R∗+,
we say that f (t) = o(g(t)) as t → ∞ if limt→∞ f (t)/g(t) = 0 and that f (t) =
O(g(t)) as t → ∞ if lim supt→∞ |f (t)|/g(t) < ∞. Moreover, (Bt )t≥0 denotes a
standard Brownian motion and (Rt )t≥0 a three-dimensional Bessel process.

2. One-dimensional marginals: A (fairly) short proof. In this section we
give a relatively short proof of Theorem 1.1 in the case n = 1, a1 = 1. It will
follow from the following two results:

PROPOSITION 2.1. The conditional law of
√

t(Z∞ − Zt + log t
2 Wt) given Ft

converges weakly in probability to the law S1(Z∞
√

π/2,Z∞μZ

√
2/π) given Z∞.

PROPOSITION 2.2. For any θ < 1/5, we have

lim sup
t→∞

P

(∣∣∣∣√tWt −
√

2

π
Z∞

∣∣∣∣ ≥ t−θ

)
= 0.

The main point in Proposition 2.1 is the replacement of the term log t√
2πt

Z∞ by
log t

2 Wt , making its proof a lot easier. Below, we give a one-page proof of Proposi-
tion 2.1 relying on a direct calculation of the characteristic function based on the
branching property and the asymptotic (1.12) on �Z∞ , the characteristic function
of Z∞. These arguments are similar to those used for the Galton–Watson process
[45, 46] or for the subcritical additive martingales of the branching random walk
[73]. Proposition 2.2, on the other hand, is quite technical, and its proof is del-
egated to Section 7 which also relies on results from Section 4. Proposition 2.2
actually also uses Proposition 2.1 as an ingredient in order to get a certain a priori
control of the speed of convergence of Zt to Z∞, but this could be replaced by
more technical calculations.

PROOF OF THE CASE n = 1, a1 = 1 OF THEOREM 1.1. It follows immedi-
ately from Proposition 2.1, Proposition 2.2 and Remark A.3. �

The following lemma will be convenient for the proof of Proposition 2.1 and
later. For σ > 0 and μ ∈ R, recall that �σ,μ denotes the characteristic function of
the law S1(σ,μ) defined in (1.10).
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LEMMA 2.3. Let σ > 0, μ ∈ R and λ ∈ R. Then, for every x > 0,

�σ,μ(λx) = �xσ,x(μ−σ(2/π) logx)(λ) = exp
(
−xψσ,μ(λ) − iλ

2

π
σx logx

)
.

PROOF. Direct calculation. �

PROOF OF PROPOSITION 2.1. By Proposition A.1 it is enough to show that,
for any λ ∈ R,

ϕt(λ) := E

[
exp

(
iλ

√
t

(
Z∞ − Zt + log t

2
Wt

))∣∣∣Ft

]
(2.1)

P−−−→
t→∞ �Z∞

√
π/2,Z∞μZ

√
2/π (λ).(2.2)

We now fix some λ ∈ R. The crucial fact that we use is the following well-known
decomposition:

(2.3) Z∞ = ∑
u∈N (t)

e−Xu(t)Z(u)∞ ,

where given Ft , the random variables Z
(u)∞ for u ∈ N (t) are i.i.d. copies of Z∞.

Recalling that �Z∞ denotes the characteristic function of Z∞, the decomposition
(2.3) yields

(2.4) E
[
exp(iλZ∞)|Ft

] = ∏
u∈N (t)

�Z∞
(
λe−Xu(t)).

Furthermore, by the definitions of Zt and Wt , we have

(2.5) exp
(
iλ

(
−Zt + log t

2
Wt

))
= ∏

u∈N (t)

exp
(
iλe−Xu(t)

(
log t

2
− Xu(t)

))
,

and obviously this quantity is Ft -measurable. Applying (2.4) and (2.5) with λ
√

t

instead of λ and writing ξu,t = √
te−Xu(t), we get

ϕt(λ) = ∏
u∈N (t)

�Z∞(λξu,t ) exp(iλξu,t log ξu,t ).

Now, recall that for sufficiently small λ′, say |λ′| ≤ ε for some ε > 0, by
(1.12), �Z∞(λ′) = �π/2,μZ

(λ′)eλ′g(λ′), with g a continuous function vanishing
at 0. In order to apply this to the previous equation, define the event Et =
{maxu∈N (t) |λ|ξu,t ≤ ε}. On Et we get

ϕt (λ) = ∏
u∈N (t)

�π/2,μZ
(λξu,t ) exp

(
λξu,tg(λξu,t ) + iλξu,t log ξu,t

)
.
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Applying Lemma 2.3, together with the equality
√

tWt = ∑
u∈N (t) ξu,t , we get on

Et ,

ϕt(λ) = ∏
u∈N (t)

exp
(−ξu,tψπ/2,μZ

(λ) + λξu,tg(λξu,t )
)

= exp
(−√

tWtψπ/2,μZ
(λ) + Yλ

t

)
with Yλ

t := ∑
u∈N (t)

λξu,tg(λξu,t ).

Now, note that by (1.6) we have maxu∈N (t) ξu,t → 0 in probability, and by (1.7) we
have

√
tWt → √

2/πZ∞ in probability as t → ∞. As a consequence P(Et ) → 1
as t → ∞ and Yλ

t → 0 in probability as t → ∞. All of the above now shows that
ϕt(λ) → �Z∞

√
π/2,Z∞μZ

√
2/π (λ) in probability, as t → ∞ which concludes the

proof. �

REMARK 2.4. What would go wrong if one were to try to extend this proof
to the case n = 2, say? What made the above proof possible was the marvelous
decomposition (2.3) of Z∞. One can write a similar decomposition of Zs condi-
tioned on Ft , for s > t , but it is much more complicated, with the presence of
additional terms interplaying in a subtle way with the time-inhomogeneity of the
equation (we encourage the reader to try it out!). This road therefore seems like a
dead end.

3. Strategy of the proof of Theorem 1.1. In this section we present the strat-
egy for the proof of Theorem 1.1. As in the one-dimensional case we will first
prove a slightly different version of the result, namely Theorem 3.1 below, and
will deduce Theorem 1.1 from it and Proposition 2.2.

THEOREM 3.1. Let (St )t≥0 denote a spectrally positive 1-stable Lévy process
with parameters (

√
π/2,μZ

√
2/π) independent of Z∞. Then the conditional law

of (
√

t(Z∞ −Zat + log t
2 Wat))a≥1 given Ft converges weakly in probability (in the

sense of finite-dimensional distributions) to the conditional law of (SZ∞/
√

a)a≥1
given Z∞.

The proof of Theorem 3.1 is split into three propositions stated below. The
method of proof also leads to Proposition 1.5, proved in Appendix D.

For t > 0, we set

γt := 1

2
log t + βt ,

where (βt )t>0 is a family of positive numbers such that

(3.1) βt −−−→
t→∞ ∞ and

βt

t1/4 −−−→
t→∞ 0.
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Loosely speaking, βt could be seen as a large constant K that does not depend on
t and that tends to infinity after t → ∞, but it is worthwhile to point out that the
general choice of βt in (3.1) is sufficient.

In order to study Zat for some a ≥ 1, we kill particles that come below γt after
time at . For this we use the framework of stopping lines which have been defined
in Chauvin [31]. Let Lat,γt denote the stopping line of the killed particles and, for
u ∈ Lat,γt , �

at,γt
u , the time of the death of u, formally,5

Lat,γt := {
u ∈ T : ∃s ≥ at such that u ∈ N (s),Xu(s) ≤ γt

and ∀r ∈ [at, s),Xu(r) > γt

}
,

�at,γt
u := inf

{
s ≥ at : u ∈N (s) and Xu(s) ≤ γt

}
.

We denote by FLat,γt the σ -algebra associated with the stopping line Lat,γt ; see
[31].

For the remaining particles, we consider the following random variables. For
s ≥ at , we set

Z̃at,γt
s := ∑

u∈N (s)

(
Xu(s) − γt

)
e−Xu(s)1∀r∈[at,s],Xu(r)>γt .

Then (Z̃
at,γt
s )s≥at is a nonnegative martingale (see [57]) and, therefore, it has an

almost sure limit Z̃
at,γt∞ . Furthermore, we have, using that Ws → 0 P-a.s. as s →

∞,

Z∞ = lim
s→∞

∑
v∈N (s)

(
Xv(s) − γt

)
e−Xv(s)

= Z̃at,γt∞ + ∑
u∈Lat,γt

e−Xu(�
at,γt
u )Z(u,at,γt )∞ ,

(3.2)

where we set, for u ∈ Lat,γt ,

Z(u,at,γt )∞ := lim
s→∞

∑
v∈N (s):u≤v

(
Xv(s) − γt

)
e−(Xv(s)−Xu(�

at,γt
u ))

= lim
s→∞

∑
v∈N (s):u≤v

(
Xv(s) − Xu

(
�at,γt

u

))
e−(Xv(s)−Xu(�

at,γt
u )),

saying that u ≤ v if u is an ancestor of particle v and using again that Ws → 0
P-a.s. Thus, by the branching property, conditionally on FLat,γt , the Z

(u,at,γt )∞ for
u ∈ Lat,γt are independent and have the same law as Z∞.

5To be precise, in the definition of the stopping line Lat,γt in order to be consistent with Chauvin
[31], one also has to add the information of the killing times. However, for notational convenience
we omit throughout the article the killing times from the definition of stopping lines. It will always
be the case that the killing times can be inferred from the context without ambiguity.
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Looking at (3.2), our first step will be to study the limit Z̃
at,γt∞ which is well

concentrated around its conditional expectation given Fat thanks to the killing
barrier. Moreover, this conditional expectation is Z̃

at,γt
at , which is very close to

Zat −γtWat , since the particles below γt at time at have a negligible weight under
the assumption (3.1). Therefore, it leads to the following result that will be shown
in Section 5.

PROPOSITION 3.2. For any a ≥ 1, we have the following convergence in prob-
ability:

√
t
∣∣Z̃at,γt∞ − (Zat − γtWat )

∣∣ −−−→
t→∞ 0.

Now, we want to deal with the second term on the right-hand side of (3.2). It
leads to the limiting process of Theorem 1.1, so we need to catch the dependence
in a. Heuristically, we want to see Lat,γt as a decreasing set in a with Lat,γt �
{u ∈ Lt,γt : �

t,γt
u > at}. This is not exactly the case, and, therefore, we need to

split Lat,γt into two disjoint parts by setting

Lat,γt

good := {
u ∈ Lat,γt : u ∈ Lt,γt and �t,γt

u = �at,γt
u > at

}
,

Lat,γt

bad := Lat,γt \Lat,γt

good .

