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HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP
PROCESSES WITH MIXED POLYNOMIAL GROWTHS1

BY JOOHAK BAE∗, JAEHOON KANG†, PANKI KIM∗ AND JAEHUN LEE∗

Seoul National University∗ and Bielefeld University†

In this paper, we study the transition densities of pure-jump symmetric
Markov processes in Rd , whose jumping kernels are comparable to radially
symmetric functions with mixed polynomial growths. Under some mild as-
sumptions on their scale functions, we establish sharp two-sided estimates
of the transition densities (heat kernel estimates) for such processes. This is
the first study on global heat kernel estimates of jump processes (including
non-Lévy processes) whose weak scaling index is not necessarily strictly less
than 2. As an application, we proved that the finite second moment condition
on such symmetric Markov process is equivalent to the Khintchine-type law
of iterated logarithm at infinity.

1. Introduction and main results. The heat kernel provides an important
link between probability theory and partial differential equation. In probability
theory, the heat kernel of an operator L is the transition density p(t, x, y) (if it
exists) of the Markov process X, which possesses L as its infinitesimal generator.
In the field of of partial differential equation, it is called the fundamental solution
of the heat equation ∂tu = Lu. However, except in a few special cases, obtaining
an explicit expression of p(t, x, y) is usually impossible. Thus finding sharp es-
timates of p(t, x, y) is a fundamental issue both in probability theory and partial
differential equation.

Although heat kernels for diffusion processes have been studied for over a cen-
tury, heat kernel estimates for discontinuous Markov processes have only been
studied in recent years. After pioneering works such as [3, 11, 32], obtaining sharp
two-sided estimates of heat kernels for various classes of discontinuous Markov
processes has become an active topic in modern probability theory (see [1, 2, 5–
10, 12, 14–16, 18–22, 24–26, 29–31, 33, 35–37, 43, 44] and references therein).
In [12], the authors investigated heat kernel estimates for symmetric discontinu-
ous Markov processes (on a large class of metric measure spaces) whose jumping
intensities are comparable to radially symmetric functions of variable order. In
particular, the heat kernel estimates therein cover the class of symmetric Markov
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processes X = (Xt ,Px, x ∈Rd, t ≥ 0), without diffusion part, whose jumping ker-
nels J (x, y) satisfy the following conditions:

(1.1)
c−1

|x − y|dφ1(|x − y|) ≤ J (x, y) ≤ c

|x − y|dφ1(|x − y|) , x, y ∈ Rd,

where φ1 is a nondecreasing function on [0,∞) satisfying

(1.2) c1(R/r)α1 ≤ φ1(R)/φ1(r) ≤ c2(R/r)α2, 0 < r < R < ∞
with α1, α2 ∈ (0,2). Under the assumptions (1.1) and (1.2), the transition density
p(t, x, y) of X has the following estimates: for any t > 0 and x, y ∈ Rd ,

(1.3) p(t, x, y) �
(
φ−1

1 (t)−d ∧ t

|x − y|dφ1(|x − y|)
)
.

(See [12], Theorem 1.2.) Here and below, we denote a ∧b := min{a, b} and f � g

if the quotient f/g remains bounded between two positive constants. Thus, φ1 is
the scale function, that is, φ1(|x − y|) = t provides the borderline for p(t, x, y) to
have either near-diagonal estimates or off-diagonal estimates. Moreover, it is not
difficult to show from (1.3) that

(1.4) c−1φ1(r) ≤ Ez[τB(z,r)] ≤ cφ1(r) for all z ∈Rd, r > 0,

where τA is the first exit time from A for the process X. (See [2] and [10], Sec-
tion 4.3.) Here, the function φ1 commonly appears throughout (1.1), (1.3) and
(1.4). Thus, under the assumptions (1.1) and (1.2), for all r > 0 and x, y, z ∈ Rd

with |x − y| = r ,

(1.5)
c−1

J (x, y)rd
≤ Ez[τB(z,r)] ≤ c

J (x, y)rd
.

In this paper, we investigate estimates of transition densities of pure-jump sym-
metric Markov processes in Rd , whose jumping kernels satisfy (1.1) with general
mixed polynomial growths, that is, φ1 satisfies (1.2) with α1, α2 ∈ (0,∞). As a
corollary of one of the main results, we obtain a global sharp two-sided estimate
of the Green function (see Corollary 1.3). Unlike the heat kernel estimates in (1.3),
φ1 may not be the scale function for the heat kernel in general (see (1.10) and
Theorem 1.4). For instance, when the process X is a subordinate Brownian mo-
tion, Ante Mimica [35] established the heat kernel estimates for the case that the
scaling order of characteristic exponent of X may not be strictly below 2 (see [44]
for some partial generalization to Lévy processes). We are strongly motivated by
the research done in [35] and consider the case when � in (1.10), which is a scale
function for the heat kernel, satisfies a (local) lower weak scaling condition with
scaling index greater than 1. Under this assumption, we establish two-sided heat
kernel estimates of symmetric jump processes in Rd . Our results provide the first
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sharp heat kernel estimates covering non-Lévy processes whose weak scaling in-
dex is not necessarily strictly less than 2. This has been a major open problem in
this area (cf. [25, 44]).

In our setting, (1.5) does not hold in general and we only have

Ez[τB(z,r)]� c

J (x, y)rd
for all r > 0 and x, y, z ∈Rd with |x − y| = r.

(See (2.1) and Lemma 3.12 below.)
In [10], the authors considered heat kernel estimates for mixed-type symmet-

ric jump processes on metric measure spaces under a general volume doubling
condition. Using variants of the cut-off Sobolev inequalities and the Faber–Krahn
inequalities, they established stability of heat kernel estimates. In particular, they
established heat kernel estimates for α-stable-like processes even with α ≥ 2 when
the underlying spaces have walk dimensions larger than 2 (see [19, 23, 36, 37]
also). Note that Euclidean space has the walk dimension 2; thus, the results in [10]
does not cover our results and, in fact, a general version of (1.5) does hold in [10].
By contrast, some results in [10, 13] are applicable to our study and we will use
several main results in [10, 13] to show the parabolic Harnack inequality and the
near-diagonal lower bound of p(t, x, y).

Before we give the main results of this paper, we first describe our setup.

DEFINITION 1.1. Let g : (0,∞) → (0,∞), a ∈ (0,∞], β1, β2, c,C > 0.

(1) For a < ∞, we say that g satisfies La(β1, c) (resp. La(β1, c)) if g(R)/

g(r) ≥ c(R/r)β1 for all r ≤ R < a (resp. a ≤ r ≤ R). We also say that g satisfies
the weak lower scaling condition near 0 (resp. near ∞) with index β1.

(2) We say that g satisfies Ua(β2,C) (resp. Ua(β2,C)) if g(R)/g(r) ≤
C(R/r)β2 for all r ≤ R < a (resp. a ≤ r ≤ R). We also say that g satisfies the
weak upper scaling condition near 0 (resp. near ∞) with index β2.

(3) When g satisfies Ua(β,C) (resp. La(β, c)) with a = ∞, we say that g satis-
fies the global weak upper scaling condition U(β,C) (resp. the global weak lower
scaling condition L(β, c)).

Throughout this paper, except Sections 2.1 and 2.2, we will assume that ψ :
(0,∞) → (0,∞) is a nondecreasing function satisfying L(β1,CL), U(β2,CU),
and

(1.6)
∫ 1

0

s

ψ(s)
ds < ∞.

Denote diag = {(x, x) : x ∈ Rd}. Assume that J :Rd ×Rd \ diag → [0,∞) is a
symmetric function satisfying

(1.7)
C̄−1

|x − y|dψ(|x − y|) ≤ J (x, y) ≤ C̄

|x − y|dψ(|x − y|)
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for all (x, y) ∈ Rd × Rd \ diag, with some C̄ ≥ 1. Note that (1.6) combined with
(1.7) and L(β1,CL) on ψ is a natural assumption to ensure that

(1.8) sup
x∈Rd

∫
Rd

(|x − y|2 ∧ 1
)
J (x, y) dy ≤ c

(∫ 1

0

s ds

ψ(s)
+

∫ ∞
1

ds

sψ(s)

)
< ∞.

For u, v ∈ L2(Rd, dx), define

(1.9) E(u, v) :=
∫
Rd×Rd

(
u(x) − u(y)

)(
v(x) − v(y)

)
J (x, y) dx dy

and F = {f ∈ L2(Rd) : E(f, f ) < ∞}. By applying the lower scaling assumption
L(β1,CL) on ψ , (1.7) and (1.8) to [40], Theorem 2.1, and [41], Theorem 2.4, we
observe that (E,F) is a regular Dirichlet form on L2(Rd, dx). Thus, there is a
Hunt process X associated with (E,F), starting from quasi-everywhere point in
Rd . Moreover, by (1.8) and [34], Theorem 3.1, X is conservative.

We define our scale function by

(1.10) �(r) := r2

2
∫ r

0
s

ψ(s)
ds

.

In general, the function � is strictly increasing, and is less than ψ (see (2.1)–(2.3)
below). However, these two functions may not be comparable unless β2 < 2. We
remark here that the function � has been observed as the correct scale function
recently (see [21, 22, 28, 35, 38]).

THEOREM 1.2. Let ψ be a nondecreasing function satisfying L(β1,CL) and
U(β2,CU). Assume that conditions (1.6) and (1.7) hold. Then, there is a conser-
vative Feller process X = (Xt ,Px, x ∈ Rd, t ≥ 0) associated with (E,F) that can
starts from every point in Rd . Moreover, X has a jointly continuous transition den-
sity function p(t, x, y) on (0,∞) × Rd × Rd with the following estimates: there
exist aU , c,C, δ1 > 0 such that

(1.11) p(t, x, y) ≤ C

�−1(t)d
∧

(
Ct

|x − y|dψ(|x − y|) + C

�−1(t)d
e
− aU |x−y|2

�−1(t)2

)

and

p(t, x, y) ≥ C−11{|x−y|≤δ1�
−1(t)}

�−1(t)d
+ C−1t

|x − y|dψ(|x − y|)1{|x−y|≥δ1�
−1(t)}.(1.12)

The proofs of (1.11) and (1.12) are given in Section 4.1 and Proposition 4.6.
Let G(x,y) = ∫ ∞

0 p(t, x, y) dt be the Green function for X. As a corollary of
Theorem 1.2, we get sharp two-sided estimates for the Green function.

COROLLARY 1.3. Suppose that the assumptions in Theorem 1.2 hold and d >

β2 ∧ 2. Then for any x, y ∈ Rd , G(x,y) � �(|x − y|)|x − y|−d .
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Using our scale function �, we define for a > 0,

(1.13) K (s) := sup
b≤s

�(b)

b
and K∞(s) :=

⎧⎪⎨
⎪⎩

sup
a≤b≤s

�(b)

b
, s ≥ a,

a−2�(a)s, 0 < s < a.

If � satisfies La(δ, C̃L) with δ > 1, then K (0) = 0 and K is nondecreasing.
Thus, the generalized inverse K −1(t) := inf{s ≥ 0 : K (s) > t} is well defined on
[0, supb<∞ �(b)

b
).

If � satisfies La(δ, C̃L) with δ > 1, K∞ and the generalized inverse K −1∞ are
well defined and nondecreasing on [0,∞). Some properties of K and K∞ are
shown in Section 2.2. Here is the main result of this paper.

THEOREM 1.4. Let ψ be a nondecreasing function satisfying L(β1,CL) and
U(β2,CU). Assume that conditions (1.6) and (1.7) hold, and � satisfies La(δ, C̃L)

or La(δ, C̃L) for some a > 0 and δ > 1. Then, the following estimates hold:

(1) When � satisfies La(δ, C̃L): For every T > 0, there exist positive constants
c1 = c1(T , a, δ, β1, β2, C̃L,CL,CU) ≥ 1 and aU ≤ aL such that for any (t, x, y) ∈
(0, T ) ×Rd ×Rd ,

c−1
1

(
1

�−1(t)d
∧

(
t

|x − y|dψ(|x − y|) + 1

�−1(t)d
e
− aL|x−y|

K −1(t/|x−y|)
))

≤ p(t, x, y)

≤ c1

(
1

�−1(t)d
∧

(
t

|x − y|dψ(|x − y|) + 1

�−1(t)d
e
− aU |x−y|

K −1(t/|x−y|)
))

.(1.14)

Moreover, if � satisfies L(δ, C̃L), then (1.14) holds for all t ∈ (0,∞).
(2) When � satisfies La(δ, C̃L): For every T > 0, there exist positive constants

c2 = c2(T , a, δ, β1, β2, C̃L,CL,CU) ≥ 1 and a′
U ≤ a′

L such that for any (t, x, y) ∈
[T ,∞) ×Rd ×Rd ,

c−1
2

(
1

�−1(t)d
∧

(
t

|x − y|dψ(|x − y|) + 1

�−1(t)d
e
− a′

L
|x−y|

K −1∞ (t/|x−y|)
))

≤ p(t, x, y)

≤ c2

(
1

�−1(t)d
∧

(
t

|x − y|dψ(|x − y|) + 1

�−1(t)d
e
− a′

U
|x−y|

K −1∞ (t/|x−y|)
))

.

