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GEOMETRIC STRUCTURES OF LATE POINTS OF
A TWO-DIMENSIONAL SIMPLE RANDOM WALK

BY IZUMI OKADA

Tokyo University of Science

As Dembo (In Lectures on Probability Theory and Statistics (2005) 1–
101 Springer, and International Congress of Mathematicians, Vol. III (2006)
535–558, Eur. Math. Soc.) suggested, we consider the problem of late points
for a simple random walk in two dimensions. It has been shown that the
exponents for the number of pairs of late points coincide with those of fa-
vorite points and high points in the Gaussian free field, whose exact values
are known. We determine the exponents for the number of j -tuples of late
points on average.

1. Introduction. This paper discusses the properties of special sites, called
late points, in a two-dimensional random walk. The cover time is the time taken to
randomly walk in Z

2
n(= Z

2/nZ2) and visit every point of Z2
n, and a late point of a

random walk in Z
2
n is a point of Z2

n, where the first hitting time is nearly equal to
the cover time in a certain specific sense. We denote the set of α-late points in Z

2
n

as Ln(α) for 0 < α < 1 as in [9] (see (2.1) in the next section) and obtain certain
asymptotic forms of

(1.1)
∣∣{�x ∈ Ln(α)j : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j

}∣∣
for any 0 < α,β < 1 and j ∈ N, where �x := (x1, . . . , xj ). We then solve the related
problem posed in Open Problem 4 in [5] and Open Problem 4.3 in [6].

Approximately 60 years ago, Erdős and Taylor [13] proposed a problem con-
cerning a simple random walk in Z

d . Forty years later, Dembo, Peres, Rosen
and Zeitouni [7, 8] solved it and other related problems by developing innova-
tive proofs. These methods yielded results concerning late points in Z

2
n, verified

by Dembo et al. [9], which showed that the numbers of late points in clusters of
different sizes have a variety of power growth exponents. These methods and tools
have now been improved. Belius–Kistler [2] introduced a new multi-scale refine-
ment of the 2nd moment method. In these estimates, it is more difficult to deal
with the lower bound of some numbers than the upper one.

Conversely, in this study, it is more difficult to compute the upper bound. We
explain why the results in [3, 9] cannot be easily extended to arbitrary j -tuples
of points. In [3, 9], they estimated the probability that the pairs of points are late
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points. The number of pairs of α-late points can be easily computed by this prob-
ability. However, because the probability is complex, the number of arbitrary j -
tuples of late points cannot be easily computed by the probability that j -tuples
of points are late points (see the explanation of the proofs for the main result in
Section 2). Thus, we use a linear algebra approach by exploiting the relationship
between the probability and ultrametric matrices. We find the relationship by esti-
mating the probability with a Green’s function.

Here, we explain the motivation for studying α-late points. We want to compare
the asymptotic behavior of special points in a random walk and in the Gaussian
free field (GFF) by understanding their similarity between the local time and the
GFF. In fact, there are several known results concerning similarity. Eisenbaum et
al. [12] showed a powerful equivalence law called the generalized second Ray–
Knight theorem for a random walk and the GFF. Ding et al. [10, 11] showed a
strong connection between the expected maximum of the GFF and the expected
cover time. In addition, for 0 < α < 1, they used the set of α-high points in the GFF
in Z

2
n (sites where the GFF takes high values) and α-favorite points in Z

2 (sites
where the local time is close to that of the most frequently visited site). Dembo et
al. [9] and Brummelhuis and Hilhorst [3] estimated the number of pairs of α-late
points, and Daviaud [4] estimated the α-high points. We show the corresponding
results for the α-favorite points in our forthcoming paper. The similarity between
α-late points, high points and favorite points are included in these estimations.
In addition, we find that local times converge the GFF in long-time through the
generalized second Ray–Knight theorem. We expect that the similarity helps us to
understand the convergence.

2. Known results and main results. To state our main results, we introduce
the following notation. Let d be the Euclidean distance and N := {1,2, . . .}. For
n ∈ N, let D(x, r) := {y ∈ Z

2
n : d(x, y) < r} and for any G ⊂ Z

2
n, ∂G := {y ∈ Gc :

d(x, y) = 1 for some x ∈ G}. For x ∈ Z
2
n, we sometimes omit {} when writing the

one-point set {x}. Let {Sk}∞k=1 be a simple random walk in Z
2
n. Let P x denote the

probability of a simple random walk starting at x. For simplicity, we write P for
P 0. Let K(n,x) be the number of times visits for the simple random walk to x up
to time n, that is, K(n,x) = ∑n

i=0 1{Si=x}. For any D ⊂ Z
2
n, let TD := inf{m ≥ 1 :

Sm ∈ D}. Let τn := inf{m ≥ 0 : Sm ∈ ∂D(0, n)}. �a	 denotes the smallest integer n

with n ≥ a. We use the same notation for a simple random walk in Z
2.

We introduce the known results for α-late points in Z
2
n. Dembo et al. [8] esti-

mated the asymptotic form of the cover time of a simple random walk in Z
2
n as

follows:

lim
n→∞

maxx∈Z2
n
Tx

(n logn)2 = 4

π
in probability.

For 0 < α < 1, we define the set of α-late points in Z
2
n such that

(2.1) Ln(α) :=
{
x ∈ Z

2
n : Tx

(n logn)2 ≥ 4α

π

}
.
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Brummelhuis and Hilhorst [3] estimated the average of (1.1) for j = 2, and Dembo
et al. [9] estimated (1.1) in probability for j = 2. We extend this to a full multi-
fractal analysis.

THEOREM 2.1. For any 0 < α,β < 1 and j ∈ N

lim
n→∞

logE[|{�x ∈ Ln(α)j : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j}|]
logn

= ρ̂j (α,β),

where

ρ̂j (α,β) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 + 2(j − 1)β − 2jα

(1 − β)(j − 1) + 1

(
β ≤ 1 + 1 − √

jα

j − 1

)
,

2(j + 1 − 2
√

jα)

(
β ≥ 1 + 1 − √

jα

j − 1

)
.

REMARK 2.1. We are preparing a paper on the following result: for any 0 <

α,β < 1 and j ∈ N in probability

lim
n→∞

log |{�x ∈ Ln(α)j : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j}|
logn

= ρj (α,β),

where

ρj (α,β) :=

⎧⎪⎪⎨
⎪⎪⎩

2 + 2(j − 1)β − 2jα

(1 − β)(j − 1) + 1

(
β ≤ j

j − 1
(1 − √

α)

)
,

4j (1 − √
α) − 2j (1 − √

α)2/β

(
β ≥ j

j − 1
(1 − √

α)

)
.

An explanation of the difference in the exponents is given in [5, 6] for j = 2.

Now we provide an explanation of the proofs for the main result. In particular,
we explain how this problem is connected to the linear algebra approach. Roughly
speaking, certain asymptotic forms of (1.1) are determined using the hitting prob-
abilities of j -points of a simple random walk. In addition, the hitting probabilities
are determined by Green’s functions of j -points, and the values of Green’s func-
tions of j -points behave with ultrametricity in long-time. Proposition 4.1 yields
that we can reduce the configurations of j -points to those in an ultrametric posi-
tion. That is why ultrametricity plays an important role in the main result.

Now we provide the details. For the proof of Theorem 2.1, we must find an
appropriate estimate of

E
[∣∣{�x ∈ Ln(α)j : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j

}∣∣]
= ∑

d(xi ,xl)≤nβ,

xi∈Z2
n,1≤∀i,l≤j

P
(�x ∈ Ln(α)j

)
.(2.2)
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Note that the position of a j -tuple point determines the value of P(�x ∈ Ln(α)j ).
This value can be expressed by a matrix constructed from Gn(x, y) :=∑∞

m=0 P x(Sm = y,m < τn) for x, y ∈ D(0, n), which is the Green’s function of
the walk killed when it exits D(0, n). We shall show that to achieve uniformity in
x1, . . . , xj ∈ D(0, n/3),

(2.3) P
(�x ∈ Ln(α)j

) ≈ exp
(
−2α lognχ

((
πGn(xi, xl)

2 logn

)
1≤i,l≤j

))
,

where an ≈ bn means logan/ logbn → 1 as n → ∞ for any sequence and χ(A) is
the summation over all the elements of A−1 for any regular matrix A. We explain
the proof of (2.3) in step (I).

