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A GENERAL METHOD FOR LOWER BOUNDS ON
FLUCTUATIONS OF RANDOM VARIABLES1

BY SOURAV CHATTERJEE

Stanford University

There are many ways of establishing upper bounds on fluctuations of
random variables, but there is no systematic approach for lower bounds. As
a result, lower bounds are unknown in many important problems. This paper
introduces a general method for lower bounds on fluctuations. The method is
used to obtain new results for the stochastic traveling salesman problem, the
stochastic minimal matching problem, the random assignment problem, the
Sherrington–Kirkpatrick model of spin glasses, first-passage percolation and
random matrices. A long list of open problems is provided at the end.

1. Theory.

1.1. The problem of lower bounds. The problem of establishing upper bounds
on fluctuations of random variables is widely studied in the literature on concen-
tration inequalities [14, 34]. The theory for lower bounds, however, is not so well
developed. In fact, the only available methods for computing lower bounds are the
following:

(1) Prove a distributional limit theorem. This is possible only in problems
where classical tools are applicable, and in a small number of modern problems
that admit exact calculations. For most of the contemporary ‘hard’ problems that
do not have a miraculous exactly solvable structure, we are very far from proving
distributional limit theorems.

(2) Prove a lower bound on some central moment (such as the variance) and
a matching upper bound on a higher central moment. The Paley–Zygmund sec-
ond moment method would then give a lower bound on the order of fluctuations.
There is a general method for obtaining lower bounds on variances, due to Wehr
and Aizenman [66]. However, matching upper bounds are rarely available. First-
passage percolation is one example where the best known upper and lower bounds
on fluctuations do not match [46, 52].
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(3) A coupling technique invented by Janson [31] and used by Bollobás and
Janson [12] to obtain the first nontrivial lower bound on the fluctuations of the
longest increasing subsequence in a random permutation. The main lemma of [31]
is closely related to the method of this paper.

(4) Problem-specific techniques, as in [24, 29, 30, 35, 55]. Some of these are
also related to the method proposed here.

Besides the above, there is a recent work of Janson and Warnke [32] on a general
lower bound for lower tails of sums of weakly dependent binary random variables.
This bound, however, is for the large deviation regime; it is not meant to be used
for understanding typical fluctuations. In the examples where the Janson–Warnke
lower bound applies, typical fluctuations can be understood more comprehensively
by proving central limit theorems using existing technology for sums of weakly
dependent random variables.

What is implicit in the above discussion is that while an upper bound on the vari-
ance gives an upper bound on the order of fluctuations by Chebychev’s inequality,
a lower bound on the variance cannot be used on its own for demonstrating a
lower bound on the order of fluctuations. For example, one can easily construct
a sequence of random variables which converge in probability to a deterministic
constant, but whose variances stay bounded away from zero. In such an example,
it is unreasonable to say that the fluctuations do not tend to zero. In the absence
of a simple numerical measure for lower bounds on fluctuations, the following
definition looks reasonable.

DEFINITION 1.1. Let {Xn}n≥1 be a sequence of random variables and let
{δn}n≥1 be a sequence of positive real numbers. We will say that Xn has fluctu-
ations of order at least δn if there are positive constants c1 and c2 such that for all
large n, and for all −∞ < a ≤ b < ∞ with b − a ≤ c1δn, P(a ≤ Xn ≤ b) ≤ 1 − c2.

In other words, Xn has fluctuations of order at least δn if it is impossible to
construct a sequence of intervals In, such that In has length of order δn and P(Xn ∈
In) → 1 as n → ∞. It is easy to see that if δ−1

n Xn tends to a nondegenerate limit
in distribution, then Xn has fluctuations of order at least δn according to the above
definition. It is also easy to see that if Xn has fluctuations of order δn according to
the above definition, then Var(Xn) is at least of order δ2

n (but not vice versa).
Definition 1.1 is closely related to the notion of concentration functions intro-

duced by Lévy [37]. The concentration function f of a random variable X is de-
fined as

f (l) := sup
x∈R

P(x ≤ X ≤ x + l).

In the language of concentration functions, Definition 1.1 can be restated as fol-
lows: A sequence of random variables {Xn}n≥1, with concentration functions
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{fn}n≥1, has fluctuations of order at least δn as n → ∞ if for some c > 0,

lim sup
n→∞

fn(cδn) < 1.

The theory of Lévy concentration functions is well developed for sums of inde-
pendent random variables [53] and more generally in situations where a central
limit theorem can be proved [19], but not for more complicated objects, especially
where distributional limits cannot be established by existing methods.

1.2. Lower bounds via coupling. The following simple lemma gives a cou-
pling technique for uniform upper bounds on probabilities of intervals of a given
length. The idea is that given a random variable X and a number δ, we construct
another random variable Y on the same probability space, such that the law of X

and the law of Y are close in total variation distance, and yet there is a substantial
chance of |X − Y | > δ. Under these circumstances, the following lemma shows
that the probability of X belonging to an interval of length ≤ δ is bounded away
from one. This is the main tool of this paper.

LEMMA 1.2. Let X and Y be two random variables defined on the same prob-
ability space. Then for any −∞ < a ≤ b < ∞,

P(a ≤ X ≤ b) ≤ 1

2

(
1 + P

(|X − Y | ≤ b − a
) + dTV(LX,LY )

)
,

where LX is the law of X, LY is the law of Y , and dTV is total variation distance.

PROOF. Let I denote the interval [a, b]. Then note that

1 ≥ P
({X ∈ I } ∪ {Y ∈ I })

= P(X ∈ I ) + P(Y ∈ I ) − P
({X ∈ I } ∩ {Y ∈ I }).

But

P(Y ∈ I ) ≥ P(X ∈ I ) − dTV(LX,LY ),

and

P
({X ∈ I } ∩ {Y ∈ I }) ≤ P

(|X − Y | ≤ b − a
)
.

The proof is completed by combining the above inequalities. �

Some variants of this coupling approach for lower bounds on fluctuations are
already present in [24, 29, 30, 35, 55] for the specific problems handled in those
papers; but the potential generality of the idea was not recognized in earlier works.
Janson [31] proved a similar lemma, but where Y was assumed to have the same
law as X. As far as I know, the exact statement of Lemma 1.2 is actually a new
result. We will see later how this nearly trivial lemma can be used to obtain optimal
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lower bounds on the orders of fluctuations of some highly complicated random
variables.

Incidentally, one can have a version of Lemma 1.2 with twice the Kolmogorov
distance instead of the total variation distance on the right. The proof makes it
clear that this stronger statement is valid. However, bounding the total variation
distance is often more manageable in problems of interest (as we will see in all
of the examples in this paper), which is why the lemma is presented in the above
form.

1.3. A simple example. For an elementary application of Lemma 1.2 that uses
nothing more than Chebychev’s inequality, consider the following example. Let
X1, . . . ,Xn be i.i.d. Bernoulli(1/2) random variables, and let

Sn = X1 + · · · + Xn.

By the central limit theorem, we know that Sn has fluctuations of order n1/2. Can
we prove a lower bound of order n1/2 using Lemma 1.2? To do this, we first de-
fine a suitable perturbation (X′

1, . . . ,X
′
n) of the vector (X1, . . . ,Xn), coupled with

(X1, . . . ,Xn) on the same probability space. Let α ∈ (0,1) be a constant, to be
chosen later, and let ε := αn−1/2. For each i, let

X′
i :=

{
Xi with probability 1 − ε,

1 with probability ε.

Then note that X′
1, . . . ,X

′
n are i.i.d. Bernoulli((1 + ε)/2) random variables. Recall

that if μ and ν are probability measures on a set �, and ν has density f with
respect to μ, then

dTV(μ, ν) =
∫
�
(1 − f )+ dμ,

where x+ denotes the positive part of a real number x. Using this representation, a
simple calculation shows that

dTV(L(X1,...,Xn),L(X′
1,...,X

′
n)) = E

(
1 − (1 + ε)Sn(1 − ε)n−Sn

)
+

= E

(
1 − (

1 − ε2)n/2
(

1 + ε

1 − ε

)Sn−n/2)
+
.

