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EXTREMAL THEORY FOR LONG RANGE DEPENDENT
INFINITELY DIVISIBLE PROCESSES

BY GENNADY SAMORODNITSKY1 AND YIZAO WANG2

Cornell University and University of Cincinnati

We prove limit theorems of an entirely new type for certain long memory
regularly varying stationary infinitely divisible random processes. These the-
orems involve multiple phase transitions governed by how long the memory
is. Apart from one regime, our results exhibit limits that are not among the
classical extreme value distributions. Restricted to the one-dimensional case,
the distributions we obtain interpolate, in the appropriate parameter range,
the α-Fréchet distribution and the skewed α-stable distribution. In general, the
limit is a new family of stationary and self-similar random sup-measures with
parameters α ∈ (0,∞) and β ∈ (0,1), with representations based on intersec-
tions of independent β-stable regenerative sets. The tail of the limit random
sup-measure on each interval with finite positive length is regularly varying
with index −α. The intriguing structure of these random sup-measures is due
to intersections of independent β-stable regenerative sets and the fact that
the number of such sets intersecting simultaneously increases to infinity as
β increases to one. The results in this paper extend substantially previous
investigations where only α ∈ (0,2) and β ∈ (0,1/2) have been considered.

1. Introduction. Given a stationary process (Xn)n∈N, we are interested in the
asymptotic behavior of the maximum

Mn := max
i=1,...,n

Xi.

After appropriate normalization, what distributions may arise in the limit? This is
a classical question in probability theory with a very long history. In the case that
(Xn)n∈N is a sequence of independent and identically distributed (i.i.d.) random
variables, all possible limits of the weak convergence in the form of

(1.1)
Mn − an

bn

⇒ Z
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have been known since Fisher and Tippett (1928) and Gnedenko (1943): these
form the family of extreme-value distributions, consisting of Fréchet, Gumbel and
Weibull types. Furthermore, the functional extremal limit theorem in the form of

(1.2)
(

M�nt� − an

bn

)
t≥0

⇒ (
Z(t)

)
t≥0

in an appropriate topological space has also been known since Dwass (1964) and
Lamperti (1964). The limit process Z, when nondegenerate, is known as the ex-
tremal process.

If a stationary process (Xn)n∈N is not a sequence of i.i.d. random variables, the
extremes can cluster, and this can affect the extremal limit theorems for such pro-
cesses. Research along this line has started since the 1960s. A common feature of
many results in the literature on this topic is the important role of the so-called ex-
tremal index θ ∈ (0,1]. When this index exists, it affects the limit theorems through
the fact that, asymptotically, the limit law of Mn is the same as that of M̃�θn�, the
maximum of �θn� i.i.d. copies of X1, when one uses the same normalization in
both cases. This reflects the following picture of extremes of such processes: ex-
treme values of the process occur in finite random clusters, the smaller θ indicates
larger, on average, cluster size. It is also worth noting that for all θ ∈ (0,1], the
order of the normalization and the limit laws in (1.1) and (1.2) are the same as in
the i.i.d. case. Therefore, one can view processes with extremal index θ ∈ (0,1] as
having, in the appropriate sense, short memory (the reasons for this terminology
can be found in Samorodnitsky (2016)). Standard references for extreme value
theory on i.i.d. and weakly dependent sequences include de Haan and Ferreira
(2006), Leadbetter, Lindgren and Rootzén (1983), Resnick (1987). Point-process
techniques are fundamental and powerful when investigating such problems.

There are situations that for the limit theorems of the types (1.1) and (1.2) to
hold, the normalization needs to be of a different order, and even the limit may be
different, from the short memory case. We refer to the dependence in such exam-
ples as strong or long range dependence. See the recent monograph Samorodnitsky
(2016) for more background and recent developments on long range dependence
in terms of limit theorems (not necessarily extremal ones). The first example of
long range dependence in extreme value theory is for stationary Gaussian pro-
cesses: Mittal and Ylvisaker (1975) showed that when the correlation rn satisfies
limn→∞ rn logn = γ ∈ (0,∞), the limit law of Mn is Gumbel convoluted with
a Gaussian distribution, in contrast to the case of limn→∞ rn logn = 0 where the
Gumbel distribution arises in the limit, due to Berman (1964). However, very few
examples of extremes of stationary non-Gaussian processes with long range depen-
dence have been discovered since then. One of the known examples is important
for us in this paper and we will discuss it below.

A fundamental work is due to O’Brien, Torfs and Vervaat (1990) who, in the
process of identifying all possible limits of extremes of a sequence of stationary
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random variables, pointed out that a more natural and revealing way to investi-
gate extremes is via the random sup-measures. In this framework, for each n one
investigates the random sup-measure Mn in the form of

Mn(B) := max
k∈nB∩NXk, B ⊂R+,

in an appropriate topological space. Then a limit theorem for Mn entails at least
the finite-dimensional convergence part in a functional extremal limit theorem as
in (1.2) when restricted to all B in the form of B = [0, t], t ≥ 0. O’Brien, Torfs and
Vervaat (1990) showed that all possible random sup-measures η on [0,∞) arising
as limits starting from a stationary process (Xn)n∈N are, up to affine transforms,
stationary and self-similar, in the sense that

η(·) d= η(· + b), b > 0 and η(a·) d= aHη(·), a > 0

for some H > 0. They also provided examples of such random sup-measures.
However, the investigation of O’Brien, Torfs and Vervaat (1990) does not directly
help in understanding extremal limit theorems under long range dependence.

In this paper, we investigate the extremes of a general class of stationary in-
finitely divisible processes whose law is linked to the law of a certain null-recurrent
Markov chain. Two crucial numerical parameters impact the properties of such
infinitely divisible processes: α ∈ (0,∞) and β ∈ (0,1): the parameter α corre-
sponds to the regular variation index of the tail of the marginal distribution, and β

determines the rate of the recurrence of the underlying Markov chain (the larger
the β , the faster the rate), and as a result, plays an important role in determining
the memory of the infinitely divisible process. The extremes of symmetric α-stable
processes in this class have been first investigated in Samorodnitsky (2004), who
showed that when β ∈ (0,1/2), the partial maxima converge weakly to the Fréchet
distribution, although under the normalization bn = n(1−β)/α instead of n1/α used
in the i.i.d. case. (Since infinitely divisible processes we are considering are heavy-
tailed, we take the shift an = 0 in all extremal limit theorems.) The different order
of normalization already indicates long range dependence of the process. Further-
more, it was pointed out in the same paper that when β ∈ (1/2,1), the dependence
was so strong that the partial maxima were likely not to converge to the Fréchet
distribution, but an alternative limit distribution was not described.

Further studies of the extrema of this class of processes have appeared more
recently, still in the symmetric α-stable case, with β ∈ (0,1/2) (though in a differ-
ent notation). In Owada and Samorodnitsky (2015a), it was shown that the limit
in the functional extremal theorem as in (1.2) is, up to a multiplicative constant, a
time-changed extremal process, (

Zα

(
t1−β))

t≥0,

where (Zα(t))t≥0 is the extremal process for a sequence of i.i.d. random vari-
ables with tail index α (the α-Fréchet extremal process). Subsequently, Lacaux
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and Samorodnitsky (2016), established a limit theorem in the framework of con-
vergence of random sup-measures, and, up to a multiplicative constant, the limit
random sup-measure can be represented as

(1.3) η(·) =
∞∨

j=1

U
(α)
j 1{(V (β)

j +R
(β)
j )∩·�=∅},

where (U
(α)
j ,V

(β)
j ,R

(β)
j )j∈N is a measurable enumeration of the points of a

Poisson point process on R+ × R+ × F(R+) with intensity αu−α−1 du(1 −
β)v−β dv dPβ . Here, F(R+) is the space of closed subsets of R+ equipped with
Fell topology, and Pβ is the law of a β-stable regenerative set, the closure of the
range of a β-stable subordinator, on F(R+). Then(

η
([0, t]))t≥0

d= (Zα

(
t1−β))

t≥0,

but the random sup-measure reveals more structure than the time-changed extremal
process.

In this paper, we fill the gaps left in the previous studies. First of all, we move
away from the assumption of stability to a more general class of stationary in-
finitely divisible processes. This allows us to remove the restriction of α ∈ (0,2)

in our limit theorems. Much more importantly, we remove the assumption β ∈
(0,1/2). This allows us to consider the extrema of processes whose memory is
very long. Our results confirm that the Fréchet limits obtained in Samorodnitsky
(2004) and the subsequent publications disappear when β ∈ (1/2,1). In fact, en-
tirely new limits appear. Even the one-dimensional distributions we obtain as
marginal limits have not, to the best of our knowledge, been previously described.
The limiting random sup-measure is of a shot-noise type (see, e.g., Vervaat (1979)),
and it turns out to be uniquely determined by the random upper semicontinuous
function

ηα,β(t) :=
∞∑

j=1

U
(α)
j 1{t∈V

(β)
j +R

(β)
j }, t ≥ 0,

with (U
(α)
j ,V

(β)
j ,R

(β)
j )j∈N as before. When β ∈ (0,1/2], this is the same ran-

dom sup-measure as the one in (1.3), as independent β-stable regenerative sets
do not intersect for such a β . For β > 1/2, however, eventual intersections oc-
cur almost surely, and the larger the β becomes, more independent regenera-
tive sets can intersect at the same time. As Section 3 below shows, for every
α ∈ (0,∞), (ηα,β)β∈(0,1) forms a family of random sup-measures corresponding
to the full range of dependence: from independence (β ↓ 0) to complete depen-
dence (β ↑ 1). Importantly, if α ∈ (0,1), the marginal distributions, for example,
those of ηα,β([0,1]), form a family of distributions that interpolate between the
α-Fréchet distribution (resulting when β ∈ (0,1/2]) and the totally skewed to the
right α-stable distribution as β ↑ 1.
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The paper is organized as follows. In Section 2, we present background informa-
tion on random closed sets and random sup-measures. In Section 3, we introduce
and investigate the limiting random sup-measure. The stationary infinitely divis-
ible process with long range dependence whose extremes we study is introduced
in Section 4, and a limit theorem for these extremes in the context of random sup-
measures is proved in Section 5.