In particular, if δ = 2, then K −1∞ (t) � t for t ≥ T .

Theorem 1.4(2) covers [42], Corollary 3.11, where ψ(r) = r2+ε , r > 1 and
ε > 0, is considered. Note that if ψ satisfies La(δ, C̃L), then δ < 2 and � satisfies
La(δ, C̃L) by Lemma 2.4.
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Using Theorems 1.2 and 1.4(2), we will show in Section 5 that the finite second
moment condition is equivalent to the Khintchine-type law of iterated logarithm
at infinity. In [17], Gnedenko proved this result for Lévy processes (see also [39],
Proposition 48.9). The equivalence between the law of iterated logarithm and the
finite second moment condition for non-Lévy processes has been a long standing
open problem since the work done in [17].

A nonnegative C∞ function φ on (0,∞) is called a Bernstein function if
(−1)nφ(n)(λ) ≤ 0 for every n ∈ N and λ > 0. The exponent (r/�−1(t))2 in
(1.11) is not comparable to r/K −1(t/r) in general (see Lemma 2.8 and Corol-
lary 6.1 below). However, the following corollary indicates that we can replace
r/K −1(t/r) with a simpler function (r/�−1(t))2 if we additionally assume that
r �→ �(r−1/2)−1 is a Bernstein function.

COROLLARY 1.5. Let ψ be a nondecreasing function satisfying L(β1,CL)

and U(β2,CU). Assume that conditions (1.6) and (1.7) hold, � satisfies La(δ, C̃L)

some a > 0 and δ > 1, and r �→ �(r−1/2)−1 is a Bernstein function. Then, for
any T > 0, there exist positive constants c ≥ 1 and aU ≤ aL such that for all
(t, x, y) ∈ (0, T ) ×Rd ×Rd ,

c−1
(

1

�−1(t)d
∧

(
t

|x − y|dψ(|x − y|) + 1

�−1(t)d
e
−aL

|x−y|2
�−1(t)2

))

≤ p(t, x, y)(1.15)

≤ c

(
1

�−1(t)d
∧

(
t

|x − y|dψ(|x − y|) + 1

�−1(t)d
e
−aU

|x−y|2
�−1(t)2

))
.

Moreover, if � satisfies L(δ,CL) with δ > 1, (1.15) holds for all t ∈ (0,∞).

The remainder of the paper is organized as follows. Section 2 describes some
properties of ψ , �, K and K∞, and verifies some relationships among them.
Section 3 proves a preliminary upper bound and near-diagonal estimates of the
transition density. Section 3.1 presents the Poincaré inequality, which is the first
step to find a correct scale function. Section 3.3 uses scaled versions of X to obtain
an upper bound of the transition density function (see Theorem 3.8). Although this
upper bound is not sharp, it is good enough to get the lower bound on the sur-
vival probability and the CSJ(�) condition defined in [10]. Section 3.4 shows the
near-diagonal lower bound of the transition function, parabolic Harnack inequal-
ity, and parabolic Hölder regularity by applying the results in [10, 13]. Section 4
describes the proof of off-diagonal estimates of the transition density function.
Section 4.1 and Section 4.2 prove the off-diagonal upper bound and lower bound
of the transition density function, respectively. As an application of the main result,
in Section 5 we show that the finite second moment condition is equivalent to the
Khintchine-type law of iterated logarithm at infinity. Section 6 provides examples
covered by the main results.
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Notation. Throughout this paper, the constants C1, C2, C3, C4, CL, CU , C̃L,
β1, β2, δ, δ1 will remain the same, whereas C, c, and c0, a0, c1, a1, c2, a2, . . . rep-
resent constants having insignificant values that may be changed from one ap-
pearance to another. All these constants are positive finite. The labeling of the
constants c1, c2, . . . begins anew in the proof of each result. ci = ci(a, b, c, . . .),
i = 0,1,2, . . . , denote generic constants depending on a, b, c, . . . . The depen-
dence on the dimension d ≥ 1 and the constant C̄ in (1.7) may not be explic-
itly mentioned. Recall that we use the notation a ∧ b = min{a, b} and f � g if
the quotient f/g remains bounded between two positive constants. We denote
a ∨ b := max{a, b}, R+ := {r ∈ R : r > 0}, and B(x, r) := {y ∈ Rd : |x − y| < r}.

2. Preliminary.

2.1. Basic properties of ψ and �. In this subsection, we will observe some
elementary properties of ψ and �. Since ψ is nondecreasing and limr→0 ψ(r) = 0
by L(β1,CL) for ψ , we have that

(2.1) �(r) = r2

2
∫ r

0
s

ψ(s)
ds

<
r2

2
∫ r

0
s

ψ(r)
ds

= ψ(r).

Thus, under (1.7), we obtain that for any x, y ∈Rd ,

(2.2) J (x, y) ≤ C̄

|x − y|d�(|x − y|) .

Since (1/�(r))′ = 4
rψ(r)

− 4
r�(r)

< 0, r �→ �(r) is strictly increasing. Note that,
since r2/�(r) is increasing in r , we have that for any 0 < r ≤ R,

(2.3) �(R)/�(r) ≤ (R/r)2.

From this, we see that if � satisfies La(β, c), then β ≤ 2.

REMARK 2.1. Suppose g : (0,∞) → (0,∞) is nondecreasing. If g satisfies
La(β, c), then g satisfies Lb(β, c(ab−1)β) for any b > a. Similarly, if g satisfies
La(β, c), then g satisfies Lb(β, c(a−1b)β) for any b < a.

The next three results are straightforward. We skip their proofs.

LEMMA 2.2. Let g : (0,∞) → (0,∞) be a nondecreasing function with
g(∞) = ∞. (1) If g satisfies La(β, c) (resp. Ua(β,C)), then g−1 satisfies
Ug(a)(1/β, c−1/β) (resp. Lg(a)(1/β,C−1/β)). (2) If g satisfies La(β, c) (resp.
Ua(β,C)), then g−1 satisfies Ug(a)(1/β, c−1/β) (resp. Lg(a)(1/β,C−1/β)).

The following lemma will be used in the paper several times.
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LEMMA 2.3. Assume that ψ satisfies L(β, c) and U(β̂,C). Then, for any
x ∈ Rd and r > 0,

∫ ∞
r (sψ(s))−1 ds � 1/ψ(r).

The next lemma shows that the index in the weak scaling conditions for � is
always in (0,2].

LEMMA 2.4. Let a ∈ (0,∞], 0 < β ≤ β̂ , 0 < c ≤ 1 ≤ C.

(1) If ψ satisfies Ua(β̂,C), then � satisfies Ua(β̂ ∧ 2,C).
(2) If ψ satisfies (1.6) and La(β, c), then β < 2 and � satisfies La(β, c).

We remark here that the comparability of ψ and � is equivalent to that the index
of the weak upper scaling condition is strictly less than 2 (see [4], Corollaries 2.6.2
and 2.6.4).

2.2. Basic properties of K and K∞. In this subsection, under the assump-
tion that � satisfies La(δ, C̃L) or La(δ, C̃L) with δ > 1, we establish some basic
properties of K and K∞ defined in (1.13).

The next lemma immediately follows from the definition of K , (2.3) and as-
sumption that � satisfies La(δ, C̃L) with δ > 1.

LEMMA 2.5. If � satisfies La(δ, C̃L) with δ > 1 and a ∈ (0,∞], then
�(t)/t ≤ K (t) ≤ C̃−1

L �(t)/t for t < a, and

(2.4) C̃2
L(t/s)δ−1 ≤ K (t)/K (s) ≤ C̃−1

L t/s for s ≤ t < a.

For notational convenience, we introduce an auxiliary function

�̃a(s) := �(a)

a2 s21{0<s<a} + �(s)1{s≥a},

so that we have K∞(s) = supb≤s
�̃a(b)

b
.

The following lemma shows the relation between � and �̃a . Since the proof is
elementary, we skip the proof.

LEMMA 2.6. (1) For any t > 0, �̃a(t) ≤ �(t) and for t ≥ c > 0, �̃a(t) ≥
((c/a)2 ∧1)�(t). (2) For 0 < s < t , �̃a(t)/�̃a(s) ≤ t2/s2. (3) Suppose � satisfies
La(δ, C̃L) with some δ ≤ 2. Then, �̃a satisfies L(δ, C̃L).

By Lemma 2.6(1) and (2.1), �̃a(t) ≤ ψ(t) for all t > 0 and a > 0. In the follow-
ing lemma, we will see some properties of K∞,a which is similar to Lemma 2.5.

LEMMA 2.7. Let a ∈ (0,∞). If � satisfies La(δ, C̃L) with δ > 1, then
�̃a(t)/t ≤ K∞,a(t) ≤ C̃−1

L �̃a(t)/t for t > 0, and

(2.5) C̃2
L(t/s)δ−1 ≤ K∞,a(t)/K∞,a(s) ≤ C̃−1

L t/s for t > s > 0.
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Moreover, for any c1 > 0, there exists c2 = c2(c1, a, δ, C̃L) ≥ 1 such that for any
t ≥ c1,

(2.6) c−1
2 sup

c1≤b≤t

�(b)/b ≤ K∞,a(t) ≤ c2 sup
c1≤b≤t

�(b)/b.

PROOF. The first claim and (2.5) follow from Lemmas 2.6(3) and 2.5. (2.6)
follows from Remark 2.1, Lemma 2.6(1) and (2.6). �

By Remark 2.1, if � satisfies the weak lower scaling condition at infinity, we
will assume that � satisfies L1(δ, C̃L) instead of La(δ, C̃L). Now we further as-
sume that δ > 1. Then, K∞ = K∞,1 is nondecreasing function with K∞(0) = 0
and limt→∞ K∞(t) = ∞.

In the following lemma, we show some inequalities between �−1 and K −1,
and between �−1 and K −1∞ .

LEMMA 2.8. (1) Suppose � satisfies La(δ, C̃L) with δ > 1 and for some
a > 0. For any T > 0 and b > 0 there exists a constant c1 = c1(b, C̃L, a, δ, T ) > 0
such that

(2.7) �−1(t) ≤ c1K
−1

(
t

b�−1(t)

)
for all t ∈ (0, T ),

and there exists a constant c2 = c2(a, C̃L, δ, T ) ≥ 1 such that for every t, r > 0
satisfying t < �(r) ∧ T ,

(2.8)
(
r/�−1(t)

)2 ≤ r/K −1(t/r) ≤ c2
(
r/�−1(t)

)δ/(δ−1)
.

Moreover, if a = ∞, then (2.7) and (2.8) hold with T = ∞. In other words, (2.7)
holds for all t < ∞ and (2.8) holds for t < �(r).

(2) Suppose � satisfies L1(δ, C̃L) with δ > 1. For any T > 0 and b > 0 there
exists a constant c3 = c3(T , b, C̃L, δ) ≥ 1 such that for t ≥ T ,

(2.9) �−1(t) ≤ c3K
−1∞

(
t

b�−1(t)

)
,

and for any T > 0 there exists a constant c4 = c4(a, C̃L, δ, T ) ≥ 1 such that for
every t, r > 0 satisfying T ≤ t ≤ �(r),

(2.10) c−1
4

(
r/�−1(t)

)2 ≤ r/K −1∞ (t/r) ≤ c4
(
r/�−1(t)

)δ/(δ−1)
.

PROOF. (1) (2.7) follows from Remark 2.1 and Lemma 2.5 and the first in-
equality in (2.8) follows from (2.3) and Lemma 2.5.

Let c2 := C̃
−2/(δ−1)
L ≥ 1. The second inequality in (2.8) follows from

t

r
≥ C̃−1

L

�(c−1
2 �−1(t)δ/(δ−1)r−1/(δ−1))

c−1
2 �−1(t)δ/(δ−1)r−1/(δ−1)

≥ K
(
c−1

2 �−1(t)δ/(δ−1)r−1/(δ−1))
for t < T ∧ �(r), which uses the condition La(δ, C̃L) on �.
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Since we only assumed a ≥ �−1(T ) on T and c1, C1 are independent of T ,
(2.7) and (2.8) holds with T = ∞ when a = ∞.

(2) Fix T1 ∈ (0,∞). By Lemma 2.6(3), �̃ satisfies L(δ, C̃L). Now the function
�̃ satisfies the assumption of Lemma 2.8(1), thus (2.9) and (2.10) with functions
�̃ and K∞ hold with T = ∞. Now lemma follows from the fact that �−1(t) �
�̃−1(t) for t ≥ T1. �

3. Near-diagonal estimates and preliminary upper bound.

3.1. Functional inequalities. Here we will prove (weak) Poincaré inequality
with respect to our jumping kernel J . We start with a simple calculus.