The quantity within the expectation is always between 0 and 1. Moreover, by
Chebychev’s inequality, for any β > 0 we have

P
(|Sn − n/2| ≥ βn1/2) ≤ 1

4β2 .
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Choosing β = α−1/2, we get

dTV(L(X1,...,Xn),L(X′
1,...,X

′
n))

≤ α

4
+ 1 −

(
1 − α2

n

)n/2(
1 + αn−1/2

1 − αn−1/2

)−α−1/2n1/2

≤ C
√

α,

where C does not depend on n or the choice of α. Thus, we may choose α so small
that the total variation distance is ≤ 1/2 for all n. Next, let

S′
n := X′

1 + · · · + X′
n.

Notice that for each i, X′
i = Xi with probability 1 − ε/2 and X′

i = Xi + 1 with
probability ε/2. From this observation, it is not difficult to prove using Cheby-
chev’s inequality that

lim
n→∞P

(
S′

n ≥ Sn + αn1/2

3

)
= 1.

Choose n so large that the above probability is at least 2/3. Since

dTV(LSn,LS′
n
) ≤ dTV(L(X1,...,Xn),L(X′

1,...,X
′
n)) ≤ 1

2
,

Lemma 1.2 now implies that for any interval I of length less than αn1/2/3,

P(Sn ∈ I ) ≤ 1

2

(
1 + 1

2
+ 1

3

)
= 11

12
.

This shows that in the sense of Definition 1.1, Sn has fluctuations of order at least
n1/2.

1.4. Total variation distance between product measures. The above example
may appear to be a little ad hoc, because we used an explicit formula for the total
variation distance to do our calculations. This, however, is not the case. There is
a systematic way of upper bounding the total variation distances between product
measures using a measure of similarity between probability measures called the
Hellinger affinity. Although this method is well known and discussed at length in
various texts (e.g., in [33] and [36]), I will now give a quick summary for the sake
of completeness and to save the reader the trouble of looking up references.

Let (�,F) be a measurable space, and let ν be a probability measure on this
space. Let f and g be two probability densities with respect to ν, and let μ and
μ′ denote the corresponding measures. The Hellinger affinity or Hellinger integral
between μ and μ′ is defined as

ρ
(
μ,μ′) :=

∫
�

√
fg dν.
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It is easy to see that this does not depend on the choice of ν; the result is the same
for any ν such that μ and μ′ are both absolutely continuous with respect to ν. For
any μ and μ′, there is always at least one such ν, for example, (μ + μ′)/2. The
Hellinger affinity gives the following upper bound on the total variation distance.
This is a classical result. The proof is reproduced for completeness.

LEMMA 1.3. For any two probability measures μ and μ′ defined on the same
measurable space,

dTV
(
μ,μ′) ≤

√
1 − ρ

(
μ,μ′)2

.

PROOF. By the Cauchy–Schwarz inequality,

dTV
(
μ,μ′) = 1

2

∫
|f − g|dν

= 1

2

∫ ∣∣(√f − √
g)(

√
f + √

g)
∣∣dν

≤ 1

2

(∫
(
√

f − √
g)2 dν

∫
(
√

f + √
g)2 dν

)1/2

= (
1 − ρ

(
μ,μ′))1/2(

1 + ρ
(
μ,μ′))1/2

,

where the last step follows because
∫

f dν = ∫
g dν = 1. �

The main advantage of using the Hellinger affinity is that it is easy to evaluate
for product measures. For i = 1, . . . , n, let μi and μ′

i be probability measures on
some measurable space (�i,Fi). Let μ = μ1 × · · · × μn and μ′ = μ′

1 × · · · × μ′
n

be the corresponding product measures on �1 ×· · ·×�n. Then from the definition
of the Hellinger affinity it is clear that

ρ
(
μ,μ′) =

n∏
i=1

ρ
(
μi,μ

′
i

)
.

Combining this with Lemma 1.3, we get the following upper bound for the total
variation distance between product measures.

LEMMA 1.4. Let μ and μ′ be as in the above paragraph. Then

dTV
(
μ,μ′) ≤

(
1 −

n∏
i=1

ρ
(
μi,μ

′
i

)2

)1/2

.

Let us see what this lemma gives for the example from Section 1.3. In that
example, a simple calculation shows that

ρ(LXi
,LX′

i
) =

√
1 + ε + √

1 − ε

2
≥ 1 − Cε2 = 1 − Cα2

n
,
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where C is a positive constant that does not depend on n or α. Thus,

dTV(L(X1,...,Xn),L(X′
1,...,X

′
n)) ≤

(
1 −

(
1 − Cα2

n

)2n)1/2
≤ C′α,

where C′ is another constant that does not depend on n or α. This recovers a
stronger version of the result that we previously derived using the explicit formula
for the total variation distance and Chebychev’s inequality.

1.5. Perturbative coupling. To apply Lemma 1.2, we need to get upper bounds
on the total variation distance between the law of a random variable and the law
of a small perturbation of the variable. We have dealt with perturbations of inde-
pendent Bernoulli random variables in the previous section. This section gives a
similar bound for continuous random vectors, where the perturbation is of a differ-
ent nature. The bound is derived using Lemma 1.4. We will deal with the following
classes of probability measures on R

d , d ≥ 1.

DEFINITION 1.5. Let P(d) denote the set of all probability densities of the
form e−V on R

d , where V is a C∞ function, V and all its derivatives have at
most polynomial growth at infinity, and eV increases faster than any polynomial at
infinity.

DEFINITION 1.6. Let P+(d) denote the set of all probability densities of the
form e−V on [0,∞)d , such that V is a C∞ function in (0,∞)d , V and all its
derivatives have at most polynomial growth at infinity and extend continuously to
the boundary of [0,∞)d , and eV increases faster than any polynomial at infinity.

Many of the familiar probability distributions, such as Gaussian distributions
and exponential distributions, are of the above type. Some other commonly used
distributions, such as uniform distributions on compact sets, do not belong to the
above classes.

The following theorem gives a lower bound on the Hellinger affinity between a
probability measure in P(d) or P+(d) and a certain kind of perturbation of that
measure. The proof is based on an application of the divergence theorem. This
result is frequently used in later sections.

THEOREM 1.7. Let X be a d-dimensional random vector whose law belongs
to either P(d) or P+(d). Take any ε ∈ (−1/2,1/2), and let X′ = X/(1 + ε). Then

ρ(LX,LX′) ≥ 1 − Cε2

where C depends only on LX and d .
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PROOF. Let e−V be the probability density function of X. In the following,
all integrals are over Rd if e−V ∈P(d), and over [0,∞)d if e−V ∈ P+(d). Let

g(ε) :=
∫ √

(1 + ε)de−V (x+εx)e−V (x) dx = ρ(LX,LX′).

By the inequality

∣∣ex − ey
∣∣ ≤ 1

2
|x − y|(ex + ey)

,

we have that for any ε1 and ε2,∣∣e−V (x+ε1x) − e−V (x+ε2x)
∣∣

≤ 1

2

∣∣V (x + ε1x) − V (x + ε2x)
∣∣(e−V (x+ε1x) + e−V (x+ε2x)).

Using this inequality and the assumptions on V , it is not difficult to verify that g is
a C∞ function on (−1/2,1/2), and the derivatives can be computed by differenti-
ating under the integral. Note that g(0) = 1 and

g′(ε) = d

2
(1 + ε)−1g(ε)

− 1

2
(1 + ε)d/2

∫
x · ∇V (x + εx)e−(V (x+εx)+V (x))/2 dx,

which gives

g′(0) = d

2
− 1

2

∫
x · ∇V (x)e−V (x) dx

= 1

2

∫ (
d − x · ∇V (x)

)
e−V (x) dx.

Let h = (h1, . . . , hd) be the function defined as

hi(x) = xie
−V (x).