(I) The proof of (2.3):
In Section 4 (Proposition 4.2), we shall see the probability that x1, . . . , xj in

D(0, n) will be uncovered by the walk under a certain condition determined by
the crossing number between two large circles is used to estimate the left-hand
side of (2.3). In Section 3, we obtain equations consisting of hitting probabilities
and Green’s functions (see (3.3)), which show that hitting probabilities can be
expressed by certain cofactors of (Gn(xi, xl))1≤i,l≤j (see (3.1)). Finally, we find
that the product is equal to the right-hand side of (2.3).

Next, we provide an explanation of the proof of Theorem 2.1 assuming (2.3).
We explain the difficulty of the proof of the upper bound. In fact, by using (2.3),
we find that the logarithm of (2.2) is asymptotically equal to that of the summation
of

(2.4) exp
(
−2α lognχ

((
πGn(x

(n)
i , x

(n)
l )

2 logn

)
1≤i,l≤j

))

over (x
(n)
1 , . . . , x

(n)
j ) ∈ D(0, n/3)j , where (x

(n)
1 , . . . , x

(n)
j ) is an ultrametric space

with the error term no(1) as n → ∞. Here, the ultrametric space with the error term
no(1) is the following set with an associated distance function: for any 1 ≤ i, l, p ≤
j with i �= l, l �= p and i �= p

(2.5) d
(
x

(n)
i , x

(n)
l

) ≤ max
{
d
(
x

(n)
l , x(n)

p

)
no(1), d

(
x(n)
p , x

(n)
i

)
no(1)}.

Then, the configuration of x
(n)
1 , . . . , x

(n)
j has a certain nesting structure. For ex-

ample, if we estimate the upper bound of (2.2) for j = 3, we need to look at an
equidistant configuration and the position that the one is far from the others. For
j = 3, an equidistant configuration means a triple (x

(n)
1 , x

(n)
2 , x

(n)
3 ) such that as

n → ∞,

d
(
x

(n)
1 , x

(n)
2

) ≈ d
(
x

(n)
2 , x

(n)
3

) ≈ d
(
x

(n)
3 , x

(n)
1

)
.

For a general j ∈ N, there are various positions of x1, . . . , xj . Therefore, when j

increases, computing the upper bound in Theorem 2.1 becomes difficult. Subse-
quently, we developed the following unique step.
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(II) The upper bound in Theorem 2.1 by assuming (2.3):
We need to find the leading term of (2.4) over (x

(n)
1 , . . . , x

(n)
j ) conditioned

by (2.5). We will show that (πGn(x
(n)
i , x

(n)
l )/(2 logn))1≤i,l≤j is asymptotically

close to the ultrametric matrix as n → ∞ in a certain sense. Therefore, we de-
fine Mj (see Section 5), which is a certain set of j × j -ultrametric matrices
(see Section 3.3 in [1]), and estimate χ(A) for any A in Mj to further estimate
χ((πGn(x

(n)
i , x

(n)
l )/(2 logn))1≤i,l≤j ). Ultrametric matrices have come to the at-

tention of some linear algebraists and have been used as models of systems that
can be represented by a bifurcating hierarchical tree (see, e.g., [17]). In this study,
we find new properties of Mj . Proposition 5.3 yields the minimum of χ(A) for A

in Mj under a certain condition. Finally, we obtain the result that the properties of
Mj directly determine the asymptotic behavior of (2.4) and that the leading term
comes from the equidistant configuration for any j ∈N.

3. Basic properties. In this section, we use the preliminary results concerning
a simple random walk that will be applied in later sections. In proofs given in the
remainder of this paper, we use constants that may vary for different occurrences.

3.1. Hitting probabilities. First we compute the probabilities that a simple
random walk in Z

2
n does not hit a j -tuple point until a certain random time. Given

the j distinct points x1, . . . , xj of Z2
n and a nonempty subset D̃ of Z2

n that is dis-
joint from X := {x1, . . . , xj }, let τ̃ denote a time when the walk enters D̃. For
1 ≤ i, l ≤ j and y /∈ X, we define

qi,l :=
∞∑

m=0

P xi (Sm = xl,m < τ̃ ∧ Ty),

Q := (qi,l)1≤i,l≤j .

LEMMA 3.1. For 1 ≤ u ≤ j , it holds that

(3.1) P xu(Ty = TX ∧ τ̃ ∧ Ty) =
j∑

i=1

(cofactor of qu,i)

det(Q)
P xi (Ty = τ̃ ∧ Ty).

We have

min
1≤u≤j

P xu(Ty = τ̃ ∧ Ty)χ(Q) ≤
j∑

u=1

P xu(Ty = TX ∧ τ̃ ∧ Ty)

≤ max
1≤u≤j

P xu(Ty = τ̃ ∧ Ty)χ(Q).(3.2)

Note that for any regular matrix A, χ(A) is the summation over all the elements
of A−1.
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PROOF. Because the summation of both sides of (3.1) over 1 ≤ u ≤ j yields
(3.2), it suffices to show (3.1). By decomposing the probability P xi (Ty = τ̃ ∧ Ty)

according to the last time the walk leaves the set X before τ̃ ∧ Ty , we obtain

(3.3) P xi (Ty = τ̃ ∧ Ty) =
j∑

l=1

qi,lP
xl (Ty = TX ∧ τ̃ ∧ Ty),

for 1 ≤ i ≤ j . The matrix Q is regarded as the Green kernel for the Markov chain
on X with the substochastic transition matrix U := (ui,l)1≤i,l≤j given by

ui,l := P xi (Txl
= TX < τ̃ ∧ Ty),

so that UQ = Q − E, where E denotes the unit matrix. Accordingly, Q is regular
and

(3.4) Q−1 := E − U.

Therefore, we have (3.1). �

Next, we introduce the estimates of the hitting probabilities for a simple random
walk in Z

2, as we only need estimates for “Z2” in this paper.

LEMMA 3.2. To achieve uniformity in 0 < r < |x| < R,

(3.5)

P x(T0 < τR) = log(R/|x|) + O(|x|−1)

logR

(
1 + O

((
log |x|)−1))

,

P x(τr < τR) = log(R/|x|) + O(r−1)

log(R/r)
.

PROOF. As per Exercise 1.6.8 in [14], or (4.1) and (4.3) in [18], we obtain the
desired result. �

Next, we give the estimates of a Green’s function. For x, y ∈ D(0, n), Gn(x, y)

is a Green’s function.

LEMMA 3.3. For any x ∈ D(0, n)

Gn(x,0) =
∞∑

m=0

P x(Sm = 0,m < τn)

= 2

π
log

(
n

d(0, x)+
)

+ O
((

d(0, x)+
)−1 + n−1 + 1

)
,(3.6)

where τn is the stopping time as we mentioned in Section 2 and a+ = a ∨ 1. In
particular, for x, y ∈ D(0, n/3),

(3.7) Gn(x, y) = 2

π
log

(
n

d(x, y)+
)

+ O
((

d(x, y)+
)−1 + n−1 + 1

)
.
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PROOF. As per Proposition 1.6.7 in [14] or (2.1) in [18], we obtain (3.6).
Therefore, for x, y ∈ D(0, n/3),

Gn(x, y) ≤
∞∑

m=0

P x−y(Sm = 0,m < τ4n/3)

= 2

π
log

(
n

d(x, y)+
)

+ O
((

d(x, y)+
)−1 + n−1 + 1

)
,

Gn(x, y) ≥
∞∑

m=0

P x−y(Sm = 0,m < τ2n/3)

= 2

π
log

(
n

d(x, y)+
)

+ O
((

d(x, y)+
)−1 + n−1 + 1

)
.