2. Random closed sets and sup-measures. We first provide background on
random closed sets. Our main reference is Molchanov (2005). Let F(E) denote
the space of all closed subsets of an interval E ⊂ R. In this paper, we only work
with E = [0,1] and E = [0,∞). The space F = F(E) is equipped with the Fell
topology generated by

FG := {F ∈F : F ∩ G �= ∅} for all G ∈ G,

where G = G(E) is the collection of all open subsets of E, and

FK := {F ∈ F : F ∩ K = ∅} for all K ∈ K,

where K = K(E) is the collection of all compact subsets of E. This topology
is metrizable, and F(E) is compact under it. If F is equipped with the Borel
σ -algebra B(F) induced by the Fell topology, a random closed set is a measur-
able mapping from a probability space to (F,B(F)). Given random closed sets
(Rn)n∈N and R, a sufficient condition for weak convergence Rn ⇒ R is

lim
n→∞P(Rn ∩ A �=∅) = P(R ∩ A �=∅), for all A ∈ A∩SR,

where A is the collection of all finite unions of open intervals, and SR is the
collection of all continuity sets of R: the collection of relatively compact Borel
sets B such that P(R ∩ B �= ∅) = P(R ∩ Bo �=∅). See Molchanov (2005), Corol-
lary 1.6.9, where the collection A is called a separating class.

We proceed with background on sup-measures and upper semicontinuous
functions. Our main reference is O’Brien, Torfs and Vervaat (1990). See also
Molchanov and Strokorb (2016) and Sabourin and Segers (2017) for some recent
developments. Let E be as above, and G = G(E) the collection of open subsets
of E. A map m : G → [0,∞] is a sup-measure, if

m

(⋃
α

Gα

)
= sup

α
m(Gα)

for all arbitrary collections of open sets (Gα)α . Given a sup-measure m, its sup-
derivative, denoted by d∨m : E → [0,∞], is defined as

d∨m(t) := inf
G�t

m(G), t ∈ E.
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The sup-derivative of a sup-measure is an upper semicontinuous function, that is a
function f such that {f < t} is open for all t > 0. Given an [0,∞]-valued upper
semicontinuous function f , the sup-integral i∨f : G → [0,∞] is defined as

i∨f (G) := sup
t∈G

f (t), G ∈ G,

with i∨f (∅) = 0 by convention. The sup-integral is a sup-measure. Let SM =
SM(E) and USC = USC(E) denote the spaces of all sup-measures on E and all
[0,∞]-valued upper semicontinuous functions on E, respectively. It turns out that
d∨ is a bijection between SM and USC, and i∨ is its inverse. Every m ∈ SM has a
canonical extension to all subsets of E, given by

m(B) = sup
t∈B

(
d∨m

)
(t), B ⊂ E.

The space SM is equipped with the so-called sup-vague topology. In this topol-
ogy, mn → m if and only if

lim sup
n→∞

mn(K) ≤ m(K) for all K ∈ K

and

lim inf
n→∞ mn(G) ≥ m(G) for all G ∈ G.

This topology is metrizable and the space SM is compact in this topology. The
sup-vague topology on the space USC is then induced by the bijection d∨, so the
convergence of

mn → m in SM and d∨mn → d∨m in USC

are equivalent.
A random sup-measure is a random element in (SM,B(SM)) with B(SM) the

Borel σ -algebra induced by the sup-vague topology. A random upper semicon-
tinuous function is defined similarly. We will introduce the limiting random sup-
measures in our limit theorem through their corresponding random upper semicon-
tinuous functions. When proving weak convergence for random sup-measures we
will utilize the following fact: given random sup-measures (ηn)n∈N and η, weak
convergence ηn ⇒ η in S is equivalent to the finite-dimensional convergence(

ηn(I1), . . . , ηn(Im)
)⇒ (

η(I1), . . . , η(Im)
)

for all m ∈ N and all open and η-continuity intervals I1, . . . , Im (I is η-continuity
if η(I) = η(I) with probability one); see O’Brien, Torfs and Vervaat (1990), The-
orem 3.2.

We will need the following result on joint convergence of random closed sets.
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THEOREM 2.1. Let {Ak}k=1,...,m and {Ak(n)}n∈N,k=1,...,m be random closed
sets in F = F(Rd), and set for I ⊂ {1, . . . ,m}

AI (n) =⋂
k∈I

Ak(n) and AI =⋂
k∈I

Ak, for all I ⊂ {1, . . . ,m}

(by convention we set A∅(n) = A∅ = Rd ). Assume that

(2.1)
(
A1(n), . . . ,Am(n)

)⇒ (A1, . . . ,Am)

in Fm as n → ∞.

1. If AI = ∅ almost surely, then AI (n) ⇒ ∅.
2. If

(2.2) AI (n) ⇒ AI as n → ∞, for all I ⊂ {1, . . . ,m}.
Then {

AI (n)
}
I⊂{1,...,m} ⇒ {AI }I⊂{1,...,m},

in F2m
.

PROOF. The Fell topology on F = F(Rd) is compact, Hausdorff, and sec-
ond countable (Salinetti and Wets (1981)). In particular, it is metrizable and sep-
arable. Then, by Skorokhod’s representation theorem, from (2.1) we can find a
common probability space, on which {Ak}k=1,...,m and {Ak(n)}n∈N,k=1,...,m are
defined, so that the joint law of {Ak}k=1,...,m is preserved, for each n the joint law
of {Ak(n)}k=1,...,m is preserved as well (we use the same notation), and we have
the almost sure convergence

(2.3) Ak(n) → Ak as n → ∞, for all k = 1, . . . ,m.

Fix a nonempty set I ⊂ {1, . . . ,m}. By the upper semicontinuity in the product
Fell topology of the intersection operator (see Appendix D in Molchanov (2005)),
we have

(2.4) lim sup
n→∞

AI (n) ⊂ AI , almost surely.

This implies the first part of the theorem immediately.
For the second part of the theorem, from now on we assume that (2.2) holds.

We will see that (2.3) and (2.4) imply that

(2.5) AI (n) → AI as n → ∞ in probability.

This will, of course, prove that {AI (n)}I⊂{1,...,m} → {AI }I⊂{1,...,m} in probability,
and hence, also the desired weak convergence.

We proceed to prove (2.5). Recall that the distance function for a closed set
F ∈ F(Rd) is defined as

ρ(x,F ) = min
{|x − y| : y ∈ F

}
, x ∈ Rd .
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Then the weak convergence in the Fell topology of random closed sets AI (n) ⇒
AI , is equivalent to the weak convergence in finite-dimensional distributions of the
corresponding distance functions:

ρn(x) := ρ
(
x,AI (n)

) f.d.d.→ ρ(x) = ρ(x,AI ), x ∈ Rd;
see Salinetti and Wets (1986), Theorem 2.5. Note that (2.4) implies that for every
x ∈ Rd ,

lim inf
n→∞ ρn(x) ≥ ρ(x) almost surely,

and we conclude from Lemma 2.2 below that for every x ∈ Rd ,

(2.6) ρn(x) → ρ(x) in probability as n → ∞.

In order to establish (2.5), it is enough to show that for every subsequence, there
exists a further subsequence, say {nk}k∈N, such that AI (nk) → AI almost surely as
k → ∞. For this purpose, we use (2.6) as follows. Convergence in the Fell topol-
ogy on Rd is equivalent to the pointwise convergence of the distance functions
(see, e.g., Salinetti and Wets (1981), Theorem 2.2(iii). Suppose we show that a
further subsequence as above can be found such that

(2.7) lim
k→∞ρnk

(x) = ρ(x) for all x ∈ Qd, almost surely.

Since the distance functions are Lipschitz with coefficient 1, on this event of prob-
ability 1 we actually have the entire pointwise convergence of the distance func-
tions, hence the convergence in the Fell topology of AI (nk) to AI , as required.
It remains to notice that (2.7) follows from (2.6) by the standard diagonalization
argument. We have thus proved the theorem. �

LEMMA 2.2. Let X, (Xn)n∈N be random variables defined on the same prob-
ability space. Suppose that Xn ⇒ X and lim infn→∞ Xn ≥ X a.s. Then Xn → X

in probability.

PROOF. We may assume without loss of generality that all random variables
involved are uniformly bounded (e.g., by applying the arctan function to every-
thing). Then EXn → EX as n → ∞. Further, by Fatou’s lemma,

0 ≤ lim sup
n→∞

E
[
(X − Xn)+

]≤ E
[
lim sup
n→∞

(X − Xn)+
]
≤ 0.