Then

∂hi

∂xi

=
(

1 − xi

∂V

∂xi

)
e−V (x),

and hence

divh(x) =
d∑

i=1

∂hi

∂xi

= (
d − x · ∇V (x)

)
e−V (x).

If e−V ∈ P(d), then using the growth assumptions about V , a simple application
of the divergence theorem now shows that g′(0) = 0. If e−V ∈ P+(d), then also
the divergence theorem implies that g′(0) = 0, because h(x) · n(x) = 0 on the
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boundary of [0,∞)d , where n(x) denotes the unit normal vector to the boundary
at the point x. Finally, note that

g′′(ε) = −d

2
(1 + ε)−2g(ε) + d

2
(1 + ε)−1g′(ε)

− d

4
(1 + ε)(d−2)/2

∫
x · ∇V (x + εx)e−(V (x+εx)+V (x))/2 dx

− 1

2
(1 + ε)d/2

∫ (
x · HessV (x + εx)x

− 1

2

(
x · ∇V (x + εx)

)2
)
e−(V (x+εx)+V (x))/2 dx,

where HessV is the Hessian matrix of V . By the assumed properties of V , the
above formulas show that |g|, |g′| and |g′′| are uniformly bounded in the interval
(−1/2,1/2). Moreover, we have already deduced that g(0) = 1 and g′(0) = 0.
Thus, for any ε ∈ (−1/2,1/2),

g(ε) ≥ 1 − Cε2,

where C depends only on V and d . �

Combining this theorem with Lemma 1.4 yields the following corollary.

COROLLARY 1.8. Let X1, . . . ,Xn be i.i.d. d-dimensional random vectors
with probability density belonging to either P(d) or P+(d). Take any ε1, . . . , εn ∈
(−1/2,1/2) and let X′

i = Xi/(1 + εi) for i = 1, . . . , n. Then

dTV(L(X1,...,Xn),L(X′
1,...,X

′
n)) ≤ C

(
n∑

i=1

ε2
i

)1/2

,

where C depends only of the law of the Xi’s and the dimension d .

PROOF. By Theorem 1.7 and Lemma 1.4,

dTV(L(X1,...,Xn),L(X′
1,...,X

′
n)) ≤

(
1 −

n∏
i=1

(
1 − C0ε

2
i

)2

)1/2

,

where C0 depends only on the law of the Xi’s and the dimension d . Since the total
variation distance is bounded by one, we may assume without loss of generality (by
suitably increasing the value of C in the statement of the corollary, if necessary)
that

n∑
i=1

ε2
i ≤ 1

4C0
.

Then by repeated applications of the inequality (1 − x)(1 − y) ≥ 1 − x − y, which
holds for x, y ∈ [0,1], we get the desired result. �
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1.6. Connection with the Mermin–Wagner theorem. The technique of using
Lemma 1.2 in conjunction with Lemma 1.4 and Theorem 1.7 has strong similar-
ities with the celebrated Mermin–Wagner theorem of statistical physics [40, 41].
Roughly speaking, the Mermin–Wagner theorem shows that continuous symme-
tries cannot be spontaneously broken in dimensions ≤ 2. The physics proof of the
Mermin–Wagner theorem involves the introduction of a slowly rotating perturba-
tion known as a “spin wave,” akin to the perturbation used in Theorem 1.7. The
first rigorous proof of the Mermin–Wagner theorem, due to McBryan and Spencer
[39], used complex analytic techniques. A later proof, due to Pfister [54], used a
more transparent argument that resembles the method of this paper in various as-
pects. For a modern exposition in probabilistic language, see the lecture notes of
Peled and Spinka [51].

2. Applications.

2.1. Traveling salesman and minimal matching. Let f be a measurable real-
valued function on (Rd)n such that there is some r > 0 so that for any λ ≥ 0 and
any x1, . . . , xn ∈ R

d ,

f (λx1, . . . , λxn) = λrf (x1, . . . , xn).(2.1)

Such functions arise in many geometric combinatorial optimization problems. The
length of the optimal traveling salesman path through x1, . . . , xn, the length of the
minimal spanning tree and the length of the minimal matching (if n is even) are all
examples of functions having the above property, with r = 1. The volume of the
convex hull of x1, . . . , xn is an example that satisfies (2.1) with r = d .

If the points x1, . . . , xn are replaced by i.i.d. random points X1, . . . ,Xn drawn
from some probability measure on R

d , the resulting problem is called the stochas-
tic version of the original optimization problem. The stochastic problems have
been extensively studied by probabilists. Laws of large numbers and concentration
inequalities for upper bounds on fluctuations are well understood due to the works
of many authors, and beautifully exposited in the classic monograph of Steele [57].
Yet a lot remains to be understood. For example, the distribution theories for the
stochastic traveling salesman and the stochastic minimal matching problems re-
main out of the reach of available technology.

Not much is known about lower bounds on fluctuations in the problems where
the distribution theory is not understood. For the stochastic traveling salesman
problem, the only result on lower bounds that I am aware of is a result of Rhee [55],
who proved a fluctuation lower bound of the correct order in dimension two when
the points are uniformly distributed in the unit square. Nothing is known about
lower bounds in the stochastic minimal matching problem. The following theo-
rem gives a general lower bound for fluctuations when the points are distributed
according to some probability density in P(d) or P+(d).
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THEOREM 2.1. Take any d ≥ 1. Let X1,X2, . . . be i.i.d. random vectors with
probability density in either P(d) or P+(d). For each n, let fn : (Rd)n → R be a
function satisfying (2.1) for some fixed r > 0, and let Ln := fn(X1, . . . ,Xn). Let
(tn)n≥1 be a sequence of positive real numbers such that

lim inf
n→∞ P(Ln ≥ tn) > 0.

Then Ln has fluctuations of order at least n−1/2tn, in the sense of Definition 1.1.

PROOF. Without loss of generality, let a be a positive constant such that

P(Ln ≥ tn) ≥ a

for all n. Take any n. For i = 1, . . . , n, let

X′
i := Xi

1 + αn−1/2 ,

where α will be determined later. Let L′
n := fn(X

′
1, . . . ,X

′
n). Then by Corol-

lary 1.8,

dTV(LLn,LL′
n
) ≤ dTV(L(X1,...,Xn),L(X′

1,...,X
′
n)) ≤ Cα,

where C depends only on LX1 and d . On the other hand, by (2.1),

L′
n = Ln

(1 + αn−1/2)r
.

Consequently, for any β such that

0 < β <
(1 + αn−1/2)r − 1

n−1/2(1 + αn−1/2)r
= rα + o(1)

[where o(1) denotes a quantity that tends to zero as n → ∞], we have

P
(
L′

n ≥ Ln − βn−1/2tn
) = P

(
Ln ≤ (1 + αn−1/2)rβn−1/2tn

(1 + αn−1/2)r − 1

)

≤ P(Ln < tn) ≤ 1 − a.

Thus, choosing α sufficiently small, and then choosing β depending on α,
Lemma 1.2 completes the proof. �

Concretely, Theorem 2.1 gives the following lower bound in the traveling sales-
man and minimal matching problems.

COROLLARY 2.2. Take any d ≥ 2. In the stochastic traveling salesman and
stochastic minimal matching problems with points drawn according to some prob-
ability density in P(d) or P+(d), the optimal lengths have fluctuations of order at
least n(d−2)/2d , in the sense of Definition 1.1.
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PROOF. In the stochastic traveling salesman problem and the stochastic min-
imal matching problems in d ≥ 2, it is not difficult to see that the optimal values
are bounded below by some constant multiple of the sum of nearest-neighbor dis-
tances. From this, it follows by a simple mean and variance calculation that tn can
be chosen to be n1−1/d , since there are n points and the nearest neighbor distances
are of order at least n−1/d [because a density in P(d) or P+(d) is necessarily
bounded]. With this choice of tn, Theorem 2.1 implies that the order of fluctua-
tions is at least n−1/2n1−1/d = n(d−2)/2d . �

Interestingly, the lower bound in the above corollary matches the known order
of upper bounds on fluctuations in these problems [57]. The known upper bounds,
however, are for points drawn from the uniform distribution on [0,1]d . I do not
know if upper bounds are known for unbounded distributions, such as the ones in
P(d) and P+(d).