Subsequently, we obtain (3.7). �

REMARK 3.1. In addition, with the aid of (3.6), the strong Markov property
yields

(3.8) P(τn < T0) =
( ∞∑

m=0

P(Sm = 0,m < τn)

)−1

= π

2 logn

(
1 + o(1)

)
.

4. Proof of Theorem 2.1. In this section, we provide the proof of Theo-
rem 2.1. We give estimates for the proof of Theorem 2.1 in Section 4.1 and the
proof of Theorem 2.1 in Section 4.2.

4.1. Some estimates for the proof of Theorem 2.1. To prepare estimates for
the main result, we add the following definitions. We fix j ∈ N. For 0 < η ≤ (1 −
β) ∧ β , let Mj = Mβ,η

j be the set of j × j -matrices (ai,l)1≤i,l≤j satisfying the
following properties:

(a) symmetric,
(b) ai,i = 1, 1 − β ≤ ai,l ≤ 1 − η for any 1 ≤ i �= l ≤ j , and
(c) ai,l ≥ min{al,p, ai,p} for any 1 ≤ i, l, p ≤ j with i �= l, l �= p,p �= i.

A strictly ultrametric matrix is a symmetric matrix with nonnegative entries that
satisfies (c); in addition, ai,i > max{ai,k : k ∈ {1, . . . , i − 1, i + 1, . . . , j}} for any
1 ≤ i ≤ j (see [15]). Subsequently, any element in Mj is an ultrametric matrix.
In Proposition 5.2, we will show any matrix in Mj is a regular matrix. Given the
real-valued j × j -matrices M := (mi,l)1≤i,l≤j and M ′ := (m′

i,l)1≤i,l≤j , let

E
[
M,M ′] = E

[
M,M ′](j, n)

:= {�x ∈ (
Z

2
n

)j : mi,l ≤ d(xi, xl) ≤ m′
i,l for any 1 ≤ i �= l ≤ j

}
.
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Note that the set is independent of the diagonal elements of a matrix. When mi,l =
a and m′

i,l = a′ for 1 ≤ i �= l ≤ j , we simply write E[(a), (a′)]. For A ∈ Mj and
δ > 0 let

Êδ[A] = Êδ[A](j, n) := E
[(

1

2j
n1−ai,l

)
1≤i,l≤j

,
(
2jn1−ai,l+δ)

1≤i,l≤j

]
.

By the following proposition, we find that it is possible to reduce the configuration
of points to those in an ultrametric position.

PROPOSITION 4.1. Fix 0 < β < 1. For any 0 < δ < 1 −β , there exists n0 ∈N

such that for any n ≥ n0 and �x ∈ E[(nη), (nβ)], there exists A ∈ Mβ,η
j such that

�x ∈ Êδ[A] holds.

We will show Proposition 4.1 in Section 5.2. Next, we introduce our goal in this
subsection.

PROPOSITION 4.2. Fix 0 < β < 1. For any ε > 0, there exist C > 0 and 0 <

δ < 1 − β such that for any 0 < α < 1, x ∈ Z
2
n and all sufficiently large n ∈ N that

satisfy A ∈ Mβ,η
j and �x ∈ Êδ[A], it holds that

P
(�x ∈ Ln(α)j

) ≤ Cn−2αχ(A)+ε

and for any 0 < α < 1, x ∈ Z
2
n with x1 ∈ D(0, n/10)c and all sufficiently large

n ∈ N that satisfy A ∈ Mβ,η
j and �x ∈ Êδ[A], it holds that

C−1n−2αχ(A)−ε ≤ P
(�x ∈ Ln(α)j

)
.

To show the proposition, we prepare notations and provide the lemma. For
k,n ∈ N with k ≤ n, let nn = nn(α) := �2αn2 logn	, rk := k!, and Kn := �nbrn	
for b ∈ [1,3]. Let Rx1

n = Rx1
n (α) be the time until completion of the first nn(α)

excursions of the path from ∂D(x1, rn−1) to ∂D(x1, rn) (see the definition of ex-
cursions in Lemma 2.3 in [9] et al.).

LEMMA 4.1. Fix 0 < β < 1. For any ε > 0, there exist C > 0 and 0 < δ <

1 − β such that for any 0 < α < 1, x ∈ Z
2
Kn

, and all sufficiently large n ∈ N that

satisfy A ∈ Mβ,η
j and �x ∈ Êδ[A](j,Kn), it holds that

P
(
TX > Rx1

n (α)
) ≤ CK−2αχ(A)+ε/2

n .

PROOF. By the strong Markov property, it suffices to show that uniformity in
y0 ∈ ∂D(x1, rn−1) and �x ∈ Êδ[A],
(4.1) P y0(TX < T∂D(x1,rn)) = 1 + o(1)

n
χ(A).
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Note that for �x ∈ Êδ[A], 1 ≤ i, l ≤ j , and y0 ∈ ∂D(x1, rn−1)

∞∑
m=0

P xi (Sm = xl,m < T∂D(x1,rn) ∧ Ty0) ≤ Grn(xi − x1, xl − x1),

∞∑
m=0

P xi (Sm = xl,m < T∂D(x1,rn) ∧ Ty0) ≥ Grn−1(xi − x1, xl − x1).

Because rn−1/(2jK
β+δ
n ) ≥ 3 for all sufficiently large n ∈ N and xi, xl ∈ D(x1,

2jK
β+δ
n ) hold, (3.7) yields

∞∑
m=0

P xi (Sm = xl,m < T∂D(x1,rn) ∧ Ty0) = 2

π

(
log rn − logd(xi, xl)

+ + O(1)
)
.

Subsequently, (3.5) yields that to achieve uniformity in �x ∈ Êδ[A] and y0 ∈
∂D(x1, rn−1),

P xi (Ty0 < T∂D(x1,rn)) = 1 + o(1)

n
.

Therefore, to achieve uniformity in �x ∈ Êδ[A],∣∣∣∣ 2

π

(
log rn − logd(xi, xl)

+ + o(1)
) − ai,l

2n logn

π

∣∣∣∣
≤ max

2n logn

π
|bi,l − ai,l| = o(1)n logn,

where the above maximum is over bi,l = ai,l + o(1) with 1 ≤ i, l ≤ j . In addition,
as per Remark 5.6, to achieve uniformity in �x ∈ Êδ[A],∣∣∣∣χ

((
2

π

(
log rn − logd(xi, xl)

+ + O(1)
))

1≤i,l≤j

)
− π

2n logn
χ(A)

∣∣∣∣
= o(1)

n logn
.(4.2)

Therefore, if we substitute T∂D(x1,rn) and y for τ̃ and y0 in (3.2), (3.7) yields

(4.3)
j∑

l=1

P xl (Ty0 < TX ∧ T∂D(x1,rn)) = 1 + o(1)

n

π

2n logn
χ(A).

Note that as per (3.8), we obtain

P y0(Ty0 < TX ∧ T∂D(x1,rn)) = 1 − π + o(1)

2n logn
.
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Subsequently,

P y0(TX < T∂D(x1,rn))

=
∞∑
i=0

P y0(Ty0 < TX ∧ T∂D(x1,rn))
iP y0(TX = Ty0 ∧ TX ∧ T∂D(x1,rn))

= 1

1 − P y0(Ty0 < TX ∧ T∂D(x1,rn))
P y0(TX < Ty0 ∧ T∂D(x1,rn))

= 2(1 + o(1))n logn

π
P y0(TX < Ty0 ∧ T∂D(x1,rn))

= 2(1 + o(1))n logn

π

j∑
l=1

P xl (Ty0 < TX ∧ T∂D(x1,rn)).

The last equality comes from the time-reversal of a simple random walk. There-
fore, in view of (4.3), we have (4.1). �

PROOF OF PROPOSITION 4.2. Note that we only have to show the result for
a sequence Kn, because b ∈ [1,3] is arbitrary and thus Kn covers all sufficiently
large integers. Fix 0 < δ1 < α. As per (3.19) in [9], there exist c > 0 and δ > 0
such that for any 0 < α < 1, n ∈ N and �x ∈ Êδ[A],

P

(
4α

π
(Kn logKn)

2 < Rx1
n (α − δ1)

)
≤ c−1 exp

(−cn2 logn
)
.