LEMMA 3.1. For r > 0, let g : (0, r] → R be a continuous and nonincreas-
ing function satisfying

∫ r
0 sg(s) ds ≥ 0 and h : [0, r] → [0,∞) be a subaddi-

tive measurable function with h(0) = 0, that is, h(s1) + h(s2) ≥ h(s1 + s2), for
0 < s1, s2 < r with s1 + s2 < r . Then,

∫ r
0 h(s)g(s) ds ≥ 0.

PROOF. Let H(s) := s−2 ∫ s
0 h(t) dt . Then, since H ′(s) ≤ 0 by the subadditiv-

ity, H(s) is nonincreasing. Thus, we have that for any 0 < r1 ≤ r2 < r3 ≤ r ,

(3.1)
1

r2
1

∫ r1

0
h(t) dt ≥ 1

r2
2

∫ r2

0
h(t) dt ≥ 1

r2
3 − r2

2

∫ r3

r2

h(t) dt.

If g(r) ≥ 0, then the lemma is trivial since g is nonincreasing. Assume g(r) <

0 and let r0 := inf{s ≤ r : g(s) < 0}. Let 0 < k := r−2
0

∫ r0
0 h(s) ds. By using the

continuity of g, g(r0) = 0, and the integration by parts, we have∫ r0

0
h(s)g(s) ds = −

∫ r0

0

∫ s

0
h(t) dt dg(s) ≥ −k

∫ r0

0
s2 dg(s) = k

∫ r0

0
2sg(s) ds

and∫ r

r0

h(s)g(s) ds =
∫ r

r0

∫ r

s
h(t) dt dg(s) ≥ k

∫ r

r0

(
r2 − s2)

dg(s) = k

∫ r

r0

2sg(s) ds.

Thus,
∫ r

0 h(s)g(s) ds = (
∫ r0

0 + ∫ r
r0

)h(s)g(s) ds ≥ k
∫ r

0 2sg(s) ds ≥ 0, which com-
pletes the proof. �

By applying the above lemma, we have the following (weak) Poincaré inequal-
ity.

PROPOSITION 3.2. There exists C > 0 such that for every bounded and mea-
surable function f , x0 ∈Rd and r > 0,

C

rd�(r)

∫
B(x0,r)×B(x0,r)

(
f (y) − f (x)

)2
dx dy

≤
∫
B(x0,3r)×B(x0,3r)

(
f (y) − f (x)

)2
J (x, y) dx dy.(3.2)
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PROOF. Denote B(r) := B(x0, r). For 0 < s < 2r , let

h(s) := s−d
∫
B(3r−s)

∫
|z|=s

(
f (x + z) − f (x)

)2
σ(dz) dx,

where σ is surface measure of the ball. We observe that the left-hand side of (3.2)
is bounded above by

c1

rd�(r)

∫
B(r)

∫ 2r

0

∫
|z|=s

(
f (x + z) − f (x)

)2
σ(dz) ds dx

≤ c1

rd�(r)

∫ 2r

0
h(s)sd ds ≤ 2d+2c1

�(2r)

∫ 2r

0
h(s) ds,

where the last inequality follows from (2.3).
On the other hand, the right-hand side of (3.2) is bounded below by

c2

∫
B(2r)

∫
B(3r−|z|)

(
f (x + z) − f (x)

)2 1

|z|dψ(|z|) dx dz = c3

∫ 2r

0
h(s)

1

ψ(s)
ds.

Let g(s) = 1
ψ(s)

− 1
�(r)

. Then, g(s) is continuous, nonincreasing and∫ r
0 sg(s) ds = ∫ r

0
s

ψ(s)
− s

�(r)
ds = 0. Also, for s1, s2 > 0 with s1 + s2 := s < 2r ,

h(s) =
∫
|ξ |=1

∫
B(3r−s)

(f (x + sξ) − f (x))2

s
dxσ(dξ)

≤
∫
|ξ |=1

∫
B(3r−s)

(f (x + sξ) − f (x + s2ξ))2

s1

+ (f (x + s2ξ) − f (x))2

s2
dxσ(dξ)

≤
∫
|ξ |=1

∫
B(x0+s2ξ,3r−s)

(f (x + s1ξ) − f (x))2

s1
dxσ(dξ) + h(s2)

≤ h(s1) + h(s2),

where the first inequality follows from (b1+b2)
2

s
≤ b2

1
s1

+ b2
2

s2
. Thus, the functions

g and h satisfy the assertions of Lemma 3.1. Therefore, by Lemma 3.1 we have∫ r
0 h(s) 1

�(r)
ds ≤ ∫ r

0 h(s) 1
ψ(s)

ds, which implies (3.2). �

COROLLARY 3.3. There exists a constant C > 0 such that for any bounded
f ∈ F and r > 0,

(3.3)
1

rd

∫
Rd

∫
B(x,r)

(
f (x) − f (y)

)2
dy dx ≤ C�(r)E(f, f ).
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PROOF. Fix r > 0 and let {xn}n∈N be a countable set in Rd satisfying⋃∞
n=1 B(xn, r) = Rd and supy∈Rd |{n : y ∈ B(xn,6r)}| ≤ M . Then by Proposi-

tion 3.2, the left-hand side of (3.3) is bounded above by
∞∑

n=1

1

rd

∫
B(xn,2r)×B(xn,2r)

(
f (x) − f (y)

)2
dy dx

≤ c1

∞∑
n=1

�(r)

∫
B(xn,6r)×B(xn,6r)

(
f (x) − f (y)

)2
J (x, y) dy dx

≤ c1M�(r)

∫
Rd

∫
B(x,12r)

(
f (x) − f (y)

)2
J (x, y) dy dx

≤ c1M�(r)E(f, f ).

This finishes the proof. �

3.2. Nash’s inequality and near-diagonal upper bound in terms of �. In this
subsection, we observe that, using (2.3) and (3.3), Nash’s inequality for (E,F) and
the near-diagonal upper bound of p(t, x, y) in terms of � hold. The proofs in this
subsection are almost identical to the corresponding ones [12], Section 3. Thus,
we skip the proofs.

THEOREM 3.4. There is a positive constant c > 0 such that for every u ∈ F
with ‖u‖1 = 1, we have ϑ(‖u‖2

2) ≤ cE(u,u) where ϑ(r) := r/�(r−1/d).

Recall that X is the Hunt process corresponding to our Dirichlet form (E,F)

defined in (1.9) with jumping kernel J satisfying (1.7). By using our Nash’s in-
equality (Theorem 3.4) and [1], Theorem 3.1, X has a density function p(t, x, y)

with respect to Lebesgue measure, which is quasi-continuous, and that the upper
bound estimate holds quasi-everywhere.

THEOREM 3.5. There is a properly exceptional set N of X, a positive sym-
metric kernel p(t, x, y) defined on (0,∞) × (Rd \ N ) × (Rd \ N ), and posi-
tive constants C depending on C̄ in (1.7) and β1, CL, such that Ex[f (Xt)] =∫
Rd p(t, x, y)f (y) dy, and p(t, x, y) ≤ C�−1(t)−d for every x, y ∈ Rd \ N and

for every t > 0. Moreover, for every t > 0, and y ∈ Rd \ N , x �→ p(t, x, y) is
quasi-continuous on Rd .

3.3. An upper bound of heat kernel using scaling. In this section, we observe
that the off-diagonal upper bound in [12], Sections 4.1–4.4, holds without the con-
dition (1.14) in [12].

Fix ρ > 0 and define a bilinear form (Eρ,F) by

Eρ(u, v) =
∫
Rd×Rd

(
u(x) − u(y)

)(
v(x) − v(y)

)
1{|x−y|≤ρ}J (x, y) dx dy.
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Clearly, the form Eρ(u, v) is well defined for u, v ∈F , and Eρ(u,u) ≤ E(u,u) for
all u ∈ F . Since ψ satisfies L(β1,CL) and U(β2,CU), for all u ∈ F ,

(3.4) E(u,u) − Eρ(u,u) ≤ 4
∫
Rd

u2(x) dx

∫
B(x,ρ)c

J (x, y) dy ≤ c0‖u‖2
2

ψ(ρ)
.

Thus, E1(u,u) := E(u,u) + ‖u‖2
2 is equivalent to Eρ

1 (u,u) := Eρ(u,u) + ‖u‖2
2 for

every u ∈F , which implies that (Eρ,F) is a regular Dirichlet form on L2(Rd, dx).
We call (Eρ,F) the ρ-truncated Dirichlet form. The Hunt process associated with
(Eρ,F) which will be denoted by Xρ can be identified in distribution with the
Hunt process of the original Dirichlet form (E,F) by removing those jumps of
size larger than ρ. We use pρ(t, x, y) to denote the transition density function of
Xρ .

Note that although the function ψ may not be a correct scale function in our
setting, we will still use ψ to define scaled processes. For η > 0, we define
(X(η))t := η−1Xψ(η)t . Then, X(η) is a Hunt process in Rd . We call X(η) the η-
scaled process of X. Let

ψ(η)(r) := ψ(ηr)

ψ(η)
, �(η)(r) := r2

2
∫ r

0
s

ψ(η)(s)
ds

,

J (η)(x, y) := ψ(η)ηdJ (ηx, ηy).

We emphasize once more that ψ satisfies (1.6), L(β1,CL) and U(β2,CU). Fur-
thermore, by Lemma 2.4 we have β1 < 2. By definition, ψ(η) satisfies L(β1,CL)

and U(β2,CU) for any η > 0. Also, J (η) satisfies that for x, y ∈ Rd ,

(3.5)
C̄−1

|x − y|dψ(η)(|x − y|) ≤ J (η)(x, y) ≤ C̄

|x − y|dψ(η)(|x − y|) ,

where the constant C̄ > 0 is that of (1.7). Thus, Theorem 3.4 holds for η-scaled
process X(η) with the same constants as X. that is, all constants are independent
of η. Furthermore, since �(η)(r) = �(ηr)/ψ(η), Lemma 2.4 enables that both �

and �(η) satisfies L(β1,CL) and U(2 ∧ β2,CU).
Since J (η)(x, y) is the jumping kernel of X(η), the Dirichlet form (E (η),F)

associated with X(η) satisfies

E (η)(u, v) =
∫
Rd×Rd

(
u(x) − u(y)

)(
v(x) − v(y)

)
J (η)(x, y) dx dy.

Also, since Px(X(η) ∈ A) = Px(η−1Xψ(η)t ∈ A) = Pηx(Xψ(η)t ∈ ηA), we have
p(η)(t, x, y) = ηdp(ψ(η)t, ηx, ηy), for a.e. x, y ∈ Rd , where p(η)(t, x, y) is a tran-
sition density of X(η). For ρ > 0, let

J (η,ρ)(x, y) = J (η)(x, y)1{|x−y|≤ρ}, J (η)
ρ (x, y) := J (η)(x, y)1{|x−y|>ρ}.
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Then,

E (η,ρ)(u, v) :=
∫
Rd×Rd

(
u(x) − u(y)

)(
v(x) − v(y)

)
J (η,ρ)(x, y) dx dy

is a ρ-truncated Dirichlet form for X(η). We use X(η,ρ) to denote a Hunt process
corresponding to Dirichlet form (E (η,ρ),F) and p(η,ρ)(t, x, y) to denote the tran-
sition density function of X(η,ρ). By the same argument as in (3.4), there exists
c > 0 such that any u ∈ F ,

(3.6) c
(
E (η)(u,u) + ‖u‖2

2
) ≤ E (η,ρ)(u,u) + ‖u‖2

2 ≤ E (η)(u,u) + ‖u‖2
2.

Without loss of generality, we assume that ψ(1) = 1. Then Xρ = X(1,ρ), Jρ =
J (1,ρ), Eρ(u, v) = E (1,ρ)(u, v), and pρ(t, x, y) = p(1,ρ)(t, x, y).

Since the constants C̄ in (1.7) and (3.5) are same, using [2], Lemma 3.1, we
have the following.

LEMMA 3.6. There exists c > 0 such that for any ρ > 0, η > 0 and x, y ∈ Rd ,
p(η)(t, x, y) ≤ p(η,ρ)(t, x, y) + ct (ρdψ(η)(ρ))−1.

In the following we give an upper estimate of p(η,ρ)(t, x, y). It is the counterpart
of [12], Lemma 4.3.

LEMMA 3.7. There exists a constant C > 0, independent of η,λ > 0, such that
p(η,ρ)(t, x, y) ≤ Ct

|x−y|d�(η)(|x−y|) for every η > 0, 0 < t ≤ �(η)(1) = �(η)/ψ(η),

x, y ∈ Rd \N with |x − y| ≥ 1 and ρ = β1
3(d+β1)

|x − y|.