The next theorem gives the optimal lower bound for the traveling salesman
problem when the points are distributed uniformly in [0,1]d . This is a straight-
forward generalization of the lower bound obtained by Rhee [55] in d = 2. The
coupling used in the proof of this theorem is borrowed from Rhee’s paper. I do not
know if a simpler coupling can be made to work.

THEOREM 2.3. Take any d ≥ 2. Let Ln be the length of the optimal tour in
the stochastic traveling salesman problem with n points when the points are dis-
tributed independently and uniformly in [0,1]d . Then Ln has fluctuations of order
at least n(d−2)/2d , in the sense of Definition 1.1.

PROOF. Throughout this proof, C will denote any positive universal constant,
whose value may change from line to line.

Let X1, . . . ,Xn be i.i.d. uniform points from [0,1]d . Assume that n ≥ 4 and
let m = [n/2]. Given X1, . . . ,Xm, let D be the set of all points in [0,1]d that
are within distance αn−1/d from the set {X1, . . . ,Xm}, where α ∈ (0,1) will be
chosen later. Generate Ym+1, . . . , Yn independently and uniformly from the set D.
For each m + 1 ≤ i ≤ n, let

X′
i :=

{
Xi with probability 1 − βn−1/2,

Yi with probability βn−1/2,

where β ∈ (0,1) will be chosen later. For 1 ≤ i ≤ m, let X′
i := Xi . Let Ln be

the length of the optimal tour through X1, . . . ,Xn and let L′
n be the length of the

optimal tour through X′
1, . . . ,X

′
n.

Given X1, . . . ,Xm, the random variables X′
m+1, . . . ,X

′
n are i.i.d. with probabil-

ity density function

1 − βn−1/2 + βn−1/2

Vol(D)
1{x∈D}
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at x ∈ [0,1]d . From this formula and the inequality
√

1 + a ≥ 1 + a/2 − Ca2 that
holds for a ≥ −1/2, an easy calculation shows that the Hellinger affinity between
this conditional law and the uniform distribution on [0,1]d is bounded below by

1 − Cβ2

Vol(D)n
.

Therefore, by Lemma 1.4, the total variation distance between the conditional law
of (X′

m+1, . . . ,X
′
n) and that of (Xm+1, . . . ,Xn) is bounded above by

Cβ√
Vol(D)

.

It is not difficult to show (e.g., as in the proof of [55], Lemma 7) that with prob-
ability tending to one as n → ∞, Vol(D) ≥ Cαd . Combining this with the above
bound on the conditional laws, it follows that

dTV(L(X1,...,Xn),L(X′
1,...,X

′
n)) ≤ Cβ

αd/2 .(2.2)

Consider the optimal tour through X1, . . . ,Xn. Each Xi has two ‘neighbors’ in this
tour, one which comes before it and one that comes after. Call these points Ui and
Vi . If the point Xi is erased, then the length of the optimal tour must decrease by
at least

‖Xi − Ui‖ + ‖Xi − Vi‖ − ‖Ui − Vi‖.
Let K be a positive real number, to be chosen later. It is known that with prob-
ability tending to one, the optimal tour has length ≤ Cn1−1/d [57], Chapter 2. If
this happens, then the average length of an edge in the tour is bounded above by
Cn−1/d , and hence the fraction of all i for which

max
{‖Xi − Ui‖,‖Xi − Vi‖} ≤ Kn−1/d(2.3)

is bounded below by 1 − CK−1.
For each i, let Ni be the set of all j = i such that ‖Xi − Xj‖ ≤ Kn−1/d . Let

Ri := min
{‖Xi − Xj‖ + ‖Xi − Xk‖ − ‖Xj − Xk‖ : j, k ∈ Ni

}
,

where we follow the usual convention that the minimum of an empty set is infinity.
Let γ be a positive real number, to be chosen later. From the local structure of a
set of uniformly distributed points, it is not difficult to prove that with probability
tending to one as n → ∞, the fraction of all i for which Ri ≥ γ n−1/d is at least
c(γ,K), where c(γ,K) → 1 as γ → 0 for any fixed K .

Finally, note that if the point Xi is dropped, and (2.3) holds, then the length of
the optimal tour decreases by at least Ri .

Combining all of the above observations, we see that if K is chosen large
enough, and then γ is chosen small enough depending on K , then with probability
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tending to one as n → ∞, there are at least 3n/4 points Xi such that (2.3) holds
and Ri ≥ γ n−1/d . Let A be the set of all i such that Xi has these two properties.

Let B be the set of all m + 1 ≤ i ≤ n such that X′
i = Yi . Then from the con-

clusion of the previous paragraph, it follows that with probability tending to one,
|A∩B| ≥ Cβn1/2. Also, the expected number of pairs of points in B that are neigh-
bors of each other in the optimal tour is of order 1 as n → ∞. To see this, just note
that B is a randomly chosen subset of size O(

√
n) and compute a straightforward

bound on the conditional expectation of the number of such pairs given the Xi’s.
From these two observations, it follows that with probability tending to one, delet-
ing {Xi : i ∈ B} results in a decrease of at least Cβγn1/2−1/d in the length of the
optimal tour.

After dropping {Xi : i ∈ B}, let us now replace these points by {Yi : i ∈ B}.
Note that the resulting point set is exactly {X′

1, . . . ,X
′
n}. Each Yi is within distance

αn−1/d of some Xj and, therefore, adds at most 2αn−1/d to the length of the
optimal tour. Consequently, with probability tending to one, the total increase after
inserting all the Yi ’s is at most Cαβn1/2−1/d . Thus, choosing α sufficiently small
(depending only on γ ), we can ensure that with probability tending to one,

Ln − L′
n ≥ Cβn1/2−1/d .

Finally, choose β small enough (depending on α) so that the right-hand side of
(2.2) is less than 1/2. Lemma 1.2 now completes the proof. �

2.2. Free energy of the Sherrington–Kirkpatrick model. Let n be any posi-
tive integer. Let (gij )1≤i<j≤n be i.i.d. standard Gaussian random variables. The
Sherrington–Kirkpatrick (S-K) model of spin glasses [56] with n spins at in-
verse temperature β ≥ 0 and external field h ∈ R defines a random probabil-
ity measure on {−1,1}n, which puts mass proportional to eβHn(σ) at each point
σ = (σ1, . . . , σn) ∈ {−1,1}n, where

Hn(σ) := 1√
n

∑
1≤i<j≤n

gijσiσj + h

n∑
i=1

σi.

The S-K model has inspired a large body of work in probability theory, extensively
surveyed in [49, 59–61]. One of the key quantities of interest is the free energy of
the model, defined as

Fn(β,h) := log
∑

σ∈{−1,1}n
eβHn(σ).

For β < 1 and h = 0, the fluctuations of the free energy are well understood due
to the work of Aizenman, Lebowitz and Ruelle [1]. In this case, the free energy
has fluctuations of order 1 as n → ∞, and satisfies a central limit theorem after
centering. When β > 1 and h = 0, the best known upper bound on the order of
fluctuations is

√
n/ logn [16, 18]. I do not know of a definite conjecture about
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the true order of fluctuations. For h = 0, Chen, Dey and Panchenko [20] have
recently proved a central limit theorem for Fn(β,h) for any β , showing that it has
fluctuations of order

√
n. When h = 0, I have heard it said that the fluctuations

may be of order 1, but I have also heard it said that the fluctuations are of order
nρ for some small ρ. The following result shows that in the absence of an external
field, the fluctuations are at least of order 1.

THEOREM 2.4. The free energy of the S-K model at zero external field and
any inverse temperature β , has fluctuations of order at least 1, in the sense of
Definition 1.1.