We find that for any n ∈ N

P
(�x ∈ LKn(α)j

)
≤ P

(
TX > Rx1

n (α − δ1)
) + P

(
4α

π
(Kn logKn)

2 <Rx1
n (α − δ1)

)

≤ CK−2(α−δ1)χ(A)+ε/2
n + c−1 exp

(−cn2 logn
)
.(4.4)

Note that as per Lemma 4.1 in [9], for any 0 < δ2 < 1 − α, there exists c > 0 such
that for any n ∈N and �x ∈ Êδ[A],

P

(
4α

π
(Kn logKn)

2 > Rx1
n (α + δ2)

)
≤ c−1 exp

(−cn2 logn
)
.

Then, we have that for �x ∈ Êδ[A] with x1 ∈ D(0, n/10)c,

P
(�x ∈ LKn(α)j

)
≥ P

(
TX > Rx1

n (α + δ2)
) − P

(
4α

π
(Kn logKn)

2 >Rx1
n (α + δ2)

)

≥ cK−2(α+δ2)χ(A)−ε/2
n − c−1 exp

(−cn2 logn
)
.(4.5)

Therefore, if we select sufficiently small δ1, δ2 > 0 for ε > 0, we obtain Proposi-
tion 4.2. �



GEOMETRIC STRUCTURES OF LATE POINTS 2879

4.2. Proof of Theorem 2.1.

PROOF OF THE UPPER BOUND IN THEOREM 2.1. Fix 0 < β < 1. Proposi-
tions 4.2 and 5.4 yield that for any ε > 0, there exists C > 0 such that for any
0 < α < 1, and n ∈ N,

(4.6)
∑

�x∈E[(nη),(nβ)]
P

(�x ∈ Ln(α)j
) ≤ Cnρ̂j (α,β)+ε.

Now we extend the result for “E[(nη), (nβ)]” to “E[(0), (nβ)]” by performing in-
duction on j ∈ N. We assume that for any ε > 0, there exists C > 0 such that for
any n ∈ N, ∑

(x1,...,xj−1)∈E[(0),(nβ)]
P

(
x1, . . . , xj−1 ∈ Ln(α)

) ≤ Cnρ̂j (α,β)+(j−1)ε.

For j = 1, according to Proposition 4.2, it is trivial that∑
x∈Z2

n

P
(
x ∈ Ln(α)

) ≤ Cnρ̂1(α,β)+ε.

Let us assume that the claim holds for j − 1 with j ≥ 2. We show that the claim
holds for j . For any ε > 0, we select η > 0 with 2η < ε and n0 given in Proposi-
tion 4.1. Therefore, according to (4.6), Lemma A.1, and induction, we obtain that
for any n ≥ n0,

E
[∣∣{�x ∈ Ln(α)j : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j

}∣∣]
= ∑

�x∈E[(0),(nβ)]
P

(�x ∈ Ln(α)j
)

≤ ∑
�x∈E[(nη),(nβ)]

P
(�x ∈ Ln(α)j

)

+ ∑
(x1,...,xj−1)∈E[(0),(nβ)](j−1)

P
(
x1, . . . , xj−1 ∈ Ln(α)

)
Cn2η

≤ Cnρ̂j (α,β)+ε + Cnρ̂j−1(α,β)+(j−1)ε+2η ≤ Cnρ̂j (α,β)+jε.

As it suffices to show it for all sufficiently large n ∈N, we obtain the desired result.
�

We write A
(j)
r for (ai,l)1≤i,l≤j if ai,i = 1 and ai,l = r for 1 ≤ i �= l ≤ j and

1 −β ≤ r ≤ 1 −η. Note that A
(j)
r ∈ Mj . In addition, A

(1)
r is independent of r , and

therefore, we sometimes write A(1).

PROOF OF THE LOWER BOUND IN THEOREM 2.1. It is trivial that χ(A
(j)
1−l) =

j/(1 + (j − 1)(1 − l)). Fix 0 < β < 1 and ε > 0 and pick δ > 0 in Proposition 4.2.
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If we consider �x ∈ E[(nl), (5jnl)] with x1 ∈ D(0, n/10)c for 0 < η < l < 1, then
Proposition 4.2 yields that for any 0 < α < 1 and all sufficiently large n ∈ N with
5jnl ≤ 2jnl+δ ,

P
(�x ∈ Ln(α)j

) ≥ exp
(
− 2jα logn

1 + (j − 1)(1 − l)
+ o(logn)

)
.

Let

R :=
{
�x : x1 ∈ Z

2
n ∩ D

(
0,

n

10

)c

,

xi ∈ x1 + (
0,4(i − 1)nl) + D

(
0, nl) for any 2 ≤ i ≤ j

}
.

Note that there exists c > 0 such that for any n ∈ N,

|R| ≥ cn2+2(j−1)l .

In addition,

E
[(

nl), (
5jnl)] ⊃ R.

Therefore, Proposition 5.4 and the simple computation yield that for η < s < 1∑
�x∈E[(nl),(5jnl)]

P
(�x ∈ Ln(α)j

)

≥ cn2+2(j−1)l × exp
(
− 2jα logn

1 + (j − 1)(1 − l)
+ o(logn)

)
.

As 2+2(j −1)l −2αj/(1+ (j −1)(1− l))|l=(1+(1−√
jα)/(j−1))∧β = ρ̂j (α,β) and

η is arbitrary, we obtain the result. �

5. Matrix argument. In this section, our goal is to arrive at Proposition 5.4,
which is used in the proof of the upper bound in Theorem 2.1. We use only Proposi-
tions 5.4 and 5.5 in the proof of Theorem 2.1. To show Proposition 5.4, we prepare
some propositions and lemmas in Section 5.1 and provide proofs in Section 5.2.

5.1. Claims. We first establish results that yield the properties of matrices in
Mj and then those that link the properties of Mj with the main results. Note that
(c) in the definition of Mj in Section 4.1 can be rewritten as

(d) for any 1 ≤ i, l, p ≤ j with i �= l, l �= p,p �= i,

it holds that ai,l < ai,p ⇒ al,p = ai,l

assuming (a) and (b). Hereafter, we simply write A for (ai,l)1≤i,l≤j .
Now we introduce propositions that provide the properties of Mj . For jk ∈ N,

let Ak := (a
(k)
i,l )1≤i,l≤jk

∈ Mjk
(∀k = 1, . . . ,m) and j = ∑m

k=1 jk . For the injec-
tive function σk : {1, . . . , jk} → {1, . . . , j} (∀k = 1, . . . ,m) with

⋃m
k=1 Imσk =
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{1, . . . , j} and s ≤ min{a(k)
i,l | k ∈ {1, . . . ,m}, i, l ∈ {1, . . . , jk}}, we let A = A

σ1
1 �s

· · ·�s A
σm
m if

ai,l :=
⎧⎨
⎩

a
(k)

σ−1
k (i),σ−1

k (l)
(∀i, l ∈ Imσk, k = 1, . . . ,m),

s otherwise.

Note that definitions yield A
σ1
1 �s · · ·�s A

σm
m ∈ Mj and min1≤i,l≤j ai,l = s. We de-

fine (ai,l)1≤i,l≤j
∼= (a′

i,l)1≤i,l≤j if there exists a bijective function σ : {1, . . . , j} →
{1, . . . , j} such that aσ(i),σ (l) = a′

i,l for any 1 ≤ i, l ≤ j .

PROPOSITION 5.1. It holds that for any j ≥ 2 with j ∈ N, A ∈ Mj satisfies
the following: there exist Ak ∈ Mjk

, σk for k = 1, . . . ,m with m ≥ 2 such that

A = A
σ1
1 �s · · ·�s A

σm
m , where s < min{a(k)

i,l | k ∈ {1, . . . ,m}, i, l ∈ {1, . . . , jk}}.