PROOF. Define γ := β1
3(d+β1)

. We have by [1], Theorem 3.1, and the same way

as that for [12], Theorem 3.2, using the above Nash-type inequality for E (η,ρ)
1 ,

there exists constant c1 > 0 such that for every t ≤ �(η)(1), x, y ∈ Rd \ N ,
η > 0 and ρ ≥ γ , we have p(η,ρ)(t, x, y) ≤ c1e

c2(�(η))−1(t)−d since �(η)(1) =
�(η)/ψ(η) ≤ c2. Using this and the equality

∫ ρ
0

t
ψ(η)(t)

dt = ρ2

�(η)(ρ)
, one can fol-

low the proof of [12], Lemma 4.3, line by line to prove the lemma. We skip the
details. �

Although we used ψ in scaled process, in the next theorem we are able to obtain
an upper bound in terms of �.

THEOREM 3.8. There exists a constant C > 0 such that for any t > 0 and
x, y ∈ Rd \N ,

(3.7) p(t, x, y) ≤ C

(
1

�−1(t)d
∧ t

�(|x − y|)|x − y|d
)
.
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PROOF. Note that (3.7) holds when t , x, y satisfies t ≥ �(|x − y|) by Theo-
rem 3.5. Thus, it suffices to show the case t ≤ �(|x − y|). By [10], Lemma 7.2(1),
for every η > 0, 0 < t ≤ �(η)(1) and x, y ∈Rd \N with |x − y| ≥ 1,

(3.8) p(η)(t, x, y) ≤ p(η,ρ)(t, x, y) + t
∥∥J (η)

ρ

∥∥∞ ≤ p(η,ρ)(t, x, y) + c1t

ψ(η)(ρ)ρd
.

Applying Lemma 3.7 to (3.8), and using the condition U(β2,CU) on ψ(η) and the
inequality �(η) ≤ ψ(η), we get

p(η)(t, x, y) ≤ c2t

|x − y|d�(η)(|x − y|) + c1t

ψ(η)(γ |x − y|)(γ |x − y|)d

≤ c3t

|x − y|d�(η)(|x − y|) ,(3.9)

where γ = β1
3(d+β1)

is the constant in the proof of Lemma 3.7.

Let η = |x − y|. By (3.9) and t/ψ(η) ≤ �(η)/ψ(η) = �(η)(1), we obtain

p(t, x, y) = η−dp(η)(t/ψ(η), η−1x,η−1y
)

≤ c3η
−d t/ψ(η)

(η−1|x − y|)d�(η)(η−1|x − y|)
= c3

t

|x − y|d�(|x − y|) ,

which concludes the proof. �

3.4. Consequences of Poincaré inequality and Theorem 3.8. The upper bound
in (3.7) may not be sharp. However, there are several important consequences
which are induced from (3.7). In this subsection, we will apply recent results in
[10, 13] to (3.7).

LEMMA 3.9. There exists a constant C > 0 such that Px(τB(x,r) ≤ t) ≤
Ct/�(r) for any r > 0 and x ∈ Rd \N .

PROOF. Since we have the upper heat kernel estimates in (3.7), the condition
L(β1,CL) on �, and conservativeness of X, the lemma follows from the same
argument as in the proof of [10], Lemma 2.7. �

For any open set D ⊂ Rd , let FD := {u ∈ F : u = 0 q.e. in Dc}. Then, (E,FD)

is also a regular Dirichlet form. We use pD(t, x, y) to denote the transition density
function corresponding to (E,FD).

Recall that (E,F) is conservative. Thus, by Theorem 3.8 and [10], Theo-
rem 1.15, we see that CSJ(�) defined in [10] holds. Moreover, applying [9],
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Lemma 2.1, to (1.7), we have the (UJS) condition defined in [9]. By this, CSJ(�),
(2.2) and Proposition 3.2, we have (7) in [13], Theorem 1.19.

Therefore, by [13], Theorem 1.19, following joint Hölder regularity holds for
parabolic functions. Note that, by a standard argument, we now can take the contin-
uous version of parabolic functions (for example, see [19], Lemma 5.12). We refer
[13], Definition 1.13, for the definition of parabolic functions. Let Q(t, x, r,R) :=
(t, t + r) × B(x,R).

THEOREM 3.10. There exist constants c > 0, 0 < θ < 1 and 0 < ε < 1 such
that for all x0 ∈ Rd , t0 ≥ 0, r > 0 and for every bounded measurable function
u = u(t, x) that is parabolic in Q(t0, x0,�(r), r), the following parabolic Hölder
regularity holds:∣∣u(s, x) − u(t, y)

∣∣ ≤ c
(
r−1[

�−1(|s − t |) + |x − y|])θ sup
[t0,t0+�(r)]×Rd

|u|

for every s, t ∈ (t0, t0 + �(εr)) and x, y ∈ B(x0, εr).

Since pD(t, x, y) is parabolic, from now on, we assume N = ∅ and take the
joint continuous versions of p(t, x, y) and pD(t, x, y) (cf. [19], Lemma 5.13).

Again, by [13], Theorem 1.19, we have the interior near-diagonal lower bound
of pB(t, x, y) (and parabolic Harnack inequality).

THEOREM 3.11. There exist ε ∈ (0,1) and c1 > 0 such that for any x0 ∈ Rd ,
r > 0, 0 < t ≤ �(εr) and B = B(x0, r), pB(t, x, y) ≥ c1�

−1(t)−d for all x, y ∈
B(x0, ε�

−1(t)).

The next lemma follows from [10], Theorem 1.15, Theorem 3.8 and the conser-
vativeness of (E,F).

LEMMA 3.12. For any r > 0 and x ∈Rd , Ex[τB(x,r)] � �(r).

4. Off-diagonal estimates.

4.1. Off-diagonal upper heat kernel estimates. Recall from the previous sec-
tion that for ρ > 0, (Eρ,F) is ρ-truncated Dirichlet form of (E,F). Also, the Hunt
process associated with (Eρ,F) is denoted by Xρ , and pρ(t, x, y) is the transition
density function of Xρ .

For any open set D ⊂ Rd , let {P D
t } and {Qρ,D

t } be the semigroups of (E,FD)

and (Eρ,FD), respectively. We write {Qρ,Rd

t } as {Qρ
t } for simplicity. We also use

τ
ρ
D to denote the first exit time of the process {Xρ

t } in D.
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LEMMA 4.1 ([10], Lemma 5.2). There exist constants c,C1,C2 > 0 such that
for any t, ρ > 0 and x, y ∈ Rd ,

pρ(t, x, y) ≤ c�−1(t)−d exp
(
C1

t

�(ρ)
− C2

|x − y|
ρ

)
.

PROOF. Note that by Lemma 2.4, � satisfies U(β2 ∧ 2,CU) and L(β1,CL).
By Theorem 3.5, (2.2), and Lemma 3.12, the assumptions of [10], Lemma 5.2, are
satisfied. Thus, the lemma follows. �

The next lemma was proved in [10], Lemma 7.11, and [20], Theorem 3.1, under
the assumption that φ(r, ·) is nondecreasing for all r > 0. We will prove the lemma
without such assumption.

LEMMA 4.2. Let r, t, ρ > 0. Assume that Pw(τ
ρ
B(x,r) ≤ t) ≤ φ(r, t) for all x ∈

Rd and w ∈ B(x, r/4), where φ is a nonnegative measurable function on R+×R+.
Then, for any integer k ≥ 1, Q

ρ
t 1B(x,k(r+ρ))c (z) ≤ φ(r, t)k for all x ∈ Rd and z ∈

B(x, r/4).

PROOF. Fix x ∈ Rd . Note that X
ρ

τ
ρ
B(x,r)

= Xρ(τ
ρ
B(x,r)) ∈ B(x, r + ρ), and |w −

y| ≥ |x − w| − |y − x| ≥ k(r + ρ) for any w /∈ B(x, (k + 1)(r + ρ))c and y ∈
B(x, r + ρ). Thus by the strong Markov property, for all s ≤ t and z ∈ B(x, r/4)

we have

Qρ
s 1B(x,(k+1)(r+ρ))c(z)

= Ez[1{τρ
B(x,r)<s}P

Xρ(τ
ρ
B(x,r))

(
Xρ(

s − τ
ρ
B(x,r)

)
/∈ B

(
x, (k + 1)(r + ρ)

))]
≤ Pz(τρ

B(x,r) < s
)

sup
y∈B(x,r+ρ),s1≤s

Qρ
s1

1B(y,k(r+ρ))c (y)

≤ φ(r, t) sup
y∈Rd ,s1≤t

Qρ
s1

1B(y,k(r+ρ))c (y).

By using the above step k − 1 times we conclude that for all z ∈ B(x, r/4)

Q
ρ
t 1B(x,k(r+ρ))c (z) ≤ φ(r, t) sup

y1∈Rd ,s1≤t

Qρ
s1

1B(y1,(k−1)(r+ρ))c(y1)

≤ · · · ≤ φ(r, t)k−1 sup
yk−1∈Rd ,sk−1≤t

Qρ
sk−1

1B(yk−1,r+ρ)c(yk−1)

≤ φ(r, t)k−1 sup
yk−1∈Rd ,sk−1≤t

Pyk−1
(
τ

ρ
B(yk−1,r)

≤ t
) ≤ φ(r, t)k.

�

The following lemma is a key to obtain upper bound of transition density func-
tion and will be used in several times.
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LEMMA 4.3. Let f :R+×R+ →R+ be a measurable function satisfying that
t �→ f (r, t) is nonincreasing for all r > 0 and that r �→ f (r, t) is nondecreasing
for all t > 0. Fix T ∈ (0,∞]. Suppose that the following hold: (i) For each b > 0,
supt≤T f (b�−1(t), t) < ∞ (resp. supt≥T f (b�−1(t), t) < ∞); (ii) there exist η ∈
(0, β1], a1 > 0 and c1 > 0 such that

(4.1) Px(|Xt − x| > r
) ≤ c1

(
ψ−1(t)/r

)η + c1 exp
(−a1f (r, t)

)
for all t ∈ (0, T ) (resp. t ∈ [T ,∞)) and r > 0, x ∈ Rd .

Then, there exist constants k, c > 0 such that

p(t, x, y) ≤ ct

|x − y|dψ(|x − y|) + c�−1(t)−d exp
(−a1kf

(|x − y|/(16k), t
))

for all t ∈ (0, T ) (resp. t ∈ [T ,∞)) and x, y ∈ Rd .

PROOF. Since the proofs for the case t ∈ (0, T ) and the case t ∈ [T ,∞) are
similar, we only prove for t ∈ (0, T ). For x0 ∈ Rd , let B(r) = B(x0, r). By the
strong Markov property, (4.1), and the fact that t �→ f (r, t) is nonincreasing, we
have that for x ∈ B(r/4) and t ∈ (0, T /2),

Px(τB(r) ≤ t) ≤ Px(
X2t ∈ B(r/2)c

) + Px(
τB(r) ≤ t,X2t ∈ B(r/2)

)
≤ Px(

X2t ∈ B(x, r/4)c
)

+ sup
z∈B(r)c,s≤t

Pz(X2t−s ∈ B(z, r/4)c
)

≤ c1
(
4ψ−1(2t)/4

)η + c1 exp
(−a1f (r/4,2t)

)
.(4.2)

From this and Lemma 2.2, we have that for x ∈ B(r/4) and t ∈ (0, T /2),

(4.3) 1 − P B
t 1B(x) = Px(τB ≤ t) ≤ c2

(
ψ−1(t)

r

)η

+ c1 exp
(−a1f (r/4,2t)

)
.

By [20], Proposition 4.6, and Lemma 2.3, letting ρ = r we have

|P B(r)
t 1B(r)(x) − Q

r,B(r)
t 1B(r)(x)| ≤ 2t ess sup

z∈Rd

∫
B(z,r)c

J (z, y) dy ≤ c3t

ψ(r)
.

Combining this with (4.3), we see that for all x ∈ B(r/4) and t ∈ (0, T /2),

Px(
τ r
B(r) ≤ t

) = 1 − Q
r,B(r)
t 1B(r)(x) ≤ 1 − P

B(r)
t 1B(r)(x) + c3t

ψ(r)

≤ c2
(
ψ−1(t)/r

)η + c1 exp
(−a1f (r/4,2t)

) + c3
(
t/ψ(r)

)
=: φ1(r, t).(4.4)

Applying Lemma 4.2 with r = ρ to (4.4), we see that for t ∈ (0, T /2),

(4.5)
∫
B(x,2kr)c

pr(t, x, y) dy = Qr
t 1B(x,2kr)c (x) ≤ φ1(r, t)

k.
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Let k = �(β2 + d)/η�. For t ∈ (0, T ) and x, y ∈ Rd satisfying 4k�−1(t) ≥ |x −y|,
by using that r �→ f (r, t) is nondecreasing and the assumption (i), we have f (|x −
y|/(16k), t) ≤ f (�−1(t)/4, t) ≤ M < ∞. Thus, by Theorem 3.5,

(4.6) p(t, x, y) ≤ c4e
a1kM�−1(t)−d exp

(−a1kf
(|x − y|/(16k), t

))
.