That is, E[(X − Xn)+] → 0. Then also

E
[
(X − Xn)−

]= E
[
(X − Xn)+

]−E(X − Xn) → 0,

and so

E|X − Xn| = E
[
(X − Xn)+

]+E
[
(X − Xn)−

]→ 0.

Hence Xn → X in probability. �
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3. A new family of random sup-measures. Recall that for β ∈ (0,1), a β-
stable regenerative set is the closure of the range of a strictly β-stable subordina-
tor, viewed as a random closed set in F(R+), and it has Hausdorff dimension β

almost surely; see, for example, Bertoin (1999a). We need a result on intersections
of independent stable regenerative sets presented below. A number of similar re-
sults can be found in literature; see, for example, Hawkes (1976/77), Fitzsimmons,
Fristedt and Maisonneuve (1985) and Bertoin (1999b). We could not however find
the exact formulation needed, so we included a short proof.

LEMMA 3.1. Consider v1, v2 ∈ R+, v1 �= v2 and β1, β2 ∈ (0,1). Let R
(β1)
1

and R
(β2)
2 be two independent stable regenerative sets with parameter β1 and β2,

respectively. Then

(3.1) P
((

v1 + R
(β1)
1

)∩ (v2 + R
(β2)
2

) �=∅
) ∈ {0,1}.

The probability equals one, if and only if β1,2 := β1 + β2 − 1 ∈ (0,1), and in this
case, the intersection has the law of a shifted β1,2-stable regenerative set, that is,
a random element in F(R+) with a representation

V + R(β1,2),

where R(β1,2) is a β1,2-stable regenerative set, and V > max(v1, v2) is a random
variable independent of R(β1,2).

PROOF. We may and will assume that v1 > v2 = 0, and drop the subscript in
v1. For x > 0 and i = 1,2 let Bx,β be the overshoot of the point x by a strictly
β-stable subordinator; in particular,

Bx,βi

d= min
(
R

(βi)
i ∩ [x,∞)

)− x, x ≥ 0.

Define a sequence of positive random variables A0,A1, . . . by A0 = v, A2n+1 =
B

(2n+1)
A2n,β2

, n = 0,1,2, . . . , A2n = B
(2n)
A2n−1,β1

, n = 1,2, . . . , where different super-
scripts correspond to overshoots by independent subordinators. Then, by the strong
Markov property, the probability of a nonempty intersection in (3.1) is simply

(3.2) P

( ∞∑
n=0

An < ∞
)
.

The overshoot Bx,β has the density given by

(3.3) p
(β)
B (y | x) = 1

	(β)	(1 − β)

(
x

y

)β 1

x + y
, y > 0

(see, e.g., Kyprianou (2006), Exercise 5.8.) This implies that Bx,β
d= xB1,β for

x > 0. Grouping the terms together, we see that the probability in (3.2) is equal to

P

( ∞∑
n=1

n∏
j=1

Cj < ∞
)
,
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where C1,C2, . . . are i.i.d. random variables with C1
d= B

(1)
1,β1

B
(2)
1,β2

. An immediate
conclusion is that the

P

( ∞∑
n=0

An < ∞
)

=
{

1 if E logC1 < 0,

0 if E logC1 ≥ 0.

However, by (3.3), after some elementary manipulations of the integrals, we have,
writing c(β) = 1/(	(β)	(1 − β))

E logC1 = c(β1)

∫ ∞
0

y−β1 logy

1 + y
dy + c(β2)

∫ ∞
0

y−β2 logy

1 + y
dy

= ϕ(β1) − ϕ(1 − β2)

with

ϕ(β) =
(∫ ∞

0

y−β logy

1 + y
dy

)/(∫ ∞
0

y−β

1 + y
dy

)
.

So if β2 = 1 − β1, E logC1 = 0, and it is enough to prove that the function ϕ(β) is
strictly decreasing in β ∈ (0,1). To see this,

ϕ′(β1)

=
(∫

y−β1

1 + y
dy

)−2[(∫ y−β1 logy

1 + y
dy

)2
−
∫

y−β1(logy)2

1 + y
dy

∫
y−β1

1 + y
dy

]
= −Var(logB1,β1) < 0.

This proves (3.1) together with the criterion for the value of 1. Finally, by the
strong Markov property of the stable regenerative sets, if β1 + β2 > 1, then

(
v + R

(β1)
1

)∩ R
(β2)
2

d=
∞∑

n=0

An + (R(β1)
1 ∩ R

(β2)
2

)
,

where on the right-hand side, the series is independent of the stable regenerative
sets. Since it has been shown by Hawkes (1976/77) that

R
(β1)
1 ∩ R

(β2)
2

d= R(β1+β2−1),

the proof of the lemma is complete. �

We now proceed with defining a new class of random sup-measures, by first
identifying the underlying random upper semicontinuous function. From now on,
β ∈ (0,1) and α > 0 are fixed parameters. Consider a Poisson point process on
R+ ×R+ ×F(R+) with mean measure

αu−(1+α) du(1 − β)v−β dv dPR(β),
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where PR(β) is the law of the β-stable regenerative set. We let (U
(α)
j ,V

(β)
j ,

R
(β)
j )j∈N denote a measurable enumeration of the points of the point process, and

R̃
(β)
j := V

(β)
j + R

(β)
j , j ∈N

denote the random closed sets R
(β)
j shifted by V

(β)
j . These are again random closed

sets.
Introduce the intersection of such random closed sets with indices from S ⊆ N

by

(3.4) IS := ⋂
j∈S

R̃
(β)
j , S �=∅ and I∅ := R+.

Let

�β := max
{
� ∈ N : � <

1

1 − β

}
∈ N.

By Lemma 3.1, we know that

(3.5) IS

{�=∅ a.s. if |S| ≤ �β,

=∅ a.s. if |S| > �β.

Furthermore, when |S| ≤ �β , IS is a randomly shifted stable regenerative set with
parameter β|S|, where

β� := �β − (� − 1) ∈ (0,1) for all � = 1, . . . , �β.

Let

(3.6) ηα,β(t) :=
∞∑

j=1

U
(α)
j 1{t∈R̃

(β)
j }, t ∈ R+.

Since a stable regenerative set does not hit fixed points, for every t , ηα,β(t) = 0
almost surely. Furthermore, on an event of probability 1, every t belongs to at
most �β different R̃

(β)
j , and thus ηα,β(t) is well defined for all t ∈ R+. In order to

see that it is, on an event of probability 1, an upper semicontinuous function, it is
enough to prove its upper semicontinuity on [0, T ] for every T ∈ (0,∞). Fixing
such T , we denote by U

(α)
(j,T ) the j th largest value of U

(α)
j for which V

(β)
j ∈ [0, T ],

j = 1,2, . . . . We write for m = 1,2, . . . ,

ηα,β(t) =
m∑

j=1

U
(α)
(j,T )1{t∈R̃

(β)
j } +

∞∑
j=m+1

U
(α)
(j,T )1{t∈R̃

(β)
j }

=: ηα,β
1,m(t) + η

α,β
2,m(t), t ∈ [0, T ].
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The random function η
α,β
1,m is, for every m, upper semicontinuous as a finite sum of

upper semicontinuous functions. Furthermore, on an event of probability 1,

sup
t∈[0,T ]

∣∣ηα,β
2,m(t)

∣∣≤ m+�β∑
j=m+1

U
(α)
(j,T ) → 0

as m → ∞, whence the upper semicontinuity of ηα,β . We define the random sup-
measure corresponding to ηα,β by

ηα,β(G) := sup
t∈G

ηα,β(t), G ∈ G, the collection of open subsets of R+.

As usually, one may extend, if necessary, the domain of ηα,β to all subsets of R+.
We emphasize that we use the same notation ηα,β for both the random upper semi-
continuous function and the random sup-measure without causing too much ambi-
guity, thanks to the homeomorphism between the spaces SM(R+) and USC(R+).
It remains to show the measurability of ηα,β . Recall that the sup-vague topology
of SM ≡ SM(R+) has sub-bases consisting of{

m ∈ SM : m(K) < x
}
,

{
m ∈ SM : m(G) > x

}
, K ∈ K,G ∈ G, x ∈ R+.

See, for example, Vervaat (1997), Section 3. Then, for every x > 0,{
ηα,β(K) < x

}= ⋂
S⊂N

({∑
j∈S

U
(α)
j < x

}
∩ {IS ∩ K �=∅}

)

is clearly measurable for K ∈ K, and so is {ηα,β(G) > x} for G ∈ G. The measur-
ability thus follows.

PROPOSITION 3.2. The random sup-measure ηα,β is stationary and H -self-
similar with H = (1 − β)/α.

PROOF. To prove the stationarity of ηα,β as a random sup-measure it is enough
to prove that the random upper semicontinuous function ηα,β defined in (3.6) has
a shift-invariant law. Let r > 0 and consider the upper semicontinuous function
(ηα,β(t + r))t∈R+ . Note that

ηα,β(t + r) =
∞∑

j=1

U
(α)
j 1{t+r∈R̃

(β)
j } =

∞∑
j=1

U
(α)
j 1{t∈Gr(R̃

(β)
j )}, t ∈ R+,

where Gr is a map from F(R+) to F(R+), defined by

Gr(F ) := F ∩ [r,∞) − r.