REMARK 5.1. We call A
σ1
1 �s · · · �s A

σm
m the maximal decomposition of A

if s < min{a(k)
i,l | k ∈ {1, . . . ,m}, i, l ∈ {1, . . . , jk}}. We show that if A′σ ′

1
1 �s · · ·�s

A′σ ′
m′

m′ is the maximal decomposition of A, then m = m′ and there exists a bijective
function σ̃ : {1, . . . , j} → {1, . . . , j} such that Aσ̃(k)

∼= A′
k in Remark 5.4. There-

fore, the maximal decomposition is uniquely determined in a certain sense. The
maximal decomposition corresponds to clustering a j -tuple point by the maximal
distance in the ultrametric space.

PROPOSITION 5.2. Any element included in Mj is a regular matrix. In other
words, for any A ∈ Mj , there exists a unique solution y1, . . . , yj such that

A�yT = �1T ,

where �y := (y1, . . . , yj ) and �1 := (1, . . . ,1).

REMARK 5.2. References [15] and [16] demonstrated that a strictly symmet-
ric ultrametric matrix is a regular matrix, and therefore, that the desired result had
already been obtained. However, we provide another proof because the argument
is used later.

We define  inductively as follows: for A ∈Mj whose maximal decomposition
is A

σ1
1 �s · · ·�s A

σm
m ,

(A) :=
m∑

k=1

(Ak) + (m − 1)(1 − s),

where (A) := 0 for A ∈ M1.
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REMARK 5.3. We simultaneously show the claim that  is well defined and
(A) = (A′) for A ∼= A′ by performing induction on j ∈ N. This is trivial for
j = 1. We assume the claim for 1, . . . , j − 1 and show the claim for j . Subse-
quently, Remark 5.1 and the assumption yield that  is well-defined for j . Note
that if A ∼= A′ holds and A

σ1
1 �s · · · �s A

σm
m is the maximal decomposition of A,

there exists σ ′
k for 1 ≤ k ≤ m such that A′ = A

σ ′
1

1 �s · · · �s A
σ ′

m
m . Therefore, we

obtain (A) = (A′) for j and retain the claim.

Next, we observe the additional properties of the matrix included in Mj .

PROPOSITION 5.3. For any r ≤ j − 1

min
A∈−1({r})

χ(A) = χ
(
A

(j)
1−r/(j−1)

) = j

j − r
.

We provide the following lemmas concerning the configuration of points, which
link the matrix argument with Proposition 5.4. To describe our goal in this section,
we give the following lemma. Note that (j − 1)η ≤ (A) ≤ (j − 1)β for A ∈
Mβ,η

j .

LEMMA 5.1. For any ε > 0 and 0 < δ < e−j ε, there exists C > 0 such that
for any 0 < t ≤ (j − 1)β , A ∈ −1({t}) and n ∈ N,∣∣Êδ[A]∣∣ ≤ Cn2t+2+ε/2.

To introduce Proposition 5.4, we prepare the following notation. As per Propo-
sitions 4.1 and 5.2, for δ > 0, �x ∈ E[(nη), (nβ)], and n ≥ n0, we can set

h = hδ(�x) := inf
{
χ(B) : �x ∈ Êδ[B],B ∈ Mβ,η

j

}
.

PROPOSITION 5.4. For any ε > 0 and 0 < δ < e−j ε, there exists C > 0 such
that for any n ∈ N, ∑

�x∈E[(nη),(nβ)]
n−2αhδ(�x) ≤ Cnρ̂j (α,β)+ε.

PROOF. Note that Proposition 5.3 implies

min
�x∈Êδ[A],

A∈−1({t})

hδ(�x) = min
A∈−1({t})

χ(A) = j

j − t
.
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For any δ > 0 and ε > 0, there exist C′ := �(β − η)/δ	 and C > 0 such that for
any n ≥ n0, the left-hand side of the desired formula is bounded by(

C′)j max
0≤t≤(j−1)β

max
A∈−1({t})

∑
�x∈Êδ[A]

n−2αh

≤ C max
0≤t≤(j−1)β

n2t+2+ε/2 max
�x∈Êδ[A],

A∈−1({t})

n−2αh

≤ C max
0≤t≤(j−1)β

n2t+2+εn−2αj/(j−t).

The first inequality comes from Lemma 5.1 and the last one comes from Proposi-
tion 5.3. Therefore, we have

max
0≤t≤(j−1)β

2t + 2 − 2αj

j − t
= ρ̂j (α,β).

Because it is sufficient to show the claim for n ≥ n0, we obtain the desired result.
�

5.2. Proofs of various propositions and lemmas. In this subsection, we pro-
vide proofs of the propositions and lemmas that are introduced in Sections 4.1 and
5.1.

First we provide the proof of Proposition 5.1.

PROOF OF PROPOSITION 5.1. Let s := min1≤i,l≤j (ai,l)1≤i,l≤j . We define k ∼
k′ if ak,k′ > s. First we show that ∼ constructs an equivalence class. Note that
reflexive and symmetric relations are trivial owing to the definition of Mj , and
therefore, we show a transitive relation. Let us assume that k1 ∼ k2 and k2 ∼ k3.
The definition of Mj yields ak1,k3 ≥ min{ak1,k2, ak2,k3} > s. Therefore, we obtain
k1 ∼ k3 and that {1, . . . , j}/ ∼ is an equivalence class. Next, we show the claim.
If |{1, . . . , j}/ ∼ | = m, we let G1, . . . ,Gm be elements in {1, . . . , j}/ ∼ and jk

be |Gk| for 1 ≤ k ≤ m. For any 1 ≤ k ≤ m, we select some bijective function
σk : {1, . . . , jk} → Gk . We set Ak := (a

(k)
i,l )1≤i,l≤jk

such that a
(k)

σ−1
k (i),σ−1

k (l)
= ai,l for

1 ≤ i, l ≤ jk . Then, A = A
σ1
1 �s · · ·�s A

σm
m and s < min{a(k)

i,l | k ∈ {1, . . . ,m}, i, l ∈
{1, . . . , jk}} holds. Therefore, we obtain the desired result. �

REMARK 5.4. If A
σ1
1 �s · · ·�s A

σm
m is the expression of the maximal decom-

position of A, it is trivial that {Imσk : 1 ≤ k ≤ m} = {1, . . . , j}/ ∼ by the above
proof. Then, it easily yields the uniqueness of the maximal decomposition and the
claim in Remark 5.1.

Hereafter, we assume that A = A
σ1
1 �s A

σ2
2 unless otherwise stated. Note that

that A
σ1
1 �s A

σ2
2 is not always the maximal decomposition of A. Let g := | Imσ1|

and h := | Imσ2|.
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PROOF OF PROPOSITION 5.2. We show the claim and present the following
conditions (A) and (B): when j = 2:

(A) 1 − s

j∑
i=1

yi > 0,

(B) yi > 0 for any 1 ≤ i ≤ j.

When j = 1, we change (A) to 1 − y1 ≥ 0. As per symmetry, we need to show the
result for only the case in which Imσ1 = {1, . . . , g} and Imσ2 = {g+1, . . . , j}. We
show the results by performing induction on j ∈ N. It is trivial that the claim holds
for j = 1 as y1 = 1. Assuming that the claims (A) and (B) hold for 1, . . . , j − 1,
we show that the claims (A) and (B) hold for j . As per symmetry, this assump-
tion yields that A1 ∈ Mg determines a unique solution �z := (z1, . . . , zg) such that
A1�zT = �1T and A2 ∈Mh determines a unique solution �z′ := (z′

1, . . . , z
′
h) such that

A2�z′T = �1T . In addition, the assumption of (B) yields zi > 0 for any 1 ≤ i ≤ g and
z′
i > 0 for any 1 ≤ i ≤ h. Therefore, it holds that zi + s

∑
1≤l≤g,l �=i zl ≤ 1 for any

1 ≤ i ≤ g and zi + s
∑

1≤l≤h,l �=i z
′
l ≤ 1 for any 1 ≤ i ≤ h, and we are able to derive

the following equation:
g∑

i=1

zi ≤ g

1 + (g − 1)s
,

h∑
i=1

z′
i ≤ h

1 + (h − 1)s
.