For the remainder of the proof, assume t ∈ (0, T ) and 4k�−1(t) < |x − y|, and
let r = |x − y| and ρ = r/(4k). By (4.5) and Lemmas 2.2, 2.4 and 4.1, we have

pρ(t, x, y) =
∫
Rd

pρ(t/2, x, z)pρ(t/2, z, y) dz

≤
(∫

B(x,r/2)c
+

∫
B(y,r/2)c

)
pρ(t/2, x, z)pρ(t/2, y, z) dz

≤
(

sup
z∈Rd

pρ(t/2, z, y)
)∫

B(x,2kρ)c
pρ(t/2, x, z) dz

+
(

sup
z∈Rd

pρ(t/2, x, z)
)∫

B(y,2kρ)c
pρ(t/2, y, z) dz

≤ c5�
−1(t)−dφ1(ρ, t/2)k.(4.7)

Note that kβ1 ≥ kη ≥ β2 + d , and ρ ≥ �−1(t) > ψ−1(t). Thus, by L(β1,CL) on
ψ and using Lemmas 2.2 and 2.4,

�−1(t)−d((
ψ−1(t)/ρ

)ηk + (
t/ψ(ρ)

)k)
≤ c6

rd

ψ−1(t)d

�−1(t)d

(
ψ−1(t)/r

)β2

≤ c6

rd

[
ψ−1(t)/ψ−1(

ψ(r)
)]β2 ≤ c7t

rdψ(r)
.

Applying this to (4.7), we have

pρ(t, x, y) ≤ c8�
−1(t)−d

((
ψ−1(t)

ρ

)ηk

+ (−a1kf (ρ/4, t)
) +

(
t

ψ(ρ)

)k)

≤ c9t

rdψ(r)
+ c8�

−1(t)−d exp
(−a1kf

(
r/(16k), t

))
.

Thus, by Lemma 3.6 and U(β2,CU) on ψ , we have

p(t, x, y) ≤ pρ(t, x, y) + c10t

ρdψ(ρ)

≤ c11t

|x − y|dψ(|x − y|) + c11�
−1(t)−d exp

(−a1kf
(
r/(16k), t

))
.(4.8)

Now the lemma follows immediately from (4.6) and (4.8). �



HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES 2849

The following inequality will be used several times in the proofs of this sec-
tion: For any c0 > 0 and α ∈ (0,1), there exists c1 = c1(c0, α) > 0 such that
2n ≤ c0

2d
2n(1−α) + c1 holds for every n ≥ 0. Thus, for any n ≥ 0 and κ ≥ 1,

2nd exp
(−c02n(1−α)κ

) ≤ 2−nd exp
(
2nd − c02n(1−α)κ

)
≤ ec1d2−nd exp

(
c0

2
2n(1−α) − c02n(1−α)κ

)

≤ ec1d2−nd exp
(
−c0

2
κ

)
.(4.9)

The next proposition is an intermediate step toward to Theorem 1.2.

PROPOSITION 4.4. There exist constants a1,C > 0 and N ∈ N such that

(4.10) p(t, x, y) ≤ Ct

|x − y|dψ(|x − y|) + C�−1(t)−d exp
(
−a1|x − y|1/N

�−1(t)1/N

)

for all t > 0 and x, y ∈ Rd .

PROOF. Fix α ∈ (d/(d + β1),1) and let N := �(β1 + d)/β1� + 1, and η :=
β1 − (β1 + d)/N > 0. We first claim that there exist a2 > 0 and c1 > 0 such that

(4.11)
∫
B(x,r)c

p(t, x, y) dy ≤ c2
(
ψ−1(t)/r

)η + c1 exp
(−a2

(
r/�−1(t)

)1/N )
,

for any t, r > 0 and x ∈ Rd .
When r ≤ �−1(t), we immediately obtain (4.11) by letting c1 = exp(a2).

Thus, we will only consider the case r > �−1(t). Define ρn = ρn(r, t) =
2nαr1−1/N�−1(t)1/N for all n ∈ N. Since r > �−1(t), we have �−1(t) < ρn ≤
2nr . In particular, t < �(ρn). Thus, by Lemmas 3.6 and 4.1, we have that for
every t > 0 and 2nr ≤ |x − y| < 2n+1r ,

p(t, x, y) ≤ c2�
−1(t)−d exp

(
C1

t

�(ρn)
− C2

|x − y|
ρn

)
+ c2t

ρd
nψ(ρn)

≤ c3�
−1(t)−d exp

(
−C2

2n(1−α)r1/N

�−1(t)1/N

)
+ c2t

ρd
nψ(ρn)

.

Using the above estimate, we get that∫
B(x,r)c

p(t, x, y) dy

=
∞∑

n=0

∫
B(x,2n+1r)\B(x,2nr)

p(t, x, y) dy
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≤ c4

∞∑
n=0

(
2nr

)d
�−1(t)−d exp

(
−C2

2n(1−α)r1/N

�−1(t)1/N

)
+ c4

∞∑
n=0

(
2nr

)d t

ρd
nψ(ρn)

=: I1 + I2.

Using �−1(t) < r , (4.9), and the fact that sups≥1 sd exp(−C2
4 s1/N) < ∞,

I1 = c4

∞∑
n=0

(
r

�−1(t)

)d

2nd exp
(
−C2

2n(1−α)r1/N

�−1(t)1/N

)

≤ c4e
c1d

(
r

�−1(t)

)d

exp
(
−C2

2

r1/N

�−1(t)1/N

) ∞∑
n=0

2−nd

≤ c5 exp
(
− C2r

1/N

4�−1(t)1/N

)
.(4.12)

We next estimate I2. By (2.1), t < �(ρn) < ψ(ρn) and �−1 > ψ−1, L(β1,CL) on
ψ and α(d + β1) > d , we have

I2 = c4

∞∑
n=0

(2nr)d

ρd
n

ψ(ψ−1(t))

ψ(ρn)
≤ c4C

−1
L

∞∑
n=0

(
2nr

ρn

)d(
ψ−1(t)

ρn

)β1

= c4C
−1
L

(
�−1(t)

r

)− d+β1
N

(
ψ−1(t)

r

)β1 ∞∑
n=0

2n(d−α(d+β1))

= c6

(
�−1(t)

r

)− d+β1
N

(
ψ−1(t)

r

)β1 ≤ c6

(
ψ−1(t)

r

)β1− d+β1
N

= c6

(
ψ−1(t)

r

)η

.

Thus, by above estimates of I1 and I2, we obtain (4.11).
By η < β1 and (4.11), assumptions in Lemma 4.3 hold with f (r, t) :=

(r/�−1(t))1/N . Now (4.10) follows from Lemma 4.3. �

By using Proposition 4.4, we obtain the upper bound in Theorem 1.2.

PROOF OF (1.11). Similar to the proof of Proposition 4.4, we will show that
there exist a2 > 0 and c1 > 0 such that for any x ∈ Rd and t, r > 0,

(4.13)
∫
B(x,r)c

p(t, x, y) dy ≤ c1
(
ψ−1(t)/r

)β2/2 + c1 exp
(−a2

(
r/�−1(t)

)2)
.

Let θ := β1
4d+3β1

∈ (0,1) and C0 = 2C1
C2

, where C1 and C2 are the constants in
Lemma 4.1. Without loss of generality, we may and do assume that C0 ≥ 1.
First, when r ≤ C0�

−1(t), the claim is clear. Second, we consider the case
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r > C0
�−1(t)1+θ

ψ−1(t)θ
. For |x − y| > r , there is a θ0 ∈ (θ,∞) such that |x − y| =

C0�
−1(t)1+θ0/ψ−1(t)θ0 . Let a1 be the constant in Proposition 4.4. Note that there

exists a positive constant c2 = c2(θ) such that s−d−β2−β2/θ ≥ c2 exp(−a1s
1/N) for

s ≥ 1. Using this and U(β2,CU) condition on ψ ,
t

|x − y|dψ(|x − y|)
≥ C

−d−β2
0 C−2

U �−1(t)−d((
�−1(t)/ψ−1(t)

)θ0
)−d−β2−β2/θ0

≥ c2C
−d−β2
0 C−2

U �−1(t)−d exp
(−a1

(|x − y|/�−1(t)
)1/N )

.(4.14)

Thus, by Proposition 4.4, we have that for |x − y| > r , p(t, x, y) ≤ c3t

|x−y|dψ(|x−y|) .

Using this, Lemma 2.3, L(β1,CL) of ψ , and the fact that r > C0ψ
−1(t) (which

follows from (2.1)),∫
B(x,r)c

p(t, x, y) dy

≤ c3

∫
B(x,r)c

t

|x − y|dψ(|x − y|) dy ≤ c4
t

ψ(r)

≤ c4C
−1
L

(
ψ−1(t)/r

)β1 ≤ c4C
−1
L

(
ψ−1(t)/r

)β1/2
.(4.15)

Now consider the case C0�
−1(t) < r ≤ C0�

−1(t)1+θ /ψ−1(t)θ . In this case,
there exists θ0 ∈ (0, θ ] such that r = C0�

−1(t)1+θ0/ψ−1(t)θ0 . Define ρn =
C02nα�−1(t)2/r , where α ∈ (d/(d + β1),1). Since C0 = 2C1

C2
, using (2.3)

C1t

�(ρn)
− C22nr

ρn

≤ C1�(�−1(t))

�(�−1(t)C0�−1(t)/r)
− C22n(1−α)r2

C0�−1(t)2

≤ C1

(
r

C0�−1(t)

)2
− C22n(1−α) r2

C0�−1(t)2

≤
(

C1

C2
0

− C2

C0
2n(1−α)

)
r2

�−1(t)2 ≤ − C2

2C0
2n(1−α) r2

�−1(t)2 .

Let a2 := 2−1C2/C0. By the above inequality, Lemma 3.6, and Lemma 4.1,∫
B(x,r)c

p(t, x, y) dy

=
∞∑

n=0

∫
B(x,2n+1r)\B(x,2nr)

p(t, x, y) dy

≤ c5

∞∑
n=0

(
2nr

)d
�−1(t)−d exp

(
−a2

2n(1−α)r2

�−1(t)2

)
+ c5

∞∑
n=0

(
2nr

)d(
2nr

ρn

)d t

ψ(ρn)

=: c6(I1 + I2).
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Using (4.9) and r > C0�
−1(t), the proof of the upper bound of I1 is the same as

the one in (4.12). Thus, we have

I1 ≤ c6

(
r

�−1(t)

)d

exp
(
− a2r

2

2�−1(t)2

) ∞∑
n=0

2−nd ≤ c7 exp
(
− a2r

2

4�−1(t)2

)
.

We next estimate I2. Note that ρn ≥ ρ0 = C0�
−1(t)1+θ0ψ−1(t)θ0 ≥ C0ψ

−1(t).
Thus, we have

I2 =
∞∑

n=0

(
2n(1−α)r2

C0�−1(t)2

)d ψ(C0ψ
−1(t))

ψ(ρn)

ψ(ψ−1(t))

ψ(C0ψ−1(t))

≤ c8

(
�−1(t)

r

)−2(d+β1)
(

ψ−1(t)

r

)β1

.

Since r = C0
�−1(t)1+θ0

ψ−1(t)θ0
, C0ψ

−1(t) < C0�
−1(t) < r , and θ0 ≤ θ , by using θ =

β1
4d+3β1

, we have

(
�−1(t)

r

)−2(d+β1) ≤ c9

(
ψ−1(t)

r

)− 2(d+β1)θ

1+θ = c9

(
ψ−1(t)

r

)−β1/2
.

Thus, I2 ≤ c9c8(ψ
−1(t)/r)β1/2. Using estimates of I1 and I2, we arrive∫

B(x,r)c
p(t, x, y) dy ≤ c6(I1 + I2) ≤ c10

(
ψ−1(t)

r

)β1/2
+ c10 exp

(
− a2r

2

4�−1(t)2

)
.

Combining above inequality with (4.15), we obtain (4.13). Now, applying (4.13)
to Lemma 4.3 with f (r, t) := (r/�−1(t))2, the conclusion follows. �

Recall that, without loss of generality, whenever � satisfies the weak lower
scaling property at infinity with index δ > 1, we have assumed that � satisfies
L1(δ, C̃L) instead of La(δ, C̃L).

We are now ready to prove the sharp upper bound of p(t, x, y), which is the
most delicate part of this paper.

THEOREM 4.5. (1) Assume that � satisfies La(δ, C̃L) with δ > 1. Then for
any T > 0, there exist constants aU > 0 and c > 0 such that for every x, y ∈ Rd

and t < T ,

(4.16) p(t, x, y) ≤ ct

|x − y|dψ(|x − y|) + c

�−1(t)d
exp

(
− aU |x − y|

K −1(t/|x − y|)
)
.