PROOF. Since h = 0, we will write Fn(β) instead of Fn(β,h). Let α be a
positive constant, to be determined later. Let

g̃ij := gij

1 − αn−1 ,

and let F̃n(β) be the free energy of the model where gij is replaced by g̃ij . Then
by Corollary 1.8,

dTV(LFn(β),LF̃n(β)
) ≤ dTV(L(gij )1≤i<j≤n

,L(g̃ij )1≤i<j≤n
) ≤ Cα,

where C does not depend on n. A simple computation shows that

F̃n(β) − Fn(β) = log
〈
exp

(
βαHn(σ)

n(1 − αn−1)

)〉
β

,

where 〈·〉β denotes expectation under the probability measure defined by the S-K
model at inverse temperature β . By Jensen’s inequality, this gives

F̃n(β) − Fn(β) ≥
〈

βαHn(σ)

n(1 − αn−1)

〉
β

.(2.4)

On the other hand, another simple computation gives

F ′
n(β) = 〈

Hn(σ)
〉
β,(2.5)

where F ′
n is the derivative of Fn. Now, the following facts are well known (see, e.g.,

in [59]): n−1Fn(β) is a convex function of β , and converges to a deterministic limit
P(β) as n → ∞. Therefore, by the properties of convex functions, n−1F ′

n(β) →
P ′(β) for every β > 0 where P is differentiable. Moreover, it is also known that
P ′(β) > 0 for every β > 0 where P is differentiable. Thus, at every β > 0 where
P is differentiable, n−1F ′

n(β) converges to a positive limit.
Now, P is convex, and hence almost everywhere differentiable in (0,∞). In

particular, for any β > 0 there exists β ′ ∈ (0, β) where P is differentiable. Thus,
n−1F ′

n(β
′) converges to a positive limit. But the convexity of Fn implies that
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F ′
n(β

′) ≤ F ′
n(β). Thus, there exists a positive constant a (depending on β) such

that

lim
n→∞P

(
n−1F ′

n(β) ≥ a
) = 1.

Thus, by (2.4) and (2.5), we see that there is some b > 0 such that

lim
n→∞P

(
F̃n(β) − Fn(β) ≥ b

) = 1.

Choosing α small enough, Lemma 1.2 completes the proof. �

Another important quantity related to the S-K model is its ground state energy,
namely,

max
σ∈{−1,1}n

1√
n

∑
1≤i<j≤n

gijσiσj .(2.6)

The best known upper bound on the order of fluctuations of the ground state energy
is o(

√
n), proved in a recent manuscript of Chen, Handschy and Lerman [21]. No

lower bound is known. It is believed that the correct order of fluctuations is nρ ,
where ρ is either 1/6 or 1/4 (see, e.g., the discussion in [48]). The following
theorem proves a lower bound of order 1 on the fluctuations of the ground state
energy.

THEOREM 2.5. The ground state energy of the S-K model, as defined in (2.6),
has fluctuations of order at least 1, in the sense of Definition 1.1.

PROOF. Let g̃ij be as in the proof of Theorem 2.4. Let Gn and G̃n be the
ground state energies in the two systems. Then

G̃n = Gn

1 − αn−1 .

Using the well-known fact that Gn/n converges in probability to a deterministic
positive limit as n → ∞, it is now easy to complete the proof using Corollary 1.8
and Lemma 1.2. �

2.3. First-passage percolation. Take any d ≥ 2. Let E be the set of nearest-
neighbor edges of Zd , and let (ωe)e∈E be a collection of i.i.d. nonnegative random
variables, called “edge weights.” Define the weight of a path in Z

d to be the sum
of the weights of the edges in the path. Define the first-passage time T (x, y) from
a point x to a point y to be the minimum over the weights of all paths from x to y.
First-passage percolation is the study of the behavior of these first-passage times.
For a recent survey of the large mathematical literature on this model, see [9].

A lot of energy has been spent on the study of fluctuations of first-passage times,
but the known results are far from optimal. If x and y are points at distance n from
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each other, the best known upper bound on the fluctuations of T (x, y) is of order√
n/ logn under mild assumptions on the law of the edge weights [10, 11, 23],

although it is conjectured that at least in d = 2, the correct order should be n1/3.
The situation with lower bounds is even worse. The best known lower bound on the
order of fluctuations in d = 2, due to Pemantle and Peres [52], is of order

√
logn

when the edge weight distribution is exponential. The proof depends crucially on
the memoryless property of the exponential distribution. Newman and Piza [46]
showed that for a fairly general class of edge weight distributions, the variance of
T (x, y) is lower bounded by a constant multiple of logn. The Newman–Piza lower
bound is based on a technique pioneered by Wehr and Aizenman [66]. However, on
its own, this lower bound on the variance does not give a lower bound on the order
of fluctuations since there is no matching upper bound on any higher moment (or
even on the variance itself). The following theorem proves the

√
logn lower bound

on the order of fluctuations for a large class of edge weight distributions.

THEOREM 2.6. Consider the first-passage percolation model with i.i.d. non-
negative edge weights in d = 2. Suppose that the edge weight distribution belongs
to the class P+(1). Let xn and yn be two sequences of points such that the dis-
tance between xn and yn grows like a constant multiple of n. Then the fluctuations
of T (xn, yn) are at least of order

√
logn in the sense of Definition 1.1.

PROOF. Throughout this proof, C will denote any positive constant that may
depend only on the edge weight distribution, and nothing else. The value of C may
change from line to line or even within a line.

Let n be a positive integer greater than four, and let y be a point at distance n

from 0. Let T = T (0, y). It suffices to prove that T has fluctuations of order at
least

√
logn.

For each edge e, let k(e) denote the distance of e from the origin, where ‘dis-
tance’ means the graph distance between the origin and the endpoint of e that is
closer to the origin. For all edges e with k(e) ≤ n/2, let

εe := α

(k(e) + 1)
√

logn
,

where the constant α will be chosen later. Since there are ≤ Cr edges at distance r ,

∑
e

ε2
e ≤ ∑

r≤n/2

Cr
α2

(r + 1)2 logn
≤ Cα2.(2.7)

Let T ′ be the first-passage time from 0 to y when the original edge weights ωe are
replaced by ωe/(1 + εe) for all edges with k(e) ≤ n/2. By Corollary 1.8 and the
inequality (2.7),

dTV(LT ,LT ′) ≤ Cα.(2.8)
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Let m = [n/2]. Note that if e and e′ are two edges that share a vertex, then |k(e) −
k(e′)| ≤ 1. Thus, considering the first m edges e1, . . . , em in the optimal path, we
see that

T − T ′ ≥
m∑

i=1

εei
ωei

1 + εei

≥ Cα√
logn

m∑
i=1

ωei

i
.(2.9)

Notice that the optimal path must necessarily be a self-avoiding path. Let P(x, r)

be the set of all self-avoiding paths of length r starting at a vertex x. For θ ≥ 0, let

φ(θ) := E
(
e−θωe

)
,

where e denotes a generic edge. Since the density of the edge weight distribution
is uniformly bounded,

φ(θ) ≤ C

∫ ∞
0

e−θy dy = C

θ
.

Take any x and r , and any path in P(x, r). Let e1, . . . , er be the sequence of edges
in the path. Then for any θ > 0 and b > 0,

P

(
r∑

i=1

ωei
≤ br

)
≤ eθbrφ(θ)r ≤ Cr eθbr

θr
.

Choosing θ = 1/b, we get

P

(
r∑

i=1

ωei
≤ br

)
≤ (Cb)r .

Fix some b. Let Er be the event that there is a self-avoiding path, starting at some
point at distance ≤ r from the origin, of length r and weight ≤ br . Since there are
≤Cr2 points at distance ≤ r from the origin, and ≤Cr paths of length r from any
given starting point, the above inequality shows that

P(Er) ≤ Crr2(Cb)r ≤ Crbr .(2.10)

Let Ec
r denote the complement of Er , and define

F :=
[log2 m]⋂

k=1

Ec
2k .