There exists c > 0 such that

(5.1) 1 − s2
g∑

i=1

zi

h∑
i=1

z′
i ≥ c.

This comes from s ≤ 1 − η. If we set

yl = (1 − s
∑h

i=1 z′
i )zl

1 − s2 ∑g
i=1 zi

∑h
i=1 z′

i

for any 1 ≤ l ≤ g,

yl = (1 − s
∑g

i=1 zi)z
′
l−g

1 − s2 ∑g
i=1 zi

∑h
i=1 z′

i

for any g + 1 ≤ l ≤ j,

we obtain a solution such that A�yT = �1T . Therefore, we have proved the existence
of the solution. Hereafter, we observe the properties of y1, . . . , yj by assuming
their existence.

First we show (B). According to Proposition 5.1, it holds that
g∑

i=1

(al,iyi) + s

j∑
i=g+1

yi = 1 for any 1 ≤ l ≤ g,(5.2)

s

g∑
i=1

yi +
j∑

i=g+1

(al,iyi) = 1 for any g + 1 ≤ l ≤ j.(5.3)
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Therefore, as per the definition of z1, . . . , zg , z′
1, . . . , z

′
h, we obtain

g∑
i=1

yi =
(

1 − s

j∑
i=g+1

yi

) g∑
i=1

zi,

j∑
i=g+1

yi =
(

1 − s

g∑
i=1

yi

)
h∑

i=1

z′
i .

A simple computation and (5.1) yield

(5.4)

g∑
i=1

yi =
∑g

i=1 zi − s
∑g

i=1 zi

∑h
i=1 z′

i

1 − s2 ∑g
i=1 zi

∑h
i=1 z′

i

,

j∑
i=g+1

yi =
∑h

i=1 z′
i − s

∑h
i=1 z′

i

∑g
i=1 zi

1 − s2 ∑g
i=1 zi

∑h
i=1 z′

i

,

and therefore,

(5.5)
j∑

i=1

yi =
∑g

i=1 zi + ∑h
i=1 z′

i − 2s
∑g

i=1 zi

∑h
i=1 z′

i

1 − s2 ∑g
i=1 zi

∑h
i=1 z′

i

.

If we let s̃ = mini,l∈Imσ1 ai,l , by assuming (A) and setting g ≥ 2, we obtain

(5.6) 1 − s̃

g∑
i=1

zi > 0.

Because s̃ ≥ s for g ≥ 2, (5.4) and (5.6) yield

1 − s

g∑
i=1

yi = 1 − s
∑g

i=1 zi

1 − s2 ∑g
i=1 zi

∑h
i=1 z′

i

≥ 1 − s̃
∑g

i=1 zi

1 − s2 ∑g
i=1 zi

∑h
i=1 z′

i

> 0.

In addition, because s̃ > s for g = 1, (5.4) and (5.6) yield

1 − sy1 = 1 − sz1

1 − s2z1
∑h

i=1 z′
i

>
1 − s̃z1

1 − s2z1
∑h

i=1 z′
i

≥ 0.

As per the definition of yg+1, . . . , yj , z′
1, . . . , z

′
h and (5.3), we have (yg+1, . . . ,

yj ) = (1 − s
∑g

i=1 yi)�z′. Subsequently, because we assume that the solution of �z′
satisfies z′

i > 0 for any 1 ≤ i ≤ h, it holds that any solution yg+1, . . . , yj satis-
fies yi > 0 for any g + 1 ≤ i ≤ j . In addition, as per the same above-mentioned
argument, the definitions of y1, . . . , yg , z1, . . . , zg and (5.2) yield yi > 0 for any
1 ≤ i ≤ g, and therefore, (B) holds.

Secondly we show (A). The fact that yi > 0 for any 1 ≤ i ≤ j and
∑j

i=1 al,iyi =
1 for any 1 ≤ l ≤ j yields s

∑j
i=1 yi < 1 allows us to obtain the desired results.

Now we turn to prove the uniqueness of the solution using the result of (B) that
we already obtained. In general, it is known that

V := {�y : A�yT = �1T } = x0 + KerA,
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where x0 is a characteristic solution for A�yT = �1T . As per the result of (B), it holds
that {v = (v1, . . . , vj ) : vi > 0} ⊃ V . Because V is a linear space, the equation
KerA �= {0} is contradictory. Subsequently, KerA = {0}, and therefore, we have
the desired claim. �

To show Proposition 5.3, we use the two lemmas. We argue with the values
of  and χ in Proposition 5.3 and the following lemmas. Because  and χ are
independent of σ1 and σ2, we omit σ1 and σ2. For example, we write A1 �s A2 for
A

σ1
1 �s A

σ2
2 .

LEMMA 5.2. Consider A, A ∈ Mj such that A = A1 �s A2 and A = A1 �s

A2. Subsequently, if

χ(A1) ≥ χ(A1) and χ(A2) ≥ χ(A2),

it holds that

χ(A) ≥ χ(A).

PROOF. Note that it suffices to prove the case that χ(A1) = χ(A1) because
we can prove the claim by repeating the same proof. Let

g(t, b, c) := b + c − 2tbc

1 − t2bc
,

where 1 − t2bc > 0. It is found that g monotonically increases in c because a
simple computation yields

∂g

∂c
= (1 − tb)2

(1 − t2bc)2 ≥ 0.

Note that if we consider A and �y such that A�yT = �1T , χ(A) = ∑j
i=1 yi holds;

then, (5.5) yields

(5.7) χ(A) = g
(
s,χ(A1),χ(A2)

)
.

Because g(t, b, c) monotonically increases in c, the assumption yields the desired
result. �

LEMMA 5.3. Consider r ≤ j − 1, 0 ≤ γ ≤ γ1 ≤ γ2 ≤ 1 with r = (g − 1)(1 −
γ2) + (h − 1)(1 − γ1) + 1 − γ and g + h = j with g, h ≥ 1, which satisfy A

(g)
γ2 �γ

A
(h)
γ1 ∈ −1({r}). Then, fixing the values γ2 and r , χ(A

(g)
γ2 �γ A

(h)
γ1 ) is minimized

at γ = γ1.

PROOF. When we fix the values γ2 and r , we find that r = (A
(g)
γ2 �γ A

(h)
γ1 ) =

(g − 1)(1 − γ2) + (h − 1)(1 − γ1) + 1 − γ is a constant, and therefore, we obtain
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(g − 1)γ2 + (h − 1)γ1 + γ . Subsequently, if we set p := (g − 1)γ2 + 1 and q :=
(h−1)γ1 +γ +1, we find that p and q are constants. Note that 0 ≤ γ ≤ (q −1)/h.
In addition,

χ
(
A(g)

γ2

) = g

(g − 1)γ2 + 1
, χ

(
A(h)

γ1

) = h

(h − 1)γ1 + 1
.

According to (5.7), it holds that

f (γ ) := χ
(
A(g)

γ2
�γ A(h)

γ1

)
= g(q − γ ) + hp − 2γgh

(q − γ )p − γ 2gh
.

It suffices to show the claim that f monotonically decreases in 0 ≤ γ ≤ (q −1)/h.
A simple computation yields

∂f (γ )

∂γ

= ((q − γ )p − γ 2gh)(−g − 2gh) − (g(q − γ ) + hp − 2γgh)(−p − 2γgh)

((q − γ )p − γ 2gh)2 .

Set

(5.8) f̃ := −g2h(1 + 2h)

(
γ − gq + hp

g + 2gh

)2
+ h(gq + hp)2

(1 + 2h)
− 2qpgh + hp2.