The “good” particles are those which contribute to the limiting process. They sat-
isfy Lat,γt

good = {u ∈ Lt,γt

good : �t,γt
u > at}. Note that we have the equivalent definitions

Lat,γt

good =
{
u ∈ Lat,γt : min

r∈[t,at]Xu(r) > γt

}
,

Lat,γt

bad =
{
u ∈ Lat,γt : min

r∈[t,at]Xu(r) ≤ γt

}
;

see Figure 1 for some examples.
Now, we can rewrite (3.2) as

(3.3) Z∞ = Z̃at,γt∞ + F
at,γt

good + F
at,γt

bad ,

where we set

F
at,γt

good/bad := ∑
u∈Lat,γt

good/bad

e−Xu(�
at,γt
u )Z(u,at,γt )∞ .

Note that Xu(�
at,γt
u ) = γt for u ∈ Lat,γt

good .
We can now state two propositions which will be proved later in the paper.

They basically state that the “good” particles lead to the limiting process (after an
appropriate compensation), and the “bad” particles have a negligible contribution.
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FIG. 1. Representation of a BBM with binary branching. The killing barrier that defines Lt,γt is
the thick blue line. The one for Lat,γt is the thick black line. At each time s ≥ t , the blue particles do
not contribute to Z̃

t,γt
s . We have u1, u3 ∈Lat,γt

bad and u2 ∈ Lat,γt

good .

PROPOSITION 3.3. Let (St )t≥0 be the 1-stable Lévy process defined in The-
orem 1.1. For any n ≥ 1, a ∈ [1,∞)n and λ ∈ Rn, we have the following conver-
gence in probability:

E

[
exp

(
i

n∑
k=1

λk

√
t
(
F

akt,γt

good − βtWakt

))∣∣∣Ft

]

−−−→
t→∞ E

[
exp

(
i

n∑
k=1

λkSZ∞/
√

ak

)∣∣∣Z∞
]
.

PROPOSITION 3.4. For any a ≥ 1, we have the following convergence in prob-
ability:

√
tF

at,γt

bad −−−→
t→∞ 0.

PROOF OF THEOREMS 1.1 AND 3.1. Using decomposition (3.3) and the fact
that γt = 1

2 log t + βt by definition, we have for every a ≥ 1,

Z∞ − Zat + log t

2
Wat = Z̃at,γt∞ − (Zat − γtWat ) + F

at,γt

good − βtWat + F
at,γt

bad .

Propositions 3.2 and 3.4 now give for every a ≥ 1,

√
t

(
Z∞ − Zat + log t

2
Wat

)
− √

t
(
F

at,γt

good − βtWat

) P−−−→
t→∞ 0.

Then, combining Propositions 3.3 and A.1 with Remark A.3, this proves Theo-
rem 3.1. We recall that Theorem 1.1 follows then from Proposition 2.2. �
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4. Preliminary results on BBM with a barrier.

4.1. Many-to-one formula and change of probabilities. It will be handy in the
sequel to allow the BBM to start at an arbitrary point x ∈ R; in which case we write
Px and Ex instead of P and E. The martingale property of the processes (Wt)t≥0
and (Zt )t≥0 defined in the Introduction then implies that for every x ∈R and t ≥ 0,

(4.1) Ex[Wt ] = e−x, Ex[Zt ] = xe−x.

A generalization of this fact is provided by the following many-to-one formula
which is an essential tool in the study of BBM. Let C([0, t]) denote the space of
continuous functions from [0, t] to R. For any x ∈ R, t ≥ 0 and any measurable
function F : C([0, t]) →R+, one can compute the following expectation:

Ex

[ ∑
u∈N (t)

e−Xu(t)F
(
Xu(s), s ∈ [0, t])] = e−xEx

[
F
(
Bs, s ∈ [0, t])],

where (Bs)s≥0 denotes a standard Brownian motion, starting from x under Px .
Note that this formula follows from forthcoming Proposition 4.1.

Throughout the paper, we will use two changes of probabilities and the associ-
ated spinal decompositions. These methods have a rich history, starting with Ka-
hane and Peyrière [55], and with its modern formulation due to Lyons, Pemantle
and Peres’ [61] work on Galton–Watson processes. We will follow the treatment
by Hardy and Harris [43] for branching Markov processes. That paper supposes
that the offspring distribution of the process is supported on {1,2, . . .}, but this
can be generalized; see Liu, Ren and Song [59]. See also Shi [75] for a survey of
applications of these techniques to the branching random walk.

Let Ft denote the σ -algebra containing all the information until time t ,

Ft := σ
(
N (s),0 ≤ s ≤ t

)∨ σ
(
Xu(s),0 ≤ s ≤ t, u ∈ N (s)

)
,

and F∞ := σ(
∨

t≥0 Ft ).
The first change of probability is done with respect to the critical additive mar-

tingale (Ws)s≥0 and has been introduced by Chauvin and Rouault [32]. Since it is
a nonnegative martingale, we can define, for x > 0, a new probability measure Qx

on F∞ by

Qx |Fs := exWs • Px |Fs , ∀s ≥ 0.

Following Hardy and Harris [43], we rather view Qx as the projection to F∞ of
a probability measure (denoted by Qx as well for simplicity) on an enlarged prob-
ability space, carrying a so-called spine, that is, a marked ray in the genealogical
tree. The particle on the spine by time s will be denoted by ws . Recall that λ

denotes the branching rate and L a random variable distributed according to the
offspring distribution in the original BBM. We then have the following description
for the BBM with spine under Qx :
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• The system starts with one particle w0 at position x.
• This particle moves like a standard Brownian motion (without drift!) during

a time distributed, according to the exponential law of parameter μ1λ, where
μ1 := E[L].

• Then it gives birth to a random number L̂ of particles distributed according to
the size-biased reproduction law, that is, ∀k ∈ N, P(L̂ = k) = kP(L = k)/μ1.

• Amongst the children, one is uniformly chosen to be on the spine and continues
in the same way.

• Others spawn usual BBMs (according to the law P but started from the position
of their parent).

The following proposition generalizes the many-to-one formula stated above
and follows from the results in [43]. Recall that a “particle” is formally a word
on the alphabet of natural numbers, that is, an element of the countable set T =⋃∞

n=0 N
n.

PROPOSITION 4.1. Let x ∈ R. Let s ≥ 0, and let (Hs(u))u∈T be a family of
uniformly bounded Fs -measurable random variables. Then we have

Ex

[ ∑
u∈N (s)

e−Xu(s)Hs(u)

]
= e−xEQx

[
Hs(ws)

]
.

The second change of probability we will use has been introduced by Kypri-
anou [57] and is done with respect to a modification of the derivative martingale,
obtained by killing particles coming below zero. It is called the truncated deriva-
tive martingale and is defined by

Z̃s := ∑
u∈N (s)

Xu(s)e
−Xu(s)1∀r∈[0,s],Xu(r)>0, s ≥ 0.

Then, for x ≥ 0, (Z̃s)s≥0 is a nonnegative martingale under Px and, therefore, we
define a new probability measure Q̃x on F∞ by

Q̃x |Fs := ex

x
Z̃s • Px |Fs , ∀s ≥ 0.

We have an analogous description for the BBM with spine (ws)s≥0 under Q̃x :

• The system starts with one particle w0 at position x.
• This particle moves like a three-dimensional Bessel process during a time dis-

tributed according to the exponential law of parameter μ1λ, where μ1 := E[L].
• Then it gives birth to a random number of particles distributed as L̂ defined

above.
• Amongst the children one is uniformly chosen to be on the spine and continues

in the same way.
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• Others spawn usual BBMs (according to the law P but started from the position
of their parent).

Moreover, one has the following generalization of the many-to-one lemma:

PROPOSITION 4.2. Let x ≥ 0. Let s ≥ 0 and let (Hs(u))u∈T be a family of
uniformly bounded Fs -measurable random variables. Then we have

Ex

[ ∑
u∈N (s)

Xu(s)e
−Xu(s)1∀r∈[0,s],Xu(r)>0Hs(u)

]
= xe−xEQ̃x

[
Hs(ws)

]
.

4.2. Truncated derivative martingale: Moments. The second moment of the
truncated derivative martingale (Z̃s)s≥0 is infinite if E[L2] = ∞. We therefore
introduce a variant of (Z̃s)s≥0 which is close to it in L1-distance, and whose second
moment can be controlled. This method, which uses the probability Q̃x defined
in the previous section, is due to Aïdékon [3] and sometimes called the peeling
lemma; see Shi [75] for more applications. We also incorporate simplifications of
this method from Pain [72].

Throughout, let x ≥ 0. For u ∈ T, such that u ∈ N (s) for some s ≥ 0, let Ou

denote the number of children of particle u and du the death time of u (and leave
undefined otherwise). Write v < u if v is a strict ancestor of u and v ≤ u if v < u

or v = u. We set, for s, κ ≥ 0,

Bs,κ := {
u ∈ N (s) : ∀v < u,Ov ≤ κeXv(dv)/2},

Z̃s,κ := ∑
u∈N (s)

Xu(s)e
−Xu(s)1∀r∈[0,s],Xu(r)>01u∈Bs,κ .

Note that formally, Z̃s,∞ = Z̃s . The next lemma bounds the L1-distance between
Z̃s,κ and Z̃s for large κ .

LEMMA 4.3. There exists a decreasing function h : R+ → R+ such that
lima→∞ h(a) = 0 and for every x, κ > 0 and s ≥ 0,

Ex

[|Z̃s − Z̃s,κ |] ≤ h(κ)e−x.

PROOF. First note that Z̃s ≥ Z̃s,κ , so we can ignore the absolute value in the
expectation. Using Proposition 4.2, we get

Ex[Z̃s − Z̃s,κ ] = Ex

[ ∑
u∈N (s)

Xu(s)e
−Xu(s)1∀r∈[0,s],Xu(r)>01u/∈Bs,κ

]
= xe−xQ̃x(ws /∈ Bs,κ).

Under Px let (Rr)r≥0 denote a three-dimensional Bessel process, and let L̂ be a
random variable independent of (Rr)r≥0 following the size-biased reproduction
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law. Then, using the spinal decomposition description and the formula for expec-
tations of additive functionals of Poisson point processes (applied to the branching
times r of the spine where the number of children exceeds eXwr (r)/2), we have

Q̃x(ws /∈ Bs,κ) ≤ Ex

[∫ s

0
Px

(
L̂ > κeRr/2|(Rr)r≥0

)
μ1λdr

]
= μ1λEx

[
Ex

[∫ s

0
1Rr<2 log+(L̂/κ) dr

∣∣∣L̂]]
≤ μ1λE

[
1

x

(
2 log+(L̂/κ)

)3
]

by (B.6).

The previous inequalities and the definition of L̂ yield

Ex[Z̃s − Z̃s,κ ] ≤ h(κ)e−x, h(κ) := 8λE
[
L
(
log+(L/κ)

)3]
.