Then by the previous (2.10),

P(F ) ≥ 1 −
[log2 m]∑

k=1

C2k

b2k

.(2.11)
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Suppose that F happens. Then for any path of length m, starting at 0, with edges
e1, . . . , em,

m∑
i=1

ωei

i
≥

[log2 m]∑
k=1

2k−1∑
i=2k−1

ωei

i

≥
[log2 m]∑

k=1

1

2k

2k−1∑
i=2k−1

ωei
(2.12)

>

[log2 m]∑
k=1

b2k−1

2k
= 1

2
b[log2 m].

By (2.9), (2.11) and (2.12), choosing α and b small enough, it follows that there
exists a positive constant a, depending only on the edge weight distribution, such
that

P
(
T − T ′ ≥ a

√
logn

) ≥ 1

2
.

By (2.8) and the above inequality, Lemma 1.2 completes the proof. �

For x ∈ Z
d , let Tx := T (0, x). Extend the definition of Tx to x ∈ R

d in some
reasonable way such that the map x �→ Tx is continuous. For example, one can
define Tx in the interior of every k-cell of Zd as the unique harmonic function that
takes specified values on the boundary of the cell, starting with k = 1 (because Tx

is a priori defined on every 0-cell), and inductively going up to k = d . The reason
for insisting on the continuity of the extension is that it will make it technically
easier for us to carry out a certain step in the proof of the next theorem.

For t ≥ 0, define the random set

B(t) := {
x ∈ R

d : Tx ≤ t
}
.

The shape theorem of Cox and Durrett [22] says that under mild conditions on the
edge weight distribution, there exists a deterministic compact symmetric convex
set B0 with nonempty interior, such that almost surely, for all ε > 0,

(1 − ε)B0 ⊆ 1

t
B(t) ⊆ (1 + ε)B0 for all large t .

The set B0 is called the ‘limit shape’ of first-passage percolation with the given
edge weight distribution.

A unit vector x ∈ R
d is called a ‘direction of curvature’ if in a neighborhood

of the boundary point of B0 in the direction x, B0 is “at least as curved as an
Euclidean sphere.” Formally, this can be defined as in [46], as follows. Take any
unit vector x. Let z be the boundary point of B0 in the direction x. We say that x is
a direction of curvature if there is an Euclidean ball D, with any center, such that
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D ⊇ B0 and z ∈ ∂D. Simple geometric considerations imply that B0 has at least
one direction of curvature.

Suppose that d = 2 and x is a direction of curvature. Then, under mild con-
ditions on the edge weight distribution, Newman and Piza [46] showed that for
all ε > 0, Var(Tnx) ≥ Cn1/4−ε for all n, where C does not depend on n (but may
depend on the edge weight distribution and ε). However, as we have observed be-
fore, this does not actually prove anything about the true order of fluctuations of
Tnx since we do not have a matching upper bound. The following theorem fills this
gap.

THEOREM 2.7. Suppose that d = 2 and the edge weight distribution belongs
to the class P+(1). Take any ε > 0. If x is a direction of curvature, then the first-
passage time Tnx has fluctuations of order at least n1/8−ε in the sense of Defini-
tion 1.1.

PROOF. Fix some n and ε. Let Vn be the set of all points in Z
2 that are within

Euclidean distance n3/4+2ε of the straight line joining 0 and nx. It follows by a
standard argument (as outlined, e.g., in [17], Section 6) using the concentration
properties of first-passage times, Alexander’s rate of convergence theorem [4, 5],
and the curvature of B0 in the direction x, that the geodesic from 0 to any lattice
point near nx lies entirely in Vn with probability tending to one as n → ∞.

Replace the edge weights ωe in Vn by ω′
e := ωe/(1 + αn−7/8−ε), where the

constant α will be chosen later. Keep all other edge weights the same as before.
Let T ′

nx be the first-passage time from 0 to nx in this new environment. Then by
Corollary 1.8, it follows that

dTV(LTnx ,LT ′
nx

) ≤ Cα,

where C does not depend on n. On the other hand, if the original geodesic from 0
to [nx] is wholly contained in Vn, then

T ′
nx ≤ Tnx

1 + αn−7/8−ε
.

Since Tnx/n converges to a deterministic positive limit [e.g., by the shape theorem,
which applies to edge weight distribution in P+(1)], this shows that there is some
positive constant c such that

lim
n→∞P

(
Tnx − T ′

nx ≥ cn1/8−ε) = 1.

Choosing α small enough, Lemma 1.2 completes the proof. �

The behavior of the set B(t) is of interest in the theory of first-passage per-
colation. Newman and Piza [46] defined the following exponent to measure the
discrepancy of t−1B(t) from the limit shape B0:

χ ′ := inf
{
κ : (

t − tκ
)
B0 ⊆ B(t) ⊆ (

t + tκ
)
B0 for all large t a.s.

}
.(2.13)
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As far as I know, it has not been proved that χ ′ > 0 under any conditions. Newman
and Piza [46] showed that in d = 2, max{χ ′, χ} ≥ 1/5, where χ is an exponent
defined in terms of lower bounds on variances of first-passage times. To be precise,
χ = supχx , where the supremum is taken over all unit vectors x, and

χx := sup
{
γ ≥ 0 : for some C > 0, Var(Tnx) ≥ Cn2γ for all n

}
.

Unfortunately, the exponent χ does not contain any information about the fluc-
tuations of B(t) in the absence of matching upper bounds. The only result that I
know, that gives a true lower bound on the order of fluctuations of B(t), is a the-
orem of Zhang [67]. Zhang showed that in any dimension, B(t) has fluctuations
of order at least log t in a certain sense, if the edge weights are Bernoulli random
variables. Very recently, this result has been extended to a general class of edge
weight distributions by Nakajima [45]. Another relevant result, due to Auffinger,
Damron and Hanson [8], gives a lower bound on the discrepancy between the ex-
pected first-passage times and their limiting values—but this does not say anything
about fluctuations. The following theorem is the first result that shows χ ′ > 0 in
two-dimensional first-passage percolation.

THEOREM 2.8. Suppose that d = 2 and the edge weight distribution belongs
to the class P+(1). Let χ ′ be the Newman–Piza shape fluctuation exponent defined
in (2.13). Then χ ′ ≥ 1/8.

PROOF. Take any κ such that almost surely, for all large t ,(
t − tκ

)
B0 ⊆ B(t) ⊆ (

t + tκ
)
B0.

If χ ′ ≥ 1, there is nothing to prove. So assume that χ ′ < 1. Then we can take
κ < 1. Let Et denote the event in the above display, and let

Ft := ⋂
s≥t

Es.

From the above characterization of κ , we have

lim
t→∞P(Ft ) = 1.(2.14)

Take any t > 0. Let x be a direction of curvature, and let z be the unique point on
∂B0 in the direction x. Let u and v solve u + uκ = t and v − vκ = t . Suppose that
Ev happens. Then

tB0 = (
v − vκ)

B0 ⊆ B(v),

which implies that Ttz ≤ v. Again, if Eu happens, then

tB0 = (
u + uκ)

B0 ⊇ B(u),

which implies that Ttz ≥ u, since if Ttz < u, then we can find t ′ > t such that
Tt ′z < u due to the continuity of the map y �→ Ty (but t ′z /∈ tB0, which gives
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a contradiction). If Fu happens, then both Eu and Ev happen, and so the above
argument shows that u ≤ Ttz ≤ v.

Since κ < 1, a simple calculation shows that u = t − tκ +o(tκ) and v = t + tκ +
o(tκ) as t → ∞. Thus, by (2.14) and the conclusion of the previous paragraph, we
get

lim
t→∞P

(|Ttz − t | ≤ 2tκ
) = 1.(2.15)

Recall that z is a scalar multiple of x. Therefore, (2.15) implies that there is some
constant c such that

lim
n→∞P

(|Tnx − cn| ≤ 2(cn)κ
) = 1.