Note that it holds that

(5.9)
q − 1

h
≤ the apex (summit) of f̃ = (gq + hp)

g(1 + 2h)

because h(gq+hp)−(q−1)g(1+2h) = h(g+h)(1−γ2) ≥ 0. The first inequality
comes from −(q−1) ≥ −((h−1)γ2 +γ2) = −hγ2 and the second one comes from
γ2 ≤ 1. Therefore, we obtain (5.9). In addition, we claim

(5.10) f̃

(
q − 1

h

)
≤ 0

because hf̃ ((q − 1)/h) = −(ph − g(q − 1))(2gh − g(q − 1) − hp) ≤ 0. The
inequality comes from ph − g(q − 1) ≥ ghγ2 ≥ 0 and 2gh − g(q − 1) − hp ≥
2gh − gh − hp ≥ 0. Therefore, as per (5.8), (5.9) and (5.10), we obtain for 0 ≤
γ ≤ (q − 1)/h, f̃ (γ ) ≤ 0 and the desired result. �

PROOF OF PROPOSITION 5.3. It is trivial that χ(A
(j)
1−r/(j−1)) = j/(j − r)

holds; therefore, we show only minA∈−1({r}) χ(A) = χ(A
(j)
1−r/(j−1)). We prove

the result by performing induction on j ∈ N. If j = 1 or 2, it is obvious that the
claim holds. We assume that the claim holds for 1, . . . , j − 1 and show the claim
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for j . For g ∧ h = 1, Lemma 5.3 yields the desired result. It suffices to show the
result for j ≥ 4 with g,h ≥ 2.

For any r ≤ j − 1 and A = A1 �s A2 ∈ −1({r}), we select γ1, γ2 and γ ,
which satisfy γ = s, (A1) = (A

(g)
γ2 ) = (g−1)(1−γ2) and (A2) = (A

(h)
γ1 ) =

(h − 1)(1 − γ1). Without loss of generality, we can assume that γ1 ≤ γ2. Note that
A

(g)
γ2 �γ A

(h)
γ1 ∈ −1({r}). According to Lemma 5.2 and this assumption, we obtain

(5.11) χ
(
A(g)

γ2
�γ A(h)

γ1

) ≤ χ(A).

In addition, we consider γ̃1 satisfying (h − 1)γ1 + γ = hγ̃1. Note that A
(g)
γ2 �γ̃1

A
(h)
γ̃1

∈ −1({r}) and γ1 ≥ γ̃1 ≥ γ . As per Lemma 5.3, we obtain

(5.12) χ
(
A(g)

γ2
�γ̃1 A

(h)
γ̃1

) ≤ χ
(
A(g)

γ2
�γ A(h)

γ1

)
.

Note that for any σ1 and σ2, we can select σ3, σ4, σ5 and σ6 such that(
A(g)

γ2

)σ1 �γ̃1

(
A

(h)
γ̃1

)σ2 = ((
A(g)

γ2

)σ3 �γ̃1

(
A

(h−1)
γ̃1

)σ4
)σ5 �γ̃1

(
A(1))σ6 .

In addition, we consider γ̃2 satisfying (g − 1)γ2 +hγ̃1 = (j − 2)γ̃2 + γ̃1. Note that
A

(j−1)

γ̃2
�γ̃1 A(1) ∈ −1({r}) and γ2 ≥ γ̃2 ≥ γ̃1. According to Lemma 5.2 and the

assumption, we obtain

(5.13) χ
(
A

(j−1)

γ̃2
�γ̃1 A(1)) ≤ χ

(
A(g)

γ2
�γ̃1 A

(h)
γ̃1

)
.

Finally, Lemma 5.3 yields

(5.14) χ
(
A

(j)
1−r/(j−1)

) ≤ χ
(
A

(j−1)

γ̃2
�γ̃1 A(1)).

Note that A
(j)
1−r/(j−1) ∈ −1({r}). Therefore, as per (5.11), (5.12), (5.13) and

(5.14), we obtain the desired result. �

PROOF OF LEMMA 5.1. We prove the claim by performing induction on
j ∈ N. Because Êδ[A] = Z

2
n for j = 1 and |Êδ[A]| ≤ |Z2

n| × Cn2t+2δ for j = 2
and A ∈ −1({t}), it is obvious that the desired result holds for j = 1,2. We as-
sume that the result holds for 1, . . . , j − 1 with j ≥ 3 and show the result for j .
It suffices to prove that for any ε > 0, 0 < δ < ε, and L < ∞, there exists C > 0
such that for any x ∈ Z

2
n, t ≤ (j − 1)β , A ∈ Mβ,η

j ∩ −1({t}) and n ∈ N

(5.15)
∣∣E[

(0),
(
Ln1−ai,l+δ)

1≤i,l≤j

]∣∣ ≤ Cn2t+2+exp(j)ε/2.

First we show the claim for the case that g ∧ h = 1. Without loss of generality,
we only prove it for h = 1. Let t1 := (A1) and (a1

i,l)1≤i,l≤j−1 := A1. Note that
t = (A) = (A1) + 1 − s = t1 + 1 − s. Then, for any 0 < δ < ε, there exists
C > 0 such that for any n ∈ N,

(5.16)
∣∣E[

(0),
(
Ln

1−a1
i,l+δ)

1≤i,l≤j−1

]∣∣ ≤ Cn2t1+2+exp(j−1)ε/2,
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and therefore,∣∣E[
(0),

(
Ln1−ai,l+δ)

1≤i,l≤j

]∣∣ ≤ ∣∣E[
(0),

(
Ln

1−a1
i,l+δ)

1≤i,l≤j−1

]∣∣ × Cn2−2s+2δ

≤ Cn2−2s+2t1+2+exp(j−1)ε/2+2δ

≤ Cn2t+2+exp(j)ε/2.

Then, we have proven the claim.
Next, we show the claim for j ≥ 4 and g ∧ h �= 1. For k ≥ 2, x ∈ Z

2
n and L > 0,

let

Ẽδ,x[A] = Ẽδ,x[A](k,L)

:= {
(x2, . . . , xk) : (x, x2, . . . , xk) ∈ E

[
(0),

(
Ln1−ai,l+δ)

1≤i,l≤k

]}
.

Note that

E
[
(0),

(
Ln1−ai,l+δ)

1≤i,l≤j

] ⊂ {�x : x1 ∈ Z
2
n, (x2, . . . , xj ) ∈ Ẽδ,x1[A]},

and therefore, ∣∣E[
(0),

(
Ln1−ai,l+δ)

1≤i,l≤j

]∣∣ ≤ ∑
x∈Z2

n

∣∣Ẽδ,x[A]∣∣.
Then, it suffices to prove that for any ε > 0, 0 < δ < ε and L < ∞, there exists
C > 0 such that for any x ∈ Z

2
n, t ≤ (j − 1)β , A ∈ Mβ,η

j ∩ −1({t}) and n ∈N∣∣Ẽδ,x[A]∣∣ ≤ Cn2t+exp(j)ε/2.

For any A, let t1 := (A1) and t2 := (A2), and therefore, t = (A) = t1 + t2 +
1 − s holds. Note that it holds that

A1 ∈ Mβ,η
g ∩ −1({t1}), A2 ∈ Mβ,η

h ∩ −1({t2}).
Subsequently, as per the assumption, we find that for any ε > 0 and 0 < δ < ε,
there exists C > 0 such that for any x1, xg+1 ∈ Z

2
n, and n ∈ N, it holds that

(5.17)
∣∣Ẽδ,x1[A1]

∣∣ ≤ Cn2t1+exp(g)ε/2,
∣∣Ẽδ,xg+1[A2]

∣∣ ≤ Cn2t2+exp(h)ε/2.