The function h(κ) is decreasing in κ and vanishes as κ → ∞ by dominated con-
vergence and Assumption (1.1). This proves the result. �

LEMMA 4.4. There exists C > 0 such that for every x ≥ 0, κ ≥ 1 and s ≥ 0,

Ex

[
Z̃2

s,κ

] ≤ Cκe−x.

PROOF. Using Proposition 4.2, we have

Ex

[
Z̃2

s,κ

] = Ex

[ ∑
u∈N (s)

Xu(s)e
−Xu(s)1∀r∈[0,s],Xu(r)>01u/∈Bs,κ Z̃s,κ

]
= xe−xEQ̃x

[Z̃s,κ1ws∈Bs,κ ] ≤ xe−xEQ̃x
[Z̃s1ws∈Bs,κ ].

The Z̃s appearing in this last expectation can be decomposed as a sum indexed by
the (nonspine) children of the spine particles, each term in the sum corresponding
to the contribution of the descendants of this child plus the contribution from the
spine particle at time s. With �s denoting the set of branching times of the spine
before s, we then get

EQ̃x
[Z̃s1ws∈Bs,κ ]

= EQ̃x

[
1ws∈Bs,κ

∑
r∈�s

(Owr − 1)EXwr (r)[Z̃s−r ] + Xws (s)e
−Xws (s)

]

≤ Ex

[∫ s

0
κeRr/2ERr [Z̃s−r ]μ1λdr + Rse−Rs

]
= μ1λκEx

[∫ s

0
Rre−Rr/2 dr

]
+Ex

[
Rse−Rs

]
,

using that ERr [Z̃s−r ] = Rre−Rr . The first expectation is bounded by 192
x

by (B.7).

The second expectation is bounded by C′
x

, with C′ = maxy≥0 y2e−y , since the
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density of Rs under Px is bounded by y
x
gs(x, y) with gs(x, y) the Gaussian kernel

of variance s; see (B.5). This concludes the proof. �

4.3. Number of particles killed by the barrier. We still consider here a BBM
starting with a single particle at x ≥ 0 and where particles are killed when hitting 0.
Let L denote the stopping line of the killed particles and, for u ∈ L, let �u be the
killing time of u. Our interest in this section is the number

N[a,b] := #
{
u ∈ L : �u ∈ [a, b]}

of particles that are killed at 0 between times a and b. More generally, we introduce
as before a new random variable where we remove the particles with too many
children. For κ ≥ 0 and 0 ≤ a ≤ b, we set

Cκ := {
u ∈ L : ∀v < u,Ov ≤ κeXv(dv)/2},

N[a,b],κ := #
{
u ∈ Cκ : �u ∈ [a, b]}.

It will be most convenient to consider a different branching Markov process (in
the sense of Hardy and Harris [43]), namely, BBM where particles are stopped at
the origin. Formally, this is a branching Markov process where the motion of the
particles is standard Brownian motion on [0,∞), stopped when it hits the origin
and the branching rate is equal to λ on (0,∞) and zero at the origin (the offspring
distribution is the same as before). We will denote the law and expectation w.r.t.
this process by P0

x and E0
x respectively. It is clear that (Wt)t≥0 is still a martingale

under P0
x . As in Section 4.1 we can therefore define a new measure Q0

x by changing
the measure P0

x w.r.t. the normalized martingale (e−xWt)t≥0. This measure has an
analogous description as the measure Qx , except that all particles (including the
spine), are stopped at the origin and do not branch once stopped. Furthermore, we
have the following many-to-one lemma:

PROPOSITION 4.5. Let x ≥ 0. Let s ≥ 0, and let (Hs(u))u∈T be a family of
uniformly bounded Fs -measurable random variables. Then we have

E0
x

[ ∑
u∈N (s)

e−Xu(s)Hs(u)

]
= e−xEQ0

x

[
Hs(ws)

]
.

As a first application of Proposition 4.5, we calculate the first moment of N[a,b]
(this calculation is standard but we include it for convenience).

LEMMA 4.6. For x ≥ 0 and 0 ≤ a ≤ b, we have

Ex[N[a,b]] = e−x
∫ b

a

x√
2πs3/2

e−x2/2s ds.

Moreover, it follows that Ex[N[0,∞)] = e−x .
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PROOF. We first rewrite the expectation using BBM stopped at the origin:

Ex[N[a,b]] = E0
x

[ ∑
u∈N (b)

1Xu(b)=0,Xu(r)>0∀r<a

]
.

Note that if Xu(b) = 0, then 1 = e−Xu(b). We can therefore apply the many-to-one
formula (Proposition 4.5) and get

Ex[N[a,b]] = e−xQ0
x

(
Xwb

(b) = 0,Xwb
(r) > 0∀r < a

)
= e−xPx

(
inf{r ≥ 0 : Br = 0} ∈ [a, b]),

where (Br)r≥0 is a standard Brownian motion started at x under Px . The law of
the hitting time of the origin of Brownian motion started at x is known (see, e.g.,
equation 1.2.0.2 of Borodin and Salminen [22]) and implies the first statement of
the lemma. The second statement follows by setting a = 0, letting b → ∞ and
observing that the hitting time is finite almost surely (or by direct calculation,
using, e.g., the change of variables v = x/

√
s). �

LEMMA 4.7. There exists a decreasing function h : R+ → R+ such that
lima→∞ h(a) = 0 and, for any x ≥ 0, κ > 1,

Ex[N[0,∞) − N[0,∞),κ ] ≤ h(κ)

logκ
e−x.

PROOF. As in the beginning of the proof of Lemma 4.6, for any s ≥ 0, we
have

Ex[N[0,s] − N[0,s],κ ] = e−xQ0
x

(
Xws (s) = 0,ws /∈ Cκ

)
.

Under Px let (Br)r≥0 denote a Brownian motion, and let L̂ be a random variable
independent of (Br)r≥0 following the size-biased reproduction law. Furthermore,
set τ := inf{r ≥ 0 : Br = 0}. Then, using the spinal decomposition description
under Q0

x , we obtain as in Lemma 4.3,

Q0
x

(
Xws (s) = 0,ws /∈ Cκ

) ≤ Ex

[
1τ≤s

∫ τ

0
Px

(
L̂ > κeBt/2|(Bt )t≥0

)
μ1λdt

]
≤ μ1λEx

[
Ex

[∫ τ

0
1Bt<2 log+(L̂/κ) dt

∣∣∣L̂]]
≤ μ1λE

[(
2 log+(L̂/κ)

)2] by (B.1)

≤ 4μ1λE

[(
log+(L̂/κ)

)21L̂≥κ

log+ L̂

log+ κ

]
.

Setting h(κ) := 4λE[L(log+(L/κ))2 log+ L], we have limκ→∞ h(κ) = 0 by dom-
inated convergence (and using Assumption (1.1)). Letting s → ∞, this proves the
result. �
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LEMMA 4.8. There exists C > 0 such that we have, for any x ≥ 0 and κ ≥ 1,

Ex

[
N2[0,∞),κ

] ≤ Cκe−x.

PROOF. First, note that

Ex

[
N2[0,∞),κ

] = Ex

[
N[0,∞),κ (N[0,∞),κ − 1)

]+Ex[N[0,∞),κ ],
and the second summand is bounded by e−x by the inequality N[0,∞),κ ≤ N[0,∞)

and Lemma 4.6. It thus remains to show that the first summand is bounded by
Cκe−x for some C > 0.

The proof is similar to the proof of Lemma 4.4. We first have for s ≥ 0, by
Proposition 4.5,

Ex

[
N[0,s],κ (N[0,s],κ − 1)

] = E0
x

[ ∑
u∈N (s)

1Xu(s)=0,u∈Cκ (N[0,s],κ − 1)

]
= e−xEQ0

x

[
(N[0,s],κ − 1)1Xws (s)=0,ws∈Cκ

]
.

Denoting again �s , the set of branching times of the spine before s and using the
spinal decomposition description, we get

EQ0
x

[
(N[0,s],κ − 1)1Xws (s)=0,ws∈Cκ

]
= EQ0

x

[
1Xws (s)=0,ws∈Cκ

∑
t∈�s

(Owt − 1)EXwt (t)
[N[0,s−t],κ ]

]

≤ κEQ0
x

[
1Xws (s)=0

∑
t∈�s

eXwt (t)/2EXwt (t)
[N[0,∞)]

]
.

We denote again by (Br)r≥0 a Brownian motion started at x under Px and set
τ := inf{r ≥ 0 : Br = 0}. Using Lemma 4.6 and the formula for expectations of
additive functionals of Poisson point processes, the last estimates gives

Ex

[
N[0,s],κ (N[0,s],κ − 1)

] ≤ κμ1λe−xEx

[
1τ≤s

∫ τ

0
e−Bt/2 dt

]
,

and, letting s → ∞, we get

Ex

[
N[0,∞),κ (N[0,∞),κ − 1)

] ≤ κμ1λe−xEx

[∫ τ

0
e−Bt/2 dt

]
.

This last integral is bounded by a constant by (B.2), which finishes the proof of the
theorem. �
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4.4. Truncation of the critical additive martingale. In this section, using again
the new probability measure Q̃x , we study the truncation of the critical additive
martingale, when particles are killed below 0, defined by

W̃s := ∑
u∈N (s)

e−Xu(s)1∀r∈[0,s],Xu(r)>0, s ≥ 0.

Note that (W̃s)s≥0 is not a martingale. Moreover, we introduce, for κ ≥ 0 and
s ≥ 0,

W̃s,κ := ∑
u∈N (s)

e−Xu(s)1∀r∈[0,s],Xu(r)>01u∈Bs,κ ,

where Bs,κ has been introduced in Section 4.2.

LEMMA 4.9. For x ≥ 0, set F(x) := √
2/π

∫ x
0 e−z2/2 dz. For any x, s ≥ 0 we

have

Ex[W̃s] = e−xF

(
x√
s

)
≤ e−x

(
1 ∧

√
2

π

x√
s

)
.

PROOF. Using the many-to-one formula (Proposition 4.1) and the reflection
principle, we have

Ex[W̃s] = e−xPx

(∀r ∈ [0, s],Br ≥ 0
) = e−xP

(|Bs | ≤ x
) = e−xF

(
x√
s

)
,

because F(y) = P(|B1| ≤ y). Then note that, for any y > 0, we have F(y) ≤√
2/πy and also F(y) ≤ 1. �

LEMMA 4.10. There exists a decreasing function h : R+ → R+ such that
lima→∞ h(a) = 0 and, for any x, κ, s ≥ 0,

Ex[W̃s − W̃s,κ ] ≤ h(κ)e−x

(
1√
s

+ x

s

)
.

PROOF. Using Proposition 4.2, we get

Ex[W̃s − W̃s,κ ] = Ex

[ ∑
u∈N (s)

Xu(s)e
−Xu(s)1∀r∈[0,s],Xu(r)>0

1u/∈Bs,κ

Xu(s)

]

= xe−xEQ̃x

[1ws /∈Bs,κ

Xws (s)

]
.