However, by Proposition 4.1 (c) in Lacaux and Samorodnitsky (2016), the map

(x,F ) → (
x,Gr(F )

)
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on R+ × F(R+) leaves the mean measure of the Poisson random measure deter-
mined by (U

(α)
j , R̃

(β)
j )j∈N unaffected. Hence, the law of the random upper semi-

continuous function (ηα,β(t + r))t∈R+ coincides with that of (ηα,β(t))t∈R+ .
Similarly, in order to prove the H -self-similarity of ηα,β as a random sup-

measure it is enough to prove that the random upper semicontinuous function ηα,β

defined in (3.6) is H -self-similar. To this end, let a > 0, and note that by Proposi-
tion 4.1(b) in Lacaux and Samorodnitsky (2016)

ηα,β(at) =
∞∑

j=1

U
(α)
j 1{at∈R̃

(β)
j }

=
∞∑

j=1

U
(α)
j 1{t∈a−1V

(β)
j +a−1R

(β)
j }

d= a(1−β)/α
∞∑

j=1

U
(α)
j 1{t∈R̃

(β)
j }

jointly in t . Therefore, (ηα,β(at))t∈R+ and (a(1−β)/αηα,β(t))t∈R+ have the same
law as the random upper semicontinuous functions. �

If we restrict the random upper semicontinuous functions and random mea-
sures above to a compact interval, we can use a particularly convenient mea-
surable enumeration of the points of the Poisson process. Suppose, for simplic-
ity, that the compact interval in question is the unit interval [0,1]. The Poisson
random measure (U

(α)
j ,V

(β)
j ,R

(β)
j )j∈N restricted to R+ × [0,1] × F(R+) can

then be viewed as a Poisson point process (U
(α)
j )j∈N on R+ with mean mea-

sure αu−(1+α) du marked by two independent sequences (V
(β)
j )j∈N and (R

(β)
j )j∈N

of i.i.d. random variables. The sequence (R
(β)
j )j∈N is as before, while (V

(β)
j )j∈N

is a sequence of random variables taking values in [0,1] with the common law
P(V

(β)
j ≤ v) = v1−β, v ∈ [0,1]. Furthermore, we can enumerate the points of so-

obtained Poisson random measure according to the decreasing value of the first
coordinate, and express (U

(α)
j )j∈N as (	

−1/α
j )j∈N with (	j )j∈N denoting the ar-

rival times of the unit rate Poisson process on (0,∞). This leads to the following
representation:

(3.7)
(
ηα,β(t)

)
t∈[0,1]

d=
( ∞∑

j=1

	
−1/α
j 1{t∈R̃

(β)
j }

)
t∈[0,1]

.

To conclude this section, we would like to draw the attention of the reader
to the fact that for every fixed α ∈ (0,∞), the family of random sup-measures
(ηα,β)β∈(0,1) interpolates certain familiar random sup-measures. On one hand,



2542 G. SAMORODNITSKY AND Y. WANG

as β ↓ 0, the limit is well known and simple. To see this, notice first that for
(U

(α)
j ,V

(β)
j ,R

(β)
j )j∈N representing the Poisson random measure on R+ × R+ ×

F(R+) with mean measure αu−(1+α)(1 − β)v−β dv dPR(β) , one can extend the
range of parameters to include β = 0 by setting PR(0) := δ{0} as a probability
distribution (unit point mass at {0}) on (F(R+),B(F(R+)). This is natural as
R(β) ⇒ {0} in F(R+) as β ↓ 0, which follows, for example, from Kyprianou
(2006), Exercise 5.8 (the “zero-stable subordinator” can be thought of as a process
staying an exponentially distributed amount of time at zero and then “jumping to
infinity”). It then follows that

ηα,β(·) ⇒ ηα,0(·) :=
∞∨

j=1

U
(α)
j 1{V (0)

j ∩·�=∅}

as β ↓ 0.
The random sup-measure ηα,0 above is the independently scattered (a.k.a. com-

pletely random) α-Fréchet max-stable random sup-measure on R+ with Lebesgue
measure as the control measure (see Stoev and Taqqu (2005) and Molchanov and
Strokorb (2016)). Furthermore, (ηα,β([0, t]))t≥0 corresponds to the extremal pro-
cess (Zα(t))t≥0 in (1.2) for a sequence of i.i.d. random variables with tail index
α. The extremal process Zα also belongs to the class of α-Fréchet max-stable pro-
cesses (see, e.g., de Haan (1984), Kabluchko (2009)).

In the range β ∈ (0,1/2], the structure of ηα,β can also be simplified. As there
are no intersections among independent shifted β-stable regenerative sets, the ran-
dom sup-measure on the positive real line becomes

ηα,β(·) =
∞∨

j=1

U
(α)
j 1{R̃(β)

j ∩·�=∅}, β ∈ (0,1/2].

This random sup-measure was first studied in Lacaux and Samorodnitsky (2016).
This is an α-Fréchet max-stable random sup-measure, belonging to the class of the
so-called Choquet random sup-measures introduced in Molchanov and Strokorb
(2016). It is also known that for β ∈ (0,1/2], (ηα,β([0, t]))t≥0 has the same dis-
tribution as the time-changed extremal process (Zα(t1−β))t≥0; see Owada and
Samorodnitsky (2015a) and Lacaux and Samorodnitsky (2016).

On the other hand, as soon as β > 1/2, the random sup-measure ηα,β is no
longer an α-Fréchet random sup-measure, due to the appearance of intersections.
As β ↑ 1, the sets R̃(β) become larger and larger in terms of Hausdorff dimension,
and more and more U

(α)
j s enter the sums defining the random measure due to

intersections of more and more R̃
(β)
j . In the limit, R̃(β) ⇒ [0,∞) in F(R+) as

β ↑ 1 (the “one-stable subordinator” is just the straight line). In the limit, therefore,
all U

(α)
j s contribute to the sum determining the random sup-measure, but for the
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infinite sum to be finite, restricting ourselves to the case α ∈ (0,1) is necessary. In
this case, we have

ηα,β(·) ⇒ ηα,1(·) :=
( ∞∑

j=1

U
(α)
j

)
1{·∩R+�=∅}

as β ↑ 1. In words, the limit is a random sup-measure with complete dependence
that takes the same value

∑∞
j=1 U

(α)
j on every open interval. Note that this random

series follows the totally skewed α-stable distribution.
In particular, for every α ∈ (0,1), the distributions of random variables

(ηα,β((0,1)))β∈[0,1] interpolate between the α-Fréchet distribution (β = 0) and
the totally skewed α-stable distribution (β = 1). These distributions, to the best of
our knowledge, have not been described before. Their properties will be the sub-
ject of future investigations. See Simon (2014) for a recent result on comparison
between totally skewed stable and Fréchet distributions.

The tail behavior of ηα,β((0,1)) is, however, clear, and it is described in the
following simple result.

PROPOSITION 3.3. For all α ∈ (0,∞), β ∈ (0,1),

xαP
(
ηα,β((0,1)

)
> x
)→ 1

as x → ∞.

PROOF. Consider the representation (3.7). Since P(R̃(β) ∩ (0,1) �= ∅) = 1,
with probability one

	
−1/α
1 ≤ ηα,β((0,1)

)≤ 	
−1/α
1 + (�β − 1)	

−1/α
2 .

Note that P(	
−1/α
1 > x) ∼ x−α as x → ∞, and that for δ ∈ (0, α),

P
(
	

−1/α
2 > x

)≤ E	
−(α+δ)/α
2

xα+δ
= 	(1 − δ/α)

xα+δ
, x > 0,

where 	(x) is the Gamma function, hence the result. �

As we shall see below, for each α,β the random sup-measure ηα,β arises in the
limit of the extremes of stationary processes: while α indicates the tail behavior,
β indicates the length of memory. The limiting case β = 0 corresponds to the
short memory case already extensively investigated in the literature, and the case
β ∈ (0,1) corresponds to the long range dependence regime. The larger the β is,
the longer the memory becomes.
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4. A family of stationary infinitely divisible processes. We consider a
discrete-time stationary symmetric infinitely divisible process whose function
space Lévy measure is based on an underlying null-recurrent Markov chain. Simi-
lar models have been investigated in the symmetric α-stable (SαS) case in Resnick,
Samorodnitsky and Xue (2000), Samorodnitsky (2004) Owada and Samorodnit-
sky (2015a), Owada and Samorodnitsky (2015b), Owada (2016) and Lacaux and
Samorodnitsky (2016), which can be consulted for various background facts stated
below. We first describe the Markov chain. Consider an irreducible aperiodic null-
recurrent Markov chain (Yn)n∈N0 on Z with N0 = {0} ∪ N. Fix a state i0, and let
(πi)i∈Z be the unique invariant measure on Z such that πi0 = 1. Consider the space
(E,E) = (ZN0,B(ZN0)). We denote each element of E by x ≡ (x0, x1, . . . ). Let Pi

denote the probability measure on (E,E) determined by the Markov chain starting
at Y0 = i, and introduce an infinite σ -finite measure on (E,E) defined by

μ(B) :=∑
i∈Z

πiPi(B), B ∈ E .

Consider

A0 := {x ∈ E : x0 = i0},
and the first entrance time of A0

ϕA0(x) := inf{n ∈N : xn = i0}, x ∈ E.

The key assumption is that, for some β ∈ (0,1) and a slowly varying function L,

(4.1) F(n) ≡ Pi0(ϕA0 > n) = n−βL(n).