Moreover, if � satisfies L(δ, C̃L), then (4.16) holds for all t < ∞.
(2) Assume that � satisfies L1(δ, C̃L) with δ > 1. Then for any T > 0, there

exist constants a′
U > 0 and c′ > 0 such that for every x, y ∈ Rd and t ≥ T ,

p(t, x, y) ≤ c′t
|x − y|dψ(|x − y|) + c′

�−1(t)d
exp

(
− a′

U |x − y|
K −1∞ (t/|x − y|)

)
.
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PROOF. Take θ = β1(δ−1)
2δd+δβ1+β1

and C̃0 = ( 2C1
C2C̃

2
L

)1/(δ−1), where C1 and C2 are

constants in Lemma 4.1. Without loss of generality, we may and do assume that
C̃0 ≥ 1. Note that θ satisfies δ(d+β1)

δ−1
θ

1+θ
= β1

2 and θ < δ − 1. Let α ∈ (d/(d +
β1),1).

(1) Again we will show that there exist a1 > 0 and c1 > 0 such that for any
t ≤ T and r > 0,

(4.17)
∫
B(x,r)c

p(t, x, y) dy ≤ c1
(
ψ−1(t)/r

)β1/2 + c1 exp
(
− a1r

K −1(t/r)

)
.

When r ≤ C̃0�
−1(t) using (2.7), we have for t ≤ T

(4.18)
∫
B(x,r)c

p(t, x, y) dy ≤ 1 ≤ ec2 exp
(
− r

K −1(t/r)

)
.

The proof of case r > C̃0
�−1(t)1+θ

ψ−1(t)θ
is exactly same as the corresponding part in the

proof of (1.11) in Theorem 1.2.
Now consider the case C̃0�

−1(t) < r ≤ C̃0�
−1(t)1+θ /ψ−1(t)θ . In this case,

there exists θ0 ∈ (0, θ ] such that r = C̃0�
−1(t)1+θ0/ψ−1(t)θ0 . Define ρ =

K −1(t/r) and ρn = C̃02nαρ for integer n ≥ 0. Note that for t ≤ T and
C̃0�

−1(t) < r , we have t ≤ T ∧ �(r). Thus, by (2.8)

(4.19) ρ ≤ ρ0 = C̃0ρ ≤ C̃0�
−1(t)2/r ≤ C̃0�

−1(T )�−1(t)/r ≤ �−1(T ).

By Remark 2.1, we may assume that �−1(T ) < a. Thus, by (4.19), Lemma 2.5,
the condition La(δ, C̃L) on �, and the definition of C̃0, we have

C1
t

�(ρn)
− C2

2nr

ρn

≤ C1
�(ρ)

�(ρ0)

t

�(ρ)
− C2

C̃0

2n(1−α)r

ρ

≤ C2r

C̃0ρ

(
C̃0C1

C2C̃L

�(ρ)

�(ρ0)
− 2n(1−α)

)

≤ C2r

C̃0ρ

(
C̃1−δ

0 C1

C2C̃
2
L

− 2n(1−α)

)

= C2r

C̃0ρ

(
1

2
− 2n(1−α)

)
≤ −c32n(1−α) r

ρ
.(4.20)

Combining (4.20), Lemmas 3.6 and 4.1, we have that we get that∫
B(x,r)c

p(t, x, y) dy

≤
∞∑

n=0

∫
B(x,2n+1r)\B(x,2nr)

p(t, x, y) dy
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≤ c4

∞∑
n=0

(
2nr

�−1(t)

)d

exp
(
−c5

2n(1−α)r

ρ

)
+ c4

∞∑
n=0

(
2nr

ρn

)d t

ψ(ρn)

:= I1 + I2.

We first estimate I1. Note that by (2.8), r/ρ ≥ (r/�−1(t))2 ≥ C̃2
0 . Using this, (2.8),

and (4.9) we have

I1 ≤ c6

∞∑
n=0

(r/ρ)d/22nd exp
(−c52n(1−α)r/ρ

) ≤ c7 exp
(−2−2c5r/ρ

)
.

We next estimate I2. By using (2.8), r = C̃0�
−1(t)1+θ0/ψ−1(t)θ0 , ψ−1(t) ≤

�−1(t), and θ0 ≤ θ < δ − 1, we have

�−1(t)

c8ρ
≤

(
r

�−1(t)

)1/(δ−1)

= C̃
1/(δ−1)
0

(
�−1(t)

ψ−1(t)

)θ0/(δ−1)

≤ C̃
1/(δ−1)
0

�−1(t)

ψ−1(t)
.

Thus, we have ρn > ρ ≥ C−1
3 C̃

−1/(δ−1)
0 ψ−1(t). Using this, L(β1,CL) condition

on ψ , and (2.8),

I2 ≤ c9

(
r

ρ

)d+β1
(

ψ−1(t)

r

)β1 ≤ c10

(
�−1(t)

r

)− δ
δ−1 (d+β1)

(
ψ−1(t)

r

)β1

.

Since ψ−1(t) ≤ �−1(t) < r = C̃0�
−1(t)1+θ0/ψ−1(t)θ0 and θ0 ≤ θ , using

δ(d+β1)
δ−1

θ
1+θ

= β1
2 , we have

(
�−1(t)

r

)− δ
δ−1 (d+β1) ≤ C̃

δ(d+β1)/(δ−1)
0

(
ψ−1(t)

r

)−β1/2
,

which implies I2 ≤ c11(ψ
−1(t)/r)β1/2. Using estimates of I1 and I2 and combin-

ing (4.18) and (4.15) we obtain (4.17).
Let f (r, t) := r

K −1(t/r)
. Then, by (4.19) and Lemma 2.8, we see that f (r, t)

satisfies the condition in Lemma 4.3. Thus, by Lemma 4.3, we obtain

p(t, x, y) ≤ c12t

|x − y|dψ(|x − y|) + c12�
−1(t)−d exp

(
− c13|x − y|

K −1(c14t/|x − y|)
)
.

Since |x − y| ≥ C̃0�
−1(t) ≥ c15t

1/δ ≥ c15T
−1+1/δt , we can apply (2.4) and get

K −1(c18t/|x − y|) ≤ c21K
−1(t/|x − y|). We have proved the first claim of the

theorem.
(2) The proof of the second claim is similar to the proof of the first claim. We

skip the proof. �

Combining Theorems 3.5 and 4.5 and Lemma 2.8, we get the desired upper
bounds of p(t, x, y).
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4.2. Off diagonal lower bound estimates. We first prove (1.12).

PROPOSITION 4.6. There exist constants δ1 ∈ (0,1/2) and C3 > 0 such that

(4.21) p(t, x, y) ≥ C3
1{|x−y|≤δ1�

−1(t)}
�−1(t)d

+ C3t

|x − y|dψ(|x − y|)1{|x−y|≥δ1�
−1(t)}.

PROOF. Let δ1 = ε/2 < 1/2 where ε is the constant in Theorem 3.11. Then
by Theorem 3.11, for all |x − y| ≤ δ1�

−1(t),

(4.22) p(t, x, y) ≥ pB(x,�−1(t)/ε)(t, x, y) ≥ c0�
−1(t)−d .

Thus, we have (4.21) when |x − y| ≤ δ1�
−1(t).

By Lemma 3.9, we have Px(τB(x,r) ≤ t) ≤ c1t/�(r) for any r > 0 and x ∈ Rd .
Let δ2 := (CL/2)1/β1δ1 ∈ (0, δ1) so that δ1�

−1((1 − b)t) ≥ δ2�
−1(t) holds for all

b ∈ (0,1/2]. Then choose λ ≤ c−1
1 C−1

U (2δ2/3)β2/2 < 1/2 small enough so that
c1λt/�(2δ2�

−1(t)/3) ≤ λc1CU(2δ2/3)−β2 ≤ 1/2. Thus, we have λ ∈ (0,1/2)

and δ2 ∈ (0, δ1) (independent of t) such that

(4.23) δ1�
−1(

(1 − λ)t
) ≥ δ2�

−1(t) for all t > 0

and

(4.24) Px(τB(x,2δ2�
−1(t)/3) ≤ λt) ≤ 1/2 for all t > 0 and x ∈ Rd .

For the remainder of the proof, we assume that |x − y| ≥ δ1�
−1(t). Since, using

(4.22) and (4.23),

p(t, x, y) ≥
∫
B(y,δ1�

−1((1−λ)t))
p(λt, x, z)p

(
(1 − λ)t, z, y

)
dz

≥ inf
z∈B(y,δ1�

−1((1−λ)t))
p

(
(1 − λ)t, z, y

) ∫
B(y,δ1�

−1((1−λ)t))
p(λt, x, z) dz

≥ c0�
−1(t)−dPx(

Xλt ∈ B
(
y, δ2�

−1(t)
))

,

it suffices to prove

(4.25) Px(
Xλt ∈ B

(
y, δ2�

−1(t)
)) ≥ c2

t�−1(t)d

|x − y|dψ(|x − y|) .
Using the strong Markov property, Lévy system, the lower bound of J (x, y),

(1.7), and (4.24), the proof of (4.25) is standard. (See [10], Proposition 5.4(ii).)
We omit the details. �

We now give the two-sided sharp estimate for the Green function.

PROOF OF COROLLARY 1.3. Let δ̃ := β2 ∧ 2 < d and r = |x − y|. By
Lemma 2.4, � satisfies L(β1,CL) and U(̃δ,CU).
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For the lower bound, we use Proposition 4.6 and Lemma 2.2 and get

G(x,y) ≥
∫ ∞
�(r/δ1)

p(t, x, y) dt ≥ c1

∫ 2�(r/δ1)

�(r/δ1)
�−1(t)−d dt ≥ c2r

−d�(r).

For the upper bound, by using the condition δ̃ < d and (2.3), we get that∫ ∞
�(r) �

−1(t)−d dt ≤ c3�(r)r−d . Using this inequality and Theorem 3.8, we con-
clude that

G(x,y) ≤ c3

�(r)rd

∫ �(r)

0
tdt + c3

∫ ∞
�(r)

�−1(t)−d dt ≤ c4r
−d�(r). �

By using K and K∞, we give the lower bound of p(t, x, y) under La(δ, C̃L)

or L1(δ, C̃L) on � with δ > 1. See [44], Lemmas 3.1–3.2, for similar bound for
Lévy processes.

PROPOSITION 4.7. Suppose � satisfies La(δ, C̃L) with δ > 1 and for some
a > 0. For T > 0 there exist C > 0 and aL > 0 such that for any t ≤ T and x, y ∈
Rd ,

(4.26) p(t, x, y) ≥ C�−1(t)−d exp
(
−aL

|x − y|
K −1(t/|x − y|)

)
.

Moreover, if a = ∞, then (4.26) holds for all t < ∞.

PROOF. Let r = |x − y|. By Proposition 4.6 and Remark 2.1, without loss of
generality, we assume that δ1�

−1(t) ≤ r and a ≥ δ1�
−1(T ) where δ1 is the con-

stants in Proposition 4.6. Let k = �3rδ−1
1 /K −1(3−1δ1t/r)�. Note that by (2.8),

K −1(t/r) ≤ �−1(t)2/r ≤ δ1�
−1(t) ≤ δ1�

−1(T ) ≤ a. Thus by (2.4), we have
K −1(t/r) ≤ C̃−1

L (3/δ1)K
−1(3−1δ1t/r). Since 3−1δ1t/r ≤ 3−1δ1�(r/δ1)/r ≤

3−1K (r/δ1), we see that K −1(3−1δ1t/r) ≤ r
δ1

, hence

(4.27) 3 ≤ k ≤ 4r

δ1K −1(3−1δ1t/r)
≤ 12C̃−1

L r

δ2
1K −1(t/r)

.

On the other hand, by Lemma 2.5 and our choice of k we have

�

(
3r

δ1k

)
δ1k

r
≤ 3K

(
3r

δ1k

)
≤ δ1t

r
.

Thus, we obtain r
k

≤ δ1
3 �−1(t/k). Let zl = x + l

k
(y − x), l = 0,1, . . . , k − 1.

For ξl ∈ B(zl,
δ1
3 �−1( t

k
)) and ξl−1 ∈ B(zl−1,

δ1
3 �−1( t

k
)), |ξl − ξl−1| ≤ |ξl − zl| +

|zl −zl−1|+|zl−1 −ξl−1| ≤ δ1�
−1(t/k). Thus by Proposition 4.6, p( t

k
, ξl−1, ξl) ≥
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C3�
−1(t/k)−d . Using the semigroup property and (4.27), we get

p(t, x, y) ≥
∫
B(zk−1,

δ1
3 �−1( t

k
))

· · ·
∫
B(z1,

δ1
3 �−1( t

k
))

p

(
t

k
, x, ξ1

)
· · ·

× p

(
t

k
, ξk−1, y

)
dξ1 · · · dξk−1

≥ Ck
5�−1

(
t

k

)−dk k−1∏
l=1

∣∣∣∣B
(
zl,

δ1

3
�−1

(
t

k

))∣∣∣∣
= c2c

k
3�

−1
(

t

k

)−dk(δ1

3
�−1

(
t

k

))d(k−1)

≥ c2

(
c3δ

d
1

3d

)k

�−1(t)−d ≥ c2�
−1(t)−de−C4k

≥ c2�
−1(t)−de

−c4
r

K −1(t/r) .(4.28)

This finishes the proof. Here we record that the constant C4 in (4.28) depends only
on d and constants δ1,C3 in (4.21). �

PROPOSITION 4.8. Suppose � satisfies L1(δ, C̃L) with δ > 1. For any T > 0
and θ > 0 satisfying 1

δ
+ θ(1

δ
− 1

β2
) ≤ 1, there exist c1, c2 > 0 and a′

L > 0

such that for (t, x, y) ∈ [T ,∞) × Rd × Rd satisfying δ1�
−1(t) < |x − y| ≤

c1�
−1(t)1+θ /ψ−1(t)θ ,

p(t, x, y) ≥ c2�
−1(t)−d exp

(
−a′

L

|x − y|
K −1∞ (t/|x − y|)

)
,

where δ1 is the constant in Proposition 4.6.