Then, using the spinal decomposition description, we obtain

EQ̃x

[1ws /∈Bs,κ

Xws (s)

]
≤ Ex

[
1

Rs

∫ s

0
P
(
L̂ > κeRr/2|(Rr)r≥0

)
μ1λdr

]

= μ1λEx

[
Ex

[
1

Rs

∫ s

0
1Rr<2 log+(L̂/κ) dr

∣∣∣L̂]],
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and, applying Lemma B.1, we get

EQ̃x

[1ws /∈Bs,κ

Xws (s)

]
≤ μ1λE

[
C
(
2 log+(L̂/κ)

)3
(

1

x
√

s
+ 1

s

)]
.

Setting h(κ) := CλE[L(log+(L/κ))3], it proves the result. �

LEMMA 4.11. There exists C > 0 such that, for any x ≥ 0, κ ≥ 1 and s ≥ 2,
we have

Ex

[
W̃ 2

s,κ

] ≤ Cκe−x

(
1

s
+ x ln s

s3/2

)
.

PROOF. Using Proposition 4.2, we have

Ex

[
W̃ 2

s,κ

] = xe−xEQ̃x

[
W̃s,κ

1ws∈Bs,κ

Xws (s)

]
≤ xe−xEQ̃x

[
W̃s

1ws∈Bs,κ

Xws (s)

]
.

As in the proof of Lemma 4.4, we get (using Lemma 4.9 in the last step)

EQ̃x

[
W̃s

1ws∈Bs,κ

Xws (s)

]

= EQ̃x

[1ws∈Bs,κ

Xws (s)

( ∑
r∈�s

(Owr − 1)EXwr (r)[W̃s−r ] + e−Xws (s)

)]

≤ Ex

[
1

Rs

(∫ s

0
κeRr/2ERr [W̃s−r ]μ1λdr + e−Rs

)]

≤ μ1λκEx

[
1

Rs

∫ s

0
e−Rr/2

(
1 ∧

√
2

π

Rr√
s − r

)
dr

]
+Ex

[
1

Rs

e−Rs

]
.

The first expectation is bounded by C( 1
xs

+ ln s
s3/2 ) for some constant C and, by

Lemma B.2, for x > 0 (and the statement of the lemma is trivial if x = 0). The
second expectation is bounded by C/s3/2 and, because the density of Rs under Px

is bounded by Cy2/s3/2 for all x ≥ 0, by (B.5) and the inequality 1 − e−x ≤ x for
all x ≥ 0. Together with the previous inequalities, this yields the result. �

5. The particles staying above γt : Proof of Proposition 3.2. In this section
we prove Proposition 3.2 using the results from Section 4.2. As explained below, it
will be enough to consider a = 1. We recall the notation from Section 3: for t ≥ 0,

γt = 1

2
log t + βt with βt → ∞ and

βt

t1/4 → 0 as t → ∞,

Z̃t,γt
s = ∑

u∈N (s)

(
Xu(s) − γt

)
e−Xu(s)1∀r∈[t,s],Xu(r)>γt , s ≥ t.

We start with a preliminary lemma.
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LEMMA 5.1. We have the following convergence in probability:

√
t
∣∣Z̃t,γt∞ − Z̃

t,γt
t

∣∣ −−−→
t→∞ 0.

PROOF OF LEMMA 5.1. The proof basically follows a first- and second mo-
ment argument, with a truncation as in Section 4.2, in order to handle offspring
distributions of infinite variance. By analogy with Section 4.2, we set, for κ ≥ 1
and s ≥ t ,

Bt,γt
s,κ := {

u ∈ N (s) : ∀v < u,dv ≥ t ⇒ Ov ≤ κe(Xv(dv)−γt )/2},
Z̃t,γt

s,κ := ∑
u∈N (s)

(
Xu(s) − γt

)
e−Xu(s)1∀r∈[t,s],Xu(r)>γt 1u∈B

t,γt
s,κ

.

It is enough to show the following. For every ε > 0,

(5.1) P

(∣∣Z̃t,γt
s − Z̃

t,γt
t

∣∣ ≥ ε√
t

∣∣∣Ft

)
−−−→
t→∞ 0 in probability.

Noting that Z̃
t,γt
s − Z̃

t,γt
s,κ ≥ 0 and E[Z̃t,γt

s |Ft ] = Z̃
t,γt
t , we decompose

P

(∣∣Z̃t,γt
s − Z̃

t,γt
t

∣∣ ≥ 3ε√
t

∣∣∣Ft

)

≤ P

(
Z̃t,γt

s − Z̃t,γt
s,κ ≥ ε√

t

∣∣∣Ft

)

+ P

(∣∣Z̃t,γt
s,κ −E

[
Z̃t,γt

s,κ |Ft

]∣∣ ≥ ε√
t

∣∣∣Ft

)
+ 1

E[Z̃t,γt
s −Z̃

t,γt
s,κ |Ft ]≥ε/

√
t

≤ 2 ·
√

t

ε
E
[
Z̃t,γt

s − Z̃t,γt
s,κ |Ft

]+
(√

t

ε

)2
Var

(
Z̃t,γt

s,κ |Ft

)
,

(5.2)

using Markov’s inequality, Chebyshev’s inequality and the inequality 1x≥ε ≤ x/ε

for x ≥ 0.
For the first term in (5.2), using the branching property at time t and Lemma 4.3,

we have with the notation used there,

E
[
Z̃t,γt

s − Z̃t,γt
s,κ |Ft

] = ∑
u∈N (t)

e−γtEXu(t)−γt [Z̃s−t − Z̃s−t,κ ]1Xu(t)>γt

≤ ∑
u∈N (t)

e−γt e−(Xu(t)−γt )h(κ) = CWth(κ).
(5.3)
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For the second term in (5.2), using again the branching property at time t and
Lemma 4.4, we get

Var
(
Z̃t,γt

s,κ |Ft

) ≤ ∑
u∈N (t)

EXu(t)−γt

[(
e−γt Z̃s−t,κ

)2]1Xu(t)>γt

≤ ∑
u∈N (t)

e−2γt Cκe−(Xu(t)−γt ) = Cκe−γt Wt .
(5.4)

Combining (5.2), (5.3), (5.4) and taking s → ∞, we get, for every κ ≥ 1 and t ≥ 0,

(5.5) P

(∣∣Z̃t,γt∞ − Z̃
t,γt
t

∣∣ ≥ ε√
t

∣∣∣Ft

)
≤ C

√
tWt

(
h(κ)

ε
+ κe−βt

ε2

)
.

Now, recall from (1.7) that
√

tWt converges in probability as t → ∞. Taking κ =
eβt /2 and using that h(κ) → 0 as κ → ∞, the right-hand side of (5.5) then goes to
0 in probability as t → ∞ which shows (5.1). The result follows. �

The next lemma shows that the contribution of the particles below γt at time t

is negligible. It is stated in greater generality since it will be used in Section 6 as
well. It is here that we use the assumption γt = o(t1/4). Define for s ≥ t ≥ 0,

(5.6) W̃ t,γt
s := ∑

u∈N (s)

e−Xu(s)1∀r∈[t,s],Xu(r)>γt .

LEMMA 5.2. For all a ≥ 1, we have γt

√
t(Wat − W̃

t,γt
at ) → 0 in probability

as t → ∞.

PROOF. Fix ε > 0. By (1.4) there exists L > 0 such that

P
(
min
s≥0

min
u∈N (s)

Xu(s) ≤ −L
)

≤ ε.

By Markov’s inequality

P

(
Wat − W̃

t,γt
at ≥ ε

γt

√
t

)
≤ ε + ε−1γt

√
tE

[(
Wat − W̃

t,γt
at

)
1mins≥0 minu∈N (s) Xu(s)>−L

]
≤ ε + ε−1γt

√
tE

[ ∑
u∈N (at)

e−Xu(at)1minr∈[t,at] Xu(r)≤γt 1∀s∈[0,at],Xu(s)>−L

]
.

(5.7)

It follows from the many-to-one formula and the relation (B.3) between Brownian
motion and the three-dimensional Bessel process that the expectation on the right-
hand side of (5.7) is equal to

EL[1minr∈[t,at] Br≤γt+L1mins∈[0,at] Bs>0] = LEL

[
1

Rat

1minr∈[t,at] Rr≤γt+L

]
.
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By Lemma B.3

EL

[
1

Rat

1minr∈[t,at] Rr≤γt+L

]
≤ C

(
(γt + L)2

t3/2 + γt + L√
a − 1t

1a>1

)
.

Coming back to (5.7), we proved that

P

(
Wat − W̃

t,γt
at ≥ ε

γt

√
t

)
≤ ε + Cε−1L

(
γt (γt + L)2

t
+ γt (γt + L)√

(a − 1)t
1a>1

)
−−−→
t→∞ ε,

because γt = o(t1/4). This proves the lemma. �

PROOF OF PROPOSITION 3.2. First, note that it is sufficient to prove the case
a = 1: for a > 1, β ′

at := γt − 1
2 log(at) satisfies (3.1) with at instead of t , so one

can directly apply the case a = 1. We therefore have to show:

(5.8)
√

t
∣∣Z̃t,γt∞ − (Zt − γtWt)

∣∣ P−−−→
t→∞ 0.

We decompose:
√

t
∣∣Z̃t,γt∞ − (Zt − γtWt)

∣∣ ≤ √
t
∣∣Z̃t,γt∞ − Z̃

t,γt
t

∣∣+ √
t
∣∣Z̃t,γt

t − (Zt − γtWt)
∣∣.

The first term goes to 0 in probability by Lemma 5.1. The second term can be
written as

√
t
∣∣Z̃t,γt

t − (Zt − γtWt)
∣∣ = √

t
∑

u∈N (t)

(
γt − Xu(t)

)
e−Xu(t)1Xu(t)≤γt .

Since minu∈N (t) Xu(t) → ∞ a.s. as t → ∞ by (1.4), the right-hand side is
bounded by γt

√
t(Wt − W̃

t,γt
t ) with high probability for large t , and this goes

to 0 by Lemma 5.2 as t → ∞. Equation (5.8) follows. �

6. The particles going below γt : Proof of Propositions 3.3 and 3.4. In this
section we prove Propositions 3.3 and 3.4. We use throughout the notation from
Section 3, in particular the stopping line Lat,γt and its decomposition into

Lat,γt = Lat,γt

good ∪Lat,γt

bad .