Therefore, if we let D̃ := {x ∈ Z
2
n : d(x1, x) ≤ Ln1−s+δ}, we have that for any

0 < δ < ε ∣∣Ẽδ,x1[A]∣∣
≤ ∑

xg+1∈D̃

∣∣{(x2, . . . , xj ) : (x2, . . . , xg) ∈ Ẽδ,x1[A1],

(xg+2, . . . , xj ) ∈ Ẽδ,xg+1[A2]}∣∣
≤ Cn2−2s+2δ

∣∣Ẽδ,x1[A1]
∣∣ × ∣∣Ẽδ,xg+1[A2]

∣∣
≤ Cn2t1+2t2+2−2s+exp(j)ε/2 = Cn2t+exp(j)ε/2.
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The last inequality comes from 2δ + (exp(g) + exp(h))ε/2 < (2 + exp(g)/2 +
exp(h)/2)ε < exp(j)ε/2 for j ≥ 4. Therefore, we obtain the desired result. �

REMARK 5.5. The reason why we set “L” in (5.15) instead of “2j ” is to
ensure that we obtain (5.16) and (5.17).

PROOF OF PROPOSITION 4.1. We show the result by performing induction
on j ∈ N. It is obvious that the claim holds for j = 1. Let us assume that the
claim holds for j − 1 and consider any �x ∈ E[(nη), (nβ)] to show the claim for
j . We set 1 ≤ i0, l0 ≤ j such that d(xi0, xl0) = min1≤i �=l≤j d(xi, xl). Without loss
of generality, we set j = l0. Then, as per the assumption, it is easy to extend the
following: for (x1, . . . , xj−1) ∈ E[(nη), (nβ)](j − 1, n) and δ > 0, there exists

(5.18) (ai,l)1≤i,l≤j−1 ∈ Mβ,η
j−1

such that for all sufficiently large n ∈N,

(x1, . . . , xj−1) ∈ Êδ/2
[
(ai,l)1≤i,l≤j−1

]
(j − 1, n).

Set Ã := (ãi,l)1≤i,l≤j as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ãi,l = ãl,i := ai,l for any 1 ≤ i, l ≤ j − 1,

ãj,l = ãl,j := ai0,l for any 1 ≤ l ≤ j − 1 with l �= i0,

ãj,i0 = ãi0,j :=
(

1 − logd(xi0, xj )

logn
+ δ

)
∧ (1 − η),

ãj,j := 1.

We prove that Ã ∈ Mβ,η
j and �x ∈ Êδ[Ã]. We first prove that Ã ∈ Mβ,η

j . It is

obvious that the definition of Ã yields that Ã is symmetric and 1 − β ≤ ãi,l ≤
1 − η for any 1 ≤ i �= l ≤ j . Note that ãi0,j = max1≤i,l≤j ãi,l holds as ĝ(s) :=
max{b ∈ [1 − β,1 − η] : 2−j+1n1−b ≤ s ≤ 2j−1n1−b+δ/2} is monotonically de-
creasing; ĝ(d(xi0, xj )) ≤ ãi0,j for all sufficiently large n ∈ N with 2j−1 ≤ nδ/2

and ĝ(d(xi, xl)) ≥ ãi,l hold for any 1 ≤ i, l ≤ j with i �= i0, j . We only prove that
for any 1 ≤ i, l, p ≤ j with i �= l, l �= p,p �= i, (d) ãi,l < ãi,p ⇒ ãl,p = ãi,l is as
follows:

1. i, l, p �= j : (5.18) yields Ã ∈ Mβ,η
j . Therefore, we obtain (d).

2. i = j and p, l �= i0: If ãj,l < ãj,p , ai0,l < ai0,p holds. Therefore, (5.18) yields
ãl,p = al,p = ai0,l = ãj,l .

3. (p = j and i, l �= i0) or (l = j and l, i �= i0): The proof is almost the same as
above.

Because Ã is symmetric for j and i0, (d) remains to be proven for the following
cases:
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1. i = j , l = i0: The assumption is contradictory.
2. i = j , p = i0: The result is trivial.
3. l = j , p = i0: The assumption is contradictory.

Therefore, we obtain Ã ∈ Mβ,η
j . Finally, we prove �x ∈ Êδ[Ã]. Note that the triangle

inequality yields that for any 1 ≤ l ≤ j − 1 with l �= i0,

d(xj , xl) ≤ d(xj , xi0) + d(xi0, xl)

≤ 2j−1n1−ãi0,j+δ + 2j−1n1−ai0,l+δ ≤ 2jn1−ãj,l+δ,

and as d(xj , xl) + d(xj , xi0) ≥ d(xi0, xl) and d(xj , xl) ≥ d(xj , xi0),

d(xj , xl) ≥ 1

2
d(xi0, xl) ≥ 1

2

1

2j−1 n1−ãi0,l = 1

2j
n1−ãj,l .

Therefore, as it is trivial that the corresponding result holds for d(xj , xi0), we have
�x ∈ Êδ[Ã] and we obtain the desired result. �

Therefore, we obtain Proposition 5.4. Finally, we provide the following propo-
sition, which is used in Section 4.

PROPOSITION 5.5. For any ε > 0, there exists δ > 0 such that for any A ∈
Mj and |δi,l| ≤ δ it holds that (ai,l + δi,l)

j
i,l=1 is a regular matrix and∣∣χ(A) − χ

(
(ai,l + δi,l)

j
i,l=1

)∣∣ ≤ ε.

REMARK 5.6. It is trivial that Proposition 5.5 yields the following. For any
ε > 0, there exists δ > 0 such that for any n ∈ N, A ∈ Mj and |δi,l| ≤ δ, it holds

that (ai,l + δi,l)
j
i,l=1 is a regular matrix and∣∣∣∣χ(A)

n
− χ

(
(ai,l + δi,l)

j
i,l=1

)∣∣∣∣ ≤ ε

n
.

PROOF OF PROPOSITION 5.5. First we prove that Mj is the closed set for
each j ∈ N. We consider max1≤i,l≤j |ai,l − a′

i,l| for (ai,l)1≤i,l≤j , (a′
i,l)1≤i,l≤j ∈

Mj as the metric on Mj . Consider (am
i,l)1≤i,l≤j ∈ Mj and (a∞

i,l )1≤i,l≤j such that
(am

i,l)1≤i,l≤j → (a∞
i,l )1≤i,l≤j as m → ∞. Note that it is trivial that (a∞

i,l )1≤i,l≤j

satisfies (a) and (b). Therefore, it suffices to show that (a∞
i,l )1≤i,l≤j satisfies (d).

First we assume that a∞
i,l < a∞

i,p holds for some 1 ≤ i, l, p ≤ j with i �= l, l �= p,
p �= i. For k ∈ N, set mk := inf{m > mk−1 : am

i,l > am
i,p} with m1 = 1 and inf∅= 0.

Then, supmk < ∞ and, as per the definition of Mj , there exists m0 ∈N such that
for any m ≥ m0, am

l,p = am
i,l . Therefore, a∞

l,p = a∞
i,l holds. Mj is the closed set and

compact.
Now we prove the desired result. Note that

(5.19) max
1≤i,l≤j

|ai,l| ≤ 1.
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In addition, Proposition 5.2 yields that detA �= 0 holds for A ∈ Mj . By the com-
pactness of Mj , we have infA∈Mj

|detA| �= 0. Therefore, (5.19) yields that there
exists δ > 0 such that for any δi,l with |δi,l| ≤ δ,

(5.20) inf
A∈Mj

∣∣det(ai,l + δi,l)1≤i,l≤j

∣∣ �= 0.

Thus, the first claim holds. Finally, it is trivial that (5.19) and (5.20) again yield
the second claim, and therefore, we obtain the desired result. �

APPENDIX

A.1. Computation of exponents. In this section, we provide the estimation
for the monotonicity of the exponents.

LEMMA A.1. For any j ≥ 2 and 0 < α,β < 1,

ρ̂j (α,β) − ρ̂j−1(α,β) ≥ 0.

REMARK A.1. As discussed previously, this result yields Theorem 2.1. In
addition, the above lemma is equivalent to Theorem 2.1. For any 0 < α,β < 1,∣∣{�x ∈ Ln(α)j : d(xi, xl) ≤ nβ for any 1 ≤ i, l ≤ j

}∣∣
is monotonically increasing in j ∈ N. Therefore, Theorem 2.1 naturally yields the
above lemma.

REMARK A.2. We omit the proof because we only need long and elementary
computations.
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