This assumption can also be expressed in terms of the so-called wandering rate
sequence defined by

wn := μ

(
n−1⋃
k=0

{x ∈ E : xk = i0}
)
, n ∈ N.

Then

wn ∼ μ(ϕA0 ≤ n) ∼
n∑

k=1

Pi0(ϕA0 ≥ k),

and the key assumption becomes wn ∈ RV1−β . Here and in the sequel, RV−α

stands for the family of functions on N0 that are regularly varying at infinity
with index −α. For technical reasons, we will assume additionally that with
pn := P(Y1 = n),

(4.2) sup
n∈N

npn

F(n)
< ∞.

If T denotes the shift operator T (x0, x1, . . . ) = (x1, x2, . . . ), then μ is T -
invariant: μ(·) = μ(T −1·) on (E,E). Furthermore, T is conservative and ergodic
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with respect to μ on (E,E). Next, we shall consider nonnegative functions from
L∞(μ) supported by A0. Fix α > 0. For a fixed f ∈ L∞(μ), write

(4.3) bn :=
(∫

max
k=0,...,n

(
f ◦ T k(x)

)α
μ(dx)

)1/α

, n ∈N.

The sequence (bn) satisfies

(4.4) lim
n→∞

bα
n

wn

= ‖f ‖∞.

Given a Markov chain as above and f ∈ L∞(μ) supported by A0, we define a
stationary symmetric infinitely divisible process as a stochastic integral

(4.5) Xn :=
∫
E

fn(x)M(dx) with fn := f ◦ T n,n ∈ N0,

where M is a homogeneous symmetric infinitely divisible random measure on
(E,E) with control measure μ and a local Lévy measure ρ, symmetric and satis-
fying

(4.6) ρ
(
(z,∞)

)= az−α for z ≥ z0 > 0.

We refer the reader to Chapter 3 in Samorodnitsky (2016) for more details on
integrals with respect to infinitely divisible random measures and, in particular, for
the fact that the stochastic process in (4.5) is a well-defined stationary infinitely
divisible process (Theorem 3.6.6 therein). In particular, this process satisfies

P(X0 > x) ∼ a‖f ‖α
αx−α

as x → ∞; see Rosiński and Samorodnitsky (1993). We will use the value of α

defined by (4.6) in (4.3). Below we will work with a more explicit and helpful
series representation, (5.2) of the processes of interest.

We would like to draw the attention of the reader to the fact that we are assuming
in (4.6) that the tail of the local Lévy measure has, after a certain point, exact
power-law behavior. This is done purely for clarity of the presentation. There is
no doubt whatsoever that limiting results similar to the one we prove in the next
section hold under a much more general assumption of the regular variation of
the tail of ρ. However, the analysis in this case will involve additional layers of
approximation that might obscure the nature of the new limiting process we will
obtain (note, however, that the assumption (4.6) already covers the SαS case when
α ∈ (0,2)). In a similar vein, for the sake of clarity, we will assume in the next
section that f is simply the indicator function of the set A0.

Other types of limit theorems for this and related class of processes have been
investigated for the partial sums (by Jung, Owada and Samorodnitsky (2017),
Owada and Samorodnitsky (2015b)) and for the sample covariance functions (by
Owada (2016), Resnick, Samorodnitsky and Xue (2000)). In all cases, nonstandard
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normalizations, or even new limit processes, show up in the limit theorems, indi-
cating long range dependence in the model. Properties of stationary infinitely divis-
ible processes have intrinsic connections to infinite ergodic theory (see Kabluchko
and Stoev (2016), Rosiński (1995), Samorodnitsky (2005)), and the family of pro-
cesses we are considering are said to be driven by a null-recurrent flow. The mixing
properties of such processes (in the SαS case with α ∈ (0,2)) were investigated in
Rosiński and Samorodnitsky (1996).

5. A limit theorem for stationary infinitely divisible processes. Consider
the stationary infinitely divisible process introduced in (4.5). For n = 1,2, . . . we
define a random sup-measure by

Mn(B) := max
k∈nB

Xk, B ⊂ [0,∞).

The main result of this paper is the following theorem.

THEOREM 5.1. Consider the stationary infinitely divisible process (Xn)n∈N0

defined in the previous section. Let f = 1A0 with A0 = {x ∈ E : x0 = i0}. Under
the assumptions (4.1) and (4.2) and with bn as in (4.3),

1

bn

Mn ⇒ a1/αηα,β

as n → ∞ in the space SM(R+), where a is as in (4.6).

We start with some preparation. Note that by (4.4), bα
n ∈ RV1−β . By stationarity

it suffices to prove convergence in the space SM([0,1]). We start by decompos-
ing the process (Xn)n∈N0 into the sum of two independent stationary symmetric
infinitely divisible processes:

Xn = X(1)
n + X(2)

n , n ∈ N0,

with

X(i)
n :=

∫
E

fn(x)M(i)(dx), n ∈ N0, i = 1,2,

with fn as in (4.5), and M(1) and M(2) two independent homogeneous symmetric
infinitely divisible random measures on (E,E), each with control measure μ. The
local Lévy measure for M(1) is the measure ρ restricted to the set {|z| ≥ z0}, while
the local Lévy measure for M(2) is the measure ρ restricted to the set {|z| < z0}.
The first observation is that random variables (X

(2)
n )n∈N0 have Lévy measures sup-

ported by a bounded set, hence they have exponentially fast decaying tails; see, for
example, Sato (1999). Therefore,

1

bn

max
k=0,1,...,n

∣∣X(2)
k

∣∣→ 0
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in probability as n → ∞. Therefore, without loss of generality we may assume
that, in addition to (4.6), the local Lévy measure ρ is, to start with, supported by
the set {|z| ≥ z0}.

For each n ∈ N, the random vector (X0, . . . ,Xn) admits a series representation
that we will now describe. For x > 0, let

(5.1) G(x) :=
{
a1/αx−1/α 0 < x < az−α

0 ,

0 x ≥ az−α
0 .

It follows from Theorem 3.4.3 in Samorodnitsky (2016) that the following repre-
sentation in law holds:

(5.2) (Xk)k=0,...,n
d=
( ∞∑

j=1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}

)
k=0,...,n

,

where (	j )j∈N are as in (3.7), (εj )j∈N are i.i.d. Rademacher random variables and

(U
(n)
j )j∈N are i.i.d. E-valued random variables with common law μn, determined

by

dμn

dμ
(x) = 1

bα
n

1{T k(x)0=i0 for some k=0,1,...,n}, x ∈ E.

All three sequences are independent. Here and in the sequel, for x ∈ E ≡ ZN0 we
write T k(x)0 ≡ [T k(x)]0 ∈ Z.

Our argument consists of coupling the series representation of ηα,β in (3.7)
with the series representation of the process in (5.2). Note that the point process
(	

−1/α
j )j∈N,εj=1 is a Poisson point process with mean measure 2−1αu−(1+α) du,

u > 0, and it can be represented in law as the point process (2−1/α	
−1/α
j )j∈N.

Therefore, we may and will work with a version of ηα,β given by

(
ηα,β(t)

)
t∈[0,1] =

(
21/α

∞∑
j=1

1{εj=1}	−1/α
j 1{t∈R̃

(β)
j }

)
t∈[0,1]

.

We proceed through a truncation argument. Introduce for � = 1,2, . . .

M�,n(B) := max
k∈nB

�∑
j=1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}, n ∈ N,

and

(5.3) η
α,β
� (t) := 21/α

�∑
j=1

1{εj=1}	−1/α
j 1{t∈R̃

(β)
j }, t ∈ [0,1].

We also let η
α,β
� denote the corresponding truncated random sup-measure. The key

steps of the proof of Theorem 5.1 are Propositions 5.2 and 5.3 below.
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PROPOSITION 5.2. Under the assumptions of Theorem 5.1, for all � ∈ N,

1

bn

M�,n ⇒ a1/αη
α,β
�

as n → ∞ in the space of SM([0,1]).
PROPOSITION 5.3. Under the assumptions of Theorem 5.1, for all δ > 0,

lim
�→∞ lim sup

n→∞
P

(
max

k=0,...,n

1

bn

∣∣∣∣∣
∞∑

j=�+1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}

∣∣∣∣∣> δ

)
= 0.

We start with several preliminary results needed for the proof of Proposition 5.2.
First of all, we establish convergence of simultaneous return times of independent
Markov chains. Introduce

R̂
(β)
j,n := 1

n

{
k ∈ {0, . . . , n} : T k(U(n)

j

)
0 = i0

}
,

ÎS,n := ⋂
j∈S

R̂
(β)
j,n, S ⊂ N, S �= ∅ and Î∅,n := 1

n
{0,1, . . . , n}.

Recall the definition of IS in (3.4).

THEOREM 5.4. Assume that (4.1) and (4.2) hold. Then for all � ∈ N,

(ÎS,n)S⊂{1,...,�} ⇒ (
IS ∩ [0,1])S⊂{1,...,�}

as n → ∞ in F([0,1])2�
, where for each n the law in the left-hand side is com-

puted under μn.