Section 6.1 handles the “bad” particles. Proposition 3.4 is proven there. Section 6.2
contains bounds on the number of good particles hitting γt at a certain time. Sec-
tion 6.3 wraps up the proof of Proposition 3.3.
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6.1. The “bad” particles. In this section we prove that the “bad” particles
have a negligible contribution to Z∞, that is, we prove Proposition 3.4. We will
need the following estimate: there exists a constant C > 0, such that for all x ≥ 0,

(6.1) E[Z∞ ∧ x] ≤ C(1 + log+ x).

This estimate is a direct consequence of (1.8) and the equality E[X ∧ x] =∫ x
0 P(X > x)dx for a nonnegative random variable X.

PROOF OF PROPOSITION 3.4. We perform a truncated first moment compu-
tation. For simplicity write �u for �

at,γt
u . Then note that

F
at,γt

bad ∧ 1 ≤ ∑
u∈Lat,γt

bad

e−Xu(�u)(Z(u,at,γt )∞ ∧ eXu(�u))
≤ ∑

u∈Lat,γt
bad

e−Xu(�u)(Z(u,at,γt )∞ ∧ eγt
)
,

because the particles u ∈ Lat,γt

bad satisfy Xu(�u) ≤ γt . This gives

E
[
F

at,γt

bad ∧ 1|FLat,γt

] ≤ ∑
u∈Lat,γt

bad

e−Xu(�u)E
[
Z(u,at,γt )∞ ∧ eγt |FLat,γt

]
≤ C(1 + γt )

∑
u∈Lat,γt

bad

e−Xu(�u),

by (6.1). Now, define Nbad(at) as the set of particles u ∈ N (at) such that
minr∈[t,at] Xu(r) ≤ γt . Then Lat,γt

bad forms exactly the descendants of the particles
in Nbad(at) at the time when they go below γt . By the branching property at time
at and Lemma 4.6 (for particles above γt at time at),

E

[ ∑
u∈Lat,γt

bad

e−Xu(�u)
∣∣∣Fat

]
= ∑

v∈Nbad(at)

e−Xv(at) = Wat − W̃
t,γt
at ,

where W̃
t,γt
at is defined in Section 5. Altogether, we get

E
[√

t
(
F

at,γt

bad ∧ 1
)|Fat

] ≤ C(1 + γt )
√

t
(
Wat − W̃

t,γt
at

)
.

The proposition now readily follows from Lemma 5.2 and Markov’s inequality.
�

6.2. The number of “good” particles. We recall that Lat,γt

good is a decreasing set

in a with Lat,γt

good = {u ∈ Lt,γt

good : �t,γt
u > at}. For each a ≥ 1, we set

N
at,γt

good := #Lat,γt

good .

In this section we study the convergence of N
at,γt

good after a proper renormalization.
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LEMMA 6.1. For any a ≥ 1, we have the following convergence in probability:

βte
−βt

∣∣Nat,γt

good −E
[
N

at,γt

good |Fat

]∣∣ −−−→
t→∞ 0.

PROOF. The proof goes by a truncated second moment computation as in Sec-
tion 4.3. Fix a ≥ 1 and ε > 0. We set, for κ > 1,

Cat,γt
κ := {

u ∈ Lat,γt

good : ∀v < u,dv ≥ at ⇒ Ov ≤ κe(Xv(dv)−γt )/2},
N

at,γt

good,κ := #Cat,γt
κ .

Noting that N
at,γt

good − N
at,γt

good,κ ≥ 0 and working conditionally on Fat , we have

P

(∣∣Nat,γt

good −E
[
N

at,γt

good |Fat

]∣∣ ≥ 3εeβt

βt

∣∣∣Fat

)

≤ P

(
N

at,γt

good − N
at,γt

good,κ ≥ εeβt

βt

∣∣∣Fat

)

+ P

(∣∣Nat,γt

good,κ −E
[
N

at,γt

good,κ |Fat

]∣∣ ≥ εeβt

βt

∣∣∣Fat

)
+ 1

E[Nat,γt
good −N

at,γt
good,κ |Fat ]≥εeβt /βt

≤ 2βt

εeβt
E
[
N

at,γt

good − N
at,γt

good,κ |Fat

]+
(

βt

εeβt

)2
Var

(
N

at,γt

good,κ |Fat

)
,

(6.2)

using Markov’s inequality, Chebyshev’s inequality and the inequality 1x≥ε ≤ x/ε

for x ≥ 0.
For the first term in (6.2), using the branching property at time at and

Lemma 4.7, we have with the notation used there,

E
[
N

at,γt

good − N
at,γt

good,κ |Fat

]
= ∑

u∈N (at)

EXu(at)−γt [N(0,∞) − N(0,∞),κ ]1Xu(at)>γt

≤ ∑
u∈N (at)

e−(Xu(at)−γt )
h(κ)

logκ
= √

teβt Wat

h(κ)

logκ
.

(6.3)

For the second term in (5.2), using again the branching property at time at and
Lemma 4.8, we get

Var
(
N

at,γt

good,κ |Fat

) ≤ ∑
u∈N (at)

EXu(at)−γt

[
(N(0,∞),κ )2]1Xu(at)>γt

≤ ∑
u∈N (at)

Cκe−(Xu(at)−γt ) = Cκ
√

teβt Wat .
(6.4)
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Combining (6.2), (6.3) and (6.4) with κ = eβt /2, it follows that

P

(
e−βt

∣∣Nat,γt

good −E
[
N

at,γt

good |Fat

]∣∣ ≥ ε

βt

∣∣∣Fat

)

≤ C
√

tWat

(
h(eβt /2)

ε
+ β2

t e−βt /2

ε2

)
−−−→
t→∞ 0

in probability using the convergence in probability of
√

tWt from (1.7) and that
h(eβt /2) → 0. The result follows. �

PROPOSITION 6.2. For every a ≥ 1, we have the following convergence in
probability:

βt

∣∣e−βt N
at,γt

good − √
tWat

∣∣ −−−→
t→∞ 0.

PROOF. Using the branching property at time at and then applying Lem-
ma 4.6, we have

e−βtE
[
N

at,γt

good |Fat

] = e−βt
∑

u∈N (at)

1∀r∈[t,at]:Xu(r)>γtEXu(at)−γt [N(0,∞)]

= √
tW̃

t,γt
at .

(6.5)

Using the triangle inequality, it follows that

βt

∣∣e−βt N
at,γt

good − √
tWat

∣∣
≤ βte

−βt
∣∣Nat,γt

good −E
[
N

at,γt

good |Fat

]∣∣+ βt

√
t
∣∣W̃ t,γt

at − Wat

∣∣.
Both terms vanish in probability as t → ∞ by Lemmas 6.1 and 5.2. This concludes
the proof. �

COROLLARY 6.3. Let n ≥ 1, 1 ≤ a1 < · · · < an < an+1 = ∞ and (zt )t≥0 ∈
(Cn)R+ . Assume that, for any 1 ≤ k ≤ n and t ≥ 0, Re(zt

k) ≤ 0 and that zt con-
verges to some z ∈ Cn. Then we have the following convergence in probability:

E

[
exp

(
n∑

k=1

zt
ke−βt

(
N

akt,γt

good − N
ak+1t,γt

good

))|Ft

]

−−−→
t→∞ exp

(√
2

π
Z∞

n∑
k=1

zk

(
1√
ak

− 1√
ak+1

))
.

PROOF. Recalling that
√

tWat → √
2/πaZ∞ in probability by (1.7) and

Zt → Z∞ a.s., it follows from Proposition 6.2 that, for every 1 ≤ a < b ≤ ∞,
we have ∣∣∣∣e−βt

(
N

at,γt

good − N
bt,γt

good

)−
√

2

π
Zt

(
1√
a

− 1√
b

)∣∣∣∣ P−−−→
t→∞ 0.
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Noting that everything is bounded by 1 because Re(zt
k) ≤ 0 and using Remark A.3,

it is sufficient to prove that

E

[
exp

(
n∑

k=1

zt
k

√
2

π
Zt

(
1√
ak

− 1√
ak+1

))∣∣∣Ft

]

P−−−→
t→∞ exp

(√
2

π
Z∞

n∑
k=1

zk

(
1√
ak

− 1√
ak+1

))
.

But this holds because Zt is Ft -measurable and Zt → Z∞ a.s. �

6.3. Contribution of the “good” particles. In this section, we use the results
of the last section for proving Proposition 3.3.

PROOF OF PROPOSITION 3.3. Note that we can assume w.l.o.g. that a1 <

a2 < · · · < an. Using Proposition 6.2 and Remark A.3, it is sufficient to prove that

(6.6)

E

[
exp

(
i

n∑
k=1

λk

(√
tF

akt,γt

good − βte
−βt N

akt,γt

good

))∣∣∣Ft

]

P−−−→
t→∞ E

[
exp

(
i

n∑
k=1

λkSZ∞/
√

ak

)∣∣∣Z∞
]
,

where (St )t≥0 is the Lévy process from the statement of Theorem 1.1. Recall that
Lat,γt

good = {u ∈ Lt,γt

good : �
t,γt
u > at} and that, for u ∈ Lat,γt

good , we have �
at,γt
u = �

t,γt
u

and, therefore, Z
(u,at,γt )∞ = Z

(u,t,γt )∞ . Thus, we have

F
at,γt

good = ∑
u∈Lt,γt

good s.t. �
t,γt
u >at

e−γt Z(u,t,γt )∞ ,

where, given FLt,γt , the Z
(u,t,γt )∞ for u ∈ Lt,γt

good are i.i.d. copies of Z∞. Recalling
that �Z∞ denotes the characteristic function of Z∞, setting λ′

k := λ1 + · · · + λk

and an+1 = ∞, it gives

E

[
exp

(
i

n∑
k=1

λk

(√
tF

akt,γt

good − βte
−βt N

akt,γt

good

))∣∣∣FLt,γt

]

= E

[
exp

(
i

n∑
k=1

λ′
k

∑
u∈Lt,γt

good s.t. �
t,γt
u ∈(akt,ak+1t]

e−βt
(
Z(u,t,γt )∞ − βt

))∣∣∣FLt,γt

]

=
n∏

k=1

[
�Z∞

(
λ′

ke−βt
)

exp
(−iλ′

kβte
−βt

)]Nakt,γt
good −N

ak+1t,γt
good .

(6.7)
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But, using (1.12) and Lemma 2.3, we have for every λ ∈ R and large enough t ,

�Z∞
(
λe−βt

)
exp

(−iλβte
−βt

)
= �π/2,μZ

(
λe−βt

)
exp

(−iλβte
−βt + λe−βt g

(
λe−βt

))
= exp

(
e−βt

[−ψπ/2,μZ
(λ) + λg

(
λe−βt

)])
with g(λ) → 0 as λ → 0. Therefore, (6.7) is equal to

exp

(
n∑

k=1

e−βt
(
N

akt,γt

good − N
ak+1t,γt

good

)[−ψπ/2,μZ

(
λ′

k

)+ λ′
kg

(
λ′

ke−βt
)])

.(6.8)

Taking the conditional expectation given Ft in (6.8) and applying Corollary 6.3,
we get that the left-hand side of (6.6) converges in probability to

exp

(
−
√

2

π
Z∞

n∑
k=1

(
1√
ak

− 1√
ak+1

)
ψπ/2,μZ

(
λ′

k

))
.