By Theorem 2.7, this is impossible unless κ ≥ 1/8. �

2.4. The random assignment problem. Suppose that we have to assign n tasks
to n workers, and aij is the cost of assigning task j to worker i. Suppose that the
aij ’s are i.i.d. nonnegative random variables. Let Sn be the group of all permuta-
tions of {1, . . . , n} and let

Cn := min
π∈Sn

n∑
i=1

aiπ(i).

The problem of computing Cn is known as the random assignment problem. Al-
dous [2] proved that if the law of the costs has a density f that is nonzero and finite
in a neighborhood of zero, then Cn converges to a deterministic limit as n → ∞.
Moreover, the limit depends only on the value of f (0) (assuming that f is contin-
uous at 0). In [3], Aldous proved that if f (0) = 1, then the limit is ζ(2) = π2/6,
confirming a conjecture of Mézard and Parisi [42, 43]. Later, an exact formula for
E(Cn), when the costs are exponentially distributed, was obtained by Linusson and
Wästlund [38] and Nair, Prabhakar and Sharma [44]. When the density of the cost
distribution at zero is either blowing up to infinity or converging to zero, the situa-
tion becomes more complicated. These cases have been investigated by Wästlund
[65].

The fluctuations of Cn, however, are not as well understood. Talagrand [58]
proved using his general machinery that if the costs are uniformly distributed in
[0,1], then the fluctuations of Cn are at most of order

(logn)2
√

n log logn
.

A number of exact calculations for fluctuations are possible when the costs are
exponentially distributed with mean one. Under this assumption, Alm and Sorkin
[6] proved that the variance of Cn is at least of order 1/n, and then Wästlund [63,
64] derived the following asymptotic formula for the variance:

Var(Cn) = 4ζ(2) − 4ζ(3)

n
+ O

(
1

n2

)
.
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Wästlund [63, 64] also gave formulas for higher moments when the costs are expo-
nentially distributed, but the asymptotics of these formulas are hard to understand.
There is, however, a more direct way to extract lower bounds on fluctuations when
the costs are exponentially distributed, using the memoryless property of the ex-
ponential distribution. This has been worked out in a related model by Hessler and
Wästlund [27], also appearing in the Ph.D. thesis of Hessler [26].

When the costs are not exponential, nothing is known about lower bounds on
the fluctuations of Cn. The following theorem gives a general lower bound of order
n−1/2, which, in the face of the evidence presented above, appears to be the correct
order (recall that an upper bound of order n−1/2 is not yet known for nonexponen-
tial costs). The proof uses Lemma 1.2, but the simple multiplicative perturbation
of Section 1.5 does not give the correct answer for this problem. Instead, a more
complicated coupling is used.

THEOREM 2.9. Suppose that the cost distribution belongs to the class P+(1).
Then the optimal cost Cn in the random assignment problem has fluctuations of
order at least n−1/2, in the sense of Definition 1.1.

PROOF. Throughout this proof, C will denote any positive constant that may
depend only on the cost distribution and nothing else. The value of C may change
from line to line or even within a line.

Define a function φ : [0,∞) → [0,∞) as

φ(x) =
{√

nx if 0 ≤ x ≤ 1/n,

x + 1/
√

n − 1/n if x > 1/n.

Then φ is absolutely continuous and strictly increasing, and φ(0) = 0. Moreover,
φ(x) ≤ x + 1 for all x, and

φ′(x) =
{√

n if 0 < x < 1/n,

1 if x > 1/n.
(2.16)

Let e−V be the density function of the cost distribution. Let X be a nonnegative
random variable with probability density e−V . Let Y solve

Y + αn−1φ(Y ) = X,

where α is a positive constant that will be chosen later. Since the map x �→ x +
αn−1φ(x) is strictly increasing and continuous on [0,∞) and sends 0 to 0, it is a
bijection of [0,∞) onto itself. Therefore, Y is uniquely defined. The probability
density function of Y is

(
1 + αn−1φ′(x)

)
e−V (x+αn−1φ(x)).
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For ε ∈ (−1/2,1/2), define

g(ε) :=
∫ ∞

0

√(
1 + εφ′(x)

)
e−V (x+εφ(x))e−V (x) dx,

so that

ρ(LX,LY ) = g
(
αn−1)

.

As in the proof of Theorem 1.7, it is easy to verify using the assumptions on V and
φ that g is a C∞ function of ε and the derivatives with respect to ε can be taken
inside the integral. Note that g(0) = 1, and

g′(ε) =
∫ ∞

0

φ′(x)

2
√

1 + εφ′(x)
e−(V (x+εφ(x))+V (x))/2 dx

− 1

2

∫ ∞
0

√
1 + εφ′(x)V ′(x + εφ(x)

)
φ(x)e−(V (x+εφ(x))+V (x))/2 dx.

Thus,

g′(0) = 1

2

∫ ∞
0

(
φ′(x) − V ′(x)φ(x)

)
e−V (x) dx,

which equals zero by integration by parts, since φ(0) = 0. Next, note that

g′′(ε) = −
∫ ∞

0

φ′(x)2

4(1 + εφ′(x))3/2 e−(V (x+εφ(x))+V (x))/2 dx

− 1

2

∫ ∞
0

φ′(x)√
1 + εφ′(x)

V ′(x + εφ(x)
)
φ(x)e−(V (x+εφ(x))+V (x))/2 dx

− 1

2

∫ ∞
0

√
1 + εφ′(x)V ′′(x + εφ(x)

)
φ(x)2e−(V (x+εφ(x))+V (x))/2 dx

+ 1

4

∫ ∞
0

√
1 + εφ′(x)V ′(x + εφ(x)

)2
φ(x)2e−(V (x+εφ(x))+V (x))/2 dx.

Because of (2.16), it is convenient to write each of the four terms in the above
display as a sum of two integrals—one from 0 to 1/n and another from 1/n to ∞.
Due to (2.16) and the boundedness of V near zero, the magnitude of the first part
is bounded by C in all four cases. In the second part, φ′(x) is bounded by 1 and
φ(x) is bounded by x + 1. Therefore, using the properties of V and a few applica-
tions of the Cauchy–Schwarz inequality and change-of-variables, we see that the
magnitude of the second part is also bounded by C in all four cases. Thus,

sup
−1/2<ε<1/2

∣∣g′′(ε)
∣∣ ≤ C.

As a consequence,

ρ(LX,LY ) = g
(
αn−1) ≥ 1 − Cα2n−2.(2.17)
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Now for each i, j , let a′
ij solve

a′
ij + αn−1φ

(
a′
ij

) = aij .

Let C′
n be the optimal assignment cost with these new costs. By (2.17) and

Lemma 1.4, it follows that

dTV(LCn,LC′
n
) ≤ Cα.(2.18)

For 1 ≤ i ≤ n, let

bi := min
1≤j≤n

aij .

Since e−V is a bounded density,

P(bi ≥ 1/n) ≥ (1 − C/n)n ≥ K,(2.19)

where K is some positive constant that does not depend on n. Let

A := {i : bi ≥ 1/n}.
Since b1, . . . , bn are i.i.d. random variables, (2.19) shows that

lim
n→∞P

(|A| ≥ Kn/2
) = 1.(2.20)

Now notice that a′
ij ≤ aij for all i and j . Moreover, if i ∈ A, then for any j ,

aij ≥ 1/n. Since x �→ x+n−1φ(x) is an increasing map, this implies that a′
ij ≥ xn,

where xn is the unique solution of

xn + αn−1φ(xn) = n−1.

A simple calculation shows that

xn = 1

n + α
√

n
.

Thus, if i ∈ A, then for any j ,

a′
ij ≥ 1

n + α
√

n
,

and, therefore,

aij − a′
ij = αn−1φ

(
a′
ij

)
≥ αn−1φ

(
1

n + α
√

n

)
= α

n3/2 + αn
.