PROOF. By the second part of Theorem 2.1, it suffices to show the marginal
convergence for S = {1, . . . , �}, for all � ∈ N. First, we have seen in (3.5) that if

(5.4) β∗
� := �β − � + 1 ∈ (0,1)

is violated, then the desired limit is the deterministic empty set. The convergence
then follows from the first part of Theorem 2.1. From now on, we assume (5.4).
For the simultaneous return times ÎS,n of independent Markov chains indexed by
S, by introducing

V
(β)
S,n := 1

n
min
{
k = 0, . . . , n : T k(U(n)

j

)
0 = i0, for all j ∈ S

}
,

R
(β)
S,n := 1

n

{
k = 0, . . . , n : T nV

(β)
I,n +k(

U
(n)
j

)
0 = i0, for all j ∈ S

}
,

we have the decomposition ÎS,n = V
(β)
S,n + R

(β)
S,n. Applying Corollary B.3 to IS in

(3.4), we have that IS = Ṽ (�) + R(β∗
� ) where Ṽ (�) satisfies (B.9) with βj = β, j =
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1, . . . , � and R(β∗
� ) is a β∗

� -stable regenerative set, and the two are independent. In
summary, the desired convergence now becomes

(5.5)
(
V

(β)
S,n + R

(β)
S,n

)∩ [0,1] ⇒ (
Ṽ (�) + R(β∗

� ))∩ [0,1].

We first show the convergence of V
(β)
S,n to Ṽ (�), and we start with the last visit

decomposition

μn

(
V

(β)
S,n ≤ x

)= �nx�∑
k=1

μn

(
last simultaneous return to i0 before �nx� is at time k

)
.

Denoting by F ∗ the tail of the time between two successive simultaneous visits to
i0 by � i.i.d. Markov chains, we have

μn

(
V

(β)
S,n ≤ x

)= �nx�∑
k=1

μn

(
T k(U(n)

j

)
0 = i0 for allj ∈ S

)
F ∗(�nt� − k

)

= 1

w�
n

�nx�∑
k=1

F ∗(�nx� − k
)= 1

w�
n

�nx�−1∑
k=0

F ∗(k).

By Lemma A.1 in the Appendix and Karamata’s theorem,

μn

(
V

(β)
S,n ≤ x

)∼ (1 − β)�

L(n)�
nβ∗

� −1L∗(�nx�)�nx�1−β∗
�

1 − β∗
�

→ x1−β∗
�
(	(β)	(2 − β))�

	(β∗
� )	(2 − β∗

� )
= P
(
Ṽ (�) ≤ x

)
as n → ∞ for x ∈ [0,1] (comparing with (B.9)).

Furthermore, the law of nR
(β)
S,n is that of a renewal process with inter-renewal

times distributed as F ∗; see Appendix A. Therefore, by Giacomin (2007), Theo-
rem A.8, R

(β)
S,n ⇒ R(β∗) in F(R+) as n → ∞. The claim (5.5) now follows by an

application of the continuous mapping theorem: the map

R+ ×F
([0,1]) � (x,F ) �→ (x + F) ∩ [0,1] ∈ F

([0,1])
is continuous, except at the point {(x,F ) : (x +F)∩[0,1] = {1}} (e.g., Molchanov
(2005), Appendix B). The probability that the latter point is hit by Ṽ (�) + R(β∗

� ) ∩
[0,1] is, however, equal to zero. This proof is thus complete. �

Next, we show that for each open interval T , outside an event An(T ) to be
defined below, of which the probability tends to zero as n → ∞, the following key
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identity holds:

max
k∈nT

�∑
j=1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}(5.6)

= max
S⊂{1,...,�} 1{ÎS,n∩T �=∅}

∑
j∈S

εjG
(
	j/2bα

n

)
= max

S⊂{1,...,�} 1{ÎS,n∩T �=∅}
∑
j∈S

1{εj=1}G
(
	j/2bα

n

)
,

with the convention that
∑

j∈∅ = 0.
To establish this, we take a closer look at the simultaneous returns of Markov

chain to i0. We say that the chain indexed by j returns to i0 at time k, if
T k(U

(n)
j )0 = i0. Note that if

k

n
∈ ÎS,n ∩ T =

(⋂
j∈S

R̂
(β)
j,n

)
∩ T ,

then there might be another j ′ ∈ {1, . . . , �}\S, such that the chain indexed by j ′ re-
turns to i0 at the same time k as well. We need an exact description of simultaneous
returns of multiple chains. For this purpose, introduce

Î ∗
S,n := ÎS,n ∩

( ⋃
j∈{1,...,�}\S

R̂
(β)
j,n

)c

,

the collection of all time points (divided by n) at which all chains indexed by S,
and only these chains, return to i0 simultaneously. We define the event

(5.7) An(T ) := ⋃
S⊂{1,...,�}

({ÎS,n ∩ T �= ∅} ∩ {Î ∗
S,n ∩ T = ∅

})
.

In words, on the complement of An(T ), if ÎS,n ∩ T �=∅ for some nonempty set S,
then at some time point k ∈ nT , exactly those chains indexed by S return to i0.

LEMMA 5.5. For every open interval T , (5.6) holds on An(T )c, and
limn→∞P(An(T )) = 0.

PROOF. We first prove the first part of the lemma. Noticing that S = ∅ is also
included in the union above, and

Î ∗
∅,n =

( ⋃
j=1,...,�

R̂
(β)
j,n

)c

,

we see that An(T ) includes the event that at every time k at least one of the � chains
returns to i0. So on An(T )c, the first two terms in (5.6), which are, clearly, always
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equal, are nonnegative. Furthermore, when ÎS,n ∩ T �= ∅ for some nonempty S,
then for S′ := {j ∈ S : εj = 1} ⊂ S, ÎS,n ∩ T �= ∅ implies ÎS′,n ∩ T �= ∅ and,
therefore, restricted to the event An(T )c we have Î ∗

S′,n ∩ T �=∅. It follows that the
second equality in (5.6) also holds on An(T )c.

For the second part of the lemma, in view of (5.7), it suffices to show for all S,

lim
n→∞P

({ÎS,n ∩ T �=∅} ∩ {Î ∗
S,n ∩ T = ∅

})= 0.

The case S = ∅ is trivial. So without loss of generality, assume S = {1, . . . , �′} for
some �′ ∈ {1,2, . . . , � − 1}. Introduce

Kn := nmin(ÎS,n ∩ T ),

the first time in nT that all chains indexed by S return to i0 simultaneously. Then

{ÎS,n ∩ T �= ∅} ∩ {Î ∗
S,n ∩ T = ∅

}⊂
�⋃

j=�′+1

{
T Kn

(
U

(n)
j

)
0 = i0, ÎS,n ∩ T �= ∅

}
.

The probability of each event in the union on the right-hand side is bounded from
above by

P
(
T Kn

(
U

(n)
j

)
0 = i0

∣∣ ÎS,n ∩ T �= ∅
)≤ max

k=0,...,n
P
(
T k(U(n)

1

)
0 = i0

)= b−α
n

by the i.i.d. assumption on the chains. Since bn → ∞, the proof is complete. �

Now we are ready to prove the main result.

PROOF OF PROPOSITION 5.2. By Theorem 3.2 in O’Brien, Torfs and Vervaat
(1990) and the fact that the stable regenerative sets do not hit points, it suffices
to show, for all m ∈ N and all disjoint open intervals Ti = (ti , t

′
i ) ⊂ [0,1], i =

1, . . . ,m,

(5.8)
(

1

bn

M�,n(Ti)

)
i=1,...,m

⇒ (
a1/αη

α,β
� (Ti)

)
i=1,...,m

as random vectors in Rm. The expression (5.1) and the fact that bn → ∞ tell us
that the event Bn := {	�/2bα

n < az−α
0 } has probability going to 1 as n → ∞, and

on Bn we have G(	j/2bα
n) = (2a)1/α	

−1/α
j bn. In particular, on the event Bn we

have

1

bn

M�,n(Ti) = max
k∈nTi

�∑
j=1

εj (2a)1/α	
−1/α
j 1{T k(U

(n)
j )0=i0}.

Therefore, proving (5.8) is the same as proving that

(5.9)

(
max
k∈nTi

�∑
j=1

εj 21/α	
−1/α
j 1{T k(U

(n)
j )0=i0}

)
i=1,...,m

⇒ (
η

α,β
� (Ti)

)
i=1,...,m.



2552 G. SAMORODNITSKY AND Y. WANG

The first part of Lemma 5.5 yields that on An(Ti)
c ∩ Bn,

max
k∈nTi

�∑
j=1

εj	
−1/α
j 1{T k(U

(n)
j )0=i0} = max

S⊂{1,...,�} 1{ÎS,n∩Ti �=∅}
∑
j∈S

1{εj=1}	−1/α
j .

Since by Lemma 5.5, P(An(Ti)
c ∩ Bn) → 1 as n → ∞, the statement (5.9) will

follow once we prove that(
max

S⊂{1,...,�} 1{ÎS,n∩Ti �=∅}
∑
j∈S

21/α1{εj=1}	−1/α
j

)
i=1,...,m

⇒ (
η

α,β
� (Ti)

)
i=1,...,m.

This is, however, an immediate consequence of Theorem 5.4 and the fact that
η

α,β
� (Ti) can be written in the form (recalling (5.3))

η
α,β
� (Ti) = max

S⊂{1,...,�} 1{IS∩Ti �=∅}21/α
∑
j∈S

1{εj=1}	−1/α
j , i = 1, . . . ,m.