Note that
√

2
π
ψπ/2,μZ

= ψ√
π/2,μZ

√
2/π by (1.11). Hence, the quantity in the last

display is exactly the right-hand side of (6.6) since (St )t≥0 is a Lévy process and
so has independent increments. This concludes the proof. �

7. Proof of Proposition 2.2. In this section we prove Proposition 2.2, con-
trolling the speed of convergence of

√
tWt toward

√
2/πZ∞. We use in the proof

the following fact, which is a consequence of Proposition 2.1 combined with (1.7):

(7.1) ∀ε > 0, lim sup
t→∞

P
(|Zt − Z∞| ≥ t−1/2+ε) = 0.

The arguments used here are a very rough version of the arguments used in the
forthcoming paper [65] for the fluctuations of the critical additive martingale.

PROOF OF PROPOSITION 2.2. Fix some α ∈ (0,1); its value will later be cho-
sen appropriately. Let t ≥ 2. We introduce a killing barrier at 0 between times tα

and t . We set, for s ∈ [tα, t],
Ws := ∑

u∈N (s)

e−Xu(s)1∀r∈[tα,t],Xu(r)>0,

Zs := ∑
u∈N (s)

Xu(s)e
−Xu(s)1∀r∈[tα,s],Xu(r)>0.

The steps of the proof are the following. First, note that, with high probability,
none of the particles is killed since minu∈N (s) Xu(s) → ∞ a.s. as s → ∞ by (1.4).
Therefore, we have

(7.2) P(Wt �= Wt) −−−→
t→∞ 0,



2986 P. MAILLARD AND M. PAIN

and we can consider Wt instead of Wt . We will show that the conditional first mo-
ment E[Wt |Ftα ] is very close to

√
2/πZtα and so to

√
2/πZ∞ by (7.1). Then we

prove that Wt is close to E[Wt |Ftα ] by a second moment argument, using results
proved with the change of probability in Section 4.4. We will use parameters α and
β that will be fixed at the end, and the constants C can depend on them.

We first deal with the first moment. Recall from Lemma 4.9 the definition of
the function F(y) = √

2/π
∫ y

0 e−z2/2 dz, y ≥ 0. Applying the branching property
at time tα and Lemma 4.9, we get

E[Wt |Ftα ] = ∑
v∈N (tα)

e−Xv(t
α)F

(
Xv(t

α)√
t − tα

)
1Xv(tα)>0.

Since |F(y) − √
2/πy| ≤ Cy3, for y ≥ 0, and t − tα ≥ Ct , for t ≥ 2, we get∣∣∣∣E[Wt |Ftα ] −

√
2

π(t − tα)
Ztα

∣∣∣∣
≤ C

∑
v∈N (tα)

e−Xv(t
α)

(
Xv(t

α)√
t − tα

)3
1Xv(tα)>0

≤ Ctα−(3/2)
∑

v∈N (tα)

e−Xv(t
α)Xv

(
tα
)(Xv(t

α)√
tα

)2
1Xv(tα)>0.

Using furthermore that |(t − tα)−1/2 − t−1/2| ≤ Ctα−(3/2), we have∣∣∣∣√tE[Wt |Ftα ] −
√

2

π
Ztα

∣∣∣∣
≤ Ctα−1

∑
v∈N (tα)

e−Xv(t
α)Xv

(
tα
)(

1 +
(

Xv(t
α)√

tα

)2)
1Xv(tα)>0.

We want to use Markov’s inequality to bound the left-hand side of this inequality
in probability but have to truncate the paths for this. For any ε > 0, there exists
K > 0 such that P(mins≥0 minu∈N (s) Xu(s) < −K) ≤ ε by (1.4). Decomposing
with respect to this event, and then applying Markov’s inequality, the many-to-one
formula and the relation (B.3) between the Brownian motion killed at zero and the
three-dimensional Bessel process, we successively get,

P

(∣∣∣∣√tE[Wt |Ftα ] −
√

2

π
Ztα

∣∣∣∣ ≥ A

t1−α

)

≤ ε + C

A
E

[ ∑
v∈N (tα)

e−Xv(t
α)Xv

(
tα
)(

1 +
(

Xv(t
α)√

tα

)2)

× 1Xv(tα)>01∀s≤tα,Xu(s)≥−K

]
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= ε + C

A
E

[
Btα

(
1 +

(
Btα√

tα

)2)
1Btα >01∀s≤tα,Bs≥−K

]

≤ ε + C

A
EK

[
Btα

(
1 +

(
Btα√

tα

)2)
1∀s≤tα,Bs≥0

]

= ε + CK

A
EK/

√
tα

[
1 + R2

1
] −−−→

t→∞ ε + CK

A
E
[
1 + R2

1
]
.

Combining this with the fact that P(Ztα �= Ztα) → 0 as t → ∞, we finally get, by
taking ε → 0,

(7.3) lim sup
A→∞

lim sup
t→∞

P

(∣∣∣∣√tE[Wt |Ftα ] −
√

2

π
Ztα

∣∣∣∣ ≥ A

t1−α

)
= 0.

We now want to prove that E[Wt |Ftα ] is close to Wt . By analogy with Sec-
tion 4.4, we introduce, for κ ≥ 1,

Bt,κ := {
u ∈ N (t) : ∀v < u,dv ≥ tα ⇒ Ov ≤ κeXv(dv)/2},

W t,κ := ∑
u∈N (t)

e−Xu(t)1∀s∈[tα,t],Xu(s)>01u∈Bt,κ
.

Then, by the triangle inequality and noting that Wt − Wt,κ ≥ 0, we have, for any
ε > 0,

P
(∣∣Wt −E[Wt |Ftα ]

∣∣ ≥ 3ε|Ftα
)

≤ P(W t − Wt,κ ≥ ε|Ftα ) + P
(∣∣Wt,κ −E[Wt,κ |Ftα ]

∣∣ ≥ ε|Ftα
)

+ 1E[Wt−Wt,κ |Ftα ]≥ε.

Applying Markov’s inequality, Chebyshev’s inequality and the inequality 1x≥ε ≤
x/ε for x ≥ 0, we get

(7.4)
P
(∣∣Wt −E[Wt |Ftα ]

∣∣ ≥ 3ε|Ftα
)

≤ 2 · 1

ε
E[Wt − Wt,κ |Ftα ] + 1

ε2 Var(W t,κ |Ftα ).

In order to bound these two terms, we use the branching property at time tα , then
Lemma 4.10 for the first term and Lemma 4.11 for the second. This gives

E[Wt − Wt,κ |Ftα ] ≤ ∑
v∈N (tα)

Ch(κ)e−Xv(t
α)

(
1√

t − tα
+ Xv(t

α)

t − tα

)
1Xv(tα)>0

= Ch(κ)

(
Wtα√
t − tα

+ Ztα

t − tα

)
,
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Var(W t,κ |Ftα ) ≤ ∑
v∈N (tα)

EXv(tα)

[
(W̃t−tα,κ )2]

≤ Cκ

(
Wtα

t − tα
+ Ztα ln(t − tα)

(t − tα)3/2

)
.

We plug these bounds into (7.4) with κ := 1 and ε := t−β− 1
2 for some β ∈ (0, α/4).

Using again the inequality t − tα ≥ Ct for t ≥ 2, this gives

P
(√

t
∣∣Wt −E[Wt |Ftα ]

∣∣ ≥ 3t−β |Ftα
)

≤ C
(
Wtα

(
tβ + t2β)+ Ztα

(
tβ− 1

2 + t2β− 1
2 ln t

))
≤ Ct2β− α

2
(
tα/2Wtα + Ztα

) P−−−→
t→∞ 0

using (1.5) and (1.7). It follows that

(7.5) P
(√

t
∣∣Wt −E[Wt |Ftα ]

∣∣ ≥ 3t−β) −−−→
t→∞ 0.

Finally, we consider some θ ∈ (0,1/5) and choose α ∈ (4θ,1 − θ) and β ∈
(θ,α/4). Then, for t large enough, we have t−θ ≥ 3t−β + t1−θ−α/(3t1−α) +
t

α
2 −θ /(3

√
tα) and, therefore,

lim sup
t→∞

P

(∣∣∣∣√tWt −
√

2

π
Z∞

∣∣∣∣ ≥ t−θ

)
≤ lim sup

t→∞

{
P(Wt �= Wt) + P

(√
t
∣∣Wt −E[Wt |Ftα ]

∣∣ ≥ 3t−β)
+ P

(∣∣∣∣√tE[Wt |Ftα ] −
√

2

π
Ztα

∣∣∣∣ ≥ t1−θ−α

3t1−α

)

+ P

(√
2

π
|Z∞ − Ztα | ≥ t

α
2 −θ

3
√

tα

)}
,

and all terms vanish in the limit by (7.2), (7.5), (7.3) (because t1−θ−α → ∞) and
(7.1) (because α/2 − θ > 0). �

APPENDIX A: WEAK CONVERGENCE IN PROBABILITY

We work here on a Polish space E with its Borel algebra E . We denote by Cb(E)

the set of bounded continuous functions from E → R. For a finite measure ξ on
(E,E) and a function f ∈ Cb(E), we set ξ(f ) := ∫

E f dξ .
Let (μn)n∈N be a sequence of random probability measures on (E,E). We say

that μn converges weakly almost surely to a random probability measure μ∞ as
n → ∞ if

a.s., ∀f ∈ Cb(E), μn(f ) −−−→
n→∞ μ∞(f ).
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Berti, Pratelli and Rigo [17] proved that the two following statements are equiva-
lent:

(i) for any f ∈ Cb(E), μn(f ) converges a.s. as n → ∞;
(ii) there exists a random probability measure μ∞ such that μn → μ∞ weakly

almost surely.

The point here is the interchange of “a.s.” and the quantifier “∀f .”
We say that μn converges weakly in probability to μ∞ as n → ∞ if, for any

subsequence (nk)k∈N, there exists a subsequence (nki
)i∈N such that μnki

converges
to μ∞ weakly almost surely as i → ∞. Then Berti, Pratelli and Rigo [17] also
showed the equivalence between the following statements:

(i)′ for any f ∈ Cb(E), μn(f ) converges in probability as n → ∞;
(ii)′ there exists a random probability measure μ∞ such that μn → μ∞ weakly

in probability.

For n ∈ [0,∞), we will denote by Pμn the annealed probability measure defined
by

∀A ∈ E, Pμn(A) := E
[
μn(A)

]
.

Note that, if μn converges weakly in probability to μ∞, then Pμn converges
weakly to Pμ∞.