PROOF. Without loss of generality, we assume that T ≥ �(1). Take c1 > 0
small so that

c1
(
�−1(T )C̃

−1/δ
L T −1/δ)1+θ (

ψ−1(T )−1C
1/β2
U T 1/β2

)θ (
1 ∨ T −1) ≤ δ1

3K∞(2)
.

Since ψ satisfies U(β2,CU) and � satisfies L1(δ, C̃L), we see that for t ≥ T ≥
�(1), ψ−1(t) ≥ ψ−1(T )C

−1/β2
U (t/T )1/β2 and �−1(t) ≤ �−1(T )C̃

−1/δ
L (t/T )1/δ

by Lemma 2.2. Thus, we have

(4.29) |x − y| ≤ c1�
−1(t)1+θ /ψ−1(t)θ ≤ δ1t

3K∞(2)
,

where the third inequality follows from 1
δ

+ θ(1
δ

− 1
β2

) ≤ 1. Let r = |x − y| and
k = �3rδ−1

1 /K −1∞ (3−1δ1t/r)�. Since r ≥ δ1�
−1(t) ≥ δ1, we have by Lemma 2.7
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that δ1t/r ≤ δ1�(r/δ1)/r = δ1�̃(r/δ1)/r ≤ K∞(r/δ1). Thus, K −1∞ (δ1t/3r) ≤
K −1∞ (1

3K∞(r/δ1)) ≤ r/δ1, which implies that

(4.30) 3 ≤ k ≤ 4r

δ1K
−1∞ (3−1δ1t/r)

≤ 12C̃−1
L r

δ2
1K −1∞ (t/r)

.

On the other hand, since K −1∞ (3−1δ1t/r) ≥ K −1∞ (K∞(2)) = 2 and 3r/δ1 ≥
3�−1(T ) ≥ 3, we see that

3r

δ1K
−1∞ (3−1δ1t/r)

≤ k <
3r

δ1
.

Thus, by the above inequality and Lemma 2.7, we get

�

(
3r

δ1k

)
δ1k

3r
= �̃

(
3r

δ1k

)
δ1k

3r
≤ K∞

(
3r

δ1k

)
≤ 3−1δ1t/r,

which yields r
k

≤ δ1
3 �−1(t/k). Using this, Proposition 4.6, the semigroup property

and (4.30), the remaining part of the proof is same as the one in the proof of
Proposition 4.7. �

PROOF OF THEOREM 1.4. The both upper bounds of p(t, x, y) in Theo-
rem 1.4 follows from Theorems 3.5 and 4.5 and Lemma 2.8. The lower bound
in (1.14) is a direct consequence of Propositions 4.6 and 4.7.

By Propositions 4.6 and 4.8, to complete the proof of Theorem 1.4, it is enough
to show that for t ≥ T and (c1�

−1(t)1+θ /ψ−1(t)θ ) ∨ δ1�
−1(t) < r ,

(4.31) p(t, x, y) ≥ C�−1(t)−d exp
(
−a′

L

r

K −1∞ (t/r)

)
,

where c1 and θ are the constants in Proposition 4.8.
By Proposition 4.6 and the same argument as in (4.14), we have that,

p(t, x, y) ≥ c2t

rdψ(r)
≥ c3�

−1(t)−d exp
(
− a2r

2

�−1(t)2

)
.

By (2.5) and Lemma 2.2, K∞ satisfies L(δ − 1, C̃
−2/(δ−1)
L ). Using this property

and (2.10) (note that r ≥ δ1�
−1(t) and T ≤ t), we get(

δ−1
1 r

�−1(t)

)2
≤ c4

δ−1
1 r

K −1∞ (δ1t/r)
≤ c4

C̃
−2/(δ−1)
L δ

−δ/(δ−1)
1 r

K −1∞ (t/r)
.

Thus, (4.31) holds. �

PROOF OF COROLLARY 1.5. Since the upper bound is a direct consequence
of Theorem 1.2, we show the lower bound in (1.15). Let r = |x − y| and φ(s) :=
�(s−1/2)−1. Since � satisfies La(δ, C̃L), φ satisfies L1/a2

(δ/2, C̃L). Let Z be a
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subordinate Brownian motion whose Laplace exponent is φ and pZ(t, |z − w|)
be its transition density. Then, by [35], Proposition 3.5, and Theorem 1.4, for any
T > 0, there exist positive constants ãL, aU , c1 and c2 such that for all (t, x, y) ∈
(0, T ) ×Rd ×Rd ,

c1 exp
(
− ãLr2

�−1(t)2

)
≤ pZ(t, r)

�−1(t)−d
≤ c2 exp

(
− aUr

K −1(t/r)

)
+ c2t�

−1(t)d

rdψ(r)
.

Let aL ≥ aU be a constant in Theorem 1.4 and A := aL/aU ≥ 1. Then, for all
t ∈ (0, T ), s > 0,

c1 exp
(
− ãLA2s2

�−1(t)2

)
≤ c2 exp

(
− aUAs

K −1(t/As)

)
+ c2t�

−1(t)d

(As)dψ(As)

≤ c2 exp
(
− aLs

K −1(t/s)

)
+ c3t�

−1(t)d

sdψ(s)
.

Thus, by Theorem 1.4, we obtain the desired results. �

5. Application to the Khintchine-type law of iterated logarithm. In this
section, we apply our main results in previous sections and show that, if our sym-
metric jump process has the finite second moment, the Khintchine-type law of
iterated logarithm at the infinity holds. Furthermore, we will also prove the con-
verse.

We first establish the zero-one law for tail events.

THEOREM 5.1. Let A be a tail event. Then, either Px(A) = 0 for all x or else
Px(A) = 1 for all x ∈ Rd .

PROOF. Fix t0, ε > 0 and x0 ∈ Rd . Note that, by Lemma 3.9, there exists c1 >

0 such that

(5.1) Px0
(

sup
s≤t0

|Xs − x0| > c1�
−1(t0)

)
< ε.

While, using Theorem 3.10 to Ptf , the semigroups of (E,F), we can choose t1 > 0
large so that for all f ∈ L∞(Rd) and x ∈ Rd with |x − x0| ≤ c1�

−1(t0),

(5.2)
∣∣Pt1f (x) − Pt1f (x0)

∣∣ ≤ c2

( |x0 − x|
�−1(t1)

)θ

sup
t>0

‖Ptf ‖∞ < ε‖f ‖∞.

Note that (5.1) and (5.2) are same as [27], (A.6) and (A.7), and the proof of the
theorem is exactly same as that of [27], Theorem 2.10. �

From (1.6) and (1.7), we see that the following three conditions are equivalent:

sup
x∈Rd

(
or inf

x∈Rd

)∫
Rd

J (x, y)|x − y|2 dy < ∞;(5.3)
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c−1r2 ≤ �(r) ≤ cr2, r > 1;(5.4) ∫ ∞
0

s ds

ψ(s)
< ∞.(5.5)

Using Theorem 1.2, we see that under the assumption (1.6), the above conditions
(5.3)–(5.5) are also equivalent to the following finite second moment condition:

sup
x∈Rd

(
or inf

x∈Rd

)
Ex[|Xt − x|2]

< ∞ ∀ (or ∃) t > 0.

Here is the main result of this section.

THEOREM 5.2. Suppose X is symmetric pure-jump process whose jumping
density J satisfies (1.7). (1) If (5.4) holds, then there exists a constant c ∈ (0,∞)

such that for all x ∈ Rd ,

(5.6) lim sup
t→∞

|Xt − x|
(t log log t)1/2 = c for Px-a.e.

(2) Suppose that (1.6) holds but (5.4) does not hold. Then for all x ∈ Rd , (5.6)
holds with c = ∞.

PROOF. Without loss of generality, we assume that �(1) = 1. Let h(t) =
t1/2(log log t)1/2. We first observe that, by the change of variable s = h(t),

(5.7)
∫ ∞
h(4)

s ds

ψ(s)
= 1

2

∫ ∞
4

(log log t) + (log t)−1

ψ(h(t))
dt �

∫ ∞
4

log log t

ψ(h(t))
dt,

and

(5.8)
∫ ∞
h(4)

s ds

ψ(s) log log s
= 1

2

∫ ∞
4

(log log t) + (log t)−1

ψ(h(t)) log logh(t)
dt �

∫ ∞
4

dt

ψ(h(t))
.

(1) By (5.5) and (5.7),

(5.9)
∞∑

k=3

2k

ψ(h(2k))
≤ 2

∞∑
k=2

∫ 2k+1

2k

dt

ψ(h(t))
=

∫ ∞
4

dt

ψ(h(t))
< ∞.

Since we have L1(2,CL) under (5.4), by Theorem 1.4(2) we have that for all C >

0, t > 4 and t ≤ u ≤ 4t ,

Px(|Xu − x| > Ch(t)
)

=
∫
|x−y|>Ch(t)

p(u, x, y) dy

≤ c1

(
t

∫ ∞
Ch(t)

1

sψ(s)
ds + t−d/2

∫ ∞
Ch(t)

exp
(
−c2

s2

t

)
sd−1 ds

)

=: c3(I + II).
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Let C := 1 ∨ 2c
−1/2
2 . By the change of variable s1 = s2

t
, we obtain

II ≤ c3

∫ ∞
C2 log log t

e−c2s/2 ds ≤ c3

c2
(log t)−C2c2/2 = c3(log t)−2.

While, by Lemma 2.3, I ≤ c4
t

ψ(Ch(t))
≤ c5

t
ψ(h(t))

. Thus, for every t > 4 and t ≤
u ≤ 4t , Px(|Xu − x| > Ch(t)) ≤ c6((log t)−2 + ψ(h(t))−1). Using this and the
strong Markov property, with tk = 2k , k ≥ 3 we get

Px(|Xs − x| > 2Ch(s) for some s ∈ [tk−1, tk])
≤ Px(τB(x,Ch(tk−1)) ≤ tk)

≤ 2 sup
s≤tk,z∈Rd

Pz(|Xtk+1−s − z| > Ch(tk−1)
) ≤ c7

(
1

k2 + 2k

ψ(h(2k))

)
,

where we followed the calculations in (4.2). Therefore, by (5.9) and the Borel–
Cantelli lemma, the above implies that

Px(|Xt − x| ≤ 2Ch(t) for all sufficiently large t
) = 1.

Thus, lim supt→∞
|Xt−x|

h(t)
≤ 2C. Since ψ(r) ≥ �(r), by (5.4), J (x, y) ≤ c7|x −

y|−d−2 for |x − y| > 1. Thus, by following the proof of [42], Theorem 1.2(2),
line by line using our Theorem 1.4(2), we have that there exists c8 > 0 such that
Px(|Xt − x| > c8h(t) for infinitely many t) = 1. Therefore,

Px

(
c8 ≤ lim sup

t→∞
|Xt − x|

h(t)
≤ 2C

)
= 1.

Now using the zero-one law in Theorem 5.1, we conclude that there exists c9 ∈
[c8,2C] such that

Px

(
lim sup
t→∞

|Xt − x|
h(t)

= c9

)
= 1 for all x ∈Rd .

(2) Using Theorem 3.8, there is λ ∈ (0,1) such that

sup
t≥1

sup
y∈Rd

∫
|z−y|<λ�−1(t)

p(t, y, z) dz ≤ c0 sup
t≥1

∣∣λ�−1(t)
∣∣d(

�−1(t)
)−d = c0λ

d <
1

2
.

Let tk = 2k . By the strong Markov property, we have that for all C > 0

Px(|Xtk+1 − Xtk | ≥ Ch(tk+1) | Ftk

) ≥ inf
y∈Rd

∫
|z−y|≥Ch(tk+1)

p(tk, y, z) dz.