�

PROOF OF PROPOSITION 5.3. For M > 0, let DM
� := {	�+1 ≥ M}. It is clear

that lim�→∞P(DM
� ) = 1. We have

P

({
max

k=0,...,n

1

bn

∣∣∣∣∣
∞∑

j=�+1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}

∣∣∣∣∣> δ

}
∩ DM

�

)

≤
n∑

k=0

P

({∣∣∣∣∣
∞∑

j=�+1

εj	
−1/α
j 1{	j≤2abα

nz−α
0 }1{T k(U

(n)
j )0=i0}

∣∣∣∣∣> δ

(2a)1/α

}
∩ DM

�

)
.

Note that on the right-hand side above, the summand takes the same value for all
k = 0,1, . . . , n. Write δ′ := δ/(2a)1/α . We shall show that, for all δ′ > 0, one can
choose M depending on α, β and δ′ only, such that for all �,

lim sup
n→∞

nP

({∣∣∣∣∣
∞∑

j=�+1

εj	
−1/α
j 1{	j≤2abα

nz−α
0 }1{T k(U

(n)
j )0=i0}

∣∣∣∣∣> δ′
}

∩ DM
�

)
= 0.

The desired result then follows. To show the above, first observe that the probabil-
ity of interest is bounded from above by

(5.10) P

( ∞∑
j=1

	
−1/α
j 1{M≤	j≤2abα

nz−α
0 }1{T k(U

(n)
j )0=i0} > δ′

)
.

Observe that the restriction to (0,∞) of the point process with the points(
bn	

−1/α
j 1{T k(U

(n)
j )0=i0}

)
j∈N

represents a Poisson random measure on (0,∞) with intensity μ(A0)αu−(α+1) du,
u > 0, and another representation of the same Poisson random measure is(

μ(A0)
1/α	

−1/α
j

)
j∈N.
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By definition of the Markov chain, μ(A0) = 1. Therefore, (5.10) becomes

P

(
b−1
n

∞∑
j=1

	
−1/α
j 1{M/bα

n≤	j≤2az−α
0 } > δ′

)

≤ P

(
b−1
n

∞∑
j=jM+1

	
−1/α
j 1{	j≤2az−α

0 } > δ′/2

)
(5.11)

by taking jM := �M1/αδ′/2�, so that b−1
n

∑jM

j=1 	
−1/α
j 1{M/bα

n≤	j≤2az−α
0 } ≤ δ′/2

with probability one. By Markov inequality, we can further bound (5.11) by, up
to a multiplicative constant depending on δ′,

b−p
n E

( ∞∑
j=jM+1

	
−1/α
j 1{	j≤2az−α

0 }

)p

.

If we choose p > 1/(1−β), then b
−p
n = o(n−1). Since choosing M , and hence, jM

large enough, we can ensure finiteness of the above expectation, and this completes
the proof. �

PROOF OF THEOREM 5.1. As in the proof of Proposition 5.2, it suffices
to show, for all m ∈ N and all disjoint open intervals Ti = (ti , t

′
i ) ⊂ [0,1], i =

1, . . . ,m,(
max
k∈nTi

1

bn

∞∑
j=1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}

)
i=1,...,m

⇒ (
a1/αηα,β(Ti)

)
i=1,...,m.

We will use Theorem 3.2 in Billingsley (1999). By Proposition 5.2 and the obvious
fact that (

η
α,β
� (Ti)

)
i=1,...,m → (

ηα,β(Ti)
)
i=1,...,m

a.s. as � → ∞, it only remains to check that for any i = 1, . . . ,m,

lim
�→∞ lim sup

n→∞
P

(
1

bn

∣∣∣∣∣max
k∈nTi

∞∑
j=1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}

− max
k∈nTi

�∑
j=1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}

∣∣∣∣∣> ε

)
= 0(5.12)

for any ε > 0. However, the above probability dos not exceed

P

(
1

bn

∣∣∣∣∣max
k∈nTi

∞∑
j=�+1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}

∣∣∣∣∣> ε

)

≤ P

(
1

bn

max
k=0,...,n

∣∣∣∣∣
∞∑

j=�+1

εjG
(
	j/2bα

n

)
1{T k(U

(n)
j )0=i0}

∣∣∣∣∣> ε

)
,
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and (5.12) follows from Proposition 5.3. �

APPENDIX A: ELEMENTS OF RENEWAL THEORY

Consider an N-valued renewal process S0 = 0, Sn := Y1 +· · ·+Yn, n = 1,2, . . .

whose inter-renewal times {Yn}n∈N have a tail distribution F(n) := P(Y1 > n). The
renewal function is defined by u(n) :=∑∞

k=0 P(Sk = n), and we denote U(n) :=∑n
j=0 u(j). The following two assumptions are equivalent for all β ∈ (0,1): as

n → ∞,

F(n) ∼ n−βL(n),(A.1)

U(n) ∼ nβ

	(1 + β)	(1 − β)L(n)
.(A.2)

See, for example, Bingham, Goldie and Teugels (1987), Theorem 8.7.3. By Kara-
mata’s theorem,

(A.3) u(n) ∼ nβ−1

	(β)	(1 − β)L(n)

implies (A.2). Furthermore, for pn := P(Y1 = n), under the assumption

(A.4) sup
n∈N

npn

F(n)
< ∞,

it is known that (A.2) and (A.3) are equivalent; see Doney (1997).
Let now {Y (j)

n }n∈N, j = 1, . . . ,m be independent N-valued renewal processes
satisfying (A.1) with with parameters β1, . . . , βm ∈ (0,1), respectively, such that

(A.5) β∗ :=
m∑

q=1

βq − m + 1 ∈ (0,1),

and define S
(j)
0 := 0, S

(j)
n := Y

(j)
1 + · · · + Y

(j)
n , n ≥ 1. Set

Y ∗
1 := min

{
� ∈ N : � = S(k)

nk
for some nk ∈ N,∀k = 1, . . . ,m

}
,

and iteratively

Y ∗
m+1 := min

{
� ∈ N : Y ∗

1 + · · · + Y ∗
m + � = S(k)

nk
for some nk ∈ N,∀k = 1, . . . ,m

}
.

That is, {Y ∗
n }n∈N are the simultaneous renewal times of {Y (j)

n }n∈N, j = 1, . . . ,m,
and they form another renewal process, which we refer to as the intersection re-
newal process of m independent renewal processes. We denote by F ∗, u∗ and U∗
the corresponding functions defined at beginning of this section.
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LEMMA A.1. Assume that for every j = 1, . . . ,m,

F
(j)

(n) = n−βj Lj (n), βj ∈ (0,1)

for some slowly varying at infinity function Lj(n), and that (A.4) holds. If
β1, . . . , βm satisfy (A.5), then the intersection renewal process satisfies, as n → ∞,

F ∗(n) ∼ n−β∗
L∗(n) with L∗(n) =

∏m
q=1[	(βq)	(1 − βq)Lq(n)]

	(β∗)	(1 − β∗)
.

PROOF. Let u(q) denote the renewal function of the renewal process
{Y (q)

n }n∈N, q = 1, . . . ,m. Because of (A.4) we know that (A.3) holds for each q .
By independence,

u∗(n) =
m∏

q=1

u(q)(n) ∼ nβ∗−1∏m
q=1[	(βq)	(1 − βq)Lq(n)] .

Since (A.3) implies (A.1), the desired result follows. �

APPENDIX B: FIRST INTERSECTION TIME OF INDEPENDENT SHIFTED
STABLE REGENERATIVE SETS

This paper uses certain results on the intersections of shifted stable regenerative
sets. Some of these results may be known, but we could not find an appropriate
reference. So we present them in this section.

Let Ba,β denote the overshoot distribution of a β-stable subordinator over a > 0.
Recall that the density function of Ba,β in (3.3), and that the closure of image of a
β-stable subordinator is known as a β-stable regenerative set. Consider two inde-
pendent stable regenerative sets R(β1) and R(β2), with indices β1, β2, respectively.
We know that if β1,2 := β1 + β2 − 1 > 0, then R(β1) ∩ R(β2) is again a stable
regenerative set, with parameter β1,2.

We will derive an explicit formula for the cumulative distribution function of
the first intersection time of the two independent stable regenerative sets, with the
second one shifted by a > 0. This random time is defined as

(B.1) Da,β1,β2 := min
{
R(β1) ∩ (a + R(β2)

)}− a = min
{(

R(β1) − a
)∩ R(β2)

}
.

THEOREM B.1. For all β1, β2 ∈ (0,1) such that β1 + β2 − 1 > 0,

(B.2) D1,β1,β2
d= B1,β1(1 + D1,β2,β1)

and

(B.3)
Da,β1,β2

a

d= D1,β1,β2 for all a > 0.
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Moreover,

(B.4) P(D1,β1,β2 ≤ x) = P
β1,β2
D (x | 1), x > 0,

where for a > 0,

(B.5) P
β1,β2
D (x | a) = 1

	(β1,2)	(1 − β1,2)

∫ 1

0

(
a

x
+y

)β1−1
yβ2−1(1−y)−β1,2 dy.

The main ingredient of the proof is the following proposition.

PROPOSITION B.2. For all β1, β2 ∈ (0,1) such that β1 + β2 − 1 > 0,

(B.6) P
β1,β2
D (x | 1) =

∫ x

0
p

(β1)
B (y | 1)P

β2,β1
D (x − y | y)dy, x > 0.

We first show how to derive Theorem B.1 from this proposition.