We now work on the space E =Rd and establish the following proposition. An
analogous result for the weak convergence almost surely has been proved by Berti,
Pratelli and Rigo [17].

PROPOSITION A.1. Let μn for n ∈ N∪ {∞} be random probability measures
on Rd . Then μn converges weakly in probability to μ∞ iff, for any λ ∈ Rd , we have∫

Rd
ei(λ,x) dμn(x) −−−→

n→∞

∫
Rd

ei(λ,x) dμ∞(x) in probability.

PROOF. For λ ∈ Rd , we set fλ : x ∈ Rd �→ ei(λ,x). The direct implication is
obvious; so we prove the reciprocal: we assume that, for any λ ∈ Rd , μn(fλ) →
μ∞(fλ) in probability. Let (nk)k∈N be a subsequence. We want to prove that there
exists a subsequence (nkm)m∈N of (nk)k∈N such that, a.s., ∀λ ∈ Rd , μnkm

(fλ) →
μ∞(fλ) as m → ∞. Indeed, by Lévy’s theorem, this implies that μnkm

weakly
converges to μ∞ almost surely. Note that the point is to be able to change the
order of “almost surely” and “for all λ.”

For n ∈ N∪ {∞} and δ > 0, we set

Yn(δ) :=
∫
Rd

(
2 ∧ δ|x|)dμn(x),

so that, if |λ − λ′| ≤ δ, then

(A.1)
∣∣μn(fλ) − μ∞(fλ)

∣∣ ≤ ∣∣μn(fλ′) − μ∞(fλ′)
∣∣+ Yn(δ) + Y∞(δ).
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The assumption implies that, for any λ ∈ Rd , Pμn(fλ) → Pμ∞(fλ) and therefore
that Pμn converges weakly to Pμ∞. Thus, it follows that E[Yn(δ)] → E[Y∞(δ)]
as n → ∞. Moreover, by dominated convergence, for any n ∈ N ∪ {∞}, we have
E[Yn(δ)] ↓ 0 as δ ↓ 0. Combining this and the fact that Yn(δ) is increasing in δ for
every n, one can easily get that

sup
n∈N∪{∞}

E
[
Yn(δ)

] −−→
δ↓0

0.

Therefore, for any m ∈ N∗, there exists δm > 0 such that

sup
n∈N∪{∞}

E
[
Yn(δm)

] ≤ 2−m.

Now we set �i := [−m,m]d ∩ δmZ
d . By the assumption, we can construct the

subsequence (nkm)m∈N of (nk)k∈N as follows: let nk0 := n0 and, for m ≥ 1, choose
nkm > nkm−1 such that

(A.2) P

(
∃λ ∈ �m : ∣∣μnkm

(fλ) − μ∞(fλ)
∣∣ ≥ 1

3m

)
≤ 1

2m
.

Using (A.1) and (A.2), we get, for any m ≥ 1,

P

(
∃λ ∈ [−m,m]d : ∣∣μnkm

(fλ) − μ∞(fλ)
∣∣ ≥ 1

m

)
≤ 1

2m
+ P

(
Ynkm

(δm) ≥ 1

3m

)
+ P

(
Y∞(δm) ≥ 1

3m

)
.

(A.3)

Using Markov’s inequality and the definitions of nkm and of δm, both probabilities
on the right-hand side of (A.3) are bounded by 3m

2m . The right-hand side of (A.3)
is therefore summable in m ∈ N∗, and it follows by Borel–Cantelli lemma that a.s.
there exists m0 ≥ 1 such that, for any m ≥ m0 and λ ∈ [−m,m]d , |μnkm

(fλ) −
μ∞(fλ)| < 1/m. This implies that a.s., for any λ ∈ Rd , μnkm

(fλ) → μ∞(fλ) as
m → ∞. �

As a corollary of this result, we state the following generalization of Slutsky’s
theorem.

COROLLARY A.2. Let μn for n ∈ N be random probability measures on
Rd+d ′

. We denote by μ1
n the marginal distribution of μn associated with the d

first coordinates and μ2
n associated with the d ′ last coordinates. Assume that μ1

n

converges weakly in probability to a random probability measure μ1∞ on Rd and
that μ2

n converges weakly in probability to δx , for some x ∈ Rd ′
. Then μn converges

weakly in probability to μ1∞ ⊗ δx .
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REMARK A.3. One consequence of this corollary that we use repetitively in
the paper is the following. Let Xn and Yn for n ∈ N be random variables taking
values in Rd and Fn for n ∈N be σ -fields. If the conditional law of Xn, given Fn,
converges weakly in probability to some random probability μ∞, and Yn converges
in probability to 0, then the conditional law of Xn + Yn, given Fn, converges
weakly in probability to μ∞.

APPENDIX B: SOME FORMULAE FOR THE THREE-DIMENSIONAL
BESSEL PROCESS

Let (Bs)s≥0 denote a standard Brownian motion starting from x under Px and
τ := inf{r ≥ 0 : Br = 0}. Using that the Green function of the Brownian motion
killed at zero is G(x,y) = 2(x ∧ y) ≤ 2y for x, y > 0, one can get the two follow-
ing bounds, for any x, a > 0:

Ex

[∫ τ

0
1Br<a dr

]
≤ a2,(B.1)

Ex

[∫ τ

0
e−Bt/2 dt

]
≤ 8,(B.2)

obtained by a direct computation.
Let (Rs)s≥0 denote a three-dimensional Bessel process starting from x un-

der Px . Recall that, for x > 0, one has the following link between the three-
dimensional Bessel process and the Brownian motion (see Imhof [53]). For any
t ≥ 0 and any measurable function F : C([0, t]) →R+,

(B.3) Ex

[
F
(
Bs, s ∈ [0, t])1∀s∈[0,t],Bs>0

] = Ex

[
x

Rt

F
(
Rs, s ∈ [0, t])].

Note that the law of the process (Rs)s≥0 is stochastically increasing in x, as can be
seen by a coupling argument. Hence, every functional F which is nonincreasing
in the sense that F((ys)s≥0) ≤ F((zs)s≥0) as long as ys ≥ zs for every s ≥ 0, we
have

(B.4) ∀x ≥ 0: Ex

[
F(Rs, s ≥ 0)

] ≤ E0
[
F(Rs, s ≥ 0)

]
.

The density of Rs under Px is

(B.5) z �→ e−(z−x)2/2s

√
2π

1z>0 ×

⎧⎪⎪⎨⎪⎪⎩
z

x
√

s

(
1 − e−2xz/s) if x > 0,

2z2

s3/2 if x = 0.

The Green function of the three-dimensional Bessel process (w.r.t. Lebesgue mea-
sure) is G(x,y) = 2y2(x−1 ∧ y−1) for x, y > 0, and the two following bounds
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follow: for any a, x > 0,

Ex

[∫ ∞
0

1Rr<a dr

]
≤ a3

x
,(B.6)

Ex

[∫ ∞
0

Rre−Rr/2 dr

]
≤ 192

x
.(B.7)

We now establish three lemmas that are slightly more technical.

LEMMA B.1. There exists C > 0 such that, for any s, x, a > 0, we have

Ex

[
1

Rs

∫ s

0
1Rr<a dr

]
≤ Ca3

(
1

x
√

s
+ 1

s

)
.

PROOF. First note that we have for any y, t ≥ 0, by (B.4), Ey[1/Rt ] ≤
E0[1/Rt ] = √

2/πt . We cut the integral into two pieces and first deal with the
part r ∈ [0, s/2]: we have, by Markov’s property at time s/2,

Ex

[
1

Rs

∫ s
2

0
1Rr<a dr

]
= Ex

[
ERs/2

[
1

Rs/2

]∫ s
2

0
1Rr<a dr

]

≤
√

4

πs
Ex

[∫ s
2

0
1Rr<a dr

]
and, applying (B.6), we get

(B.8) Ex

[
1

Rs

∫ s
2

0
1Rr<a dr

]
≤ 2√

πs

a3

x
.

Now, we deal with the second part of the integral:

Ex

[
1

Rs

∫ s

s
2

1Rr<a dr

]
=

∫ s

s
2

Ex

[
1

Rs

1Rr<a

]
dr(B.9)

=
∫ s

s
2

Ex

[
ERr

[
1

Rs−r

]
1Rr<a

]
dr

≤
∫ s

s
2

√
2

π(s − r)
Px(Rr < a)dr.(B.10)

Moreover, by (B.4) we have

Px(Rr < a) ≤ P0(Rr < a) =
∫ a

0

√
2

π

z2

r3/2 e−z2/2r dz,

and using that r ≥ s/2, we get

(B.11) Px(Rr < a) ≤
√

2

π

(
2

s

)3/2 ∫ a

0
z2 dz = 4a3

3
√

πs3/2 .
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Thus, we get

Ex

[
1

Rs

∫ s

s
2

1Rr<a dr

]
≤ 4

√
2a3

3πs3/2

∫ s

s
2

dr√
s − r

= 8a3

3πs
,

and this concludes the proof. �

LEMMA B.2. There exists C > 0 such that, for any x, a > 0 and s ≥ 2, we
have

Ex

[
1

Rs

∫ s

0

(
Rr√
s − r

∧ 1
)

e−Rr/2 dr

]
≤ C

(
1

xs
+ ln s

s3/2

)
.

PROOF. We have

Ex

[
1

Rs

∫ s

0

(
Rr√
s − r

∧ 1
)

e−Rr/2 dr

]

≤ Ex

[
1

Rs

∫ s

0

∑
k≥0

(
k + 1√
s − r

∧ 1
)

e−k/21Rr∈[k,k+1) dr

]

≤ ∑
k≥0

(k + 1)e−k/2Ex

[
1

Rs

∫ s

0

(
1√

s − r
∧ 1

)
1Rr<k+1 dr

]
.

We split the integral into two pieces as in the proof of Lemma B.1 and then use
(B.8) for the first term and (B.9) with (B.11) for the second term to obtain

Ex

[
1

Rs

∫ s

0

(
1√

s − r
∧ 1

)
1Rr<k+1 dr

]

≤ Ex

[
1

Rs

∫ s
2

0

√
2

s
1Rr<k+1 dr

]
+
∫ s

s
2

(
1√

s − r
∧ 1

)
Ex

[
1

Rs

1Rr<k+1

]
dr

≤
√

2

s

2√
πs

(k + 1)3

x
+
∫ s

s
2

(
1√

s − r
∧ 1

)
4
√

2(k + 1)3

3πs3/2
√

s − r
dr.