Combining all observations, we get

Cn − C′
n ≥ α|A|

n3/2 + αn
.

By (2.18), (2.20) and Lemma 1.2, this completes the proof. �
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2.5. Determinants of random matrices. Let n and N be two positive integers,
and let f be a measurable function from R

n into R
N×N , the set of all N × N real

matrices. Suppose that there is some r > 0 such that for all x1, . . . , xn ∈ R and all
λ ≥ 0,

f (λx1, . . . , λxn) = λrf (x1, . . . , xn).(2.21)

Let X1, . . . ,Xn be i.i.d. random variables. Then M = f (X1, . . . ,Xn) is an N × N

random matrix. Many common families of random matrices, such as Wigner ma-
trices, sample covariance matrices, random Toeplitz and Hankel matrices, and ran-
dom band matrices, can be obtained in the above manner as functions of indepen-
dent random variables where the function satisfies (2.21) for some r . For example,
for a Wigner matrix of order N , r = 1 and n = N(N + 1)/2. The following theo-
rem gives a lower bound on the order of fluctuations of log |detM|.

THEOREM 2.10. Let X1,X2, . . . be a sequence of i.i.d. random variables with
probability density in either P(1) or P+(1). For each n, let Nn be a positive integer
and let fn be a measurable function from R

n into R
Nn×Nn satisfying (2.21) for

some fixed r > 0. Let Mn := fn(X1, . . . ,Xn). Then log |detMn| has fluctuations
of order at least n−1/2Nn, in the sense of Definition 1.1.

PROOF. Throughout this proof, C will denote any constant that may depend
only on the distribution of the Xi’s, but not on n.

Fix n. Let X′
i := Xi/(1 +αn−1/2), where α will be determined later. Let M ′

n :=
fn(X

′
1, . . . ,X

′
n). Let Ln := log |detMn| and L′

n := log |detM ′
n|. By Corollary 1.8,

dTV(LLn,LL′
n
) ≤ dTV(L(X1,...,Xn),L(X′

1,...,X
′
n)) ≤ Cα.

On the other hand, by (2.21),

detM ′
n = (

1 + αn−1/2)rNn detMn,

and hence

L′
n = Ln + rNn log

(
1 + αn−1/2)

.

An application of Lemma 1.2 completes the proof. �

Consider now the special case of sample covariance matrices. Let n and p be
two positive integers, and let Y1, . . . , Yn be i.i.d. p-dimensional random vectors,
whose components are i.i.d. random variables. The sample covariance matrix for
this data is defined as

W := 1

n

p∑
i=1

(Yi − Ȳ )(Yi − Ȳ )T ,(2.22)
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where xT denotes the transpose of a column vector x, and

Ȳ := 1

n

n∑
i=1

Yi.

Note that this is slightly different than the Wishart matrices usually considered
in random matrix theory, which have the same definition, except that Ȳ is not
subtracted from Yi in (2.22).

A sample covariance matrix is positive semi-definite and so its determinant is
always nonnegative. The logarithm of the determinant of a sample covariance ma-
trix is an important object in statistics, where it is used to perform tests of hypothe-
ses [7]. A central limit theorem for log detW , when p is fixed, n → ∞ and the Yi ’s
are complex Gaussian random vectors, was established in 1963 by Goodman [25].
The high dimensional case, where p and n both tend to infinity, was solved by
Cai, Liang and Zhou [15] in 2015. (The corresponding result for Wishart matrices,
however, is standard fare in random matrix theory; see, e.g., [50], Chapter 7.) The
main result of [15] is a central limit theorem for log detW when the Yi ’s are real
Gaussian random vectors (possibly with correlated coordinates), n → ∞ and p is
allowed to vary arbitrarily but under the constraint that p ≤ n (so that detW = 0).
In this scenario, Cai, Liang and Zhou [15] show that log detW has Gaussian fluc-
tuations of order

√
p/n if p/n → r ∈ [0,1), and of order

√
logn if p/n → 1.

The non-Gaussian case is open. In particular, a central limit theorem for
log detW has not been proved in the setting described above, that is, Yi ’s having
i.i.d. but not necessarily Gaussian coordinates. The following corollary of Theo-
rem 2.10 provides a lower bound on the fluctuation of log detW which appears to
be of the correct order if p/n → r ∈ [0,1), in view of the result of Cai, Liang and
Zhou [15].

COROLLARY 2.11. Let Y1, . . . , Yn be i.i.d. p-dimensional random vectors
and let W be defined as in (2.22). Suppose that the coordinates of Yi ’s are i.i.d.
with probability density in P(1) (which remains fixed as n and p vary). Then as
n → ∞ and p varies arbitrarily as a function of n (with the constraint that p ≤ n),
log detW has fluctuations of order at least

√
p/n, in the sense of Definition 1.1.

PROOF. Note that the p × p matrix W is a function of np i.i.d. random vari-
ables, and this function satisfies (2.21) with r = 2. Thus, the n in Theorem 2.10
should be replaced by np and Nn should be replaced by p. With these replace-
ments, the lower bound on the order of fluctuations turns out to be (np)−1/2p =√

p/n, proving the claim. �

It is surprising to me that a soft technique based on Lemma 1.2 and Corollary 1.8
can actually yield the correct lower bound in Corollary 2.11. Indeed, the method
does not yield the correct bound for Wigner matrices. Improving on an earlier work
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of Tao and Vu [62], Nguyen and Vu [47] proved the central limit theorem for log-
determinants of Wigner matrices with non-Gaussian entries in 2014. According to
this result, the log-determinant has fluctuations are of order

√
logn. A straightfor-

ward application of Theorem 2.10, however, only gives a lower bound of order 1.
Possibly a better coupling than the one provided by Corollary 1.8 is needed to
achieve the

√
logn lower bound.

3. Open problems. There are many open questions about lower bounds for
fluctuations of random variables. Here is a list of questions that are closely associ-
ated with the examples worked out in this paper:

(1) Extend the results of this paper beyond the distribution classes P(d) and
P+(d). In particular, proofs under minimal assumptions would be very desirable.

(2) In the traveling salesman problem for uniformly distributed points on
[0,1]2, prove that the variance of the length of the optimal tour converges to a
constant as the number of points tends to infinity, and identify this constant if pos-
sible. This conjecture is due to Mike Steele, who told me about it in a personal
communication.

(3) Prove a tight lower bound for the fluctuations of the length of the minimal
matching when the points are uniformly distributed in [0,1]d .

(4) Prove a tight lower bound for fluctuations in the longest common subse-
quence problem for random words. Considerable progress on this problem has
been made in [24, 29, 30, 35], but the most important case of uniformly distributed
letters is open. A solution of this problem would complete the proof of the cen-
tral limit theorem for longest common subsequences, as shown by Houdré and
Işlak [28].

(5) Improve the lower bound for the fluctuations of the first-passage time in
two-dimensional first-passage percolation.

(6) Extend the lower bound result for first-passage percolation to the case of
discrete edge weights.

(7) Prove any nontrivial lower bound for the fluctuations of the first-passage
time in higher dimensions (a lower bound of order 1 is easy using the method of
this paper).

(8) Improve the lower bound for the Newman–Piza exponent χ ′ for two-
dimensional first-passage percolation.

(9) Show that χ ′ > 0 in higher dimensions.
(10) Improve the lower bound on the order of fluctuations of the free energy of

the S-K model or show that it is optimal. Same for the ground state energy.
(11) Prove the optimality of the lower bound in the random assignment problem

for cost distributions in P+(1) or any other general class of cost distributions.
(12) Prove tight lower bounds for fluctuations of functionals of random matri-

ces other than the determinant, such as linear statistics of eigenvalues and the max-
imum and minimum eigenvalues, in ensembles where such results are not known.
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This includes a variety of patterned random matrix ensembles, such as random
Toeplitz and Hankel matrices and random band matrices. For a survey of results
on patterned random matrices, see [13].

(13) Prove a distributional limit theorem in any of the examples discussed in
this paper.
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