PROOF OF THEOREM B.1. It follows from Lemma 3.1 that

D1,β1,β2
d= B1,β1,0

∞∑
n=0

(
n∏

q=1

B1,β1,qB1,β2,q + B1,β2,1

n∏
q=1

B1,β1,qB1,β2,q+1

)
,

with the convention
∏0

q=1 = 1, where on the right-hand side {B1,βi ,n}n∈N0 are i.i.d.
copies of B1,βi

, i = 1,2, {B1,β1,n}n∈N0 and {B1,β2,n}n∈N are independent, and the
series converges almost surely. This implies the recursive relation (B.2). Further-
more, (B.3) follows from (B.1) and the scaling invariance of the regenerative sets.

It remains to prove (B.4). It follows from (B.2) that

(B.7) D1,β1,β2
d= B1,β1

[
1 + B1,β2(1 + D1,β1,β2)

]
.

By the Letac principle (Letac (1986)) applied to the recursion

Dn = B1,β1,n

[
1 + B1,β2,n(1 + Dn−1)

]
, n ∈ N,

the law of D1,β1,β2 satisfying (B.7) is uniquely determined. Therefore, it suffices
to show that a random variable whose law is given by the right-hand side of (B.4)
satisfies (B.2), that is,

P
β1,β2
D (x | 1) =

∫ x

0
p

(β1)
B (y | 1)P

β2,β1
D

(
x

y
− 1
∣∣ 1)dy, for all x > 0.

By the scaling property (B.3) this is exactly (B.6). �

PROOF OF PROPOSITION B.2. Recall that the hypergeometric function 2F1 is
defined as

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
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(for c that is not a nonpositive integer) with (a)0 = 0 and (a)n = a(a + 1) · · · (a +
n − 1) for n ∈ N. By the Euler integral representation,

B(b, c − b)2F1(a, b; c; z) =
∫ 1

0
xb−1(1 − x)c−b−1(1 − zx)−a dx,

for Re(c) > Re(b) > 0 and z ∈ C \ [1,∞) (B is the beta function), we have

P
β1,β2
D (x | a) = 	(β2)

	(β1,2)	(2 − β1)

(
a

x

)β1−1

2F1

(
1 − β1, β2;2 − β1;−x

a

)
.

Therefore, the right-hand side of (B.6) is

1

	(β1,2)	(2 − β2)	(1 − β1)

×
∫ x

0

1

1 + y

1

yβ1

(
y

x − y

)β2−1

2F1

(
1 − β2, β1;2 − β2;1 − x

y

)
dy.

Changing the variable u = x/y − 1, the above becomes

x1−β1

	(β1,2)	(2 − β2)	(1 − β1)

×
∫ ∞

0

u1−β2

u + x + 1
(1 + u)β1−1

2F1(1 − β2, β1;2 − β2;−u)du.

By the Euler transformation,

(1 + u)β1−1
2F1(1 − β2, β1;2 − β2;−u) = F1(1,1 − β1,2;2 − β2;−u),

this can be written as
(B.8)

x1−β1

	(β1,2)	(2 − β2)	(1 − β1)

∫ ∞
0

u1−β2

u + x + 1
2F1(1,1 − β1,2;2 − β2;−u)du.

Using the table of integrals of Prudnikov, Brychkov and Marichev (1990),
2.21.1.16, ∫ ∞

0

xc−1

(x + z)ρ
2F1(a, b; c;−wx)dx

= wa−c 	(c)	(a − c + ρ)	(b − c + ρ)

	(a + b − c + ρ)

× 2F1(a − c + ρ,b − c + ρ;a + b − c + ρ;1 − wz)

(provided Re(a + ρ),Re(b + ρ) > Re(c) > 0, | argw|, | arg z| < π)), (B.8) be-
comes

	(β2)

	(β1,2)	(2 − β1)
x1−β1

2F1(β2,1 − β1;2 − β1;−x) = P
β1,β2
D (x | 1).

This completes the proof. �
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COROLLARY B.3. Let � ∈ N, � ≥ 2 and β1, . . . , β� ∈ (0,1) be such that

β∗
� :=

�∑
j=1

βj − � + 1 > 0.

For each j = 1, . . . , �, let R
(βj )

j be a βj -stable regenerative set and V
(βj )

j a random

variable with P(V
(βj )

j ≤ x) = x1−βj , x ∈ (0,1). Assume that all R
(βj )

j ,V
(βj )

j , j =
1, . . . , � are independent. Then

�⋂
j=1

(
V

(βj )

j + R
(βj )

j

) d= Ṽ (�) + R(β∗
� ),

where R(β∗
� ) is a β∗

� -stable regenerative set, independent of a nonnegative random
variable Ṽ (�), whose law satisfies

(B.9) P
(
Ṽ (�) ≤ x

)= x1−β∗
�

	(β∗
� )	(2 − β∗

� )

�∏
j=1

(
	(βj )	(2 − βj )

)
for x ∈ [0,1].

PROOF. The proof is by induction in �. For � = 1 the claim is trivial. We
proceed with the case � = 2. We already know that the intersection interest has the
law of a β∗

2 -stable regenerative set shifted by an independent random variable, so
it suffices to check that the law of the shift satisfies (B.9). We will use (B.5) in the
form (obtained by a change of variables)

P
β1,β2
D (x | a) = 1

	(β∗
2 )	(1 − β∗

2 )

∫ x

0
(a + y)β1−1yβ2−1(x − y)−β1,2 dy.

Fix x ∈ (0,1). Then

P
(
Ṽ (2) ≤ x

)
=
∫ x

0
(1 − β1)y

−β1
1

∫ y1

0
(1 − β2)y

−β2
2 P

β2,β1
D (x − y1 | y1 − y2) dy2 dy1

+
∫ x

0
(1 − β1)y

−β1
1

∫ x

y1

(1 − β2)y
−β2
2 P

β1,β2
D (x − y2 | y2 − y1) dy2 dy1.

(B.10)

Denote

cβ1,β2 := (1 − β1)(1 − β2)

	(β∗
2 )	(1 − β∗

2 )
.

Then the first double integral in (B.10) can be reduced, after a change of variable,
to

cβ1,β2

∫ x

0

∫ y1

0

∫ x

y1

y
−β1
1 y

−β2
2 (z − y2)

β2−1(z − y1)
β1−1(x − z)−β∗

2 dzdy2 dy1,
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while the second double integral in (B.10) reduces, similar to

cβ1,β2

∫ x

0

∫ x

y1

∫ x

y2

y
−β1
1 y

−β2
2 (z − y1)

β1−1(z − y2)
β2−1(x − z)−β∗

2 dzdy2 dy1.

By Fubini’s theorem, for any nonnegative function f ,∫ x

0

∫ y1

0

∫ x

y1

f dzdy2 dy1 +
∫ x

0

∫ x

y1

∫ x

y2

f dzdy2 dy1 =
∫ x

0

∫ z

0

∫ z

0
f dy1 dy2 dz.

Therefore,

P
(
Ṽ (2) ≤ x

)
= cβ1,β2

∫ x

0

∫ z

0

∫ z

0
y

−β1
1 y

−β2
2 (z − y1)

β1−1(z − y2)
β2−1(x − z)−β∗

2 dy1 dy2 dz

= cβ1,β2B(1 − β1, β1)B(1 − β2, β2)

∫ x

0
(x − z)−β∗

2 dz,

which is the same as (B.9) with � = 2.
Next, suppose that the claim holds for some � ≥ 2, and consider the intersection

of � + 1 independent shifted stable regenerative sets. By the assumption of the
induction,

�+1⋂
j=1

(
V

(βj )

j + R
(βj )

j

) d= (Ṽ (�) + R(β∗
� ))∩ (V (β�+1)

�+1 + R
(β�+1)

�+1

)
,

where the four random elements on the right-hand side above are assumed to be in-
dependent. Again the intersection on the right-hand side above, by strong Markov
property, is a shifted stable regenerative set with index β∗

� + β�+1 − 1 = β∗
�+1, and

it suffices to identify the law of the shift Ṽ (�+1).
Let x ∈ (0,1). We have

P
(
Ṽ (�+1) ≤ x

)= P
(
Ṽ (�+1) ≤ x, Ṽ (�) ≤ 1

)
= P
(
Ṽ (�+1) ≤ x

∣∣ Ṽ (�) ≤ 1
)
P
(
Ṽ (�) ≤ 1

)
.

By the assumption of the induction, the conditional cumulative distribution func-
tion of Ṽ (�) given Ṽ (�) ≤ 1 is x1−β∗

� , 0 ≤ x ≤ 1. Therefore, we are in the situation
of the intersection of 2 independent shifted stable regenerative sets, which has
already been considered. Using once again the assumption of the induction, we
obtain

P
(
Ṽ (�+1) ≤ x

)= x1−β∗
�+1

	(β∗
�+1)	(2 − β∗

�+1)

(
	
(
β∗

�

)
	
(
2 − β∗

�

)
	(β�+1)	(2 − β�+1)

)

× 1

	(β∗
� )	(2 − β∗

� )

�∏
j=1

(
	(βj )	(2 − βj )

)
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= x1−β∗
�+1

	(β∗
�+1)	(2 − β∗

�+1)

�+1∏
j=1

(
	(βj )	(2 − βj )

)
,

as required. �
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ROSIŃSKI, J. and SAMORODNITSKY, G. (1993). Distributions of subadditive functionals of sample
paths of infinitely divisible processes. Ann. Probab. 21 996–1014. MR1217577
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