Noting that, for s ≥ 2,∫ s

s
2

(
1√

s − r
∧ 1

)
1√

s − r
dr =

∫ 1

0

dr√
r

+
∫ s

2

1

dr

r
≤ C ln s,

we finally get

Ex

[
1

Rs

∫ s

0

(
Rr√
s − r

∧ 1
)
Rre−Rr/2 dr

]
≤ C

∑
k≥0

(k + 1)4e−k/2
(

1

xs
+ ln s

s3/2

)
,

and this concludes the proof. �
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LEMMA B.3. There exists C > 0 such that, for any x, y > 0, t > 0 and s ≥ 0,
we have

Ex

[
1

Rt+s

1minr∈[t,t+s] Rr≤y

]
≤ C

(
y2

t3/2 + 1√
t

(
y√
s

∧ 1
)
1s>0

)
.

PROOF. By (B.4), it suffices to consider x = 0. We furthermore drop the sub-
script and write E and P instead of E0 and P0. Using Markov’s property at time t ,
we get

E

[
1

Rt+s

1minr∈[t,t+s] Rr≤y

]

= E

[
ERt

[
1

Rs

1minr∈[0,s] Rr≤y

]]
= E

[
ERt

[
1

Rs

]
1Rt≤y

]
+E

[
ERt

[
1

Rs

1minr∈[0,s] Rr≤y

]
1Rt>y

]
=: T1 + T2.

(B.12)

Since x �→ 1/x is a superharmonic function for the Bessel process, the first term
is bounded by

T1 ≤ E

[
1

Rt

1Rt≤y

]
= 1√

t
E

[
1

R1
1R1≤y/

√
t

]

= 1√
t

∫ y/
√

t

0

1

z

√
2

π
z2e−z2/2 dz ≤ C

y2

t3/2 .

(B.13)

As for the term T2 in (B.12), first note that it vanishes if s = 0. If s > 0, we use
that for z ≥ y > 0 by equation 5.1.2.8 of Borodin and Salminen [22],

Ez

[
1

Rs

1minr∈[0,s] Rr≤y

]
= 1√

2πsz

∫ ∞
0

(
e−(u+z−2y)2/2s − e−(u+z)2/2s)du

= 1√
2πsz

∫ ∞
z−y

(
e−(u−y)2/2s − e−(u+y)2/2s)du

≤ 1

z
× 1√

2πs

∫ ∞
0

(
e−(u−y)2/2s − e−(u+y)2/2s)du,

using that z ≥ y in the last inequality. The second term in the product on the right-
hand side equals the probability that a Brownian motion starting from y does not
hit 0 by time s (see, e.g., Appendix 1.3 in Borodin and Salminen [22]) and is easily
bounded by C(y/

√
s ∧ 1). Therefore, if s > 0,

T2 ≤ CE

[
1

Rt

](
y√
s

∧ 1
)

≤ C√
t

(
y√
s

∧ 1
)
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by the scaling invariance of the Bessel process. Together with (B.12) and (B.13),
this proves the lemma. �

APPENDIX C: ASYMPTOTIC OF �Z∞

The following lemma can be deduced from classical results about the domain
of attraction of (1-)stable laws, but it is difficult to find good references where all
constants are explicit. We therefore prove it here for convenience.

LEMMA C.1. Let Z ≥ 0 be a random variable satisfying:

1. P(Z > x) ∼ 1/x as x → ∞,
2.

∫ x
0 P(Z > y)dy − logx → c as x → ∞, for some c ∈ R.

Let γ denote the Euler–Mascheroni constant. Then, as λ → 0 in R,

(C.1) E
[
eiλZ] = exp

(
−π

2
|λ| + iλ

(− log |λ| + c − γ
)+ o

(|λ|)),

where o(|λ|) is a (complex-valued) term that satisfies |o(|λ|)|/|λ| → 0 as λ → 0.

PROOF. Since E[e−iλZ] = E[eiλZ], it suffices to consider λ > 0. We will sep-
arate the regions where Z � λ−1, Z � λ−1 and Z � λ−1. For this fix ε > 0.
Throughout the proof we use the Landau symbols o and O , which have their usual
meaning, with the slight twist that the o symbol may depend on ε. We first re-
call the following formula easily obtained by integration by parts (formally, using
Fubini’s theorem):

∀y ≥ 0, E
[
eiλ(Z∧y)] = 1 + iλ

∫ y

0
eiλxP(Z > x)dx.

This allows us to split up E[eiλZ] as follows: using hypothesis 1,

(C.2)
E
[
eiλZ] = E

[
eiλ(Z∧(ελ)−1)]+ O

(
P
(
Z > (ελ)−1))

= 1 + iλ(I1 + I2) + O(ελ),

where we set

I1 :=
∫ ελ−1

0
eiλxP(Z > x)dx and I2 :=

∫ (ελ)−1

ελ−1
eiλxP(Z > x)dx.

It remains to estimate the integrals I1 and I2. For the first integral, we have by
hypotheses 1 and 2, as λ → 0,

(C.3) I1 =
∫ ελ−1

0

(
1 + O(λx)

)
P(Z > x)dx = log

(
ελ−1)+ c + o(1) + O(ε).
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For the second integral we have, by a change of variables,

I2 =
∫ ε−1

ε
eixP

(
Z > λ−1x

)dx

λ
.

Together with hypothesis 1 and dominated convergence, this gives as λ → 0,

(C.4) I2 =
∫ ε−1

ε
eix dx

x
+ o(1).

Recall ([1], pages 228ff) that the exponential integral E1 is defined for |arg(z)| < π

by E1(z) = ∫∞
z e−t dt

t
, and that it satisfies

E1(z) = −γ − log z + O(z)
(|z| → 0

)
, E1(z) ∼ e−z

z

(|z| → ∞)
.

In particular this gives∫ ε−1

ε
eix dx

x
= E1(−iε) − E1

(−iε−1) = −γ − log ε + π

2
i + O(ε),

and plugging this into (C.4) gives

(C.5) I2 = −γ − log ε + π

2
i + O(ε) + o(1).

Equations (C.2), (C.3) and (C.5) now give as λ → 0,

E
[
eiλZ] = 1 + iλ

(
− log(λ) + c − γ + π

2
i + O(ε) + o(1)

)
.

Letting first λ → 0 then ε → 0 gives the desired result. �

APPENDIX D: RATE OF CONVERGENCE OF THE DERIVATIVE
MARTINGALE

In this last section we prove Proposition 1.5. For this we need to recall two
explicit bounds. The first one concerns the global minimum of the BBM: for any
L > 0,

(D.1) P
(
∃s ≥ 0 : min

u∈N (s)
Xu(s) ≤ −L

)
≤ e−L.

This follows easily from Doob’s inequality applied to the martingale (Wt)t≥0. We
remark that more precise estimates have been proved recently under additional
assumptions by Madaule [63] (for the branching random walk) and Berestycki et
al. [15] (for the binary branching Brownian motion).

The second bound deals with the minimum of the BBM at time t : for any x ∈
[0,

√
t] and t ≥ 2, we have

(D.2) P

(
min

u∈N (t)
Xu(t) ≤ 3

2
log t − x

)
≤ C(1 + x)2e−x.
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This has been proved by Bramson [27], Proposition 3, in the case E[L2] < ∞, but,
since the proof relies only on first moments arguments, it holds also under (1.1).

PROOF OF PROPOSITION 1.5. First, note that we can assume that δ ≥ t−1/2

because otherwise it is enough to bound the probability by 1. We keep the notation
of Section 3 but take here βt = 1

2 log t , so that γt = log t . Using (3.3), it is sufficient
to prove the following inequalities:

P
(∣∣Zt − Z̃

t,γt
t

∣∣ ≥ δ
) ≤ C

(log t)2

δ
√

t
,(D.3)

P
(∣∣Z̃t,γt

t − Z̃t,γt∞
∣∣ ≥ δ

) ≤ C
log t

δ
√

t
,(D.4)

P
(
F

t,γt

good ≥ δ
) ≤ C

(log t)2

δ
√

t
,(D.5)

P
(
Lt,γt

bad �=∅
) ≤ C

(log t)2
√

t
,(D.6)

noting that (D.6) is sufficient because δ ≤ 1.
We start with (D.6). Using (D.2), we get

P
(
Lt,γt

bad �= ∅
) = P

(
min

u∈N (t)
Xu(t) ≤ log t

)
≤ C

(
1 + 1

2
log t

)2 1√
t
,

and it proves (D.6).
Now, we prove (D.3). On the event {Lt,γt

bad = ∅}, we have Z̃
t,γt
t = Zt − (log t)Wt .

Therefore, using (D.1) with L = log t > 0 and using (D.6), we get

P
(∣∣Zt − Z̃

t,γt
t

∣∣ ≥ δ
)

≤ C
(log t)2

√
t

+ 1

t
+ P

(
(log t)Wt ≥ δ,min

s≥0
min

u∈N (s)
Xu(s) ≥ − log t

)
.

But, using the many-to-one formula, we have, for any L > 0,

(D.7)

E[Wt1mins≥0 minu∈N (s) Xu(s)≥−L] ≤ P
(

min
s∈[0,t]Bs ≥ −L

)
= P

(|Bt | ≤ L
) ≤ C

L√
t

and this shows (D.3) using Markov’s inequality.
We now deal with (D.4). For this, applying first (5.5) with κ = 1 and ε = δ

√
t,

and then using that δ ≥ t−1/2 and t ≥ 2, we get

P
(∣∣Z̃t,γt∞ − Z̃

t,γt
t

∣∣ ≥ δ|Ft

) ≤ C
√

tWt

(
h(1)

δ
√

t
+ e−βt

δ2t

)
≤ C

δ
Wt .
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Applying again (D.1) with L = log t and (D.7), we get

P
(∣∣Z̃t,γt

s − Z̃
t,γt
t

∣∣ ≥ δ
)

≤ 1

t
+ C

δ
E[Wt1mins≥0 minu∈N (s) Xu(s)≥− log t ] ≤ 1

t
+ C

log t

δ
√

t
.

This proves (D.4).
Finally, we deal with (D.5). By Markov’s inequality and the bound (6.1) on the

truncated moment of Z∞,

P
(
F

t,γt

good ≥ δ|FLt,γt

) ≤ 1

δ
E

[( ∑
u∈Lt,γt

good

1

t
Z(u,t,γt )∞

)
∧ 1

∣∣∣FLt,γt

]

≤ #Lt,γt

good

δt
E[Z∞ ∧ t]

≤ CN
t,γt

good
log t

δt
.

Applying again (D.1) with L = log t , we get

P
(
F

t,γt

good ≥ δ
) ≤ 1

t
+ C

log t

δt
E
[
N

t,γt

good1mins∈[0,t] minu∈N (s) Xu(s)≥− log t

]
.

But, using (6.5) with here βt = (log t)/2, we have E[Nt,γt

good|Ft ] = tW̃
t,γt
t ≤ tWt .

Therefore, using (D.7), it follows that

P
(
F

t,γt

good ≥ δ
) ≤ 1

t
+ C

log t

δt
t
log t√

t
,

and this proves (D.5). �
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