We claim that for every C > 1,

(5.10)
∞∑

k=1

inf
y∈Rd

∫
|z−y|≥Ch(tk+1)

p(tk, y, z) dz = ∞,
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which implies the theorem. In fact, by the second Borel–Cantelli lemma,
Px(lim sup{|Xtk+1 − Xtk | ≥ Ch(tk+1)}) = 1. Whence, for infinitely many k ≥ 1,
|Xtk+1 − x| ≥ Ch(tk+1)/2 or |Xtk − x| ≥ Ch(tk+1)/2 ≥ Ch(tk)/2. Therefore, for
all x ∈ Rd ,

lim sup
t→∞

|Xt − x|
h(t)

= lim sup
k→∞

|Xtk − x|
h(tk)

≥ C

2
, Px-a.e.

Since the above holds for every C > 1, the theorem follows.
We now prove the claim (5.10) by considering two cases separately.
Case 1: Suppose

∫ ∞
4

s ds
ψ(s) log log s

= ∞.

If there exist infinitely many k ≥ 1 such that Ch(tk+1) ≤ a�−1(tk), then, for
infinitely many k ≥ 1,

inf
y∈Rd

∫
|z−y|≥a�−1(tk)

p(tk, y, z) dz = 1 − sup
y∈Rd

∫
|z−y|<a�−1(tk)

p(tk, y, z) dz > 1/2.

Thus, we get (5.10).
If there is k0 ≥ 3 such that for all k ≥ k0, Ch(tk+1) > a�−1(tk), then by

Lemma 2.3 and Proposition 4.6, for all k ≥ k0

inf
y∈Rd

∫
|z−y|≥a�−1(tk)

p(tk, y, z) dz ≥ c1

∫ ∞
Ch(tk+1)

tk

rψ(r)
dr ≥ c2

tk+1

ψ(h(tk+1))
.

Combining this with (5.8) and the assumption that
∫ ∞

0
s ds

ψ(s) log log s
= ∞, we also

get (5.10).
Case 2: We assume that

∫ ∞
4

s ds
ψ(s) log log s

< ∞. Then for any s > 4 we have

(5.11) �−1(s) ≤ c3s
1/2(log log s)1/2 = c3h(s).

Also, using the assumption
∫ ∞

0
s ds
ψ(s)

= ∞ to (1.10) we obtain

(5.12) lim
s→∞

�−1(s)

s1/2 = ∞.

Let r = |x − y| and δ1,C3 > 0 be the constants in (4.21). Also, let C4 =
C4(d, δ1,C3) > 0 be the constant C4 in (4.28). Now define C0 = (2C4)

−1 and
N = �C0 log k�. Then, by (5.12) we have limk→∞ �−1(tk/N)/(tk/N)1/2 = ∞.
Thus, there exists k0 ∈ N such that for any k ≥ k0, we have N(k) ≥ 3 and
�−1(tk/N)

(tk/N)1/2 ≥ 12C

δ1C
1/2
0

. Then there exists a constant c4 > 0 such that for any k ≥ k0

and Ch(tk+1) ≤ |x − y| ≤ 2Ch(tk+1),

(5.13) p(tk, x, y) ≥ c4�
−1(tk)

−dk−1/2.

Indeed, for k ≥ k0 we have δ1
3 �−1( tk

N
) = δ1

3 ( tk
N

)1/2 �−1(tk/N)

(tk/N)1/2 ≥ 2Ch(tk+1)
N

≥ r
N

.
Since we have (4.21), following the proof of Proposition 4.7 we obtain

p(tk, x, y) ≥ c5�
−1(tk)

−d exp(−C4N) ≥ c5�
−1(tk)

−dk−1/2.
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By (5.13) and (5.11) we have that for every k ≥ k0,

inf
y∈Rd

∫
Ch(tk+1)≤|z−y|≤2Ch(tk+1)

p(tk, y, z) dz ≥ c5
h(tk+1)

d

k1/2�−1(tk)d
≥ c6

k1/2 .

Therefore, we conclude that
∞∑

k=k0

inf
y∈Rd

∫
|z−y|≥Ch(tk+1)

p(tk, y, z) dz ≥ c6

∞∑
k=k0

1

k1/2 = ∞.

We have proved (5.10). �

We end this section by showing that Khintchine-type law of iterated logarithm
at zero does not hold.

PROPOSITION 5.3. Suppose X is symmetric pure-jump process whose jump-
ing density J satisfies (1.6) and (1.7). Then, for all x ∈ Rd ,

(5.14) lim sup
t→0

|Xt − x|
(t log log 1/t)1/2 = 0 for Px-a.e.

PROOF. Without loss of generality, we assume that �(1) = 1. Let h(t) =
(t log log 1/t)1/2. We first observe that, by the change of variable s = h(t),∫ h(1/4)

0

s ds

ψ(s) log log 1
s

�
∫ 1/4

0

dt

ψ(h(t))
.

Thus, using (1.6) we obtain

(5.15)
∞∑

k=3

2−k

ψ(h(2−k))
≤ 2

∞∑
k=2

∫ 2−k

2−k−1

dt

ψ(h(t))
=

∫ 1/4

0

dt

ψ(h(t))
< ∞.

By (1.11) in Theorem 1.2, for all C > 0, t < 1/4 and t/4 ≤ u ≤ t ,

Px(|Xu − x| > Ch(t)
)

=
∫
|x−y|>Ch(t)

p(u, x, y) dy

≤ c1

(
t

∫ ∞
Ch(t)

1

sψ(s)
ds + �−1(t)−d

∫ ∞
Ch(t)

exp
(
−c2

s2

�−1(t)2

)
sd−1 ds

)

=: c1(I + II).

Using Lemma 2.3, I ≤ c3t
ψ(h(t))

. Also, by the change of variable v = s2

�−1(t)2 ,

II ≤ c4

∫ ∞
C2h(t)2/�−1(t)2

exp(−c2v)v(d−2)/2 dv ≤ c5 exp
(
− c2C

2t

2�−1(t)2 log log
1

t

)
.
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Note that �−1(t)2/t = ∫ �−1(t)
0

s
ψ(s)

ds → 0 as t → 0. Therefore, when t is suffi-
ciently small, II ≤ c6 exp(−2 log log 1/t). Thus, letting t = 2−k and using (5.15),
we have for sufficiently large N ∈N,

∞∑
k=N

sup
s≤tk,z∈Rd

Pz(|Xtk+1−s − z| > Ch(tk−1)
) ≤ c7

∞∑
k=N

(
1

k2 + 2−k

ψ(h(2−k))

)
< ∞.

Now, by the same argument as that in the proof of Theorem 5.2(1), we conclude
that lim supt→0

|Xt−x|
(t log log 1/t)1/2 ≤ C, Px -a.e. for all C > 0, which implies (5.14). �

6. Examples. In this section, we will use the notation f (·) � g(·) at ∞ (resp.
0) if f (t)

g(t)
→ 1 as t → ∞ (resp. t → 0). We denote R∞

0 (resp. R0
0) by the class of

slowly varying functions at ∞ (resp. 0). For � ∈ R∞
0 , we denote �∞

� (resp. �0
�)

by the class of real-valued measurable function f on [c,∞) (resp. (0, c)) such that
for all λ > 0, f (λ·) − f (·) � logλ�(·) at ∞ (resp. 0) �∞

� (resp. �0
�) is called de

Haan class at ∞ (resp. 0) determined by �.
For � ∈ R∞

0 (resp. R0
0), we say �# is de Bruijn conjugate of � if both

�(t)�#(t�(t)) � 1 and �#(t)�(t�#(t)) � 1 at ∞ (resp. 0). Note that |f | ∈ R∞
0 if

f ∈ �∞
� (see [4], Theorem 3.7.4).

In the following corollary and examples ai = ai,L or ai = ai,U depending on
whether we consider lower or upper bound.

COROLLARY 6.1. Let T ∈ (0,∞) and ψ be a nondecreasing function that
satisfies L(β1,CL) and U(β2,CU).

(1) Let � ∈ R0
0 be such that

∫ 1
0

�(s)
s

ds < ∞ and f (s) := ∫ s
0

�(t)
t

dt ∈ �0
� satisfies

f (sf γ (s)) � f (s) at 0 for γ = 1/2,1. Suppose that ψ(s) � s2

�(s)
for s < 1. Then

for t < T ,

p(t, x, y) � 1

(tf (t1/2))d/2 ∧
(

t

|x − y|dψ(|x − y|) + 1

(tf (t1/2))d/2 e
− a1|x−y|2

tf (t/|x−y|)
)
.

Furthermore, if f (s2) � f (s) for s < 1, then for t < T ,

(6.1) p(t, x, y) � 1

(tf (t))d/2 ∧
(

t

|x − y|dψ(|x − y|) + 1

(tf (t))d/2 e
−a2

|x−y|2
tf (t)

)
.

(2) Assume that � ∈ R∞
0 satisfies

∫ ∞
1

�(t)
t

dt = ∞.

Suppose that ψ(s) � s2

�(s)
for s > 1 and f ∈ �∞

� satisfies f (sf γ (s)) � f (s) at
∞ for γ = 1/2,1. Then for t > T ,

p(t, x, y) � 1

(tf (t1/2))d/2 ∧
(

t�(|x − y|)
|x − y|d+2 + 1

(tf (t1/2))d/2 e
− a3|x−y|2

tf (t/|x−y|)
)
.
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Furthermore, if f (s2) � f (s) for s > 1, then for t > T ,

(6.2) p(t, x, y) � 1

(tf (t))d/2 ∧
(

t�(|x − y|)
|x − y|d+2 + 1

(tf (t))d/2 e
−a4

|x−y|2
tf (t)

)
.

PROOF. Let r = |x − y| and δ1 > 0 be the constant in Proposition 4.6.
(1) By [4], Corollary 2.3.4, (f γ )# � 1/f γ at 0. Thus, using [4], Theorem 3.6.8,

we have for s < T ,

�(s) � s2

f (s)
, �−1(s) � s1/2f 1/2(

s1/2)
, K −1∞ (s) � sf (s).

Therefore, by Theorem 1.4(1) and Theorem 1.2, we obtain the first claim and the
upper bound in the second claim.

For the lower bound in the second claim, choose small θ > 0 such that 1
2 +

θ(1
2 − 1

β1
) =: ε1 < 1. Note that f (s) � f (s2) for s < 1 implies f (sb) � f (s) for

all b > 0 since f is nondecreasing. Since the last term in the heat kernel estimate

dominates other terms only in the case δ1�
−1(t) < r ≤ δ1

�−1(t)1+θ

ψ−1(t)θ
, it suffices

to show f (t/r) ≥ cf (t) for this case. Using (2.3) and L(β1,CL) for ψ we have

�−1(t)/ψ−1(t) ≤ c1t
1
2 − 1

β1 for t ≤ T . Thus we have f (t/r) ≥ f (c2t
1−ε1) � f (t)

for every t ≤ T and δ1�
−1(t) < r ≤ δ1

�−1(t)1+θ

ψ−1(t)θ
.

(2) Similarly, (f γ )# � 1/f γ at ∞ by [4], Corollary 2.3.4. Thus, using [4],
(1.5.8), Theorem 3.7.3, we have that for s > T ,

�(s) � s2/f (s), �−1(s) � s1/2f 1/2(
s1/2)

, K −1∞ (s) � sf (s).

Note that ψ(r) � r2

�(r)
when r > δ1�

−1(t) since r > δ1�
−1(t) ≥ δ1�

−1(T ).
Since the second term in the heat kernel estimate dominates only in the case
r > δ1�

−1(t), the first claim and upper bound in the second one follow from The-
orem 1.4(2) and Theorem 1.2.

Now choose small θ ′ > 0 such that 1
δ

+ θ ′(1
δ

− 1
β2

) =: ε2 < 1. Without loss of
generality we can assume that f is nondecreasing since f (s) � ∫ s

1
�(t)
t

dt . Now
f (s) � f (s2) for s > 1 implies f (sb) � f (s) for all b > 0. Similarly, using

La(δ, C̃L) for � and U(β2,CU) for ψ we have �−1(t)

ψ−1(t)
≤ c3t

1
δ
− 1

β2 so f (t/r) ≥
f (c4t

1−ε2) � f (t) for every t ≥ T and r ≤ δ1
�−1(t)1+θ ′

ψ−1(t)θ
′ . This finishes the proof.

�

Table 1 provides nontrivial examples where (6.1) holds.
Table 2 provides nontrivial examples where (6.2) holds.
Note that when ψ(r) = r2(log r)β , r > 16 with β > 1, (5.5) holds which is

equivalent to (5.4).
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TABLE 1
Examples where (6.1) holds

ψ(λ), α > 1, 0 < λ ≤ 2−4 �(s), s ≤ 2−4 f (s), s ≤ 2−4

λ2(log 1
λ )α (log 1

s )−α 1
α−1 (log 1

s )1−α

λ2(log 1
λ )(log log 1

λ )α (log 1
s )−1(log log 1

s )−α 1
α−1 (log log 1

s )1−α

TABLE 2
Examples where (6.2) holds

ψ(r) = r2(log r)β , r > 16 �(s), s > 16 f (s), s > 16

When β < 1 (log r)−β (1 − β)−1(log s)1−β

When β = 1 (log r)−β log log s
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